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Abstract. The EMC3-Eirene code package was applied for the first time to simulate

the edge plasma in an ASDEX Upgrade discharge, in which the newly installed

magnetic perturbation coils were used to mitigate Edge Localized Modes (ELMs).

Two different points in time during this discharge were simulated, the ELM mitigated

phase after turning-on of the magnetic perturbation coils and, as a reference, the ELMy

H-mode phase before. The results were compared to the measurements of various

edge and divertor diagnostics. Assuming the main chamber profiles to be shifted by

15mm with respect to their calibrated positions, an agreement within a factor of 2 was

found between the main chamber profiles outside the separatrix and those at the outer

divertor target. The most important result is the observation of several maxima and

minima in the particle flux and in particular in the power deposition pattern of both

the simulation and the experiment for the case with magnetic perturbations, an effect

also known as strike-point splitting.

1. Introduction

The high confinement regime in most tokamaks is accompanied by the appearance of so

called edge localized modes (ELMs), quasi-periodic expulsions of particles and energy

from the edge plasma to the surrounding plasma facing components (PFCs). Due to

the limited capability of the PFCs to withstand the enormous heat loads expected in

particular in large devices, ELMs have to be controlled or even suppressed in ITER. An

important success to provide such a control tool was reported by several devices (COM-

PASS [1], DIII-D [2, 3, 4, 5], JET [6, 7], . . . ) where magnetic perturbations (MPs) in

the plasma edge were applied. Presently, a new set of 24 in-vessel MP coils is being
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installed at ASDEX Upgrade (AUG), of which eight coils started operating in December

2010. Initial experiments show that these coils also reduce significantly the ELMs at

AUG [8, 9]. In order to make predictions for ITER, where the application of MP coils

is also planned, a validated theoretical model to describe the edge plasma transport is

needed. Since the MP coils break the toroidal symmetry of the tokamak, such a model

has to take into account the full 3D geometry including the stochastic fields induced by

the coils. Recently, the Edge Monte Carlo 3D - Eirene code package (EMC3-Eirene) was

implemented successfully at AUG and validated for limiter [10] and divertor discharges

[11, 12]. In this article we will report on first simulations with EMC3-Eirene of the effect

of the MP coils and compare them to the measurements of various edge and divertor

diagnostics.

2. Experiment

Since the installation of the MP coils in 2010 many discharges were performed to

investigate the impact of the perturbation fields on the edge plasma stability, the particle

and energy fluxes to the targets and the impurity content in the confinement region

under different experimental conditions. An overview over these experimental findings

can be found in Refs. [8, 9]. In this article we concentrate on a single configuration

and document the results as much in detail as possible. Besides relevant discharge

parameters the most important criterion for the selection of an appropriate discharge

was the availability of experimental data from various edge and divertor diagnostics,

which were found to be most comprehensive in the case of the ELM-mitigated AUG H-

mode discharge 26081. Figure 1 shows the time traces of selected discharge parameters.

During the flattop phase (1–7 s) the plasma current remains constant at Ip = −800 kA

as seen in box (a), as well as the particle and power (boxes (c) and (d)) input. From

2–5.3 s a current of IMP = ±0.9 kA × 5 turns = ±4.5 kAt is driven through the two

sets of perturbation coils, which are connected in an odd parity n = 2 configuration.

An important observation is that neither the line averaged density, ne, nor the stored

energy, WMHD, (black and red curves in box (b)) are reduced by the perturbation fields.

The first actually shows a slight increase rather than a ‘density pump-out’ as observed

in other devices [5, 6, 13]. Although the plasma performance is not influenced by the

perturbation fields the edge localized modes (ELMs) are effectively suppressed as seen in

the data from the 1D infrared camera (box (e) showing color coded the power flux versus

the divertor coordinate s). While ELMs deposit large amounts of energy in frequent

eruptions on a short time scale before the turning-on of the coils (scattered signals in

box (d) from 1–2.5 s) the power deposition becomes much smoother about half a second

after (i.e. from about 2.5 s on). In addition, the profile shows several maxima and

minima during the phase 3–5 s, an effect also known as ‘strike-point splitting’ [14, 4, 5].

From now on we focus on the time point t = 4.9 s indicated by the red line in Fig.

1, which we will also refer to as the ‘MP case’, as well as the reference ‘non-MP case’
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at time t = 1.9 s (blue vertical line) just before the turning-on of the coils. For both

cases the external discharge conditions are about the same, the toroidal magnetic field

is Bt = −2.5 T and the safety factor at 95 % of the poloidal flux is q95 = −5.7.

