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Abstract

Based on the CYCLONE case [A. M. Dimits et al., Phys. Plasmas 7, 969 (2000)], simulations of

collisional electrostatic ITG microturbulence carried out with the global gyrokinetic Particle-In-

Cell (PIC) code ORB5 [S. Jolliet et al., Comp. Phys. Comm. 177, 409 (2007)] are presented.

Considering adiabatic electrons, an increase in ion heat transport over the collisionless turbulent

case due to ion-ion collisions is found to exceed the neoclassical contribution. This synergetic

effect is due to interaction of collisions, turbulence and zonal flows. The Dimits shift softening by

collisions [Z. Lin et al., Phys. Rev. Lett. 83, 3648 (1999)] is further characterized. Turbulence

simulations start from a neoclassical equilibrium [T. Vernay et al., Phys. Plasmas 17, 122301

(2010)] and are carried out over significant turbulence times thanks to a coarse-graining procedure

[Y. Chen and S. E. Parker, Phys. Plasmas 14, 082301 (2007)], ensuring a sufficient signal/noise

ratio even at late times in the simulation. The relevance of the Lorentz approximation for ion-ion

collisions, compared to a linearized Landau self-collision operator, is finally addressed in the frame

of both neoclassical and turbulence studies.
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I. INTRODUCTION

The effect of the radial electric field related to axisymmetric modes and the associated

zonal flows on tokamak microturbulence has been widely studied in the frame of gyrokinetic

simulations. In particular, the ITG turbulence saturation due to vortice shearing produced

by zonal flows is a well established mechanism which reduces the turbulent transport in

ITG-dominated regimes [1] [2] [3] [4]. Due to the high temperatures in the core of tokamak

plasmas, collisionless gyrokinetic models have extensively been used for turbulent transport

analysis. However, eventhough collisionality is not a priori a dominant effect for the core

tokamak physics, it may nonetheless significantly affect the transport in at least three ways.

First, collisions produce an intrinsical neoclassical transport. Usually small compared to

the turbulent transport, neoclassical transport may nevertheless reach comparable levels,

in conditions of marginal stability of microinstabilities. Secondly, collisions damp radial

perturbations and associated zonal flows as predicted in Ref. [5]. Thirdly, collisions may in

fact also generate a neoclassical radial electric field for ensuring ambipolarity in the presence

of density and temperature gradients, leading to background ~E× ~B flows. This strong effect

of collisions on radial electric field dynamics, appearing through a competition between

generation and damping, affects in turn through zonal flow shearing the turbulent transport

levels, as studied in this paper.

In order to address issues related to collisional turbulent transport with a Particle-in-Cell

(PIC) code such as ORB5 [6], the first requirement is to ensure long and relevant simulations

despite the numerical noise intrinsic to the PIC method and even enhanced over time by the

numerical treatment of collisions. The code ORB5 has proven to enable long, statistically

converged collisionless simulations by using a small artificial decay of the weights [7]. The

latter noise control scheme is however unpractical for carrying out collisional simulations,

since the required numerical decay rate which needs to be chosen for the approach to be

effective is typically of the order of the ion-ion collision frequency and may thus significantly

interfere with the corresponding physical effects. The control of numerical noise in presence

of collisions is thus handled by making use of the so-called coarse-graining procedure, first

proposed in [8] and further simplified in [9]. Some details related to the implementation of

the coarse graining algorithm in ORB5 are given in this paper.

2



Another requirement for the code is to feature a robust and thoroughly tested collision

operator. The self-collision operators in ORB5 are linearized Landau operators conserving

locally the first three velocity moments (density, parallel momentum, kinetic energy) and

whose discretization is presented in detail in [10]. Several neoclassical benchmarks against

other codes and analytical predictions have been performed. In this paper, we also address

the question of whether a simple Lorentz operator for ion-ion collisions used in other codes

[11] is sufficient for turbulence studies compared to a more accurate Landau self-collision

operator.

Studies of collisional ITG turbulence using gyrokinetic simulations have already been per-

formed in the past, making use of either Lagrangian (PIC) [12] or Semi-Lagrangian [13]

methods. Both in [12] and [13], the damping of zonal flows by collisions is found to increase

the turbulent heat diffusivity, at all values of the gradients considered. An Eulerian approach

combined with a simplified Krook operator for ion-ion collisions provides the same trend,

however less pronounced [14]. Turbulence studies in the frame of a Z-pinch configuration

lead again to a transport enhancement due to collisions [15]. This general conclusion is

confirmed by ORB5 results. In this paper, we systematically analyze the mechanisms of

neoclassical (purely collisional) and turbulent transport. To this end, in a first phase of the

simulation a neoclassical equilibrium is established by keeping only axisymmetric (n = 0)

Fourier modes. In a second phase, turbulence can evolve freely by considering all toroidal

Fourier modes (n = 0 & n 6= 0). The main finding of our work is that collisional effects are

not simply additive to turbulent transport: heat transport in the presence of both turbu-

lence and collisions is larger than the sum of collisionless turbulent transport and neoclassical

transport. The softening of the Dimits shift region obtained in [12] is as well observed in

ORB5 simulations and is further characterized in this work. Like the previous results men-

tioned above, the electrons are assumed adiabatic and therefore collisionless in this paper.

Considering the dynamics of kinetic electrons along with the related electron collisionality

may lead to different conclusions concerning the effects of collisions on turbulence in certain

regimes [16], mainly due to the reduction of microinstability drive by electron collisions.

The paper is organized as follows: Sec. II presents briefly the simulation model and the

numerical method, as well as the parameters of the specific considered physical system. Sec.

III explains the noise control procedure applied in collisional ORB5 and shows some related
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tests. Sec. IV shows some results related to collisional Rosenbluth-Hinton tests which

emphasize the difference in zonal flow physics between collisionless and collisional systems.

Sec. V addresses the competition between the neoclassical electric field generation and

the zonal flow damping by collisions in turbulent simulations starting from a neoclassical

equilibrium, and emphasizes the resultant effects on transport for different temperature

gradients. Sec. VI considers the relevance of the simple Lorentz operator for ion-ion collisions

in the frame of turbulent studies. Conclusions are drawn in Sec. VII. Finally, the effect of

the potential energy flux on the heat transport is discussed in Appendix A.

II. SIMULATION MODEL AND NUMERICAL METHODS

A. The gyrokinetic equation

Simulations are performed with the global gyrokinetic code ORB5 [6]. Electrons are con-

sidered here in the limit of the adiabatic approximation as one is interested in the purely

ITG regime. The collisional model of ORB5 is described in detail in Ref. [10]. It solves the

gyrokinetic equation for the gyro-averaged ion distribution function f(~R, v||, µ, t), where ~R

is the gyrocenter position, v|| the parallel velocity and µ = mv2
⊥/B the magnetic moment.

The operator Ĉ representing ion-ion collisions is a Landau operator, linearized with respect

to a local Maxwellian distribution fLM :

Ĉ(δfLM) = C[fLM , δfLM ] + C[δfLM , fLM ], (1)

where δfLM = f−fLM represents the deviation of the full distribution f with respect to fLM .

The first term on the right hand side represents collisions of δfLM on the background fLM

and the second term represents the background reaction (collisions of fLM on δfLM) ensuring

the local conservation of density, parallel momentum and kinetic energy. The background

reaction term is in fact approximated and of the form [17], [8]:

C[δfLM , fLM ]

fLM
' B(δfLM) =

1

n0

{
6
√
πH(v)

δP||v||
v2
th

+
√
π G(v)

δE
v2
th

}
, (2)

where n0 is the background density, vth =
√
T/m is the thermal velocity, and v = v/vth.

