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Abstract.

The flux surface topology of a toroidal plasma bounded by a magnetic separatrix

allows edge moments of the toroidal current density profile to be identified in an MHD

equilibrium reconstruction code using only external magnetic measurements. This

is demonstrated analytically for simple plasma shapes and applied to experimental

data on the ASDEX Upgrade tokamak where CLISTE reconstructions from magnetic

data are shown to be consistent with those obtained from a more complete set of

diagnostic data. An independent demonstration of edge current profile recoverability

is obtained by analyzing the reconstruction errors for a database of Monte Carlo-

generated equilibria.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Equilibrium magnetic measurements (or “magnetics”) outside the plasma provide

essential information, including the identification of the plasma boundary surface,

for MHD equilibrium reconstruction on tokamaks and other magnetically confined

plasma experiments. Iterative equilibrium reconstruction from magnetic data was first

developed on the Doublet III tokamak [1], where optimization of free parameters to

fit the raw data in a least squares sense required a computationally expensive full

equilibrium solution at each iteration. The algorithm was speeded up considerably

by the interleaving of force balance convergence and a linear regression to determine

optimum values of the free parameters at each cycle, resulting in the computationally

efficient EFIT equilibrium reconstruction code [2, 3], now the most widely used

worldwide. More recently, Bayesian methods have been applied to equilibrium

reconstruction from multiple diagnostics on stellarators [4] and tokamaks [5, 6]. Starting

with Lackner’s fast equilibrium solver based on the Buneman algorithm [7], the CLISTE

interpretive equilibrium code [12, 13], which is used here, was developed for equilibrium

reconstruction from multiple diagnostics on the ASDEX Upgrade tokamak. While it

uses the same interleaving algorithm as EFIT, there are significant differences between

the two codes which are outlined in section 4 below.

It has been a standard assumption [2, 9, 10] that information on the internal current

density and pressure profiles provided by magnetics is limited to three integral moments,

namely the toroidal plasma current Ip =
∫

A jφ dA, beta poloidal βp = 2µ0

∫

V p dV/(V B̄
2
θb

)

and internal inductance li =
∫

V B
2
θ dV/(V B̄

2
θb

) where jφ is the toroidal current density,

B̄θb
= µ0Ip/

∫

b dℓ is the average value of the poloidal magnetic field on the boundary

b, and V and A denote the plasma volume and cross-sectional area. Here we present

analysis and results from reconstructions of a database of randomly generated ASDEX

Upgrade equilibria as well as from experimental data which show that additional

moments of jφ, strongly localized in the edge region of the plasma, are identifiable

from magnetics when the plasma is bounded by a separatrix with one or more X-points.

Before proceeding, however, it is first necessary to address a previous claim [11] that

magnetics are unable to identify any details of the current distribution, based on the

result that the magnetic field at a point r outside the plasma generated by volume

currents flowing in the plasma:

Bpl(r) =
µ0

4π

∫

V
j(r′) × r − r′

|r − r′|3 dV (1)

(the integral is taken over the primed source coordinates) is identical to that produced

by a surface current density i = n × B/µ0

Bpl(r) =
µ0

4π

∫

S
i(r′) × r − r′

|r − r′|3 dS (2)

where S is the plasma boundary surface, n is the unit outward normal on S and the

equilibrium field B = Bpl + Bext is the sum of plasma (Bpl) and external (Bext)

contributions. It is claimed in [11] that this identity, valid for arbitrary current
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distributions satisfying B · n = 0 on S, proves that it is impossible to distinguish,

on the basis of magnetics alone, between a volume current distribution j(r′) and the

equivalent surface distribution i(r′) and hence that no information on the shape of the

j(r′) profile can be recovered. We show here by counterexample that this argument

conflicts with the MHD equilibrium requirement that any proposed alternate solution

must also satisfy the force balance relation j × B = ∇p: Consider the infinite aspect

ratio limit where the scalar Grad-Shafranov equation (GSE) of force balance simplifies

to

−∇2ψ = µ0

d

dψ

(

p(ψ) +
B2
z(ψ)

2µ0

)

≡ µ0 jz(ψ) (3)

where ψ, the poloidal flux per unit length, is independent of the axial coordinate z,

and p, Bz, and jz, the plasma pressure, axial magnetic field and axial current density

profiles are flux functions. The magnetic field is B = ∇ψ× ẑ +Bzẑ = Bθ θ̂+Bzẑ where

the unit vectors θ̂, n and ẑ satisfy θ̂ × n = ẑ. The equivalent surface current density

i = n × B/µ0 = (Bz θ̂ − Bθẑ)/µ0 has an axial component iz = −Bθ/µ0. Except for the

degenerate case of circular flux surfaces where Bθ is independent of θ, iz varies with θ

on a surface of constant ψ and hence violates the conditions for force balance, thereby

invalidating the reasoning leading to the main conclusion in [11].

