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Abstract. We present first results of 3D simulations of global 13C transport in

ASDEX Upgrade (AUG) indicating that the deposition profile of 13C exhibits toroidal

asymmetry in the main chamber.

In 2007, the migration of carbon in AUG was studied with a methane (13CH4)

injection experiment [1]. The total amount of deposited 13C was estimated by assuming

toroidally symmetric deposition. Remarkably, the total number of deposited atoms was

observed to be less than 10 % of the number of injected atoms.

The experiment has been simulated with the 3D orbit-following Monte Carlo code

ASCOT using both a realistic 3D wall geometry of AUG and a 3D magnetic field with

toroidal ripple. The simulations indicate that the non-axisymmetric wall geometry

causes notable toroidal asymmetry in the deposition profile in the outer (low-field

side) midplane region which can provide a partial explanation for the missing carbon

inferred from post-mortem analysis of 13C deposition.

PACS numbers: 52.55.Fa, 52.65.Pp, 52.40.Hf, 52.25.Fi, 52.25.Vy

In the initial phase of ITER, carbon in the form of carbon-fibre-composite (CFC)

has been foreseen to be used in the strike-point regions of the divertor [2]. The migration

of carbon impurities in tokamak plasmas has been widely studied with trace-element

injection experiments, see, e.g., [1, 3, 4]. These studies help to identify net erosion and

deposition zones and also improve the understanding of the underlying physics related

to impurity transport in general.

ASDEX Upgrade provides an interesting environment for impurity migration

studies after being transformed into a full-tungsten tokamak. At the end of the 2007

experimental campaign in AUG, isotopically labelled methane in the form of 13CH4

was injected into the torus from one valve at the outer midplane (located radially

approximately 1.2 m away from the closest wall tiles) during successive low-density

L-mode discharges #22573–#22585. For these discharges, done in deuterium, global
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plasma parameters were the following: toroidal magnetic field Bt = −2.5 T, plasma

current Ip = 0.8 MA with the ion B × ∇B drift pointing towards the lower divertor,

line-averaged electron density ne = 3.3 · 1019 1/m3 and external heating by ECRH of

Paux = 0.9 MW. For studying the effect of substrate material on the migration of carbon,

one poloidal set of the divertor tiles, the marker tiles, was left with a carbon stripe. To

minimize erosion of deposited 13C, the experiment was carried out during the last day

of the campaign.

After the discharges the marker tiles as well as selected tungsten-coated tiles were

removed for post-mortem analysis. Toroidally, the tiles were located in sector 11

approximately 45◦ away from the injection valve in sector 9, except for one limiter

tile which was removed from sector 8 next to the valve. Poloidally, the divertor tiles

formed a complete set, whereas regarding the main chamber three tiles were removed

from the central column heat shield together with single tiles from the top of the vessel,

upper passive stabilizer loop and outer midplane limiter. Carbon deposition on samples

from the removed tiles was analyzed using secondary ion mass spectrometry (SIMS). As

only central parts of the tiles were available for analysis, possible carbon deposition in

gaps between adjacent tiles was not assessed.

With the assumption of toroidally symmetric deposition, the total amount of

deposited 13C was calculated by integrating the measured deposition in the poloidal

and toroidal directions over the entire torus. Remarkably, the integrated 13C deposition

on the divertor tiles was observed to be less than 1.5 % of the number of injected 13C

atoms. The main chamber measurements are more uncertain due to the small number

of removed tiles. The total 13C deposition on the main chamber tiles and remote areas

such as below the divertor roof baffle was estimated to be in the range of 3–8 % of

injected 13C. Thus, the total 13C deposition in the entire torus was calculated to be

approximately only 4.5–9.5 % of the number of injected 13C atoms. A comprehensive

description of the experiment as well as a comparison of the obtained results to those

obtained from similar experiments carried out on AUG in 2003 and 2005 can be found

in [1].

Reasons for the missing carbon can be various. For example, part of the 13C may

have been pumped out of the torus by cryopumps or it may have leaked from the in-

jection valve to the vacuum pumps before being in contact with the plasma [1]. In

addition, 13C can be deposited in gaps between wall tiles. However, it is also likely that

the deposition profile of 13C is not entirely toroidally symmetric. Here, we present the

first global 3D simulations of the performed experiment with the orbit-following Monte

Carlo code ASCOT with the objective of addressing the issue of toroidal asymmetry.