PNI = 7.3 MW of power and ΦNI = 9.5 · 1020 s−1 deuterium atoms are deposited in

the core region by neutral beam injection (NBI). In addition to the NBI the plasma

is heated by PECRH = 1.6 MW of ECRH and POH = 0.16 MW of ohmic power.

Tomographic reconstruction of bolometry shows that the major part of the total input

power Ptot = ΦNI +PECRH +POH = 9 MW leaves the plasma in form of electromagnetic

radiation, originating in particular from the SOL near the inner divertor target. The

radiative power loss Prad is at least 5 MW or 56 %, however, since two channels of the

bolometer were saturated this value might still be underestimated. The power fluxes to

the inner and outer targets were measured by the 1D infrared camera to be Pit = 0.6

MW and Pot = 2 MW, respectively. Given that neither main chamber PFCs nor the

divertor roof baffle are expected to receive significant amounts of power, the 1.4 MW

remaining to fulfill the power balance are attributed to the underestimation of Prad, to

Pit + Pot or to both of them.

3. Code and computational grid

EMC3-Eirene is applied to simulate the edge plasma, the neutral particle and the

impurity transport in full 3D geometry. Originally it was developed for the intrinsically

three dimensional W7-AS [15] stellarator. During the last few years, however, the

code also found application in the tokamak community in particular since magnetic

perturbation coils are used, which break the toroidal symmetry of the tokamak. The

working principle as well as the full set of equations solved by EMC3-Eirene are described

in detail in Ref. [16]. Here, we only want to summarize that EMC3 solves Braginskii’s

equations and is self-consistently coupled to Eirene, which solves the kinetic equation

for the neutrals. Whereas the parallel transport is described purely neoclassical in

EMC3, anomalous cross-field transport coefficients D, η and χ are assumed as free

parameters in the code. Although a Monte Carlo principle is applied to solve the

equations numerically, the code assumes a fluid model to describe the plasma including

all the approximations of the fluid picture. Despite the completely different numerical

method and the different type of computational grid benchmarks against the 2D fluid

codes SOLPS and EDGE2D-Eirene have recently shown reasonably good agreement

for the axisymmetric case [10, 17, 18]. It has to be mentioned, however, that the

present version of EMC3 includes a less comprehensive set of atomic processes (volumic

recombination excluded for example) and drifts and are not taken into account.

In order to simulate a particular plasma experiment with EMC3-Eirene it is necessary to

describe the geometry of both the plasma facing components (PFCs) and the magnetic

field. While the former is relatively simple, since for this first application we only take

into account the toroidally symmetric components, the latter is clearly non-trivial. Here
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we assume the ‘vacuum approach’, meaning that the magnetic field is given by

~B = ~BEQ + ~BMP , with (1)

~BEQ = − 1

R

∂Ψ

∂z
~uR +

1

R

∂Ψ

∂R
~uz +

µ0f

R
~uφ (2)

where ~uR, ~uz and ~uφ are the unit vectors in radial, axial and toroidal directions and

where the poloidal magnetic flux Ψ and the current flux function f are computed by the

2D equilibrium code Cliste [19]. The magnetic field BMP caused by the perturbation

coils is obtained by integration of the Biot-Savart formula approximating the MP coils

by current filaments surrounded by empty space. Any response of the currents in the

plasma to the perturbation coils is neglected so far.

The magnetic geometry is read in by EMC3 in the form of a computational grid, which

is not only needed to count weighted Monte Carlo particles within finite size grid cells

and like this to calculate local plasma parameters, but is also used for pre-calculating

the field on a large number of interpolation points, enabling a fast and accurate tracing

of field lines (cf. the ‘reversible field line mapping’ technique described in Ref. [15]). The

generalization of the field line reconstruction method for block-structured grids, which is

required for poloidal divertor configurations, has been presented by Frerichs et al. [20].

Formally the grid is divided into Nz zones labeled with the ‘zone’ index iz = 0 . . . Nz−1.

Each zone constitutes a structured cubic grid, meaning that for every ‘radial’, ‘poloidal’

and ‘toroidal’ index ir = 0 . . . Nr(iz)− 1, ip = 0 . . . Np(iz)− 1 and it = 0 . . . Nt(iz)− 1

a grid vertex

~Giz
ir,ip,it (3)

exists and that cells with neighboring indices are also neighbors in real space. For a

given zone iz we will refer to the subset of grid points with a constant radial, poloidal

or toroidal index as a radial, poloidal or toroidal surface, respectively. A precondition

for the code is also that the toroidal angle φ is constant on toroidal planes.

