
On the dynamics of vortex modes within magnetic islands.

W.A. Hornsby, A.G. Peeters
Theoretical Physics V, Dept. of Physics, Universitaet Bayreuth, Bayreuth, Germany, D-95447∗

M. Siccinio, E. Poli
Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching bei München, Germany

(Dated: May 15, 2012)

Recent work investigating the interaction of magnetic islands with micro-turbulence has uncovered
the striking observation of large scale vortex modes forming within the island structure [W.A.
Hornsby et al., Phys. Plasmas 17 092301 (2010)]. These electrostatic vortices are found to be the
size of the island and are oscillatory. It is this oscillatory behaviour and the presence of turbulence
that leads us to believe that the dynamics are related to the Geodesic Acoustic Mode (GAM), and
it is this link that is investigated in this paper.

Here we derive an equation for the GAM in the MHD limit, in the presence of a magnetic island
modified three-dimensional axisymmetric geometry. The eigenvalues and eigenfunctions are calcu-
lated numerically and then utilised to analyse the dynamics of oscillatory large-scale electrostatic
potential structures seen in both linear and non-linear gyro-kinetic simulations.
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FIG. 1. Time trace of the amplitude of the smallest radial wave-vector (sideband) as a function of time for an island with
poloidal wave-vector, kθρi = 0.05. There are two frequencies present, the fast, quickly damped Geodesic Acoustic Mode and
the slower, island Geodesic mode, which is very slowly damped and of larger amplitude. The amplitudes of the modes have
been adjusted so that a direct comparison can be made. Without the presence of turbulence the mode is initialised. When
turbulence is present, the vortex mode is generated.

Magnetic islands, generated by the tearing mode, have the effect of breaking the axisymmetric properties of the
equilibrium, and can have a detrimental effect on the plasma confinement due to the radial component of the magnetic
field that they introduce[1–3].

Recent work on the interaction of turbulence with large magnetic islands has uncovered the striking observation
of large scale electrostatic vortices forming within the island separatrix (See Fig. 2). These meso-scale potential
structures generate E ×B flows around the island, similar to the zonal flows which act as regulators of turbulence[4–
10], having the effect of tearing up radially extended electrostatic eddies, and thus reducing the radial transport of
particles and heat. On the contrary, it is seen that these vortices can enhance the heat flow within the separatrix by
up to 50% by acting as a convective cell, having a detrimental impact on heat confinement in a toroidal plasma[11–13],
but also have a significant effect on the radial pressure profile, which in turn can effect the bootstrap current profile
which determines the stability of the Neoclassical Tearing mode (NTM)[14–17] .

Zonal flows in fusion devices are intrinsically linked to an oscillatory mode known as the Geodesic Acoustic Mode
(GAM)[18–20]. These can be excited non-linearly by primary instabilities such as drift waves or by interaction
with energetic particles in fusion plasmas[21]. GAMs are generated on closed flux surfaces when perturbations
in the E × B flow couple to axisymmetric pressure perturbations, by way of the curvature in the magnetic field
causing a compression, to produce oscillatory electrostatic modes. Geodesic Acoustic modes have been extensively
observed in a variety of laboratory plasmas[22–26]. The GAM was initially identified in toroidal symmetric systems,
however, recently both theory and experiment has extended to include helical systems[27, 28]. It is thought that
plasma compressibility, which is the cause of the GAM, can have a significant effect on the growth rate of tearing
instabilities[29].

It is the oscillatory electrostatic structure of the GAM, and the regular oscillation period of the vortex seen in
nonlinear simulations (See black trace in Fig. 1 and 2D slices in Fig. 2), that leads us to believe that similar physics
is responsible for the oscillatory vortex structures seen inside magnetic islands and it is this observation that is the
basis of this paper.

The period of the GAM frequency is determined by the compressibility of the plasma and is closely related to the
sound speed and to the shape of the flux surface. The radial component of the magnetic field introduced by the
tearing mode, produces magnetic islands which are seperate confinement regions within the plasma. Within these
new confinement regions the GAM period is likely to be highly modified due to their helical structure.

