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In a model kinetic ion transport equation for the pedestal and scrape-off layer, passing-ion drift orbit ex-
cursions interact with spatially-inhomogeneous but purely diffusive transport to cause the orbit-averaged
diffusivities to depend on the sign of v‖, preferentially transporting counter-current ions for realistic pa-
rameter values. The resulting pedestal-top intrinsic rotation is typically co-current, reaches experimentally
relevant values, and is proportional to pedestal-top ion temperature Ti|pt over plasma current Ip, as observed
in experiment. The rotation drive is independent of the toroidal velocity and its radial gradient, representing
a residual stress. Co-current spin-up at the L-H transition is expected due to increasing Ti|pt and a steepening
of the turbulence intensity gradient. A more inboard (outboard) X-point leads to additional co- (counter-)
current rotation drive. Beyond intrinsic rotation, comparison of heat and momentum transport reveals that
neutral beam injection must be significantly unbalanced in the counter-current direction to cause zero toroidal
rotation at the pedestal top.

I. INTRODUCTION

Toroidal rotation plays an important role in tokamak
performance, stabilizing resistive wall modes1 and con-
tributing to Er shear, believed to suppress turbulent
transport.2 While neutral beam (NBI) heating applies
significant torque to present-day tokamaks, future burn-
ing plasma experiments like ITER will receive relatively
little external torque.3 The experimental observation of
intrinsic rotation in the absence of applied torque4–15
is therefore of particular interest. In the edge, this in-
trinsic rotation is essentially always directed with the
plasma current (co-current).4–10 The effect can be of large
magnitude, leading to pedestal-top intrinsic rotation ve-
locities reaching tenths of the local ion thermal speed
vti|pt .

=
√
Ti|pt/mi

7–10 and intrinsic torque compara-
ble with the torque applied by a neutral beam source.16
Although nontrivial core rotation profiles are often ob-
served, the edge region appears to play a significant,
sometimes dominant, role.5–14 Dedicated experiments are
beginning to uncover local parameter scalings in the edge,
where it appears that the rotation speed may be propor-
tional to Ti or its gradient.10,15

A broad spectrum of theoretical models have been
put forward to explain the rotation observations. Neo-
classical models17–23 have matched some experimen-
tal features,12,22,24 but predict toroidal viscosities far
lower than observed in experiment.6,12–14,24–27 Turbu-
lent models have primarily focused on core physics, dom-
inantly using quasilinear approximations,28–32 mostly
based on ITG33–40 and trapped electron39–41 modes,
identifying momentum pinches due to radial electric field
(Er) shear,38,39 temperature gradients,28,32 and magnetic
inhomogeneity,32–36,41 as well as residual stress due to
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the ion pressure gradient,29 up-down asymmetric mag-
netic geometry,40 the polarization drift,30,37 and Alfvén
waves.31 Effects due to non-resonant turbulent paral-
lel acceleration of ions have also been estimated.42–44
Stringer spin-up-type models45,46 have been applied to
toroidal rotation problems,47–49 although the result-
ing toroidal rotation drive is much weaker than the
poloidal drive.48 A number of scrape-off-layer (SOL) ef-
fects have been put forward, such as nonvanishing ra-
dial current,50,51 ion orbit losses,10 and inward diffu-
sion of transport-driven SOL parallel flows,52,53 but with-
out self-consistent consideration of the confined plasma.
Nonlinear turbulent simulations have exhibited nondiffu-
sive toroidal momentum transport,54 interpreted as re-
sulting from the E × B and Coriolis pinches55 or from
residual stress due to zonal flow shear or a turbulence
intensity gradient,56–58 examined effects of rotation on
internal transport barriers,59 and demonstrated the re-
duction of quasilinear momentum transport effects by
damped modes.60 It has been argued that additional
terms must be introduced to gyrokinetic formulations to
accurately treat the momentum transport when toroidal
rotation is small,61 while a general toroidal momentum
conservation theorem covering most present-day formu-
lations has been rigorously proved.62,63

Turbulence and transport in the tokamak edge in-
volves orderings that differ significantly from the core,
due principally to the extremely steep edge gradients of
plasma parameters.64,65 In the edge of present-day toka-
maks, equilibrium plasma densities and temperatures
vary rapidly with minor-radial position r on a length
scale L⊥ around a centimeter or a few,66–68 much shorter
than the characteristic parallel length scale of turbulent
fluctuations k−1