Since the perturbation fields have an n = 2 symmetry the toroidal extension of the

grid was chosen as 180◦. The bilinear field-line interpolation method used in EMC3

requires convex cells [15]. Because of finite-shear effects this is possible only for field

lines of limited lengths. For this reason, the 180◦ toroidal interval is divided into 8

‘sectors’ with three zones, core, scrape-off layer (SOL) and private flux region (PFR)

each, yielding a total of 24 zones. A poloidal cross section of the grid covering an

interval of about ΨN = 0.85 . . . 1.09 of the normalized poloidal flux is shown in Fig.

2. It is underlayed by a Poincaré plot (black dots) which shows clearly the appearance

of several island chains in the core region, at least when assuming the aforementioned

vacuum approach.

3.1. Grid optimization

For the simulation of the non-axisymmetric situation with MPs two important measures

were taken to optimize the grid: First, one has to avoid the introduction of toroidal
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asymmetries at the grid-target interface due to the finite resolution of the grid (‘Moiré

effects’). For this reason the poloidal spacing of the grid is chosen such that grid points at

the grid-target interface lie exactly on the target. Second, another measure to optimize

the grid is to choose a so called ‘quasi flux surface’ (QFS) for the innermost radial surface

of the plasma domain to isolate the parallel transport. A QFS is a surface in 3D space

on which the radial component of the parallel transport is much smaller than the cross-

field transport. Only on these surfaces can we avoid formulating boundary conditions

for the parallel transport. The construction of QFSs is carried out in the following way:

A field line starting from a point (R0, z0, φ = 0) is traced a few (typically 30) toroidal

field periods ∆φ. The points (Ri, zi, φ = i∆φ) that lie on that field line at i field

periods are projected into the φ = 0 plane and connected by a set of (Rj,zj) points on

splines. These points are in turn followed one field period to form a curve (R′j,z
′
j). Now

R0, z0 are varied such that the area between the two curves (Rj,zj) and (R′j,z
′
j), the

‘area-mismatch’, becomes minimal. Due to the presence of resonances in the MP fields

the area mismatch is a strong function of the radius. QFSs with satisfactory quality

(that permit only a negligible number of Monte Carlo particle to escape) can always be

found with this method.

4. Results

Assuming the experimental boundary conditions described in Sec. 2 and constructing

a computational grid according to the methods described in previous Sec. 3 plasma

parameters as well es neutral particle densities were computed by means of EMC3-

Eirene. Since impurities were not included in the simulation so far, we subtract the

measured radiation losses from the input power. As discussed in Sec. 2 we presume

Prad to be slightly higher than actually measured by bolometry and assume an input

power flux of Pin = 3.3 MW through the innermost radial surface of the computational

domain, which is equally distributed between electrons and ions. 3D representations of

electron density ne, Mach number M = u/cs (streaming velocity u normalized to the

speed of sound cs) and electron temperature Te are shown in Fig. 3. The green and red

curves represent the perturbation coils with positive and negative currents respectively.

The helical structures provoked by these coils are clearly visible in particular in the field

for M (Fig. 3 middle). A poloidal cross-section of M in the divertor at a toroidal angle

Φ = 0◦ is also shown in Fig. 4, where the case with and without MP fields is compared.

Due to the strongly modified connection lengths with the inner and outer targets regions

with significantly larger fluxes and alternating sign (red and blue represent positive

and negative streaming directions, respectively) are found for the case with MP fields.

It is not surprising that such a strong change of the transport in the edge plasma

potentially influences also its stability. The physical mechanism of the ELM mitigation

and the conditions under which it is achieved cannot be identified so far and have to be

investigated in a more systematic study.

In order to obtain the main chamber ne, Te and Ti profiles represented by the black
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curves in Figs. 5 and 7 constant anomalous particle and heat diffusion coefficients of

D⊥ = 0.35 m2/s and χ⊥ = 2.5 m2/s and a separatrix density of ne,sep = 2.0 · 1019

m−3 were assumed. Fig. 5 corresponds to the MP case, while Fig. 7 shows the non-MP

situation for comparison. For the vacuum approach with constant transport coefficients,

the MP fields provoke a strong additional radial transport (the parallel transport has a

radial component, when the MP fields are turned on) and, therefore, a slight flattening of

the simulated density profile and a strong reduction of the temperature at the innermost

boundary of the computational domain. The fact that no density pump-out and no

reduction of the stored energy in the core is observed in the experiment, is a strong

indication for the insufficiency of the vacuum approach and the much lower stochasticity

of the fields in the experiment. It might be, however, that the anomalous transport and

that caused by the stochastic fields are affected at the same time and that these two

effects exactly cancel out, although this would be a rather unlikely coincidence. The

consistent implementation of screening effects as proposed recently by several authors