2. Demonstration of edge current identifiability using an analytical model

The identifiability of edge moments of the jφ profile can be demonstrated from the

following simple analytic model: The flux function per unit length for two parallel wires

along the z direction which pass through x = 0, y = ±d and carry equal current I is

Ψ:(x, y) =
µ0I

2π
ln

d2

√

x2 + (y − d)2

√

x2 + (y + d)2
(4)

The doublet shape has a single X-point at the origin (where Ψ = 0) and the upper

separatrix contour is bounded by −d/2 ≤ x ≤ d/2 and 0 ≤ y ≤
√

2 d. Figure 1(a)

shows the upper separatrix and an internal contour for the case of d = 1. The cross-

sectional area A(ρ) can be evaluated analytically as follows: Working with the scaled

flux ψ ≡ 2πΨ/µ0I, the x-coordinate at the position of widest horizontal extent of the

contour labelled by ψ is obtained by solving the equation dx/dy = 0 for fixed ψ. This

yields xw = ±
√

d2 − y(xw)2 where y(xw) is the corresponding y-coordinate. Denoting

the positive solution for xw by r, the flux surface horizontal radius, and making the

substitution y(r) = ±
√
d2 − r2 in eq. (4) we solve for r and obtain

r(ψ) = d e−ψ/2 (5)

which takes the value r(0) = d/2 at the separatrix. Defining the normalized flux radius

ρ = 2r/d = e−ψ and setting x = 0 in eq. (4) we obtain the top and bottom y-coordinates

for each flux contour:

ytop(ψ) = d
√

1 + ρ ; ybot(ψ) = d
√

1 − ρ (6)
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Using eq. (4) to express x in terms of y and ψ:

x(y, ψ) = ±
√

2d
√

r(ψ)2 + y2 − d2 − y2 (7)

the cross-sectional area integral for the ψ contour

A(ψ) = 2
∫ ytop

ybot

x+(y, ψ) dy (8)

(where x+ is the positive root in eq. (7)) may be carried out with the help of the

substitution u =
√
r2 + y2 when eq. (8) becomes

A(ψ) = 2
∫ d+r

d−r
u

√

r2 − (u− d)2

u2 − r2
du (9)

This integral was evaluated, with the aid of Mathematica[8], to yield the expression for

area (in terms of ρ):

A(ρ) = d2

√

1 − ρ2

(

E
[

(1 − ρ−2)−1
]

−K
[

(1 − ρ−2)−1
])

where K and E are complete elliptic integrals of the first and second kind, and

lim ρ→1A(ρ) = d 2. Evaluation of the flux surface average of the y coordinate as a
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Figure 1. (a) Upper separatrix and ρ = 0.98 flux contours for wire currents located

at y = ±1 m. (b) Geometric mean (· · ·) and flux surface average 〈y〉 (- - -) versus ρ, the

normalized horizontal radius, and 〈y〉 versus υ (—), the normalized distance from the

wire to the point of intersection with the flux surface along the line joining the wire to

the X-point. Both vertical axes and the left horizontal axis are dimensioned in m.

function of ρ yields the exact analytic result

〈y〉ρ =
∮

y dℓ

|∇ψ|
/

∮

dℓ

|∇ψ| =
πd

√
1 − ρ2

2K [(1 − ρ−2)−1]
(10)

The dotted curve in figure 1(b) shows the mild behaviour of the geometric mean of y as

a function of ρ. In contrast, 〈y〉ρ∼−1/ ln(1− ρ) as ρ → 1 and so the dashed curve falls

to zero at ρ= 1 due to the progressive localization around the X-point of the area in
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the annular interval {ρ, 1}. This localization is seen to extend further into the plasma

when 〈y〉 is plotted (solid curve in figure 1(b)) versus the radial coordinate υ defined as

the normalized distance to the point of intersection with the flux surface along the line

joining the magnetic axis to the X-point. For the wire model, υ = 1 −√
1 − ρ.

The qualitative features in the above analysis apply to X-point tokamak equilibria

whose flux surfaces possess the same essential topological features. In particular, the

localization of near-separatrix annular areas to the region just above the X-point (as

demonstrated by the behaviour of 〈y〉 in figure 1(b) ) allows the identification of edge

moments of jφ, since the current flowing in this region behaves like a local distribution

near the X-point which is distinct from the main current distribution and therefore

identifiable by magnetics.