The paper is structured as follows. In sections I and II, the model is outlined and the Eigenfunctions and frequency
of the Geodesic Acoustic mode in the presence of a magnetic island structure are calculated and analysed in section
III.

Sections IV and V will outline Gyro-kinetic simulations to study these dynamic structures and then a comparison
is made with oscillations seen in fully nonlinear gyro-kinetic turbulence simulations with magnetic islands.
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FIG. 2. (Color online) Normalized electrostatic potential (φN = eφ/Tρ∗, w/ρi = 24) in the plane perpendicular to the magnetic
field (outboard mid-plane). Black lines represent the perturbed flux surfaces calculated from the total parallel vector potential.
The presence of the island embedded in the turbulence not only generates flows around the island structure but also large scale
electrostatic potential structures within the island which fluctuate in amplitude and sign. The top panel shows a vortex with
a positive sign, while the lower panel shows that the vortex has flipped sign at a point later in the simulation.

I. MATHEMATICAL MODEL

We begin by calculating the eigenvalue equation for the geodesic acoustic mode in the ideal MHD limit, and modify
the theory to take into account the change in the flux surfaces due to the presence of a magnetic island. We assume
here that the evolution of the island is significantly slower than oscillation time of the mode. The islands that we
consider are large (an island half-width of w/ρi = 24), and are treated as a static structure, rather than a dynamic
mode and behave as a separate confinement region within the plasma[30].

For the equilibrium magnetic field we utilise the axisymmetric, large aspect ratio toroidal geometry, with a further
assumption that the flux surfaces are circular. Here, ǫ = r/R is the inverse aspect ratio, where r is a minor and R is
the major radius.

The helical angle, associated with the magnetic island mode is defined as:

ξ = mθ − nζ − ωt (1)

where θ and ζ are the poloidal and toroidal angles respectively, and m and n are the poloidal and toroidal mode-
numbers. ω is the island rotation frequency, which in this analysis is set to zero.

The perturbation due to the magnetic island consists of a helical flux component,

ψ = ψ̃ cos ξ (2)

ψ̃ is treated as a constant in accordance with the well utilised constant−ψ approximation[1].

With the island present, it is possible to construct modified flux-surfaces with Ω as the island flux-surface label.
This has the form[31]:

Ω = −ψ
ψ̃

= 2
(r − r0)

2

w2
− cos ξ (3)

Where r0 is the minor radius at the rational surface on which the island is sited and w is the island half-width.

We are interested, primarily, in modes with a small poloidal wave-vector in the electrostatic limit, so we keep our
analysis to the ideal MHD equations.

Here we present the linearised MHD equations and closely follow the procedure to calculate the Geodesic acoustic
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mode dispersion relation that is originally outlined by Windsor et. al [18]. The equations are as follows:

ρ
∂ṽ

∂t
= J̃×B−∇p̃

∂ρ̃

∂t
+ ρ∇.ṽ = 0

∇φ̃ = ṽ ×B

∇ · J̃ = 0

ρ−γ
∂p̃

∂t
− γpρ−γ−1

∂ρ̃

∂t
+ ṽ.∇(pρ−γ) = 0 (4)

Where the equations are the linearised momentum, continuity, Ohms law, quasi-neutrality condition and the equa-
tion of state, respectively. The tilde denotes a perturbed quantity, ρ, J and p denoting the mass density, current
density and pressure respectively. B, φ and v are the magnetic fields, electrostatic potential and the plasma velocity.
γ = 5/3 denotes the adiabatic constant.
The flux surface label, Ω, satisfies the magnetic differential equation,

B · ∇Ω = 0, (5)

when a magnetic island is present. With this in mind, the fluid velocity has three components and can be written as:

ṽ = exp (−ıωt)
(

ṽΩ
∇Ω

|∇Ω|2 + ṽζ
B×∇Ω

B2
+ ṽs

B

B2

)

(6)

The first term being the velocity across the flux surfaces, second, the velocity in the binormal coordinate and the last
term being the velocity directed along the magnetic field. From Ohm’s law in Eq.( 4), it follows that the electrostatic
potential is just a function of the flux surface label, Ω.