, e.g. [1, 21], therefore is a pending task for the near future. In any case it has to be

mentioned that the edge transport code EMC3 does not include the main physics of

the core transport (transport barrier, inward pinch, kinetic effects, . . . ) and so in the

following we focus mostly on the profiles outside the separatrix and downstream in the

divertor.

The simulated main chamber profiles are compared to the measurements of the lithium

beam and charge exchange spectroscopy, while the divertor Langmuir probes and the

1D infra-red camera provide experimental data for the divertor (Figs. 6 and 8). The

simulated main chamber Te profile is also shown together with the one measured by the

electron cyclotron emission (ECE) diagnostics, however, a comparison is not possible

since the two contain complementary information. The ECE data is reliable only inside

the separatrix, while EMC3 describes the plasma transport best in the SOL. In order to

reduce the statistic errors of the experimental data all profiles were averaged over a time

interval of 100 ms. During the ELMy non-MP phase we furthermore distinguish the

average profiles (red curves) from profiles averaged over the inter-ELM phases (magenta

curves) only. Due to the finite accuracy of the equilibrium reconstruction, the measured

radial profiles seem to be shifted with respect to the separatrix position. The separatrix

is assumed to be at the position, where the slope of the density profile in the non-MP

phase (Fig. 7 top) strongly changes due to the presence of an edge transport barrier.

The measured and simulated ne profiles then agree within the error bars at least in the

SOL (R−Rsep = 0 . . . 25 mm). Consistently, the same shift of ∆R = −15 mm is applied

to all other profiles.

Figures 6 and 8 finally show the simulated particle and power fluxes in the outer divertor

compared to those measured by the divertor Langmuir probes and the 1D infra-red

camera. Again the MP case (Fig. 6 bottom) is compared to the case without MPs (Fig.

8). First of all we note that the absolute value for the ion saturation current jsat agrees

within a factor of two and that the experimental profiles are reproduced relatively well

by the simulation, at least in the wing, i.e. for s = 1.12 . . . 1.27 m. There are, however,
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systematic discrepancies in the near strike-point region, i.e. for s = 1.12 . . . 1.27 m which

indicate the onset of partial detachment of the outer divertor for the non-MP phase.

Since we did not take into account the impurity transport so far, it is not surprising

that we do not capture this effect in the code.

Due to the exclusion of the impurity transport in the simulation we cannot expect a

better agreement than the 40% difference between the measured and simulated absolute

values for the power flux (note the different scales for the two profiles in Figs. 6 and 8).

Apparently part of the power is reaching the outer target in form of radiation (produced

in a small region in front of the strike zone), which could explain the approximately

homogeneous offset of P = 0.5 MW/m2 in the experimental power deposition profile.

This effect will be investigated quantitatively in the future simulating the impurity line

radiation in the divertor.

Independently, an important result is the observation of the strike-point splitting, i.e.

the appearance of several maxima and minima in the vicinity of the nominal strike

point (solid black vertical line) caused by the MP fields. Due to the limited spatial

resolution this effect is only marginally observable by the Langmuir probes and only

when comparing the MP and the non-MP cases around s = 1.2 m. In contrast, the power

flux pattern measured by the 1D IR camera shows 4 clearly distinguishable maxima.

While the ratio of the heights of the peaks is in good agreement with the simulation a

shift in the spatial position is found with respect to the measurement, which is most

likely due to inaccuracies in the equilibrium reconstruction and/or the target geometry.

Possibly local currents flowing between the inner and outer targets have to be taken

into account. The characteristic shape of the simulated power deposition pattern is

nevertheless very similar to the experimental one and in addition to that the maxima

and minima disappear in both the simulation and experimentally as soon as the MP

coils are turned off (cf. Fig. 8). This confirms that the physical and geometrical effects

leading to the strike point splitting are actually captured by EMC3-Eirene even when

neglecting screening effects for the MP fields in the confinement region.

A similar study as the one described here for AUG was also carried out by Frerichs et

al. [4] and Schmitz et al. [5] for DIII-D. EMC3-Eirene was also used there to compute

particle and power deposition profiles which were compared to the experimental ones.