3. SVD analysis of current profile influence on probe data

For quantitative results we consider an ASDEX Upgrade single null equilibrium (figure

2(a)) with tangential and normal magnetic probes located on an idealized measurement

contour conformal to the separatrix but scaled up by 40%, a factor typical for probe-

separatrix distances. At each flux surface we calculate the poloidal field components

BR , BZ at each probe site for toroidal current flowing in a thin annulus. If A′ = dA/dψ

is the area derivative profile with respect to poloidal flux per radian ψ, and d2A/dψ dℓθ ≡
1/|∇ψ| is the variation of area with respect to ψ and poloidal arc length ℓθ, then the

contribution to the poloidal field components BR, BZ at probe location (Rp, Zp) due to

a small annular current δIa is given by the poloidal contour integral

δBR,Z(Rp, Zp) =
δIa
A′

∮

GR,Z(Rp, R, Zp, Z)

|∇ψ| dℓθ

where the Green’s function terms for the field components at the probe location (Rp, Zp)

due to unit current at the location (R,Z) are given by[14]

GR =
µ0

4π

(Zp − Z)
√

R3
pR

k

(1 − k2)

[

(

1 − k2

2

)

E(k2) − (1 − k2)K(k2)

]

GZ =
µ0

8π

√

√

√

√

R

R3
p

k

(1 − k2)

[

(

k2 − 2Rp

R
(1 − k2

2
)
)

E(k2) +
2Rp

R
(1 − k2)K(k2)

]

and the argument k2 is given by

k2 =
4RpR

(Rp +R)2 + (Zp − Z)2

Note that a constant current density in the annulus, equivalent to the flux surface

averaged value 〈jφ〉, has been assumed in this section in the interest of simplicity. Flux

surface contour integrals of the Greens function versus υ at each of P probe sites were

numerically evaluated to generate 2P radial influence profiles.
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Figure 2. (colour online) (a) Lower null ASDEX Upgrade equilibrium with P = 60

equidistant magnetic probe sites on an idealized measurement contour conformal with

the separatrix but scaled up by 40%. (b) tangential (—) and normal (- - -) components

of the poloidal magnetic field per MA annular current for the four sites highlighted in

figure 2(a) versus the flux label υ (see figure 1 caption).

Sample profiles plotted in figure 2(b) all have the property that they are nearly

independent of υ in the plasma core, but change, very dramatically in the case of probes

near the X-point, as υ→ 1. It is this strong variation towards the plasma boundary

(a consequence of the behaviour of 〈y〉 near the separatrix in figure 1(b))) that enables

identification of edge moments of jφ. The influence profiles were discretized intoN radial

elements to form an N×2P influence matrix G. The Singular Value Decomposition

(SVD) of G provides a sequence of left-singular vectors u i representing orthogonal

moments of the 〈jφ〉(υ) profile, a sequence of right-singular vectors vi of corresponding

orthogonal moments of the probe measurements and a set of singular values σi, in tesla,

whose magnitudes, when compared to experimentally known measurement uncertainty,

give a practical measure of the recoverability of the corresponding moments of the

current profile.

Figure 3 plots the radial dependence of the leading six left-singular vectors, labelled

by their singular values, which were generated by the SVD of an N × 2P = 400×120

matrix where the influence of each annulus on the contour of probe measurements

was scaled by the annular area (this was necessary because the choice of equidistant

intervals in υ resulted in variable area annuli) and the plasma current was 1 MA.

Corresponding right-hand singular vectors are represented by spatial distributions of

dot sizes in the right panel of figure 3. Left-singular vectors 1 and 2, which correspond

to Ip and li, depend on the entire current distribution. Subsequent singular vectors

are predominantly sensitive to the edge region υ >∼ 0.9 or ρ >∼ 0.99. The singular

values satisfy Σi σ
2
i = ΣP

j=1(B
2
j, ‖ +B2

j,⊥) where Bj, ‖ and Bj,⊥ are the components of the
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Figure 3. Left panel: Leading six left-singular vectors and singular values from an

SVD of the matrix of radial influence profiles. Right panel: Right-singular vectors, the

magnitude of whose elements are represented by dot size at each probe site: For the

ith right-singular vector vi, the dot area at probe site j is ∝ v2
i,j +v2

i,j+P , i.e. the sum

of squared weights for the two poloidal field components at site j.

poloidal magnetic field at the jth probe site due to a 1 MA plasma current. For variable

plasma current Ip, ratio of probe contour circumference to separatrix circumference r,

and number of probe sites P , the second and subsequent singular values were observed to

scale approximately as σj ∼
√
PIp/(2r)

j. The orthogonality of the singular vectors and

their ordering in terms of experimental recoverability make them attractive in principle

as radial basis functions in the MHD equilibrium identification problem.