ṽζ =
B×∇Ω

B2

∂φ

∂Ω
(7)

It can be shown that the term across the flux-surfaces, ṽΩ is zero and vζ =
∂φ
∂Ω which is a flux surface quantity. This

reduces the equation of state to p̃ = γp
ρ ρ̃, the equilibrium pressure given by, p = ρkBT/mi.

Taking the flux surface average of the linearised momentum equation yields in the radial direction,

ṽζ = −ı γp
ωρ2

∫

B×∇Ω · ∇ρ̃
B2

JdS/

∫ |∇Ω|2
B2

JdS, (8)

where J is the Jacobian, whereas the parallel component can be used to obtain,

ṽs = −ı γp
ωρ2

B · ∇ρ̃. (9)

Substitution into the continuity equation we obtain the following Eigenvalue equation for ω2, the squared mode
frequency,

ω2ρ̃ = −
(

γp

ρ

)

{

B×∇Ω·∇B2

B4

∫ |∇Ω|2

B2 JdS

∫

ρ̃
B×∇Ω · ∇B2

B4
JdS

−B∇‖

(∇‖ρ̃

B

)

}

. (10)

The first term representing the effect of E-cross-B flows associated with the compression caused by the geodesic
curvature within the magnetic island, while the second term represents the motion of sound waves parallel to the
magnetic field lines.
Multiplying the continuity Eq.( 4) with the complex conjugate of the mass density (ρ∗) and taking the flux surface

average, we arrive at an integral equation for the dispersion relation analogous to the one given in[18]:
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ω2

∫

|ρ̃|2JdS =

(

γp

ρ

)

{

1
∫ |∇Ω|2

B2 JdS

(

∣

∣

∣

∣

∫

ρ̃
B×∇Ω · ∇B2

B4
JdS

∣

∣

∣

∣

2
)

+

∫

∣

∣∇‖ρ̃
∣

∣

2
JdS

}

(11)

In the above derivation, finite gyro-radius effects have been neglected and as such does not provide any information
about the structure of the vortex mode perpendicular to the perturbed flux-surfaces Ω. This would require a kinetic
or higher order approach[36] and is beyond the scope of this paper.

II. EIGENVALUE CALCULATION

We calculate the Eigenvalues and Eigenfunctions numerically by writing Eq.( 10) in the form:

ω2ρ̃ = −
(

γp

ρ

)

{

1
∫ |∇Ω|2

B2 JdS

B×∇Ω · ∇B2

B4
C

− B∇‖

(

1

B
∇‖ρ̃

)

}

(12)

where:

C =

∫

ρ̃
B×∇Ω · ∇B2

B4
JdS (13)

which can be written in the form of a generalised Eigenvalue equation and then solved using standard methods.
In magnetic island geometry[32–35], ∇|| is defined as:

∇‖ =
1

Rq

∂

∂θ

∣

∣

∣

∣

∣

Ω

+ k‖
∂

∂ξ

∣

∣

∣

∣

∣

Ω

(14)

and remembering that k‖ = −kθ(r − r0)/Ls and also kθ = nq/r = m/r and the shear length, Ls is defined as,
Ls = Rq/ŝ[33–35]

k|| = ∓wmŝ
√

(Ω + cos ξ)√
2qǫR

(15)

Where r0 is the radial coordinate of the rational surface of consideration, the negative sign is chosen when (r− r0) is
positive and vice-versa.
We note here that the flux surface integral is defined by firstly taking the integral over the poloidal angle θ then by

an integral over the helical angle ξ. For an arbitrary function, A, this flux surface average can be written as[17, 31],

〈A〉 =
∫

Ar0(1 + ǫ cos θ)√
Ω+ cosξ

dθdξ. (16)

Consider the term
∫ |∇Ω|2

B2 JdS. Firstly we note that, we use the simple circular cross-section, axisymmetric model

for tokamak equilibrium, with the approximations, ∇r = r̂,∇θ ∼ θ̂
r and ∇ζ ∼ ζ̂

R .
If we utilise:

∇Ω =
4(r − r0)

w2
r̂+

m

r
sin ξθ̂ − n

R
sin ξζ̂ (17)
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Performing the θ integral, which removes the terms of order ǫ. We assume a small aspect ratio (r < R) and also small
island width in relation to the minor radius(w < r) and as such the integral reduces to:

∫ |∇Ω|2
B2

JdS =
32π

B2
0
w2

∫

(Ω + cos ξ)√
Ω+ cos ξ

dξ (18)

Finally we treat the term
∫

ρ̃B×∇Ω.∇B2

B4 JdS, for brevity the full details of this calculation can be found in Appendix

A. Utilising B = Btζ̂ +Bθ θ̂ +
ψ̃m
Rr sin θr̂, neglecting the effect of the island on the field strength, utilising:

Bt = B0/(1 + ǫ cos θ) (19)

Bθ =
ǫB0

q
/(1 + ǫ cos θ) (20)

and the major radius varying according to:

R = R0(1 + ǫ cos θ), (21)

the compression term B×∇B2·∇Ω

B4 can be written as:

B×∇B2 · ∇Ω

B4
=

−2

B0R

(4
√
Ω+ cos ξ

w
√
2

sin θ

+
(m

r
+

ǫn

R0q

)

cos θ sin ξ
)

(22)

This equation is substituted into Eq. (12), which forms a generalised eigenvalue equation. Both positive and
negative r − r0 sides of the magnetic island are considered with periodic boundary conditions and the eigenfunctions
and eigenvalues calculated. The results are discussed in next section.
Far away from a magnetic island, where the perturbation of the magnetic flux surfaces is smallest, it is expected

that the dispersion relation will return to the form of the standard Geodesic acoustic mode.
Taking the limit of large Ω and large aspect ratio, ǫ < 1. Taylor expanding then performing the integrals we obtain:

ω2 =
γv2th
2R2

(

2 +
1

q2

)

, (23)

From Fig. 1, we see that the high frequency GAM is present in both the simulations with and without electrostatic
turbulence, having an identical frequency in both.

III. EIGENFUNCTION ANALYSIS

Comparison of the island modified GAM dispersion with the result for toroidal circular flux surfaces, shows that
the oscillations are significantly modified by the presence of a magnetic island. The oscillation has a longer oscillation
period that the standard GAM by a factor of approximately (kIθρi)

2, which, is of the order of 10−3. Fig. 3 plots the
density eigenfunction in the helical island direction. kIθ being the islands’ poloidal wavevector, which appears whenever
a derivative, ∇Ω, is performed. Plotted are the four lowest harmonics, higher harmonics exist but are neglected here.
The inlay shows the function in the poloidal angle, which is sinusoidal in the same way as the standard GAM, but of
significantly smaller amplitude. The function being dominated by the helical direction.
The compression in this case is supplied by the variation of the magnetic field, B, as we travel around the magnetic

island. A net compression exists when the Eigenfunction is a symmetric reflection between the outer and inner half
of the island solutions, which can also be thought of as a symmetric solution in the radial coordinate (See Fig. 4 for
a simple depiction). When a radially asymmetric solution exists the net compressive effect is zero and the solution
represents a pure sound wave (e.g. Right hand panel of Fig. 4).

Unlike the case of the normal GAM, when the inverse aspect ratio is set to zero we obtain solutions that are pure
sound waves and the eigenvalue of the symmetric and anti-symmetric solutions are identical. With a finite aspect
ratio these two value diverge as the compressive part becomes larger.

The damping rate is determined by kinetic effects as showed by Hinton and Rosenbluth[37, 38], however we see
from the time traces of the potential amplitude seen in Fig. 1 that the damping rate is significantly slower than the
rate for the GAM.
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FIG. 3. The non-trivial density Eigenfunctions in the direction of the helical angle, ξ at Ω = 0.95. Shown in inlay is the
Eigenfunction in the poloidal angle. Plotted here is one half of the island eigenfunction (i.e. positive or negative radial
direction). The curves are numbered according to increasing Eigenvalue.

FIG. 4. Cartoon representing two configurations of density perturbation around magnetic flux surfaces in a magnetic island.
(left) reflected, symmetric solution between inner and outer island regions, producing an up-down density asymmetry and a
degree of compression, (right) zero compression perturbation where the outer solution is simply a copy of the inner solution,
producing a radially asymmetric density perturbation.