H(v) and G(v) are defined in [10] and related to the Rosenbluth potentials relatively to a
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Maxwellian background. δP|| and δE are respectively the changes in the parallel momentum

and the kinetic energy of the fluctuation distribution due to C[fLM , δfLM ]:

δP||(δfLM , ~x) = −
∫
C[fLM , δfLM ]v||d

3v, (3)

δE(δfLM , ~x) = −
∫
C[fLM , δfLM ]v2d3v. (4)

The form (2) ensures the same symmetry properties as the exact background reaction term

and associated properties (H-theorem, stationary states). A heat source SH is also consid-

ered, such that the gyrokinetic equation reads:

D

Dt
f = −Ĉ(δfLM) + SH , (5)

where D/Dt is the collisionless gyrokinetic operator:

D

Dt
=

∂

∂t
+

d~R

dt
· ∂
∂ ~R

+
dv||
dt

∂

∂v||
. (6)

The gyrokinetic equations of motion for the gyrocenter variables, derived by Hahm [18], are

given by:

d~R

dt
= ~vG = v||b̂+ ~v∇B + ~vc + ~vE×B︸ ︷︷ ︸

~vd

, (7)

dv||
dt

=
1

mv||
~vG · (q ~E − µ~∇B), (8)

dµ

dt
= 0, (9)

which are valid for small fluctuation levels. Here b̂ = ~B/B is the unitary vector along ~B, ~vG

is the guiding center velocity, ~v∇B is the ∇B drift velocity, ~vc is the curvature drift velocity,

~vE×B is the ~E × ~B drift velocity and ~E is the gyro-averaged electric field deriving from the

electrostatic potential φ. For more details, the reader is referred to Ref. [6].

B. δf Particle-In-Cell discretization

ORB5 uses the low noise δf PIC method, requiring the introduction ofN numerical particles,

called markers, for sampling the fluctuation distribution f . The distribution f is split into
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a background distribution f0 and a perturbed part δf = f − f0. Introducing two weights

wr(t) and pr(t) for the marker r, the fluctuation distribution δf and associated background

distribution f0 respectively read:

δf(~R, v||, µ, t) =
N∑
r=1

m

B∗||
wr(t)δ[~R− ~Rr(t)]δ[v|| − v||,r(t)]δ[µ− µr(t)], (10)

f0(~R, v||, µ, t) =
N∑
r=1

m

B∗||
pr(t)δ[~R− ~Rr(t)]δ[v|| − v||,r(t)]δ[µ− µr(t)], (11)

where B∗|| = B + mv||(~∇× b̂) · b̂/q and r is an indice for labelling the N markers. δ stands

here for the Dirac function. The gyrokinetic equation is solved through a time splitting

approach, considering successively separately the time stepping of the collisionless dynamics,

the collisional dynamics and the source term SH .

1. Collisionless stepping

For solving the collisionless part of the dynamics, the background f0 is chosen as a so-called

canonical Maxwellian fCM(Ψ̂, E) [19]:

fCM(Ψ̂, E) =
n0(Ψ̂)

[2πT0(Ψ̂)/m]3/2
exp

[
− E
T0(Ψ̂)

]
, (12)

where the radial coordinate Ψ̂ is the corrected toroidal canonical momentum and reads:

Ψ̂ = Ψ0 + corr = Ψ0 − sign(v||)
m

q
R0

√
2

m
(E − µB0) H(E − µB0), (13)

with H the Heaviside function, E = mv2/2 = mv2
||/2 + µB the kinetic energy and B0 the

magnetic field at the magnetic axis. The correction in Ψ̂ to the toroidal canonical momen-

tum Ψ0 = Ψ + mF (Ψ)v||/qB, where F (Ψ) = RBϕ, is nearly zero for trapped particles and

of opposite sign for forward and backward passing particles. Ψ̂, being clearly a function of

constants of motion of the unperturbed system, is itself a constant of motion of the unper-

turbed system and approximates the average of Ψ over the guiding center trajectory [19].

fCM is thus a function of the constants of the unperturbed motion, (Ψ̂, E , µ), and is there-

fore solution of the stationary, collisionless gyrokinetic equation in absence of perturbations.

Due to the remaining velocity dependence of Ψ̂, n0(Ψ̂) and T0(Ψ̂), although close, slightly
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differ from the actual density and temperature associated to fCM due to finite banana width

corrections. Evolving the collisionless part of the gyrokinetic equation is thus performed by

integrating numerically in time Eqs. (7)-(9) to obtain the collisionless marker trajectories

zr(t) = [~Rr(t), v||,r(t), µt(t)] together with weight equations dwr/dt and dpr/dt, detailed in

[10] and written as follows:

d

dt
wr(t) = −pr(t)

1

fCM

D

Dt
fCM

∣∣∣∣
[zr(t),t]

, (14)

d

dt
pr(t) = pr(t)

1

fCM

D

Dt
fCM

∣∣∣∣
[zr(t),t]

. (15)

The collisionless dynamics is handled through the so-called direct-δf method [20], taking

advantage of the fact that the total distribution f is conserved along collisionless trajectories.

The weight equations for collisionless dynamics can in fact be integrated analytically:

d

dt
(wr(t) + pr(t)) = 0 =⇒ wr + pr = const., (16)

d

dt
ln

pr
fCM |zr

= 0 =⇒ pr
fCM |zr

= const., (17)

Eq. (16) resulting from adding relations (14) & (15) and Eq. (17) obtained directly

from integration of Eq. (15). Let us suppose a marker r going from position zr(t) =

[~Rr(t), v||,r(t), µr(t)] to position zr(t + ∆t) = [~Rr(t + ∆t), v||,r(t + ∆t), µr(t + ∆t)] during a

collisionless time step t→ t+ ∆t. Making use of Eqs. (16)-(17), the new weights are given

by:

pr(t+ ∆t) = pr(t)
fCM |zr(t+∆t)

fCM |zr(t)

, (18)

wr(t+ ∆t) = wr(t) + pr(t)− pr(t+ ∆t). (19)

This scheme allows to avoid evaluating explicitly unpractical terms such as dΨ̂/dt, appearing

through DfCM/Dt in equations (14) & (15) for the time evolution of the weights.

2. Collisional stepping

For the purely collisional part of the time splitting approach, the background f0 is chosen

as a local Maxwellian fLM(Ψ, E):
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fLM(Ψ, E) =
n0(Ψ)

[2πT0(Ψ)/m]3/2
exp

[
− E
T0(Ψ)

]
, (20)

where Ψ is the poloidal magnetic flux and n0(Ψ) and T0(Ψ) the background density and

temperature profiles respectively. The transition between the local background fLM repre-

sentation and the canonical background fCM representation, used for solving the collisional

and the collisionless dynamics respectively, is provided by the background switching scheme

described in detail in [10]. Collisions of δfLM on fLM , so-called test particle collisions repre-

sented by C[fLM , δfLM ], are modelled through random kicks for markers in velocity space,

according to the Langevin approach, while collisions of fLM on δfLM appear through the

following collisional weight equations:

d

dt
wr(t) = −pr(t)

C[δfLM , fLM ]

fLM

∣∣∣∣
[zr(t),t]

, (21)

d

dt
pr(t) = 0. (22)

The background reaction implementation ensures the conservation of density, parallel mo-

mentum and kinetic energy to round-off precision [21]. More details about the numerical

methods are given in Ref. [10]. In particular, the binning of markers in configuration space

for estimating the fields δP||(~R, t) and δE(~R, t), representing the local variations of parallel

momentum and kinetic energy from test particle collisions and appearing in the background

reaction of the collision operator (2), is now performed in 3 dimensions as the turbulence

structures vary along all configuration space dimensions, while a binning in the 2 dimen-

sion poloidal plane is sufficient for the axisymmetric neoclassical runs described in [10].

The binning related to collisions is field-aligned, in order to take advantage of the turbu-

lence structure, and equivalent to the binning for the coarse graining in configuration space

described in Section III.

The collisionality is defined through the normalized ν∗ parameter, which is the ratio between

the detrapping collision frequency and the bounce frequency:

ν∗i =
R0qs

τiivthiε3/2
, with τii =

6
√
π

νii
, (23)

where νii is the thermal self-collision frequency for ions:
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νii =
ni0q

4
i ln Λ

2πε20m
2
i v

3
thi

. (24)

The Coulomb logarithm ln Λ is assumed to be constant over the whole plasma and typi-

cally chosen ln Λ = 18. Except for the Coulomb logarithm, the radial dependance of the

collisionality, through density and temperature profiles, is accounted for. The notation ν∗0

is introduced and stands for the collisionality parameter at the reference surface.