4. Edge current identifiability using the CLISTE equilibrium code

The foregoing analysis is incomplete in several respects: A fixed flux surface topology

is used and hence the known dependence of magnetics on the Shafranov shift is not

reflected in the singular vectors. Also, the use of 〈jφ〉 conceals the major radius

dependence of the jφ profile. Current flow in the scrape-off layer (SOL) outside

the separatrix is not considered. These aspects are all taken into account in the



Identification of edge-localized moments of the current density profile · · · 8

CLISTE interpretive equilibrium code [12, 13, 15] which generates MHD equilibrium

solutions on ASDEX Upgrade constrained by data from multiple diagnostics. CLISTE

was developed from the predictive Garching Equilibrium Code, originally written by

Lackner, which includes a fast equilibrium solver based on the Buneman algorithm

[7]. The fast interleaving algorithm of EFIT is also implemented in CLISTE, however

there are differences between the two codes: EFIT uses pre-calculated Green’s function

matrices containing the response at each measurement site to unit plasma current

at each gridpoint, whereas CLISTE solves the Poisson problem for the poloidal flux

generated by each current profile basis function at each iteration cycle. EFIT uses a

tension spline model[20] to parameterize the p′(ψ) and ff ′(ψ) source profiles whereas

CLISTE uses cubic splines with curvature regularization. Unlike EFIT, source profiles

routinely extend to open field lines in the SOL where they can be constrained using

pressure data and shunt resistance measurements of poloidal currents flowing through

tiles in the axisymmetric divertor[21]. Constant pressure and force balance is assumed to

hold along open fieldlines until a vessel structure is encountered whereupon the plasma

current density and pressure fall to zero across one grid interval. The return current

through the material structure is assumed to have negligible effect on force balance in

the plasma.

The SVD analysis of the previous section demonstrates that magnetics contain

information on the edge current distribution, however use of the present SVD approach

under realistic conditions for solving the equilibrium problem proved impractical and

instead, for modelling flexibility, a cubic spline model with, typically, 10 radial knots is

used to parameterize the p′(ψ) and ff ′(ψ) source profile shapes. This amounts to 20 free

shape parameters, well in excess of the number of identifiable moments of the current

distribution but with the advantage of being free of the bias that commonly affects

parameterizations with a low number of free parameters: Overly restricted models can

result in artificially well determined pressure and current density profiles using only

magnetic data, as was correctly pointed out in [11]. The choice of 10 knot locations

has the dual purpose of (a) ensuring that, apart from the effects of regularization, the

model is free of significant bias and (b) allowing the same model to be used when the

equilibrium solution is additionally constrained by kinetic profile data or other internal

diagnostic data where many knots may be required to satisfactorily model the data.

Further increasing the number of knots typically does not improve the goodness of fit,

and can cause convergence problems. Regularization in the form of curvature penalties

at each knot location and, optionally, penalizing the magnitude of the fitted spline

coefficients controls the ill-conditioned nature of the problem, the most serious cause of

which is the low distinguishability of p′(ψ) and ff ′(ψ) when the solution is constrained

only by magnetics. The magnitude of the regularization can be selected to satisfy

Morozov’s discrepancy principle [16], where the average fit error is not allowed to fall

below the experimentally known uncertainty level in the magnetic data. Alternatively,

regularization parameter selection methods which do not require prior knowledge of

diagnostic error levels such as the L-curve [17] may also be used.
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The recoverability of edge moments of the current density profile is illustrated by

a sequence of CLISTE equilibria for ASDEX Upgrade discharge 23255, Ip= 800 kA,

Bt=−2.5 T, n̄e= 5.8×1019 m−3 which had a stationary low power phase consisting of

0.3 MW ohmic heating and 0.5 MW ECRH, followed by the addition of four 2.5 MW

neutral beams at 200 ms intervals (see figure 4) which yielded a factor of six variation

in the stored energy during the current flattop phase. A spline model with 10 knots
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Figure 4. (colour online) Time traces of plasma current Ip, line-integrated density

n̄e, neutral beam injection heating power PNBI, plasma stored energy WMHD, electron

temperature Te at major radius R = 1.8 m, MHD even and odd mode signals, and

divertor tile currents (ELM signal) for ASDEX Upgrade discharge # 23255. The

CLISTE analysis is for the time window 1.2 ≤ t ≤ 2.7 s.