The collisionless damping rate of the GAM, normalised to the ion transit frequency, has been shown to have the
following form[39],

γ

k‖vthi
∼
(

ω

ωt

)4

exp

(

−ω
2

ωt

)

, (24)

where ω is the oscillation frequency and ωt is the ion transit frequency, estimated by ωt ∼ k‖vthi ∼ kθwŝvthi/q in the
presence of an island. With some algebra it can be shown that the ratio of the damping rate to the transit frequency
is, γIωI

∼ 0.2. Where the subscript I denotes the island modified GAM.

With the same analysis; taking the ion transit time for the normal Geodesic Acoustic Mode using, k‖ = 1/(R0q),
we can calculate the damping rate as γG ∼ 0.36vthi/R0.
Finally, the ratio of the normal GAM damping rate to the island modified GAM damping rate is γG

γI
∼ 15. From

this rough calculation we see that the damping rate of the island modified mode is significantly smaller than the
damping rate of the GAM.
Both modes are evident in the oscillations seen in the trace, the faster GAM, and the slower island modified

oscillation. We note here that the faster oscillation is persistent in the turbulence simulation as it is being continu-
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ously excited by the turbulence, while in the ’linear’ simulation only an initial perturbation is possible which damps
accordingly.

IV. GYRO-KINETIC FRAMEWORK

The oscillatory vortex mode was observed in gyro-kinetic simulations studying the effect of magnetic islands on
drift-wave turbulence. Since the GAM is a linear mode it should be possible to excite them without turbulence
present.
Here the GAM oscillation is studied using the gyro-kinetic framework, with numerical solutions obtained using a

modified version of the gyro-kinetic flux-tube code GKW of which more details can be found in [40]. The delta-f
approximation is used, in which the distribution function is split into a background F and a perturbed distribution
f . The final equation for the perturbed distribution function f , for each species can be written in the form

∂g

∂t
+ (v‖b+ vD) · ∇f + vχ · ∇g − µB

m

B · ∇B
B2

∂f

∂v‖
= S, (25)

where S is the source term which is determined by the background distribution function, µ is the magnetic moment,
v|| is the velocity along the magnetic field, B is the magnetic field strength, m and Z are the particle mass and charge
number respectively. Here, g = f + (Ze/T )v‖〈A‖〉FM is used to absorb the time derivative of the parallel vector
potential ∂A‖/∂t which enters the equations through Ampères law. The background is assumed to be a Maxwellian
(FM ), with particle density (n) and temperature (T )

F = FM =
n

π3/2v3
th

exp

[

−
v2‖ + 2µB/m

v2
th

]

, (26)

which determines the source term, neglecting temperature and density gradients becomes:

S = −Ze
T

[v‖b+ vD] · ∇〈φ〉FM . (27)

The thermal velocity vth ≡
√

2T/m, and the major radius (R) are use to normalise the length and time scales. Using
standard gyro-kinetic ordering, the length scale of perturbations along the field line (R∇‖ ≈ 1) are significantly longer
than those perpendicular to the field (R∇⊥ ≈ 1/ρ∗). Here, ρ∗ = ρi/R is the normalised ion Larmor radius (where

ρi = mivth/eB and vth =
√

2Ti/mi).
The velocities in Eq. (25) are from left to right: the parallel motion along the unperturbed field (v‖b), the drift

motion due to the inhomogeneous field (vD), and the motion due to the perturbed electromagnetic field (vχ). The
drift due to the inhomogeneous magnetic field can be written in the form[40],

vD =
1

Ze

[

mv2‖

B
+ µ

]

B×∇B
B2

, (28)

whereas the motion due to the perturbed electromagnetic field

vχ =
b×∇χ
B

, (29)

is the combination of the E × B velocity (vE = b ×∇〈φ〉/B) and the parallel motion along the perturbed field line
(vδB = −b×∇v‖〈A‖〉/B). These two effects are combined into one velocity through the definition of a new field
χ = 〈φ〉 − v‖〈A‖〉. Here, the angled brackets denote gyro-averaged quantities.
The electrostatic potential is calculated from the gyro-kinetic Poisson equation which in Fourier space is