3. Heat sources

The global heat source SH is aimed at maintaining a roughly constant temperature profile

despite the outward heat flux. It takes the form [7]:

SH = −γH

(
δ̃fCM(Ψ, E , t)− f̃CM(Ψ, E , t)

∫
dE δ̃fCM(Ψ, E , t)∫
dE f̃CM(Ψ, E , t)

)
, (25)

where ˜ stands for the distribution reconstruction operator in the (Ψ, E) space, which

requires a binning in the (Ψ, E) space. For any function A of the gyrocenter variables

(Ψ, θ∗, ϕ, E , ξ), where θ∗ is the straight-field line poloidal angle, ϕ the toroidal angle and

ξ = v||/v the pitch angle, the operator ˜ reads:

Ã(Ψ, E , t) =

∫
dθ∗dϕdξ Jθ∗ΨϕA(Ψ, θ∗, ϕ, E , ξ)

2
∫

dθ∗dϕ Jθ∗Ψϕ
, (26)

Jθ∗Ψϕ being the Jacobian function. The heating rate γH is typically chosen as 10% of the

linear growth rate of the most unstable ITG mode. Note that the heat source term (25)

is particle and momentum conserving, and is constant on a given flux-surface. Eq. (25) is

integrated separately from other dynamics in the frame of the time splitting approach.

C. Quasi-neutrality equation

The electrostatic approximation is assumed in our model. The electrons are considered

adiabatic and enter the model through the quasi-neutrality equation:

ene(Ψ)

Te(Ψ)
[φ(~x, t)− 〈φ〉(Ψ, t)]−∇⊥ ·

(
ni0(Ψ)

BΩi

∇⊥φ
)

= δ̄ni(~x, t), (27)
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where φ is the electrostatic potential, Te(Ψ) is the electron temperature profile, Ωi the ion

cyclotron frequency, e is the elementary charge and 〈〉 stands for the flux surface average

operator. δ̄ni(~x) is the perturbed ion gyrodensity, computed as follows:

δ̄ni(~x, t) =

∫
B∗||
m

d3R dv|| dµ δfCM,i(~R, v||, µ, t)δ(~R + ~ρLi − ~x), (28)

where δfCM,i = fi − fCM,i and ~ρLi is the ion Larmor vector. It is assumed that the ion

background gyrodensity, defined as:

n̄i0(~x) =

∫
B∗||
m

d3R dv|| dµ fCM,i(~R, v||, µ)δ(~R + ~ρLi − ~x), (29)

is equal to the ion background density ni0(Ψ̂) associated to the background distribution

fCM,i. One assumes furthermore that the background densities of electrons and ions verify

quasi-neutrality, i.e. Zni0 = ne0, where Z is the ionization degree. The last term on the

left hand side of Eq. (27) is the linearized polarization drift, derived considering the long

wavelength approximation (k⊥ρLi � 1, where ρLi is the ion Larmor radius). Under this

assumption, the polarization drift term, which in general is an integral operator, reduces

to a differential operator (Poisson-like equation) and is valid only up to second order in

k⊥ρLi. Note that the considered adiabatic electron response is also linearized, having fur-

thermore invoked small amplitude fluctuations, so that |e(φ− 〈φ〉)/Te| � 1. The details

of the numerical implementation of the quasineutrality equation solver are given in [6] and

[22].

D. Transport diagnostics

We define respectively the gyrocenter particle flux Γ, the kinetic energy flux Qkin, the po-

tential energy flux Qpot and the heat flux qH as follows:
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Γ =

〈
~∇Ψ

|~∇Ψ|
·
∫

d3vf
d~R

dt

〉
S

=

〈
1

|~∇Ψ|

∫
d3vf

dΨ

dt

〉
S

, (30)

Qkin =

〈
1

|~∇Ψ|

∫
d3v

m

2
v2f

dΨ

dt

〉
S

, (31)

Qpot =

〈
1

|~∇Ψ|

∫
d3v qφf

dΨ

dt

〉
S

, (32)

qH =

〈
1

|~∇Ψ|

∫
d3v

[m
2

(v2 − 5v2
th) + qφ

]
f

dΨ

dt

〉
S

, (33)

where dΨ/dt = ~∇Ψ ·d~R/dt and 〈A〉S = (1/S)
∫
S
A dσ is defined as the poloidal flux surface

average of a quantity A, S being the surface value. In practice, to ensure sufficient statistical

accuracy from the PIC approach, surface averages are replaced by volume averages using

the relation 〈A〉S = 〈|~∇Ψ|A〉∆V /〈|~∇Ψ|〉∆V , where 〈A〉∆V =
∫

∆V
A d3x/∆V stands for the

volume average over the small volume ∆V enclosed between two neighboring magnetic

surfaces Ψ and Ψ + ∆Ψ. The heat flux qH can be written as:

qH = Qkin +Qpot −
5

2
T Γ. (34)

Note that the presented simulations take into account the potential energy flux for a relevant

computation of the heat diffusivity [23]. For diagnostic purposes, the effective heat diffusivity

is estimated using the following relation: χH = qH/(n|∇T |). Let us emphasize that this

relation is based on the approximation of neglecting the off-diagonal elements of the transport

matrix as in general, density gradients also contribute to the heat flux. Diffusivities are

usually normalized with respect to the Gyro-Bohm (GB) units: χGB = csρ
2
s/a, where cs =√

ZTe/mi is the sound speed and the sound Larmor radius is defined as ρs = cs/Ωi, with Te

taken at the reference radial position r/a = 0.5 and the cyclotron frequency Ωi = ZeB/mi

evaluated using the magnetic field on axis.

The so-called neoclassical fluxes are obtained from the contributions δfCM ·dΨ/dt|0 and fCM ·

dΨ/dt|E×B in Eqs. (30)-(33), while the so-called turbulent fluxes, the usual fluxes computed

in collisionless gyrokinetic codes, are provided by the contribution δfCM · dΨ/dt|E×B to

f · dΨ/dt. Here one has introduced the ~E × ~B drift contribution to the radial velocity

dΨ/dt|E×B = ~∇Ψ·~vE×B and the magnetic drift contribution to the radial velocity dΨ/dt|0 =
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~∇Ψ · (~v∇B + ~vc). The fluxes associated to fCM · dΨ/dt|0 do vanish as fCM represents a

stationary state of the collisionless system.

E. Magnetic Equilibrium

The considered adhoc equilibrium [24] consists of toroidal, axisymmetric, nested magnetic

surfaces with circular, concentric, poloidal cross-sections. In this case, the axisymmetric

magnetic field is given by ~B = ~∇Ψ × ~∇ϕ + F (Ψ)~∇ϕ, assuming Ψ = Ψ(r) with dΨ/dr =

rB0/q̄(r), as well as F = RBϕ = R0B0, so that:

~B =
B0R0

R

(
êϕ +

r

R0q̄(r)
êθ

)
, (35)

where R is the major radius, r the local minor radius, ϕ the toroidal angle, θ the poloidal

angle and êϕ, êθ the unit vectors in the toroidal and poloidal directions, respectively. The

transformation between the toroidal variables (r, ϕ, θ) and the cylindrical variables (R,ϕ, z)

is provided by R = R0 + r cos θ and z = r sin θ. Furthermore, B0 and R0 stand for the

magnetic field amplitude and major radius on the magnetic axis (r = 0). The q̄ profile is

chosen quadratic:

q̄(r) = q̄0 + q̄1
r2

a2
, (36)

which is related to the safety factor profile qs(r) by the following relation:

q̄(r) =
√

1− ε2 qs(r), (37)

where ε = r/R0 is the local inverse aspect ratio. The values q̄0 = 0.854 and q̄1 = 2.184

have been chosen such that q̄(r/a = 0.5) = 1.4 and the magnetic shear (r/q̄)dq̄/dr|r=0.5a =

ŝ(r/a = 0.5) = 0.8.