While the strike point splitting was observed in the Dα signal (although less pronounced),

no splitting was found for the experimental power flux. It has to be pointed out, however,

that the pedestal electron collisionality in [4] and [5] is very low. Given that a second

peak in the power deposition profile could be resolved at higher collisionalities [14] kinetic

effects might have to be taken into account in the modeling to explain this discrepancy.

A gradual disappearance of the splitting with decreasing collisionality was also observed

by Jakubowski et al. [22].

Other authors addressed the strike point splitting from a purely geometrical approach

by computing connection lengths. While some of them [13, 22, 23, 24] also compare

their results the experimental data, others [25, 26] follow a purely theoretical approach.
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5. Summary and outlook

For the first time, non-axisymmetric divertor plasmas in AUG with the presence of

magnetic perturbations were simulated using the EMC3-Eirene code package. Two

different time points during one single discharge were compared, the ELMy ‘non-

MP phase’ before the turning-on of the newly installed perturbation coils in ASDEX

Upgrade and the ELM mitigated ‘MP phase’ after. The results were compared to the

measurements of various edge and divertor diagnostics. Assuming the main chamber

profiles to be shifted by 15mm with respect to their calibrated positions, an agreement

within a factor of 2 was found between the main chamber profiles outside the separatrix

and those at the outer divertor target. The most important result is the observation of

several maxima and minima in the experimental and simulated power deposition profiles

in the outer divertor, an effect also known as strike-point splitting. This effect vanishes

in both experiment and simulation, when the MP coils are turned off, which confirms

that the physical mechanisms and the geometry leading to the splitting are actually

captured by EMC3-Eirene.

It was furthermore found that the MP fields have a strong impact on the transport in the

plasma edge, where large helical flows with alternating sign appear. It is not surprising

that this effect potentially can influence the stability of the edge plasma, however, the

question of how and under which conditions the ELM mitigation mechanism actually

works remains open. A more refined and systematic study of the influence of the MP field

spectrum as well as a comparison of the conditions where ELM mitigation is achieved

and where not is planed for the near future.

The fact that no ‘density pump-out’ and no reduction of the stored energy was observed

in the experiment is a strong indication for the invalidity of the vacuum approach

and for the overestimation of the stochastic effects on the core transport implying the

relevance of the response of plasma currents to the perturbation fields. The consistent

implementation of these screening effects is also planned as one of the next steps. The

good agreement of the splitting of the power load profiles between the code and the

1D IR camera on the other hand indicates that the SOL power channels most likely

originate from a near-separatrix region outside the effective screening domain.
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Figure 1. Time traces of selected discharge parameters of AUG pulse 26081.
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Figure 2. Poincaré plot for AUG discharge 26081 at 4.9 s with 4.5 kAt current in the

MP coils assumig the vacuum approach. The computational grid for EMC3-Eirene is

overplotted. For each of the 8 segments (together 180◦ of the toroidal circumference)

it is divided into three zones, ‘core’ (red), ‘SOL’ (blue) and private flux region (‘PFR’,

green).
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Figure 3. 3D plots of ne, M and Te computed by means of EMC3-Eirene for AUG

discharge 26081 at 4.9 s. The green and red loops represent the magnetic perturbation

coils (|IMP | = 4.5 kAt) with positive and negative coil currents respectively.
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Figure 4. Cross section of the Mach number (cf. Fig. 3 middle) at the toroidal position

Φ = 0◦. The left figure shows the case without and the right figure the case with MP

fields. With MP fields strong helical structures form with alternating flux direction.
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Figure 5. ne (top), Te (middle)

and Ti (bottom) profiles in the

main chamber for AUG discharge

26081 at 4.9 s as measured by

the Li-beam, the ECE diagnostics

and charge exchange spectroscopy

respectively (red data points). In

order to correct an inaccuracy of

the equilibrium reconstruction, all

curves were shifted by ∆R = −15

mm. The black curves show the

profiles predicted by the EMC3-

Eirene simulation.

Figure 6. Divertor particle and

power fluxes measured (red) and

simulated by means of EMC3

(black) at the toroidal positions of

the diagnostics. Note the different

scales for the simulated (left) and

experimental (right) data.
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Figure 7. Same as Fig. 5 but

for t = 1.9 s without magnetic

perturbations. The same shift of

∆R = −15 mm was applied.

Figure 8. Same as Fig. 6 but

for t = 1.9 s without magnetic

perturbations.