∑

sp

ZspnRsp

[

2πB

∫

dv‖dµJ0(k⊥ρsp)ĝsp +

Zsp
TRsp

[Γ(bsp)− 1]φ̂

]

= 0, (30)

where b = 1

2
mRTR(k⊥ρ∗Rref/ZB

2)2 = 1

2

k2
⊥
m2v2

th

Z2e2B2 , k⊥ being the perpendicular wave-number and J0 are zeroth order
Bessel functions of the first kind.
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FIG. 5. (top) The square of the oscillation frequency for individual code runs where the value of kθρi, and hence the toroidal
size of the island, is varied, plotted against the square of the wave-vector. The dashed line represents a linear fit. This shows
an exactly linear dependence. (Bottom) The calculated ratio of the Eigenvalue and (kθρi)

2 as a function of the perturbed flux
label Ω from the O-point Ω = −1 to the separatrix, Ω = 1. The agreement between the calculated gradient from the (top)
figure, ω2

N/(kθρi)
2 = 3.7 (represented by the dashed line, here ωN = ωIvthi/R) compares well with the value at approximately

the island separatrix, Ω ∼ 0.9. The code was run with 50 points in both the ξ and θ directions.

GKW uses straight field line Hamada[41] coordinates (s, ζ, ψ) where s is the coordinate along the magnetic field
and ζ is the generalised toroidal angle. For circular concentric surfaces, the transformation of poloidal and toroidal
angle to these coordinates is given by [40] (s, ζ) = (θ/2π, [qθ − φ]/2π). Assuming the winding of the magnetic field
is resonant (q = m/n) in the centre of the computational domain (ψ0 = r0/R0 = ǫ, where r is the radius of the
magnetic surface, and R0 is the distance of the centre of the surface to the axis of symmetry) and expanding q up to
first order in ∆ψ (∆ψ being the radial distance from the resonant surface and here m is the poloidal mode number),
q = m/n+∆ψ(∂q/∂ψ) then yields

A‖ = Ã‖ exp[2πin(ζ − s∂q/∂ψ∆ψ)]. (31)

The wave vector of the island is kIζρi = 2πnρ∗. GKW uses a Fourier representation in the plane perpendicular to the
magnetic field. The periodicity constraint on the torus shaped magnetic surface then dictates a relation between the
radial and toroidal modes.
The half width of the island is defined by

w = 2

√

qψ̃/ŝRB, (32)

(where ŝ = (1/q)∂q/∂ψ is the magnetic shear) and the perturbed magnetic flux, Ψ̃, is related to the perturbation of
the parallel vector potential by the relation,

ψ̃ = −RA‖ (33)

Full details of the numerical implementation of the magnetic island is omitted here, the interested reader can find
them in these papers [13, 14].

V. RESULTS AND COMPARISON

Presented here are the results from simulations, which keep the kinetic electron effects with the true mass ratio of
a Deuterium plasma. While we are studying the linear response to a perturbation, due to the set-up of GKW, the
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FIG. 6. (Color online) Normalized electrostatic potential (φN = eφ/Tρ∗, W/ρi = 24) in the plane perpendicular to the magnetic
field (outboard mid-plane). Black lines represent the perturbed flux surfaces calculated from the total parallel vector potential.
The top panel shows a vortex with a positive sign, while the lower panel shows that the vortex has flipped sign at a point
later in the simulation. Data from Gyro-kinetic simulation without turbulence and initialised with a sin ξ density perturbation
which produces a electrostatic vortex structure similar to those seen in turbulent Gyro-kinetic simulations (See Fig. 2.)

code must be run non-linearly for the plasma to feel the effects of the modified field lines due to the magnetic island.
This is because, due to numerical reasons, the parallel vector potential of the island is introduced as a perturbation.
The parameters used for these simulations are similar (but not equivalent) to those of the cyclone base case [42].

However, to simplify the physics we have set the temperature and density gradients in the background distribution
(R/LT = R/LN = 0)to zero, otherwise :

• Inverse aspect ratio ǫ = 0.19

• Electron to ion temperature ratio Te/Ti = 1

• Safety factor q = 1.5 and magnetic shear ŝ = 0.16.