F. Physical parameters

For the simulation results presented in this paper, the physical parameters are inspired by

the DIII-D shot underlying the CYCLONE test case [25] and similar to the parameters

considered in [12] and [13]. The considered aspect ratio is a/R0 = 0.36, where a is the global
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minor radius. Choosing Te(r) = Ti(r) and Deuterium as the ion species, the size of the

plasma is set at a/ρs = 180, where ρs is the sound Larmor radius defined in Sec. II D. Let

A stand for either the temperature T or density n of a given species. Profiles are defined

with respect to the coordinate r, with a flat logarithmic gradient:

d lnA
d(r/a)

= −κA
2

[
tanh

(
r − (r0 −∆A)

∆r

)
− tanh

(
r − (r0 + ∆A)

∆r

)]
, (38)

where the values r0 = 0.5a for the center of the gradient profile and ∆r = 0.04a for the

width of the ramps have been chosen. Two actual gradient profile widths are considered:

a narrow one with ∆A = 0.15a and a wide one with ∆A = 0.3a. For the density profile

κn = 0.789 such that R0/Ln = R0κn/a = 2.2 at r = r0. Two temperature gradients,

namely R0/LT0 = 5.3 and R0/LT0 = 6.9, are studied in the next sections, corresponding to

κT = 1.908 and κT = 2.484 respectively. The physical collisionality (see Eq. (23)) at r = r0

for the CYCLONE case parameters is ν∗phys ' 0.045. Collisionalities larger than the physical

one, ranging from 2 ν∗phys up to 10 ν∗phys, are studied in this paper, in order to emphasize the

effects of collisions on the system.

G. Numerical parameters

The grid in configuration space chosen for solving the Poisson equation in this system is

Nr × Nθ × Nϕ = 128 × 512 × 256, where Nr, Nθ and Nϕ are the number of grid points

in the radial, poloidal and toroidal direction respectively. For the turbulent simulations,

only every second toroidal Fourier mode of the solution given by Eq.(27) is retained, namely

n = 0, 2, 4, . . . , 56, corresponding in real space to restricting the system to a toroidal wedge

of half the full system. A time step of ∆t = 0.22[a/cs] is chosen. For the CYCLONE case

described above, the number of markers ranges typically from ∼ 100 × 106 for collisionless

runs up to 500× 106 for collisional runs.
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III. CONTROLLING NUMERICAL SAMPLING NOISE IN COLLISIONAL SIM-

ULATIONS

A. Fourier filtering and signal-to-noise ratio estimate

Numerical sampling noise is diagnosed in ORB5 by examining the spatially averaged squared

density fluctuation amplitude in non-resonant, high-k|| turbulent modes, which are physically

supposed to be strongly Landau damped. These latter modes are thus at the limit or

even beyond the gyrokinetic ordering, and only arise due to sampling errors [26]. Here,

k|| ' (nqs−m)/Rqs is the component of the wave vector of a given poloidal-toroidal Fourier

mode (m,n) parallel to the magnetic field. Let us point out that the Fourier modes are

computed using a straight-field-line poloidal angle θ∗. Invoking the fact that microturbulence

is essentially aligned along the magnetic field lines, the charge density is Fourier-filtered, i.e.

the quasi-neutrality solver retains only the Fourier modes (n,m) which, at a given radial

position Ψ, are such that |nqs(Ψ)−m| 6 ∆m, where ∆m = 5 is typically used. Due to the

validity range of the long wavelength approximation, the upper boundary for the toroidal

Fourier modes n is typically chosen such that k⊥ρLi ' nqs(r0)ρLi/r0 6 0.8. In order to define

a signal-to-noise ratio, the following definitions are introduced: the signal is estimated by

the energy in the modes inside a certain Fourier filter F (low-k|| modes), while the noise is

estimated by the modes outside the Fourier filter (high-k|| modes):

signal =
1/a

∫ a
0
dr
∑

(n,m)∈F |δn(n,m)(r)|2∑
(n,m)∈F

, noise =
1/a

∫ a
0
dr
∑

(n,m)6∈F |δn(n,m)(r)|2∑
(n,m)6∈F

,

(39)

where the energy-like estimates are computed on the basis of the density fluctuations. The

Fourier components outside the filter F are removed from the density fluctuations before

computing the electrostatic field. This is the basic noise-control procedure. If the noise

becomes large compared to the physical signal, the simulations become irrelevant and are

not further carried out. The critical level of the signal/noise ratio (SNR) which is considered

to provide relevant results was empirically found to be SNR ' 10. In this paper we describe

an additional noise-control procedure in ORB5 for collisional runs, the so-called coarse-

graining method, first proposed in [8] and further simplified in [9].
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B. Coarse-graining

The coarse graining procedure involves 1) the binning of the markers in the whole gyrokinetic

phase space, i.e. a 5D binning, at a given time step and 2) the smoothing of the marker

weights within a same bin.

1. Binning

Let us emphasize the critical choice of the bin size. The bins indeed need to be as large

as possible to ensure the best statistics, but not larger than any physical scale of interest.

Indeed, the coarse graining procedure in fact provides numerical diffusion of fluctuation

structures in phase space with scales below the binning grid considered to be poorly resolved.

Let us define the normalized kinetic energy E = v2/2T (r) and the pitch angle ξ = v||/v.

Note that the energy dimension depends on the radial coordinate through the temperature

profile T (r). A uniform grid in θ∗ is first built, leading to Nθ∗ bins. Let us write θ∗0(θ∗) the

function giving the position of the bin center θ∗0 corresponding to θ∗:

θ∗0(θ∗) =

[
FLOOR

(
θ∗ + π

∆θ∗

)
+

1

2

]
∆θ∗ − π, (40)

where θ∗ ∈ [−π; π[ and ∆θ∗ = 2π/Nθ∗ is the width of the bins along θ∗. FLOOR(x) stands

for the largest integer which is smaller or equal to x. We define a new field-aligned coordinate

z:

z = ϕ− qs(s)[θ∗ − θ∗0(θ∗)]. (41)

where qs is the safety factor and s =
√

Ψ/Ψedge a normalized radial coordinate. Note that

this field-aligned coordinate enables to use the largest possible bins in the θ∗ direction,

which now parametrizes the position along the field line. Indeed in the coordinates (s, θ∗, z)

the dependance with respect to θ∗ of a field-aligned fluctuation quantity represents the

slowly varying envelope along the magnetic line. The fast phase variation transverse to

the magnetic field is represented by both s and z. The binning is then defined as a block-

structured Cartesian grid in the new set of variables (s, θ∗, z,E, ξ). The number of bins

in the θ∗ direction is proportional to the radial coordinate s (s∆θ∗ ∼ const.) in order to

ensure good statistics, including near the magnetic axis, which is the center of the polar-like

15



coordinates (s, θ∗). Figure 1 shows how the binning follows the field lines in the (θ∗, ϕ)

plane, as well as the bin structure in the (θ∗, z) plane and in the (θ∗, s) plane.

2. Smoothing

Let us write α the general index identifiying a 5D bin. Considering the bin α, we define the

averaged w-weight and p-weight for the markers with index r present in the bin α at a given

time:

w̄α(t) =
1

Nα

∑
r∈α

wr(t), (42)

p̄α(t) =
1

Nα

∑
r∈α

pr(t), (43)

where Na is the number of markers in the bin α. Let us consider a marker r in a bin α.

Introducing the relaxation rates γw and γp, the modification brought to both weights of the

marker r after a coarse graining procedure is:

∆wr = N∆t · γw · (w̄α − wr) , (44)

∆pr = N∆t · γp · (p̄α − pr) , (45)

whereN is the number of time steps of length ∆t between which coarse graining is performed.

The typical parameters for the simulations presented in this paper are N = 10, γw =

0.45[cs/a] and γp = 0.045[cs/a]. The chosen values are specific to given physical quantities,

like the growth rate of the instability or the collisionality, and are not universal. The only

mandatory requirement is N∆t · γw 6 1. A full relaxation of all weights in a bin to the

averaged weight value corresponds to N∆t · γw = 1.

C. Effects on turbulence

The purpose of the coarse-graining is to reduce the numerical noise, by filtering the high-

k modes both in configuration and velocity space in case of a collisionless run and/or by

reducing the weight spreading in case of a collisional run [8]. The aim of this procedure is to
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enable to maintain the signal/noise ratio at a higher level than simulations without coarse

graining, while retaining the key physics from the simulation. As already mentioned, the size

of the bins needs to be chosen so as to be smaller than any scale length relevant to a correct

estimation of the turbulent transport levels. Bin sizes are thus similar to mesh sizes used in

grid-based (Eulerian) gyrokinetic codes. Considering the CYCLONE base case described in

Sec. II F with R0/LT0 = 6.9 and taking ns×nθ∗×nz×nE×nξ = 128×32×128×40×40 as

the binning grid for half of the torus, we first consider a non-heated plasma discretized with

100 × 106 markers. Figure 2 shows that the coarse graining procedure has no significant

effect on the growth and non-linear saturation of different ITG modes, n = 10 and n =

44 corresponding respectively to k⊥ρLi ' 0.15 and k⊥ρLi ' 0.68. The latest result is in

accordance with the purpose of the coarse graining procedure, which is to address a purely

numerical issue and thus has to leave the physics unchanged. The size of the binning is, as

expected, very important: if the bins are too large, significant scales of the turbulence are

affected, as the corresponding modes are artificially damped, as one sees in Figure 2 for a

number of bins reduced by a factor two in each direction.