‖ ∼ qR0 (with q the safety factor and
R0 the major radius), several to many meters.69,70 The
significant ion thermal Mach numbers observed at the
pedestal top7–10 imply that minor-radial variation of the
toroidal rotation velocity can achieve similar steepness.
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The steep density and temperature gradients drive fluc-
tuations into the strong turbulence regime, with statistics
widely differing from the linear estimates used in quasi-
linear theory.64,71–74 The extreme anisotropy k‖L⊥ ≪ 1
implies that turbulent parallel acceleration of ions re-
sults in relatively weak nondiffusive momentum trans-
port in the edge. For example, following Ref. 42, one
may compare a simple momentum diffusion term ∝ Dr,r

with potential intrinsic-rotation-driving cross-terms ∝
Dr,v‖ , Dv‖,r, finding the latter to scale relative to the for-
mer as k‖L⊥/k⊥ρs, with k⊥ a typical perpendicular wave
number of the fluctuations, ρs

.
= cs/Ωi, cs

.
= (Te/mi)

1/2,
and Ωi the ion cyclotron frequency. Much smaller than
one for typical edge parameters, this ratio exhibits the
basic scaling of mechanisms relying on turbulent parallel
acceleration,75 which are generally further reduced by the
fact that the required symmetry-breaking 〈k‖〉 is much
smaller than the rms k‖ used in the present estimate.30,76
Mechanisms dependent on magnetic inhomogeneity bring
in Mach number variations on the R0 scale,32–35,40,41 also
much too gradual to explain the edge rotation gradients
on the L⊥ scale.

Situated on the open-closed field line boundary, the
edge and SOL physics are inherently nonlocal. For ex-
ample, particle and energy balance implies that the ion
thermal transit time and turbulent diffusion time must
be comparable in the SOL.77 Since plasma parameters
and gradients are continuous over the LCFS,66,67 this or-
dering also holds in the outer edge,78 fundamentally vio-
lating the slow-transport ordering underlying neoclassical
theory79,80 and other radially-local models.61 The unnor-
malized amplitude of potential fluctuations φ̃ also varies
rapidly, decreasing with increasing r on a short length
scale Lφ ∼ L⊥, with Lφ typically between one and sev-
eral times LTe, the decay length for electron temperature
Te.67,81–86,87 Crudely estimating the turbulent diffusivity
Dturb ∼ ṽ2

Eτac with autocorrelation time τac ∼ 1/k⊥ṽE
for ṽE the magnitude of the fluctuating portion of the
E×B drift vE , one concludes that Dturb ∝ φ̃/B should
also decrease with increasing r, on the same scale length.
To estimate the importance of collisional effects, multiply
the pedestal-top thermal ion collision rate νii|pt by an ion
crossing time τc defined as the pedestal ion stored energy
over the ion heat flux, getting numbers around 1 for typi-
cal AUG, JET, and DIII-D parameters. Since collisional-
ity scales as v−3, superthermal pedestal-top ions typically
escape to the SOL without experiencing a single collision,
while subthermal pedestal-top ions have one or more. It
will be shown that somewhat superthermal pedestal-top
ions dominate the spin-up mechanism discussed here, so
a collisionless approximation appears reasonable, at least
for qualitative modeling. Given these typical edge order-
ings, the present work treats a model axisymmetric drift-
kinetic transport problem for ions. Collisions, parallel
acceleration, Er shear, E×B divergence, magnetic trap-
ping, and nondiffusive transport are all neglected. How-
ever, the model geometry incorporates both a pedestal
and SOL region, which are treated on equal footing. The
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Figure 1. Drift orbits of co- and counter-current passing ions,
sketched over shading that indicates the strength of the tur-
bulent diffusivity, darker being stronger, for a straight-down
(a) or major-radially inboard (b) X-point.

transport is modeled with a spatially dependent turbu-
lent diffusivity, taken to be velocity-independent since
k‖vti � ω ∼ cs/L⊥, in which cs ∼ vti since Te ∼ Ti.
Although this approximation also neglects FLR effects,
a finite passing-ion drift-orbit width is retained.