Simulation parameters. The performed methane injection experiment was first mod-

elled using the Monte Carlo impurity transport code DIVIMP [5]. The 2D background

plasma was calculated with the onion-skin model (OSM, solver option 22) of the code,

using Langmuir probe measurements of electron density and temperature at the inner

and outer divertor targets as input data.
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In the DIVIMP simulations, 13C+ ions were initialized at the outer midplane and

followed until they exited the calculation grid. The effects of erosion and re-deposition

were not included in the DIVIMP cases. The studies showed that the simulations did

not match the measured poloidal 13C deposition profile when using the OSM-calculated

deuteron flow field. Experimental measurements of plasma flow on various tokamaks

have shown that the stagnation point of plasma flow is located somewhere between the

outer midplane and the outer divertor in a configuration with the ion B × ∇B drift

pointing towards the lower divertor [6, 7]. A reasonable match with the experimental

results was found when a manually imposed deuteron flow field corresponding to these

experimental observations was used, following the approach first presented in [8] and [9].

The DIVIMP modelling is described in more detail in [5].

Although the DIVIMP studies give an estimate of the large-scale deposition

distribution in different poloidal regions, they do not provide any information of the

toroidal deposition profile. For this reason, similar simulations were performed with the

3D Monte Carlo orbit-following code ASCOT [10].

The ASCOT code follows the orbits of individual test particles on steady-state

magnetic and plasma backgrounds with accurately accounting for all neoclassical

physics. The code can trace guiding centers, Larmor orbits and, in the case of neutrals,

ballistic orbits in an unrestricted computational domain. Both the magnetic field and

the wall geometry of the tokamak can be included in a realistic 3D form. Therefore, the

code can address three-dimensional effects such as toroidal ripple and non-axisymmetric

wall structures.

The effects of Coulomb collisions between the test particles and the background

plasma are calculated using binomially distributed Monte Carlo operators derived from

the Landau limit of the relativistic Balescu-Lenard collision operator for non-relativistic

field particles [11]. The flow of the background plasma is taken into account by

evaluating the collision operators in a frame of reference moving with the flow velocity.

In addition to neoclassical physics, anomalous radial transport of test particles due to

turbulence is modelled as diffusion.

For impurities, the effects of atomic reactions are calculated using a probabilistic

model for effective ionization and recombination. The model updates the charge state of

the test particle as it traverses in the background plasma based on reaction coefficients

from the ADAS database for the local plasma conditions.

The previous DIVIMP simulations were used as a basis for the ASCOT

modelling [5]. The background plasma solution from the DIVIMP OSM solver for

the discharge #22575 was used for the scrape-off layer (SOL) plasma, excluding the

plasma flow field. For the plasma flow, the imposed flow field from the DIVIMP studies

was used. The imposed plasma flow field had a constant Mach number of M = 0.5

towards the divertors with a stagnation point roughly between the outer midplane and

the outer divertor. As the employed DIVIMP grid did not extend to the wall, the

halo plasma region between the SOL and the first wall was extrapolated manually.

The halo plasma profiles of the ASCOT background plasma temperature, density and
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Figure 1. Illustration of the initial spatial distribution of 13C+ ions (blue) in the

ASCOT simulations.

flow velocity were extrapolated as exponentially decaying with the estimated decay

lengths λTe
= λTi

= 4 cm, λne
= λni

= 5 cm and λV = 5 cm, respectively, that

were chosen to approximately fit the temperature and density profiles and to provide a

steeply decreasing flow profile. The assumption of exponentially decaying temperature

and density profiles in the halo plasma has been experimentally verified in DIII-D [12]

and AUG [13].

Experimental data from the same plasma discharge #22575 at 2.8 s was used to

generate a magnetic field with toroidal ripple included. For the simulations, a realistic

3D wall geometry of ASDEX Upgrade was constructed based on a computer-aided design

(CAD) data of the tokamak.

As ASCOT is not capable of following 13CH4 molecules, the simulations were started

with injecting 13C+ ions. An ensemble of 300 000 ions was injected to sector 9 of

AUG corresponding to the injection location in the experiment. The initial position of

the particles was taken from a uniform random distribution over a cylindrical volume

as visualized in figure 1. The volume extended radially ∆R = 5 cm from the outer

midplane separatrix towards the outer wall and 2 ·rini = 60 cm in the toroidal direction,

representing a large cloud of particles emerging from the injection valve.

The initialized carbon ions were given an initial energy of E0 = 0.3 eV and a ran-

dom pitch value (ξ = v‖/v, where v is the total velocity and v‖ the component parallel

to the magnetic field) corresponding to an isotropic initial velocity distribution. The

initial energy value is an average Franck-Condon energy of CH radicals. The anomalous

radial diffusion coefficient was set to a constant value of D⊥ = 0.25 m2/s. This was

motivated by the observation that in the previous DIVIMP studies the best match with

the experimental measurements was achieved with this particular value.