Considering the appropriate binning mentioned above, the positive effect of the coarse-

graining is clearly illustrated in Figure 3, showing the signal/noise ratio for runs with either

90 × 106 or 180 × 106 markers, the heating operator being turned on. On average, there

is less than one marker per bin (∼ 0.1 and ∼ 0.2 respectively). It has to be noticed

from Figure 3 that the coarse-graining procedure is able to stabilize the signal/noise ratio.

The simulations for which the noise is not controlled by the coarse-graining method indeed

present a decaying signal/noise ratio in the time evolution, finally reaching a level below the

threshold of simulation relevance (∼ 10). The described coarse-graining procedure allows

to carry out relevant, i.e. long enough studies of turbulence in the frame of the δf PIC

method.

Let us emphasize again that this noise control method is fully compatible with the physics of

collisions [10]. Furthermore, note that the field-aligned coordinates are compatible with the

gyrokinetic ordering (small k||ρLi) and are thus the natural choice for representing micro-

turbulence. Considering bins aligned along these coordinates enables to take the largest

possible bins, essential for ensuring, on average, sufficient statistics within each bin, while

avoiding the coarse-graining procedure to smooth out essential physical scale lengths. This

17



is illustrated by the number of bins considered in configuration space (128×32×128 for half

of the torus) versus the number of grid points considered in straight field line coordinates

for the field solver (128× 512× 128 for half of the torus). It is emphasized that the coarse-

graining does not necessarily require more than one marker in each bin at each time step.

Such a requirement would naturally compromise any advantage of a PIC method versus an

Eulerian approach.

IV. COLLISIONAL ROSENBLUTH-HINTON TESTS

This section points out essential differences between collisionless and collisional behaviour

of the zonal flows by showing some results related to the so-called Rosenbluth-Hinton test

[5] [27]. The standard parameters given in Sec. II F are considered, except that temperature

and density profiles with a peaked shape, as described by Eq. (43) of Ref. [10], are used

in this section. An initial distribution perturbation δfLM = (δn/n0) cos(πr/a)fLM , i.e.

radially shaped by a cosine density perturbation, is loaded. The system is then linearly

evolved by retaining only the axisymmetric component (n = 0 modes) of the electrostatic

potential. In collisionless simulations, after relaxation of GAMs oscillations, the residual

value of the radial electric field is proportional to the initial amplitude of the perturbation

[27], in both cases where profile gradients are or are not considered. In collisional simulations,

the situation is fundamentally different: independent of the initial amplitude, the zonal flows

dampen as a result of collisions between passing and trapped ions [5] and the radial electric

field always relaxes towards the neoclassical equilibrium value, which is non-zero for finite

background profile gradients, regardless of the initial electric field amplitude. As expected,

the neoclassical equilibrium field does vanish if no gradients are considered. Figures 4 and 5

illustrate these different scenarios by presenting the time evolution of the radial electric field

Er(t) at r/a = 0.5, for both zero and non-zero CYCLONE case density and temperature

gradients.
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V. COLLISIONAL TURBULENT SIMULATIONS STARTED FROM A NEO-

CLASSICAL EQUILIBRIUM

Simulations have been carried out for collisionalities in the range ν∗ = 0.09−0.45, i.e. 2 to 10

times higher than the physical one ν∗phys ≈ 0.045. Note that for studying collisional effects,

simulations must be carried out over multiple collision times while resolving the shorter time

scale of the turbulent fluctuations. Low collisionality is thus numerically challenging due to

the large number of time steps as well as the large number of markers required for ensuring a

sufficient signal/noise ratio. Collisional simulations are performed with 500×106 markers and

started from a canonical Maxwellian as the total initial distribution: f(t = 0) = fCM(Ψ̂).

For collisional simulations, a first run with only axisymmetric modes (n = 0) is carried

out over approximately two collision times τii, in order to establish a neoclassical electric

field. The simulation is then resumed taking into account both the axisymmetric and the

non-axisymmetric modes, thus allowing turbulence to develop and enabling to study the

resulting anomalous transport and the interaction between zonal flows and turbulence. The

typical time evolution of the neoclassical and turbulent contributions to the kinetic energy

flux Qkin (as defined in Sec. II D) , both in the neoclassical and turbulent phase of the

simulation, is shown in Figure 6 for the temperature gradient R0/LT0 = 6.9 and collisionality

ν∗0 = 4ν∗phys = 0.18. The use of the heat source described by Eq. (25) enables to reach a

quasi-stationary level of transport by maintaining a constant temperature gradient, in a

time-averaged sense.

A. Heat diffusivity: temperature gradient and collisionality effects

In this section, two temperature gradients are first considered, along with a wide non-

zero gradient profiles (∆A = 0.3a) for carrying out a collisionality scan. The first one,

R0/LT0 = 5.3, is above the linear stability threshold, but below the collisionless non-linear

stability threshold of ITG turbulence in the considered physical system, i.e. in the so-

called Dimits shift region [25]. The second one, R0/LT0 = 6.9, is above the non-linear

stability threshold and thus ensures a stronger drive for the turbulence. Figure 7 shows the

quasi-stationary total and neoclassical heat diffusivity χH at mid-radius with respect to the

collisionality. For the gradient under the non-linear stability threshold, R0/LT0 = 5.3, a non-
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vanishing turbulent transport illustrating a softening of the Dimits shift region is established

through collisions. The turbulent diffusivity is relatively small in this latter case, i.e. of the

order of the neoclassical diffusivity at each collisionality (χtot
H = χneo

H + χturb
H ' 2χneo

H ). Note

that, as expected, there is zero transport at R0/LT0 = 5.3 if the collisions are switched off.

For the higher temperature gradient R0/LT0 = 6.9, the increase of the total diffusivity due

to collisions is significantly larger than for R0/LT0 = 5.3. For all gradients above the linear

gradient threshold, one thus observes:

χtot
H (ν∗) > χturb

H (ν∗ = 0) + χneo
H (ν∗). (46)

In general, the heat transport in the presence of both turbulence and ion-ion collisions is

thus larger than the sum of collisionless turbulent and neoclassical transport considered

separately. This reflects the complex interplay between collisional effects, zonal flows and

turbulence. Figure 8 presents the quasi-stationary diffusivity profiles χH for ν∗0 = 10ν∗phys =

0.45. The neoclassical contribution computed during the turbulent phase is compared to an

analytical prediction derived by Chang and Hinton [28], showing a good agreement. While

the anomalous transport is of the order of the neoclassical transport in the case of the lower

gradient R0/LT0 = 5.3, it becomes clearly dominant for R0/LT0 = 6.9.

As the ion-ion collisions have a marginal influence on the growth rate of the ITG modes

in the linear phase of the simulation, it is expected that the effects of collisions on the

turbulent transport happen mainly through their damping effect on the zonal flow. The

zonal flow is thus a key physical quantity to be studied in order to get insights into the

collisional turbulent transport, as it is in the collisionless case. The standard collisionless

picture of the interaction between zonal flows and turbulence is the following: above the

linear threshold in the ion temperature gradient for the ITG instability, turbulence starts to

develop and non-linearly drives zonal modes which in turn tend to quench the turbulence

due to the ~E × ~B shearing rate ωE×B, given by the following approximate form [29]:

ωE×B =
r

qsB0

d

dr

(
qsEr
r

)
. (47)

The maximum saturation level of zonal flows is determined by a tertiary, Kelvin-Helmoltz

(KH) type instability [30], a mechanism transferring energy back from zonal flows to turbu-

lence. If the zonal shearing rate ωE×B is strong enough below or at its KH saturation level in
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order to quench the turbulence, as it is the case for the temperature gradient R0/LT0 = 5.3,

no turbulent transport occurs. On the contrary, if the turbulence is strong enough, as it

is the case for the temperature gradient R0/LT0 = 6.9, it is not totally quenched by the

saturated zonal flows and some turbulent transport develops. The existence of a tertiary

instability threshold setting a saturation level on the zonal flows thus explains the end of

the Dimits shift region starting from R0/LT0 ' 6, where the turbulence drive becomes too

large compared to the saturated zonal flow level and is thus able to produce finite anoma-

lous transport. Figures 9 and 10 show the time evolution of the radial shearing rate profile

ωE×B(r) for ν∗0 = 0.18, considering R0/LT0 = 5.3 and R0/LT0 = 6.9 respectively. The shear-

ing rate structure and intensity depend naturally on the considered gradient, but in both

cases a quasi-stationary state is reached in the end of the simulation.