for the p′(ψ) and ff ′(ψ) source profiles regularized by penalizing both the curvature

at each knot location and also the magnitude of the fitted coefficients was used to find

free boundary equilibria constrained by 60 magnetic signals at 10 ms intervals for the

time window 1.2 ≤ t ≤ 2.7 s, with ELM timepoints excluded. Since sawteeth were

present throughout most of the time window, the safety factor q on the magnetic axis

was clamped at a value just below unity. The rms (root mean square) fit error was

1.0 mT or 0.9% of the rms signal magnitude, which is typical of a well-fitted CLISTE

reconstruction for Ip = 800 kA. The same spline model, with identical regularization

penalties, was also used to generate equilibria additionally constrained by pressure data

in the range 0.85 ≤ ρpol ≤ 1.02 obtained from smoothed fits to high resolution ne, Te
and Ti data from the Lithium beam [22] [23], ECE [24], and Thomson scattering [25]

diagnostics. The magnetic fit error averaged over the entire time window was unchanged,

and the rms pressure fit error was ≈ 150 Pa or 2.5% of the rms value of ≈ 6 kPa for

ρpol ≥ 0.85.

Figure 5 shows magnetics-only (M-O) and magnetics+kinetics (M+K) reconstruc-
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Figure 5. (colour online) Low, medium and high βpol timeslices of jφ (blue) and

〈jφ〉 (red) profiles as a function of major radius along the magnetic midplane as

reconstructed by CLISTE from magnetic data (top row) and a combination of magnetic

and edge pressure data (bottom row) for ASDEX Upgrade discharge # 23255. The

magnetic axis position and the inboard and outboard points of intersection with the

separatrix are marked by vertical lines. The small vertical markers just above the

horizontal axis on the outboard side indicate the positions of the nine internal knots,

which are concentrated in the pedestal region where the pressure data is located. The

tenth and final end knot coincides with the axis position. The black, dashed profiles

are ±1σ confidence bands for jφ, see text for further details.

tions of jφ and 〈jφ〉 profiles for three timeslices, corresponding to low, medium and

high βpol values. The black, dashed traces are ±1σ confidence bands for jφ calculated

using the variance-covariance matrix V of the linear regression which determines the

set of free parameters at the cycle where the convergence criterion is met; see [12]

section 5.1 for details. It is important to note that the magnitude of the confidence

bands is strongly affected by regularization, which introduces some bias into the solu-

tion in return for (strongly) reducing the typically large variance of the unregularized,

ill-conditioned problem[17]. Thus care must be taken in interpreting the absolute mag-

nitude of the confidence bands. In contrast, it is more straightforward to compare of

the relative magnitudes of the M-O and M+K confidence bands in figure (5). There is

little to distinguish the two cases for the first, low power timeslice. For the βpol = 1.1

and βpol = 1.6 timeslices, the M+K confidence bands are much narrower than those of

the M-O fit in the outboard region 2.05 < R < 2.15, reflecting the influence of the edge

pressure data in constraining the solution. Note that there is only a weak narrowing of

the confidence bands in the inboard edge region 1.2 < R < 1.3. This is due to a factor

of 3 − 4 increase in the strength of the force-free current term ff ′(ψ)/µ0R relative to

the pressure-driven term Rp′(ψ) in moving from R ≈ 2.1 to R ≈ 1.2 combined with

the fact that the inclusion of the pressure data has no effect in constraining the free

parameters describing the ff ′(ψ) profile. Note that in all six plots the uncertainty in
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jφ is very small in the SOL. This is a consequence of the strong constraint provided by

divertor tile current data, combined with the absence, for these runs, of any additional

degree of freedom in the SOL since all knots are located inside the separatrix.
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Figure 6. (colour online) Time evolution of the jφ profile as a function of major radius

along the magnetic midplane as reconstructed by CLISTE from (a) magnetic data and

(b) a combination of magnetic and edge pressure data.

The full set of reconstructed profiles from 151 individual CLISTE runs for # 23255



Identification of edge-localized moments of the current density profile · · · 12

is presented in figure 6, which shows the time evolution of the jφ profile as a function

of major radius along the magnetic midplane from CLISTE reconstructions using (a)

magnetic data and (b) a combination of magnetic and edge pressure data. In each case,

a prominent edge peak in jφ develops following the start of NBI heating at t= 1.4 s. It

increases as further sources are added at 1.6 s, 1.8 s and 2.0 s, reaching a maximum at

t= 2.2 s just as the NBI power is reduced from its peak value. The evolution of the edge

peak is very similar in both cases, although the inclusion of the pressure constraints

results in the peak height in figure 6(b) exceeding that in 6(a) by a factor of ≈ 2.
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Figure 7. (colour online) Time evolution of the CLISTE 1σ confidence band for the

outboard peak value of jφ for the magnetics-only fit (middle, blue trace), and the

magnetics+kinetics fit (lower, red trace). Also plotted is the difference between the

peak values of the two fits (upper, green trace).