The resulting model leads to a remarkably simple phys-
ical picture of intrinsic rotation.88 Consider passing ions
in the model pedestal, streaming freely along closed
drift orbits with unchanging parallel velocity v‖, while
diffusing radially due to the fluctuating E × B drift.
Regardless of the orientation of the toroidal field and
plasma current, the drift orbits of co-current ions are
shifted major-radially outwards, while those of counter-
current ions are shifted inwards. For the typical case of
outboard-ballooning fluctuations,89 this implies that the
orbit-averaged diffusivity experienced by co-current ions
is smaller than that of counter-current ions, as sketched
in Fig. 1(a). A nonrotating plasma therefore loses more
counter-current ions than co-current ions, thus begins to
rotate in the co-current direction. Since toroidal rotation
damping is small, the rate of co-current bulk rotation
must increase until its outward diffusion causes enough
co-current momentum loss to balance out the counter-
current loss due to the v‖-asymmetric orbit-averaged dif-
fusivity, determining the pedestal-top intrinsic rotation
velocity. Also, as sketched in Fig. 1(b), a major-radially
inboard (outboard) X-point causes a net relative minor-
radial outward (inward) displacement of co-current ions,
which leads in a fully analogous fashion to a co-current
(counter-current) increment in the intrinsic rotation.

The rest of the paper is organized as follows. In Sec. II,
the model equations will be presented and simplified with
variable transformations, leading to a family of identical
equations varying only in the value of a single parameter,
the effective diffusivity Deff. Mathematical properties of
the simplified equation and an approximate large-Deff so-
lution are derived in Sec. III, while a small-Deff solution
is obtained in Sec. IV. The corresponding pedestal-top
rotation is derived and discussed in Sec. V. Extensions
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to and limitations of the model are discussed in Sec. VI.
Sec. VII summarizes the paper.

II. MODEL AND TRANSFORMATIONS

In accord with the edge orderings already discussed,
this paper analyzes and approximately solves a model ax-
isymmetric drift-kinetic transport equation for the ions.
The model, obtained in detail in App. A, represents a
diffusive mean-field approximation to a steep-gradient,
large-safety factor, large-aspect ratio, sub-sonic reduc-
tion of the standard collisionless, electrostatic gyroki-
netic formulation of Hahm,90 set in a shearless, radially
thin, simple-circular magnetic geometry B = (Bθbθ θ̂ +

Bφbφφ̂)R0/R for constant magnitudes Bφ, Bθ, and R0

and signs bφ and bθ, letting B0
.
= (B2

θ +B2
φ)1/2. Neglect-

ing the ∇B drift until Sec. VI and noting that bθ is equal
to the sign of the toroidal plasma current, Eq. (A3) may
be written in normalized variables as

∂tfi+bφv∂yfi−bφδv2 (sin y) ∂xfi−D (y) ∂x
(
e−x∂xfi

)
= 0.
(1)

Radial position x, poloidal position y, and time t are
respectively normalized to Lφ, the minor radius a, and
the pedestal-top ion thermal transit time aB0/Bθvti|pt,
with y = 0 at the outboard midplane. The physics re-
tained is very basic: The axisymmetric ion parallel dis-
tribution function fi(x, y, v, t), normalized to pedestal-
top ion density over thermal speed ni|pt/vti|pt, is ad-
vected poloidally by the parallel velocity v, normalized
to vti|pt and defined positive for co-current motion, and
radially by the geodesic curvature drift. The impor-
tance of the curvature drift is indicated by the dimen-
sionless parameter δ .

= qρi|pt/Lφ, with q
.
= aBφ/R0Bθ

the safety factor, ρi
.
= vti/Ωi the thermal ion gyroradius,

and Ωi
.
= eB0/mic. δ takes values around 1/4 for typ-

ical ASDEX Upgrade (AUG) H-mode parameters.91 To
model transport due to the nonaxisymmetric fluctuating
E ×B drift, a spatially inhomogeneous radial turbulent
diffusivity is introduced, normalized to L2

φBθvti|pt/aB0.
In the interests of analytical tractability, the diffusivity’s
spatial dependence is assumed separable, radially vary-
ing as exp(−x) with a strictly positive but otherwise ar-
bitrary poloidal dependence D(y) > 0. The domain is
divided into a confined edge region x ≤ 0 and SOL x > 0.
In the edge, the boundary conditions are poloidal peri-
odicity fi(x ≤ 0, y0) = fi(x ≤ 0, y0 + 2π) and approach
to a constant in the core fi(x → −∞, y) → fi0(v) ≥ 0.
In the SOL, the plasma vanishes at large minor radius
fi(x → ∞, y) → 0 and flows purely outward to the
divertor legs, fi(x > 0, y0, bφv > 0) = 0 and fi(x >
0, y0 + 2π, bφv < 0) = 0, with y0 the poloidal angle of
the X-point. Since fi is taken axisymmetric, Eq. (1) is
invariant to a rigid toroidal rotation vrig, normalized to
vti|ptBφ/B0 and taken positive for co-current rotation.
As may be trivially verified, Eq. (1) conserves particles´
fi dv, a toroidal angular momentum

´
(v + vrig)fi dv,

and an energy
´

(1 + v2/2)fi dv, in which the 1 repre-
sents perpendicular thermal energy. However, all of these
quantities may flow into the domain from the left-hand
side, physically representing particle, momentum and en-
ergy flux from the core, and out to the divertor cut, phys-
ically representing outflow to the divertor legs.