Simulation results. The 13C deposition profile calculated with ASCOT, shown in

figure 2(a), clearly indicates that the deposition in the main chamber is toroidally lo-

calized. Starting from their injection location in sector 9, the 13C ions begin following

the magnetic field lines in positive and negative toroidal directions. Near the outer

midplane, protruding wall structures such as port and ICRH limiters collect substan-
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Table 1. Comparison between the 2007 experiment [1] and ASCOT and DIVIMP [5]

simulations of large-scale 13C deposition. In the first row, the measured deposition,

assuming toroidal symmetry, is normalized to the amount of injected 13C. In the

second row, the deposition is normalized to the amount of found 13C with excluding

the uncertain deposition at the top of the vessel. In the fourth and sixth rows, the

same exclusion is applied for the modelling results. In addition to the shown regions,

approximately 1.3 % of the injected atoms was found in remote areas in the experiment,

mostly below the divertor roof baffle. The abbreviations are the same as in figure 2(a).

ID OD OMP PSL Top HS

Experiment (norm. to injected) 0.9 % 0.2 % 0.3 % 0.04 % 1 % 0.6 %

Experiment (norm. to found w/o top) 44 % 8 % 15 % 2 % - 31 %

ASCOT 41 % 8 % 22 % 4 % 10 % 14 %

ASCOT (excluding top) 46 % 9 % 25 % 5 % - 16 %

DIVIMP 31 % 5 % 10 % 4 % 23 % 27 %

DIVIMP (excluding top) 40 % 7 % 13 % 5 % - 35 %

tial 13C deposition and, consequently, the deposition profile is distinctively toroidally

asymmetric in this region.

Driven by the background plasma flow, the carbon ions are strongly transported

in the positive toroidal direction over the top of the vessel towards the inner divertor

making the high-field side the dominant deposition region. It is noticeable that outside

the outer midplane region (approximately θ ∈ [−64◦, 44◦]), e.g., on the heat shield and

in the divertor region, the deposition profile is rather symmetric toroidally. This can be

explained by considering that the wall geometry in these regions is toroidally symmetric

which, together with magnetic shear, results in a symmetric deposition profile.

A more concrete visualization of 13C deposition in figure 2(b) shows that the

injection valve is located betweed an ICRH limiter and a port limiter, leading to

substantial deposition on these structures. From this view, the effect of different

protruding wall structures around the torus on the deposition profile is evident. The

figure also exemplifies the level of detail in the wall geometry of ASDEX Upgrade that

was employed in the simulations.

The distribution of 13C deposition in large-scale poloidal regions, presented in

table 1, shows qualitative agreement with the experimental and DIVIMP results.

However, the comparison is subject to uncertainty for multiple reasons and,

consequently, should not be treated rigorously. First, the experimental results are based

on only a small fraction of the injected 13C that was found and the estimates of main

chamber deposition are calculated from a very limited number of samples. In particular,

this causes large uncertainty for the deposition at the top of the vessel which can reach a

value of even 6 %. Therefore, the comparison to ASCOT and DIVIMP simulation results

is most justified when the 13C deposition is normalized to the amount of found 13C and

the uncertain deposition at the top is neglected. Second, it should be emphasized that
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Figure 2. (a) 2D profile of 13C deposition as calculated with ASCOT. The

abbreviations used for different poloidal locations are “LHS” for the lower part of the

heat shield, “ISP” for the inner strike point, “OSP” for the outer strike point, “OMP”

for the outer midplane, “Top” for the top of the vessel and “UHS” for the upper part of

the heat shield. Dashed red rectangles are drawn to indicate the approximate regions

inside which wall tiles were removed for analysis after the experiment. The dashed

white ellipse shows the location of the injection port. (b) 3D view of 13C deposition

on various parts of AUG: near the injection location in sector 9 (top), in sectors 4–6

(bottom left) and in sectors 12 and 13 (bottom right). The shown numbers indicate

the toroidal angle corresponding to different sectors as shown in figure 2(a).
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the DIVIMP results, in contrast to ASCOT, were achieved by varying the simulation

parameters so that an as good as possible match with the experimental results was

found.

A more quantitative estimate of the effect of toroidal asymmetry can be obtained

from the following calculation. First, 13C deposition inside the regions where the wall

tiles were removed after the experiment is calculated, see figure 2(a). The number

of deposited particles is then integrated toroidally around the torus to obtain the

total deposition in the same manner as performed for the experimental data. In this

calculation, the small sampled region in sector 8 is integrated poloidally over the outer

midplane region to obtain an estimate of the deposition there. As a result, the described

calculation estimates that the total number of deposited 13C particles is approximately

70 % of the number of injected 13C ions. Therefore, it can be concluded that, in this

particular case, assuming toroidally symmetric deposition would cause 30 % of the

injected 13C not to be accounted for.