As predicted in Ref. [5] and as illustrated in Sec. IV, the zonal flows driven by turbulence

are shown to be damped by ion-ion collisions. In order to deal with a global shearing rate,

we define the radial average operator over the width of the gradients:

〈· · · 〉r =
1

2∆A

∫ r0+∆A

r0−∆A

· · · dr. (48)

The radial average of the shearing rate absolute value 〈|ωE×B|〉r is time averaged over a

window of 200[a/cs], moved within the quasi-stationary phase of the simulation in order to

get an estimate of the statistical error. For both temperature gradients R0/LT0 = 5.3 (Table

I) and R0/LT0 = 6.9 (Table II), the averaged shearing rate 〈|ωE×B|〉r,t is slightly damped by

a finite collisionality but remains of the order of its collisionless level. Moreover, increasing

the finite collisionality does not lead to an increase of the damping. The additional drive

for zonal flows, coming from the additional turbulence observed in collisional simulations,

appears thus to compensate at least partially the damping of turbulence-driven zonal flows

by ion-ion collisions.

Table I. Average of the shearing rate absolute value 〈|ωE×B|〉r,t for R0/LT0 = 5.3.

ν∗0 0 0.09 0.18 0.3 0.45

〈|ωE×B|〉r,t[10−2cs/a] 5.6 ± 0.09 4.9 ± 0.03 4.8 ± 0.03 5.2 ± 0.01 5.3 ± 0.03
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Table II. Average of the shearing rate absolute value 〈|ωE×B|〉r,t for R0/LT0 = 6.9.

ν∗0 0 0.09 0.18 0.3 0.45

〈|ωE×B|〉r,t[10−2cs/a] 10.2 ± 1.3 8.4 ± 0.4 9.5 ± 1.4 9.4 ± 0.5 9.5 ± 0.09

Figure 11 shows the profiles of the absolute ~E × ~B shearing rate values |ωE×B|(r), averaged

over a time window of 200[a/cs] in the quasi-stationary state of the turbulent simulation,

for different collisionalities and for the temperature gradient R0/LT0 = 5.3. Figure 12 is

similar to Figure 11 but considers the higher temperature gradient R0/LT0 = 6.9. In the

Dimits shift region, i.e. at R0/LT0 = 5.3, the radially averaged shearing rates 〈|ωE×B|〉r are

close to the linear growth rate of the most unstable mode γmax ' 0.058[cs/a]. Furthermore,

as mentioned above, the radially averaged shearing rate 〈|ωE×B|〉r is only slightly affected

by collisions. This is remarkable, given that the radial shearing rate profile |ωE×B|(r) is

significantly modified when going from zero to finite collisionality. Note however the almost

identical shape of |ωE×B|(r) for the two considered finite collisionalities ν∗0 = 0.09 and

ν∗0 = 0.18. Above the Dimits shift region, i.e. at R0/LT0 = 6.9, γmax ' 0.156[cs/a] is much

larger than the collisionless shearing rate (〈|ωE×B|〉r ' 0.105[cs/a]), allowing the turbulence

to survive and drive some anomalous transport. As for R0/LT0 = 5.3, the collisional zonal

flows appear to be only slightly damped in the case R0/LT0 = 6.9. The shape of the profile

|ωE×B|(r) is however affected by collisions and, unlike in the Dimits shift region, different

collisionalities (ν∗0 = 0.09 and ν∗0 = 0.18) give different profiles |ωE×B|(r) for R0/LT0 = 6.9.

Note that ion-ion collisions generate neoclassical background flows through the neoclassical

equilibrium electric field. For the collisionalities considered in this paper, the turbulence-

driven flows are dominant compared to the neoclassical background flows, as shown in

Figures 11 and 12. At very large collisionality, one may expect that the neoclassical shearing

rate would become dominant, and thus that the turbulent transport would be reduced due

to collisions. However, such a high collisionality range would be very far from the usual low

collisionality of fusion-relevant tokamak plasmas that studying the system at even larger

collision frequencies than those considered in this paper would not be of much interest.

The scan of considered temperature gradients is then extended at fixed collisionality, in

order to sketch the dependence of the collisional heat diffusivity on the ion temperature

gradient. Similarly to studies already done for the CYCLONE parameters in the frame of
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collisionless simulations [25], Figure 13 shows how the ion temperature gradient affects the

ion heat diffusivity for ITG turbulence at mid-radius r/a = 0.5, for the chosen collisionality

ν∗ = 0.09 = 2ν∗phys. The blue plain line in Figure 13 is the fit to collisionless simulation

results given in Ref. [25]. While the Dimits shift softening is again clearly illustrated by the

difference between neoclassical diffusivity and total collisional diffusivity in the collisionless

Dimits shift region (4.5 6 R0/LT0 < 6), the collisional increase of the transport level is

also emphasized in the region above the non-linear stability threshold (R0/LT0 > 6). Con-

sidering the same finite collisionality, Figure 14 shows respectively 〈|ωE×B|〉r,t and γmax for

different values of the temperature gradient R0/LT0 . The end of the Dimits shift region,

at approximately R0/LT0 ' 6, is characterized by a maximum growth rate γmax becoming

much larger than the averaged zonal flow level 〈|ωE×B|〉r,t. While the ITG γmax increases

linearly with the ion temperature gradient, the shearing rate level shows some saturation

beyond the Dimits shift region due to a tertiary instability mechanism.

B. Mechanisms of the Dimits shift softening

In [12], the zonal flow damping by collisions is identified as the cause for a non vanishing

collisional turbulent transport for R0/LT0 = 5.3, although the temperature gradient is in the

Dimits shift region. A locally bursting behaviour of the zonal flow amplitude and related

turbulent transport is presented. The bursting behaviour consists in periodic zonal flows

damping by collisions, which in turn leads to an increase of the turbulence level and of the

related turbulence transport. The increase of turbulence produces an increase of zonal flow

level, until the next collisional damping. This general result is confirmed by simulations

performed with the collisional version of ORB5 based on the parameters defined in Sec. II F

for a narrow gradient profile, i.e. with ∆A = 0.15a. Figure 15 shows the time evolution of the

radial shearing rate profile ωE×B(r) for ν∗0 = 0.3, considering a narrow gradient profile with

R0/LT0 = 5.3. Note that the observation of a clear bursting behaviour in ORB5 requires

narrow gradients as those considered in this section. Bursting was much less obvious for

the wider gradient simulation cases discussed in Sec. V A. As expected, transport is totally

absent in a collisionless case, as shown in Figure 16 for ν∗ = 0, since the temperature

gradient R0/LT0 = 5.3 is in the Dimits shift region, where the collisionless zonal flows are

strong enough to quench the turbulence. Considering again R0/LT0 = 5.3 and two different
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collisionalities ν∗ ' 0.18 and ν∗ ' 0.3 at the radial position r/a = 0.45, Figures 17 and 18

show the time evolution of the turbulent ion energy flux Qturb, normalized with respect to

its corresponding neoclassical value Qneo, as well as the time evolution of the ~E× ~B shearing

rate ωE×B, normalized with respect to the growth rate of the most unstable mode γmax

in the linear phase of the simulation. A non-vanishing turbulent transport is established

through collisions. The above mentioned bursting behaviour appears clearly in Figures 17

and 18: at an intermittance rate which is proportional to the collision frequency, the ~E × ~B

shearing rate is damped, which in turn leads to an increase of the turbulent ion energy flux.