The 1σ error bar for the outboard peak jφ value for both fits is plotted versus time

in figure 7 which also shows the difference between the peak values. Under standard

statistical assumptions, the 95% confidence interval for the difference in peak values is

the sum of the individual 1σ error bars. For t > 1.6 s this sum is ≃ 0.40 MA m−2 which

is close to the average value of the upper trace in figure 7. Thus the value of the peak

difference is typically marginal at the 95% confidence level, suggesting that the CLISTE

confidence bands may be slightly too restrictive.

Quantitative agreement between both fits is achieved when the toroidal current

‘Iedge’ flowing outside a fixed flux surface close to the peak position is calculated in

both cases. Figure 8 shows that the current flowing outside the υ = 0.9 flux surface in

both cases is nearly identical and scales closely with βpol, consistent with a bootstrap-

dominated current drive in the pedestal. The 1σ Iedge error bars of ±2.8 kA and

±2.5 kA for the M-O and M+K fits were calculated in CLISTE from the final linear

regression determining the converged values of the free parameters and were to a good

approximation time-independent.
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Figure 8. (colour online) Time evolution of toroidal current outside the υ = 0.9

surface (corresponding to ρpol ≈ 0.99) for the M-O fit (dots) and the magnetics +

pressure fit (dashes) with corresponding 1σ error bars from CLISTE. The solid curve

is βpol(t) scaled by a factor of 37.0.

5. Reconstruction of edge current from an equilibrium database

An independent method of testing the recoverability of edge current profile information

is possible at ASDEX Upgrade thanks to the availability of databases of randomly

generated equilibria which can be exploited as synthetic experiments with perfect

a priori knowledge of the equilibria to be reconstructed by CLISTE. For more

than two decades, such databases have been central to the preparation of Function

Parameterization (FP) models for rapid identification of equilibrium parameters as part

of the ASDEX Upgrade real time feedback control system[14, 15, 18, 19]. Equilibrium

databases are generated using a well-developed methodology for populating a high-

dimensional (> 20D) parameter space with a relatively modest number of cases,

typically in the range 103 − 104. Use of the Monte Carlo approach (where each input

parameter value is a random number chosen from a range appropriate to the engineering

or physics limits of the input parameter) ensures that the projection onto any 1-D sub-

space will tend to be smoothly distributed, without large gaps, along that direction

in parameter space, thus avoiding the “curse of dimensionality” where the choice of

regularly spaced parameter values along each axis would require geometric growth in

the number of cases with increasing dimension. Accordingly, for a database of N cases,

the Monte Carlo approach has the desirable property that each input parameter and

output parameter will take N distinct values in the database.

Using the vacuum vessel and poloidal field coil geometry of ASDEX Upgrade,

randomly chosen candidate input parameter vectors specify the currents in the poloidal

field coils, the in-vessel passive conductor currents, and the Grad-Shafranov source

profiles p′(ψ) and ff ′(ψ). To ensure that only identifiable moments of the current
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profile are recovered from magnetics or other diagnostic data, a strategy of using richly

featured source profile shapes with a large number of free parameters has been developed.

The p′(ψ) and ff ′(ψ) profiles are parameterized as linear combinations of up to 25

basis functions generated from the Discrete Cosine Transform on a grid consisting of

equidistant normalized ψ values in the interval [0, 1] where 0 and 1 correspond to the

last current-carrying surface (which lies, in general, outside the plasma boundary) and

the magnetic axis, respectively. Note that this parameterization of p′(ψ) and ff ′(ψ) is

unrelated to the cubic spline model used by CLISTE. The ith component of the jth

orthonormal basis function bj is given by

bi, j =

√

min(j, 2)

L
cos

(

(2i− 1)(j − 1)
π

2L

)

; i = 1, L (11)

where L = 1001 is the number of ψ gridpoints for the source profiles.