• 2 toroidal modes, 167 radial modes. Results are presented with, kIζρi = 0.025, kIζρi = 0.05, kIζρi = 0.1

For an idea of the typical size of an island, consider a m = 3, n = 2 island which is resonant at q = 1.5. This choice
effectively determines ρ∗ = 4 · 10−3 in the kζρi = 0.05 case and ρ∗ = 2 · 10−3 in the kζρi = 0.025 case, values that
correspond to a medium-size tokamak such as ASDEX Upgrade[43].

Run in this way, the code encapsulates all the necessary physics of the Geodesic acoustic mode in the MHD limit.
A density perturbation is initialised which is resonant with the magnetic island, ρ = ρ0 sin ξ and then allowed to freely
evolve. An oscillatory vortex mode is excited, as seen in Fig 6. The initial perturbation, however, is not an exact
eigenfunction of the system and thus we get some extra radial oscillations (See Fig. 6) that damp away on a long time
scale.
Fig. 1 shows the time trace of the amplitude of the first non-zero kx electrostatic potential mode which has the

same poloidal mode number as the magnetic island. The trace compares the potential from a gyrokinetic simulation
(dashed line) without turbulence and one with (black line).
From these traces we see that in both cases there is indeed two frequencies present. The first, faster component is

the standard GAM oscillation produced by the Geodesic curvature of the circular flux surfaces which are also damped
by kinetic effects[38]. The second, significantly longer period and higher amplitude oscillation, is the Geodesic mode
around the closed flux surfaces within the magnetic island separatrix. This is slowly damped compared with the usual
GAM case. There is indeed some disparity in the frequencies between the linear and nonlinear turbulent simulation
traces, however the physics is significantly different between the two, with turbulence and the presence of equilibrium
temperature and density gradients in the non-linear case, which could have a significant impact on the frequency of
the vortex mode.
Plotted in Fig. 5 is the squared oscillation frequency against the normalised squared toroidal wave-vector associated

with the magnetic island, kIθ = m/r. We see that there is an exactly linear relation between these parameters. In
the lower panel is plotted the squared frequency as a function of the flux surface label within the magnetic island as
calculated from the eigenvalue solver with the same parameters as used in the gyro-kinetic simulations. Agreement
between the simulations and the eigenvalue analysis is very good, with the frequency values matching near to the
separatrix (Ω = 0.95). An analysis with a kinetic or higher order theory which takes into account variation of the
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mode across the flux surfaces would give a more accurate calculation of the oscillation frequency, but it beyond the
scope of this paper.
It is observed that the mode from our eigenvalue analysis, with the closest matching frequency to that seen in gyro-

kinetic turbulence simulations is the one which corresponds to an up-down density asymmetry within the magnetic
island, with an eigenfunction corresponding to the full line in Fig. 3 and its symmetric reflection. This is depicted
in cartoon form in the left panel of Fig. 4. Solutions of this form have a GAM component, and therefore introduce
a compression. The compression produces an electric field that is perpendicular to the flux surfaces, and is therefore
essential in producing the vortex structures as seen in Fig. 6.
Indeed, solutions exist which have good agreement with between their eigenvalue and the frequency observed in

gyrokinetic simulations, however, these have no GAM component and are therefore purely sound waves. Solutions of
this form are unable to produce the vortex structures observed as plotted in Fig. 6 (and its electrostatic potential time
trace in Fig. 1) as they produce no perpendicular electric field. One example of this is the eigenfunction represented
by the dot-dashed line in Fig. 3 whose eigenvalue is plotted (dotted line) in the lower panel of Fig. 5.
In turbulence simulations it was observed that spreading occurred and turbulent structures entered the island from

the upper x-point and spread down into the island, giving an up down asymmetry (See Fig.5 in Ref. [14]). It is this
mechanism which is a candidate to excite the oscillatory mode seen that has a value close to the calculated frequency
near the separatrix and not a higher frequency as would be expected further toward the O-point.