The observation of a non-vanishing turbulent transport implies that the Dimits shift region

of ion temperature gradients is softened by collisions. As already mentioned, the observed

bursting behaviour is not easily identified if the gradient profiles are larger, as for instance

in Sec. V A, maybe due to interaction of this bursting behaviour happening at different

uncorrelated times at different radii, leading to a less coherent evolution of the system. The

underlying mechanisms of turbulence-driven zonal flow damping are however probably the

same, leading to an increase of the diffusivity with collisions for all gradient widths.

VI. RELEVANCE OF THE PITCH ANGLE SCATTERING APPROXIMATION

Some gyrokinetic codes [11] do not pay much attention to the collisions in the frame of

turbulence studies and only consider pitch-angle operators. The linearized Landau operator

implemented in ORB5 for self-collisions, described in detail in [10], accounts for pitch angle

and energy diffusion, and thanks to its approximated background reaction term it ensures

all the essential conservation and symmetry properties. It is thus clearly a more realistic

operator in this respect than a mere pitch angle scattering operator (Lorentz approximation).

A pitch angle scattering operator for electron-ion collisions, acting only through random

kicks for markers in the pitch angle variable, is also implemented in ORB5 and described

in full detail in [10]. Such an operator is clearly relevant for simulating the collisions of

electrons on ions, due to the important mass ratio mi/me between the two species. Such

a mass ratio argument clearly does not apply for ion-ion collisions, which are thus very

different from electron-ion collisions, and the use of a pitch angle scattering operator for

ion-ion collisions may be questioned. Using a Lorentz operator in order to account for self-

collisions is equivalent to considering a linearized Landau self-collision operator without the
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background reaction term C[δfLM , fLM ] and without the energy diffusion term, such that

the simplified self-collision operator reads (see Eq. (31) in Ref. [10]):

Ĉ(δfLM) =
νD(v)

2
L̂2δfLM =

νiiK(v)

4v2
L̂2δfLM , (49)

where v = v/vth, L̂
2 = ∂/∂ξ(1− ξ2)∂/∂ξ is the Lorentz operator and

K(v) =
[
(v2 − 1)erf(v/

√
2) +

√
2/π ve−v2/2

]
/v3 (50)

is a Rosenbluth potential related function.

Considering the standard CYCLONE case with R0/LT0 = 5.3, a turbulent run started from

a neoclassical equilibrium at high collisionality ν∗0 ' 0.71 is first studied. As expected, the

neoclassical equilibrium to which the system settles with the Lorentz operator (49) is dif-

ferent from the equilibrium with the full self-collision operator (1). The neoclassical kinetic

energy flux predicted by the Lorentz operator is for instance larger than the neoclassical

kinetic energy flux predicted by the Landau self-collision operator, as shown in Figure 19.

Note that the neoclassical electric field is in some sense inconsistent in the case of the Lorentz

operator, since the Lorentz operator does not conserve parallel momentum and thus leads to

a neoclassical ion flux which is unphysical for self-collisions. The neoclassical electric field,

settled for ensuring a vanishing ion flux in order to satisfy the quasi-neutrality equation

with adiabatic electrons, is thus distorted by the unphysical particle flux of the Lorentz

operator. However, the use of the Lorentz operator in the frame of turbulence studies seems

to be roughly justified. Despite indeed evident neoclassical discrepancies, the time averaged

turbulent kinetic energy flux at mid-radius r/a = 0.5 remains comparable between the op-

erators, 〈Qturb, Lorentz〉time/〈Qturb, self-coll〉time = 1.14. Considering the statistical uncertainty,

this deviation is probably not significant. Figure 20 shows the evolution in time of the

turbulent kinetic energy flux at mid-radius r/a = 0.5 for both operators.

In order to reduce the importance of the neoclassical transport compared to the turbulent

transport, the gradient R0/LT0 = 6.9 is then chosen, along with a weaker collisionality ν∗0 =

0.14. The simulation is carried out in this latter case without any neoclassical initialization

phase. Figure 21 shows the evolution in time of the turbulent heat diffusivity χturb =

Qturb/n|∇T |, averaged between r/a = 0.4 and r/a = 0.6, for both operators. The difference
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is obviously small, at least in a time-averaged sense: 〈χturb, Lorentz〉time/〈χturb, self-coll〉time =

1.05. The discrepancy is again probably not significant relatively to the statistical error.

VII. CONCLUSION

The issue of ion-ion collision effects on electrostatic ITG turbulent transport has been ad-

dressed through robust collision algorithms implemented in the global gyrokinetic code

ORB5. Systematically starting turbulence simulations from a neoclassical equilibrium, which

has not been done previously to our knowledge, a general increase in ion heat transport due

to collisions has been observed in agreement with previous studies within the frame of the

adiabatic electron model. The sources of the increased transport are neoclassical contribu-

tions and turbulent contributions via interactions between collisions and zonal flows, which

have been emphasized and studied for different ion temperature gradients. The Dimits shift

softening by collisions [12] has been characterized for the CYCLONE base case thanks to

systematic scan over collisionality ν∗ and ion temperature gradient R0/LTi
. The bursting

behaviour of the collisional turbulent transport in the collisionless Dimits shift region has

been discussed.

The tool for controlling the numerical noise in collisional turbulent simulations with ORB5,

the coarse-graining procedure [9], [10], has been presented and its positive effects on the

relevance of studies related to collisional turbulence have been pointed out.

Finally, for both neoclassical and turbulence simulations, the Lorentz approximation for

self-collisions has been tested against the linearized Landau self-collision operator in ORB5,

which accounts for energy diffusion and for local conservation of density, parallel momentum

and kinetic energy. While a physically accurate self-collision operator is required in order to

predict correctly the neoclassical transport, the Lorentz approximation captures essentially

the features of the turbulent collisional transport in ITG regimes. However, the wrong

predictions given by the Lorentz approximation for the neoclassical transport due to ion-ion

collisions lead to a slight lack of accuracy in estimating the total transport.
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Appendix A: About the potential energy flux

The generic term heat flux is often used in order to qualify the quantity which is strictly

the kinetic energy flux. Actually, the proper heat flux, as defined in Eq. (34), should also

account for a potential energy flux [23] and a particle flux contribution. In the frame of

simulations with adiabatic electrons, the total particle flux does vanish in order to ensure

the ambipolarity condition, but the potential energy flux does not in collisional runs. In

this paper one gives an estimate of the potential energy flux magnitude compared to the

kinetic energy flux magnitude, the only term usually retained in the heat flux computation.

ORB5 simulations show that the net potential energy flux is due mainly to the neoclassical

Maxwellian contribution:

Qpot ≈

〈
1

|~∇Ψ|

∫
d3vqφf0

dΨ

dt

∣∣∣∣
0

〉
S

. (A1)

The potential energy flux (A1) is inward for the considered CYCLONE case, and has thus a

balancing effect on the mainly outward kinetic energy flux. Considering a local Maxwellian

background f0 = fLM , it is possible to show, by analytically expliciting the integral on the

RHS of Eq. (A1), that the potential energy flux arises from the poloidal variation of the

electrostatic potential:

Qpot ≈ 2πn0T0
F (Ψ)

S(Ψ)

∫ 2π

0

1

B2

∂φ

∂θ∗
dθ∗, (A2)

where S(Ψ) is the flux surface defined by:

S(Ψ) = 2π

∫ 2π

0

Jθ∗Ψϕ|~∇Ψ|dθ∗. (A3)

However, the magnitude of the total potential energy flux is small. For CYCLONE base case

simulations with the temperature gradient R0/LT0 = 6.9, at r/a = 0.5 the scaling is found
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empirically to be a quarter of the neoclassical kinetic energy flux, with opposite direction

(pointing inwards):

Qpot

Qkin,neo

≈ −1

4
. (A4)
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• Fig. 1: Field-aligned binning in configuration space represented respectively in the

(θ∗, ϕ) plane, the (θ∗, z) plane and the (θ∗, s) plane.

• Fig. 2: (Color online) Evolution in time of the energy E(n) of two toroidal Fourier

modes (n = 10 and n = 44), for different coarse-graining parameters, in the linear

phase and the early non-linear phase of the simulation. An appropriate choice for the

coarse-graining binning parameters allows to preserve the linear growth rate of the

modes, while too large bins lead to an important non-physical energy dissipation.