Smoothness conditions are imposed on the selected source functions by use of a

spectral decay scheme whereby the amplitude of each profile moment is chosen from

a normal probability distribution with zero mean whose standard deviation decreases

geometrically with order, so that the finest details of the profile tend to have the lowest

amplitude. To ensure that p′(ψ) and ff ′(ψ) tend towards zero in the edge region, the

profiles generated using eq. (11) are scaled by a monotonic envelope function e(ψ) (with

randomly chosen parameters) which vanishes at the last current-carrying surface. The

source profiles are accordingly parameterized by σ(ψ) = e(ψ)
∑Nb

j=1 αjbj , where σ(ψ)

stands for p′(ψ) or ff ′(ψ), Nb ≃ 25 is the number of linear combinations and αj is the

amplitude of the jth Fourier moment. Typically, only a small fraction (several percent)

of the candidate input vectors result in acceptable equilibrium solutions. This is due to

the fact that most random input parameter combinations will not result in reasonable,

or any solutions. The set of acceptable equilibria are stored on disk and constitute the

equilibrium database.

A database of 600 cases of 1MA lower single null equilibria selected to have an

almost fixed plasma boundary geometry (≈ 2 cm variation) but a large variety of jφ
profile shapes and βpol values was used. The database has no SOL currents and jφ→ 0

at the separatrix. For each equilibrium, the magnetic sensor signals corresponding to the

experimentally available set of probes, flux loops and saddle loops was calculated and

simulated signal noise was added. These synthetic data were passed to CLISTE, and a

reconstruction was made with a 12-knot spline model with knot locations, expressed in

terms of the coordinate ρa (defined below), at the following database averaged values:

(0, 0.3, 0.45, 0.6, 0.7, 0.77, 0.83, 0.875, 0.91, 0.945, 0.965, 0.98). The toroidal current and

current density profiles for each reconstructed equilibrium were compared to their exact

analogues in the database. Three reconstructions for each equilibrium were calculated

using signal noise levels of σ = 1mT, σ = 2mT and σ = 3mT. Given the large number

of cases, it was possible to construct statistics on the reconstruction of the edge current

profile which provide an independent test of the reconstruction accuracy. The flux

label υ was not available in the database and an alternative geometric label ρa, the

radius corresponding to the normalized flux surface cross-sectional area, was chosen as
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Figure 9. (colour online) Six representative cases from the equilibrium database of

exact (solid black traces) and reconstructed flux surface averaged current density 〈jφ〉
and toroidal current Iφ profiles for 1σ noise levels of 1 mT (red, dashes ), 2 mT (blue,

dash-dot ), and 3 mT (green, dash-dot-dot ). The left-hand column shows the full 〈jφ〉
profile, the middle and right-hand columns zoom in to the edge region ρa ≥ 0.9 for

〈jφ〉 and Iφ profiles, respectively.
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the radial coordinate to represent the results. Like other geometry-based flux labels,

it has the advantage of being largely independent of the current profile, unlike ρpol.

The database averaged relationship between ρa and the poloidal flux radius ρpol in

the edge region is characterised by the following approximate corresponding values for

(ρa, ρpol): (0.91, 0.97), (0.935, 0.98), (0.965, 0.99), (1, 1). Profiles for the flux surface

averaged current density 〈jφ〉(ρa) and the toroidal current profile Iφ(ρa) from CLISTE

reconstructions were compared to the corresponding database profiles, and the difference

profile in both cases were stored for statistical analysis. Six representative cases are

presented in figure 9, which show examples of centrally peaked and hollow current

profiles, positive and negative edge current (the latter relevant to rampdown scenarios)

and small scale variations (the edge region of the 〈jφ〉 profile in case 2).
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Figure 10. (colour online) Full exact and reconstructed Iφ profiles for cases 1,3 and

5 in figure 9.

The reconstruction error for Iφ profiles tends to zero as ρa→0 since Iφ(0)≡Ip, the

total plasma current, which is the most robustly determined parameter from magnetic

data as can be seen in figure 10 which shows the full exact and reconstructed Iφ profiles

for cases 1,3 and 5 in figure 9. The rms reconstruction error for Ip for all 600 cases in

the database is δrmsIp = 3.4kA, 5.6kA, 8.2kA for the σ = 1 mT, 2 mT and 3 mT noise

levels, respectively.

In the six cases shown in figure 9, there are in general very large differences between

the reconstructed and exact 〈jφ〉 profiles. However, in the edge region, and particularly

for ρa > 0.95 corresponding to ρpol >∼ 0.985, the reconstructed and exact profiles are

more strongly correlated. The correlation in general weakens with increasing error level

although the random nature of signal noise can lead to chance improvements as in case

4 where the reconstruction from signals perturbed with σ = 2mT noise almost overlays

the exact profile for ρa > 0.94. The reconstructed toroidal current profile for the lowest

noise level is closely aligned to the exact profile for ρa > 0.95 and, in particular, CLISTE

in most cases successfully detects negative edge current when present.