VI. CONCLUSIONS

Motivated by the observation of oscillatory potential vortex structures seen in simulations of turbulence around
magnetic islands, we have performed an analysis of the Geodesic acoustic mode around a magnetic island. It is
seen that long time-scale oscillatory solutions are generated with the same properties as the Geodesic acoustic mode,
namely plasma compressibility producing an electric field perpendicular to the perturbed flux surfaces, which produce
meso-scale vortex structures.
Also performed were Gyro-kinetic simulations where the turbulence was neglected and the density initialised to be

present with the magnetic island, which generates an oscillatory potential structure, which is the same as that seen
in turbulence simulations. The scaling of the frequency of this oscillation agrees with our eigenvalue analysis, leading
us to conclude that the oscillatory structures are indeed the Geodesic Acoustic Mode around the closed flux surfaces
within the magnetic island.
These oscillatory vortex structure can induce E × B flow around large magnetic islands which have a profound

effect heat transport in the vicinity of the magnetic island and can also have a significant regulatory effect on the
turbulence in this region.
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VII. APPENDIX A - TREATMENT OF EXB TERM

Firstly we consider the denominator of the compressive term,
∫ |∇Ω|2

B2 JdS. If we utilise:

∇Ω =
4(r − r0)

w2
r̂+

m

r
sin ξθ̂ − n

R
sin ξζ̂ (34)

We utilise the magnetic field approximation B2 = B2
0/(1 + ǫ cos θ)2 and Taylor expand, to give:

∫ |∇Ω|2
B2

JdS = (35)

∫

JdS
dξ√

Ω+ cos ξ

1

B2
0

(

16(Ω + cos ξ)

w2

)

(1 + 2ǫ cos θ)

+

∫

JdS
dξ√

Ω+ cos ξ

1

B2
0

(

m2

r2
+
n2

R2

)

(1 + 2ǫ cos θ) sin2 ξ
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We first perform the θ integral, which removes the terms of order ǫ, we obtain,

2π

B2
0
w2

(

16

∫

(Ω + cos ξ)√
Ω+ cos ξ

dξ + w2

(

m2

r2
+

n2

R2

)

∫

sin2 ξ√
Ω+ cos ξ

dξ

)

. (36)

We assume a small aspect ratio (r < R) and also small island width in relation to the minor radius(w < r) and as
such the integral reduces to:

16π

B2
0
w2

∫

(Ω + cos ξ)√
Ω+ cos ξ

dξ (37)

Finally we treat the term
∫

ρ̃B×∇Ω.∇B2

B4 JdS, utilising B = Btζ̂ +Bθ θ̂ +
ψ̃m
Rr sin θr̂ and also:

∇B2 = 2B∇B

= − 2B2
0

R(1 + ǫ cos θ)3

(

cos θr̂− sin θθ̂
)

(38)

Taking the cross product with the magnetic field vector:

B×∇B2 = Btζ̂ ×∇B2 +Bθ θ̂ ×∇B2 +∇ζ ×∇ψ ×∇B2

= − 2B3
0

R(1 + ǫ cos θ)3

(

Bt cos θθ̂ −Bθ cos θζ̂

+ Bt sin θr̂−
ψ̃m

Rr
sin θ sin ξζ̂

)

(39)

Taking the inner product with ∇Ω, this gives four terms:

B×∇B2 · ∇Ω =
2B3

0

R(1 + ǫ cos θ)3

(

−4(r − r0)

w2
Bt sin θ

− Btm

r
cos θ sin ξ − Bθn

R
cos θ sin ξ

− mnψ̃

rR
sin2 ξ sin θ

)

(40)

We make the approximations, neglecting the effect of the island on the field strength:

Bt = B0/(1 + ǫ cos θ)

Bθ =
ǫB0

q
/(1 + ǫ cos θ) (41)

we finally obtain:

B×∇B2 · ∇Ω

B4
=

−2

B0R

(4(Ω + cos ξ)

w
√
2

sin θ

+
m

r
cos θ sin ξ +

ǫn

qR
cos θ sin ξ

− mnψ̃

rR
sin2 ξ sin θ(1 + ǫ cos θ)

)

(42)

The last term in Eq. (42) can be neglected as it is comparably small with respect to the other terms.
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