• Fig. 3: Time evolution of the signal-to-noise ratio considering the coarse-graining

procedure switched off (plain lines) and on (dash-dotted lines) respectively, both for

90×106 (grey lines) and 180×106 (black lines) markers. The coarse-graining method is

crucial in order to carry out simulations above the SNR threshold of relevance (∼ 10).

• Fig. 4: (Color online) Rosenbluth-Hinton test where no gradients are considered:

time evolution of the radial electric field Er at mid-radius for both collisionless and

collisional simulations. The collisionless residual depends on the initial amplitude of

the perturbation δf/fLM , while the collisional residual does always vanish. Time is

normalized by the GAM frequency ωg.

• Fig. 5: (Color online) Rosenbluth-Hinton test where the CYCLONE case gradients

(R0/Ln0 = 2.2, R0/LT0 = 6.9) are considered: time evolution of the radial electric

field Er at mid-radius for both collisionless and collisional simulations. The collision-

less residual depends on the initial amplitude of the perturbation δf/fLM , while the

collisional residual converges towards the neoclassical equilibrium value, regardless of

the initial perturbation. Time is normalized by the GAM frequency ωg.

• Fig. 6: (Color online) Time evolution of the neoclassical (red dashed line) and tur-

bulent (blue plain line) contributions to the kinetic energy flux Qkin at mid-radius,

in the neoclassical phase and the turbulent phase of the simulation respectively, for

ν∗0 = 0.18. Once a neoclassical equilibrium is established, turbulence is switched on

and turbulent transport becomes dominant compared to neoclassical transport, for

CYCLONE case gradients (R0/Ln0 = 2.2, R0/LT0 = 6.9). The neoclassical flux is

perturbed by turbulence but remains constant in a time-averaged sense.
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• Fig 7: (Color online) Heat diffusivity χH at mid-radius versus the collisionality param-

eter ν∗, for both temperature gradients R0/LT0 = 5.3 (blue crosses) and R0/LT0 = 6.9

(black squares). The contribution of the neoclassical diffusivity (red circles) to the

total diffusivity is important for the weaker gradient R0/LT0 = 5.3, while it becomes

marginal for the larger gradient R0/LT0 = 6.9. The total diffusivity, increasing with

collisions, is in general larger than the mere neoclassical diffusivity added to the colli-

sionless turbulent diffusivity.

• Fig. 8: (Color online) Heat diffusivity profile χH(r) in the quasi-stationary state of the

simulation, for a collisionality ν∗0 = 0.45 and both temperature gradients R0/LT0 = 5.3

and R0/LT0 = 6.9. For the weaker gradient R0/LT0 = 5.3, the turbulent contribution

profile (blue crosses) is similar to the neoclassical contribution profile (red plain line),

while the turbulent contribution profile in the case of the larger gradient R0/LT0 = 6.9

(black squares) is clearly dominant, even for a collisionality ten times larger than the

physical one ν∗0,phys ' 0.045. The neoclassical contribution is successfully benchmarked

against the Chang-Hinton predictions (green dashed line).

• Fig. 9: (Color online) Time evolution of the ωE×B shearing rate profile, considering a

collisionality ν∗0 = 0.18 and a temperature gradient R0/LT0 = 5.3. The temperature

and density gradients are non-zero from r/a = 0.2 to r/a = 0.8 (wide-shaped profiles,

∆A = 0.3). The limited turbulence drive leads to a quiescent evolution of the zonal

flows.

• Fig. 10: (Color online) Time evolution of the ωE×B shearing rate profile, considering

a collisionality ν∗0 = 0.18 and a temperature gradient R0/LT0 = 6.9. The temperature

and density gradients are non-zero from r/a = 0.2 to r/a = 0.8 (wide-shaped profiles,

∆A = 0.3). The strong turbulence drive leads to zonal flow variations on short time

scales in the quasi-stationary state of the simulation.

• Fig. 11: (Color online) Profiles of the ~E × ~B shearing rate absolute value |ωE×B|(r)

for different collisionalities and a temperature gradient R0/LT0 = 5.3, the neoclassical

contributions being emphasized. The averaged shearing rate level is of the order of

the growth rate of the most unstable mode γmax (grey dashed line). The zonal flow

damping by collisions is possibly balanced by an additional turbulence drive. For the
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considered collisionalities, the turbulence-driven zonal flows are dominant compared

to the neoclassical flows.

• Fig. 12: (Color online) Profiles of the ~E × ~B shearing rate absolute value |ωE×B|(r)

for different collisionalities and a temperature gradient R0/LT0 = 6.9, the neoclassical

contributions being emphasized. The averaged shearing rate level is much smaller than

the growth rate of the most unstable mode γmax (grey dashed line). The collisional

zonal flows appear to be slightly damped, but nevertheless driven to a non-vanishing

value, possibly by an additional turbulence drive. For the considered collisionalities,

the turbulence-driven zonal flows are dominant compared to the neoclassical flows.

• Fig. 13: (Color online) Heat diffusivity χH at mid-radius versus the temperature

gradient R0/LT0 . The blue plain line is the collisionless prediction resulting from an

empirical fit on gyrokinetic simulation results. For ν∗0 = 0.09, the red dashed line shows

the neoclassical diffusivity level and the green diamonds represent the total diffusivity

for different temperature gradients. Collisions clearly increase the heat diffusivity and

soften the so-called Dimits shift region.

• Fig. 14: (Color online) Maximum linear growth rate γmax (black crosses) and av-

eraged shearing rate 〈|ωE×B|〉r,t (red squares) for different temperature gradients

R0/LT0 and for the finite collisionality ν∗0 = 0.09. Beyond the Dimits shift region,

γmax > 〈|ωE×B|〉r,t. The saturation of the shearing rate level is due to a tertiary

instability mechanism.

• Fig. 15: (Color online) Time evolution of the ωE×B shearing rate profile, considering

a collisionality ν∗0 = 0.3 and a temperature gradient R0/LT0 = 5.3. The temperature

and density gradients are non-zero from r/a = 0.35 to r/a = 0.65 (narrow-shaped

profiles, ∆A = 0.15). The bursting evolution of the zonal flows is visible.

• Fig. 16: For a collisionless simulation and a narrow temperature gradient with

R0/LT0 = 5.3, time evolution of both the heat diffusivity χH (black plain line) and

the ~E × ~B shearing rate ωE×B (grey dash-dotted line) at mid-radius. ωE×B reaches a

quasi-stationary value comparable to the linear growth rate of the most unstable mode

γmax (grey dashed line), quenching totally the turbulence and leading to a vanishing

heat transport.
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• Fig. 17: For ν∗0 = 0.18 and a narrow temperature gradient with R0/LT0 = 5.3, time

evolution of both the kinetic energy flux generated by turbulence Qturb (black plain

line) and the ~E × ~B shearing rate ωE×B (grey dash-dotted line) at r/a = 0.45. The

periodic damping of the zonal flows by collisions leads in turn to periodic bursts in

the heat transport, at a rate proportional to the collision frequency.

• Fig. 18: Same representation as in Fig. 17 for ν∗0 = 0.3, leading to the same con-

clusions. The periodicity of the observed bursting behaviour is again related to the

collision frequency.

• Fig. 19: For ν∗0 ' 0.71 and R0/LT0 = 5.3, neoclassical kinetic energy flux profile due

to ion-ion collisions Qneo(s) predicted by both the Lorentz operator (grey dashed line)

and the Landau self-collision operator (black plain line). The Lorentz approximation

is not accurate enough in order to describe correctly the neoclassical transport due to

self-collisions.

• Fig. 20: For ν∗0 ' 0.71 andR0/LT0 = 5.3, time evolution of the turbulent kinetic energy

flux Qturb at mid-radius predicted by both the Lorentz operator (grey dashed line) and

the Landau self-collision operator (black plain line). Despite visible discrepancies, the

level of turbulent transport is approximately described by the Lorentz operator in a

time-averaged sense.

• Fig. 21: For ν∗0 ' 0.14 and R0/LT0 = 6.9, time evolution of the turbulent heat

diffusivity χturb averaged between r/a = 0.4 and r/a = 0.6, predicted by both the

Lorentz operator (grey dashed line) and the Landau self-collision operator (black plain

line). The turbulent transport level in a time-averaged sense is accurately described

by the Lorentz operator.
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