The overall statistics are presented in figure 11 which includes results for noise

levels of σ = 1 mT, 2 mT and 3 mT for the edge region 〈jφ〉 and Iφ profiles. The roll-

over in the 〈jφ〉(ρa) error for the σ = 2mT and σ = 3mT noise levels may be an artifact

of the CLISTE spline regularization. The improvement in reconstruction quality with

decreasing signal noise magnitude is evidence of the predictive power of magnetics,
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Figure 11. (colour online) Edge region root mean square reconstruction errors versus

area radial parameter ρa for flux surface averaged current density 〈jφ〉 (left-hand plot)

and toroidal current Iφ profiles (right-hand plot). Results for 1σ noise levels of 1 mT

(red traces), 2 mT (blue), and 3 mT (green) are included.

and supports the earlier results that equilibrium magnetic data contains information

on the edge current profile. For ASDEX Upgrade 1MA discharges, well-fitted CLISTE

reconstructions in flat-top have rms magnetics fit errors which typically lie in the range

1-1.5mT, so that scaling up the σ = 1mT results presented here by a factor of 1.25,

which indicates a 1σ uncertainty of 2.5 kA at ρa = 0.965 or 〈ρpol〉 = 0.99, provide a

reasonable estimate of the underlying uncertainty in CLISTE reconstructions. If, as

is the case on ASDEX Upgrade, the total toroidal current flowing in the SOL can be

accurately inferred from divertor tile poloidal current data (as indicated by the tight

constraints on the jφ profile in the SOL region of figure 5), then the accuracy levels for

Iφ in the edge region presented here and based on an equilibrium database without SOL

currents should also hold for the more realistic case with SOL currents.

A selection of good quality CLISTE reconstructions spanning 8 years of operation

was carried out, amounting to 4750 time points distributed over 104 ASDEX Upgrade

discharges that satisfied 0.6 ≤ Ip ≤ 1.2 MA and with an rms magnetics fit error,

normalized for Ip = 1 MA, satisfying δrms < 1.5 mT. The following table shows a number

of statistics for the toroidal current Iφ at the ρpol = 0.99 flux surface, as well as the

portion of Iφ(ρpol = 0.99) flowing inside the separatrix. Statistics for the fitted toroidal

SOL current are also presented. All three currents are normalized for Ip = 1 MA, and

all values are rounded to the nearest kA per MA plasma current.

mean std. deviation minimum maximum

Iφ, tot(ρpol = 0.99) 40 14 -7 90

Iφ, in(ρpol = 0.99) 18 7 -12 46

ISOL 23 12 -19 71

The estimated underlying 1σ error of 2.5 kA in the reconstructed value of Iφ(ρpol = 0.99)

thus represents a 6% uncertainty in the mean value obtained from this survey, or a 14%

uncertainty in the mean value of 18 kA flowing inside the separatrix.
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6. Discussion and Conclusions

In contrast to what has previously been widely accepted, the results presented here

demonstrate both analytically and experimentally, and provide supportive statistical

results from a randomly generated equilibrium database, that standard equilibrium

magnetic measurements in a tokamak contain valuable information on the current

density profile close to the boundary of an X-point plasma. This is at variance with

the pessimistic conclusions of [11] which, however, have been shown here to have been

unjustified since the main derivation in [11] does not take the force balance constraint

into consideration.

The analytical examples combined with the qualitative consistency between figure

6(a) and 6(b) and the quantitative agreement between the Iedge time traces in figures 8, 9

and 11 allow the following conclusions to be drawn: Equilibrium magnetic measurements

yield information on the jφ profile near the boundary of an X-point plasma. Full

details of the edge profile shape cannot be identified from magnetics alone, but the

current flowing outside a reference flux surface near the separatrix, in the vicinity of

υ = 0.9, or equivalently ρa = 0.965 and ρpol = 0.99, is determined to within a few

kA for a 1MA discharge. The estimated 2.5 kA 1σ uncertainty in the total toroidal

current at the ρpol = 0.99 surface equates to a 6% error in the mean value from

a large survey of CLISTE reconstructions. The fact that this region coincides with

that of high pressure gradients and therefore high current densities associated with the

edge transport barrier characteristic of the H-mode offers vital additional diagnostic

information in the challenge to determine the experimental stability limits affecting

ELM dynamics and to investigate wider issues of pedestal physics.
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