Sensitivity analysis of the simulation parameters proved that the main results of

the deposition profiles are robust. The anomalous radial diffusion coeffiecient D⊥ was

varied in the range 0.1 m2/s–1.0 m2/s and the the radial extent of the initial spatial

distribution of the injected 13C ions, the parameter ∆R, was varied between 1 cm and

9 cm. Increasing values of D⊥ and ∆R were observed to shift deposition from the

divertor region towards the main chamber with, however, maintaining the qualitative

structure of the deposition profiles. The effect of the initial energy E0 of the injected

carbon ions on the deposition profile was found to be weak. With values of E0 between

0.1 eV and 20 eV, it was observed that the effect of the background plasma flow slightly

decreases with increasing E0. In practice, 13C deposition decreased in the direction

of the plasma flow which, near the injection location, is poloidally towards the inner

divertor and toroidally in the positive direction (counter-clockwise when viewed from

above). The halo plasma profiles (values for the decay lengths λ, varied in the range

approximately 2–5 cm) mostly affected deposition at the top of the vessel, where the

gap between the DIVIMP grid and the wall is the largest. This did not, however, alter

the conclusions.

The effect of reflection from wall surfaces was studied with a simple model that

uses a constant sticking coefficient. In the model, each time a test particle encounters a

wall surface, it is reflected back into the plasma with a predefined, constant probability.

The particles are reflected as neutrals with their energy corresponding to their impact

energy and with a random direction of velocity. It was observed that, even with a low

sticking coefficient, local re-deposition of the reflected particles was dominant and the

2D deposition pattern only became slightly more diffuse, in particular around the pro-

truding wall structures near the outer midplane. The result can be considered to give

a qualitative indication of the effect of erosion of deposited particles on the deposition

pattern. This and the performed sensitivity analysis proved that the presented fea-

tures of the toroidal profile, strong asymmetry near the outer midplane and symmetry

in other regions, remain unchanged over a wide range of different simulation parameters.
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Discussion and conclusions. The presented ASCOT simulation results show that

non-axisymmetric wall geometry can have a large impact on impurity transport. They

can provide a partial explanation to why only approximately 4.5–9.5 % of the injected
13C could be accounted for in the 2007 experiment in ASDEX Upgrade when deposition

was assumed toroidally symmetric. However, discrepancies in the large-scale deposition

results between the experiment and simulations were observed. It should be stressed

that the presented ASCOT simulations used a manually imposed background plasma

flow profile. The transport of 13C has been observed to be very sensitive to changes

in the flow profile [5]. It is, therefore, the background plasma that predominantly de-

termines the global carbon transport. Nevertheless, we have verified that this does not

cancel the shown effect of non-axisymmetric wall geometry.

In the view of the obtained results, it is of interest to refer to similar experiments

carried out on DIII-D [3, 8, 9, 14, 15, 16]. In these experiments, 13CH4 was injected into

the torus in a toroidally symmetric manner from the top of the vessel. In this case, the

assumption of toroidally symmetric 13C deposition is more justified than when using

only one injection valve. This is, at least partially, due to the fact that the effect of

protruding wall structures on the deposition profile is distributed more evenly around

the entire torus when using toroidally symmetric injection. Supportive of the presented

argument, up to approximately 50 % of the injected 13C was accounted for in post

mortem analysis when 13C deposition was assumed toroidally symmetric in the DIII-D

experiments.

In the presented ASCOT simulations, the effects of the thermal force, reflection

from wall surfaces, erosion of deposited test particles and electric fields were neglected.

In order to provide more quantitative simulations of impurity migration, the code is

being upgraded to include the effects of these phenomena. It is possible, e.g., that

erosion of deposited 13C would lead to increased re-deposition in areas shadowed from

direct plasma contact.
A new 13CH4 injection experiment was conducted on ASDEX Upgrade in 2011. For

the experiment, predictive ASCOT modelling was carried out using a new 3D wall ge-
ometry that takes into account even the most recent changes in AUG such as structures
due to resonant magnetic perturbation coils. Strong toroidal asymmetry was observed
in the simulation results, similarly as presented here. Preliminary experimental results
have shown confirmation of the predicted effect of non-axisymmetric wall geometry. In
the first analyzed samples, strong 13C deposition peaks were observed on ICRH antenna
structures as well as on wall tiles next to the injection port with 13C surface densities
reaching 1017–1018 at/cm2. Significant asymmetry in deposition was also noticed be-
tween antennas separated toroidally by 180 degrees. A more detailed analysis of the
results will be presented in [17]. In addition to the investigation of toroidal asymmetry,
deposition in gaps between adjacent tiles will be studied.
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