Due to the neglect of parallel acceleration, Eq. (1)
may be solved velocity by velocity, treating v as a pa-
rameter. This allows great simplification through a set
of straightforward v-dependent variable transformations.
First, switch the radial variable from a magnetic surface
label to an ion drift-surface label,

x̄
.
= x− δv (cos y − cos y0) , (2)

obtaining an equation for fi(x̄, y, v, t),

∂tfi + bφv∂yfi −D (y) e−δv(cos y−cos y0)∂x̄
(
e−x̄∂x̄fi

)
= 0.
(3)

Next, use a diffusivity-weighted poloidal coordinate

ȳ
.
= D−1

y0

ˆ y

y0

D (y′) e−δv(cos y′−cos y0) dy′, (4)

Dy0 (v)
.
=

ˆ y0+2π

y0

D (y′) e−δv(cos y′−cos y0) dy′, (5)

and restrict consideration to the steady-state problem
∂tfi = 0, for which fi(x̄, ȳ, v) must then satisfy

bφv∂ȳfi = Dy0∂x̄
(
e−x̄∂x̄fi

)
. (6)

Finally, apply the transformation ȳ → 1 − ȳ for all v
satisfying bφv < 0 and switch to the distended radial
variable

u
.
= ex̄/2, (7)

obtaining an equation for fi(u, ȳ, v),

∂ȳfi =
1

4
Deff

(
∂2
ufi −

1

u
∂ufi

)
, (8)

in which Deff
.
= Dy0/ |v|. Eq. (8) takes the transformed

boundary conditions fi(u ≤ 1, 0, v) = fi(u ≤ 1, 1, v),
fi(0, ȳ, v) = fi0(v), fi(u → ∞, ȳ, v) → 0, fi(u >
1, 0, v) = 0.

The principal goal of this calculation is to obtain the
total radial flux of particles with each parallel velocity v.
Eq. (1) may be written in standard continuity-equation
form ∂tfi(x, y, v)+∇·Γ = 0, with the dimensionless flux
density

Γ
.
= bφ

(
ŷv − x̂δv2 sin y

)
fi − x̂D (y) e−x∂xfi, (9)

normalized to ni|ptLφBθ/aB0 in the x̂ direction and
ni|ptBθ/B0 in the ŷ direction. In steady state, Eq. (1)
therefore implies that Γ is divergence-free, so the total
outward flux of particles with velocity v may be eval-
uated using any closed poloidal contour. The simplest
form is obtained by evaluating the flux through an ion
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drift surface, defined parametrically in x via the function
gx(y)

.
= x0 + δv(cos y − cos y0) for any constant x0 ≤ 0,

equivalently as a surface of constant x̄ ≤ 0. The total
dimensionless outward flux of particles with velocity v is
then simply

Γ (v)
.
=

˛
dA ·Γ = −

ˆ y0+2π

y0

D(y)e−gx(y)∂xfi(gx(y), y) dy,

(10)
normalized to ni|ptLφLtorBθ/B0, with Ltor

.
= 2πR0.

Changing to the independent variable pair of
Eq. (8) causes a simplification due to ∂y ȳ =

sign(bφv)D−1
y0 D(y) exp(−δv(cos y − cos y0)), result-

ing in

Γ(v) = −1

2
Dy0u

−1

ˆ 1

0

∂ufi dȳ, (11)

evaluated at constant u = exp(x0/2) ≤ 1.
Eqs. (8) and (11) display a remarkable simplification.

The original problem Eq. (1) has been exactly reduced
to a one-parameter family of otherwise-identical differ-
ential equations, Eq. (8). The single parameter Deff
represents an effective orbit-averaged turbulent diffusiv-
ity, which depends not only on the magnitude of v, but
also on its sign! As sketched in Fig. 1 and discussed
in the introduction, this follows from the fact that the
major-radial orbit shifts of co- and counter-current pass-
ing ions are oppositely directed. For the typical case of
outboard-ballooning and radially decreasing diffusivity,
this implies that co-current ions effectively experience a
weaker turbulent diffusion, since they are shifted minor-
radially outwards at the outboard midplane, thus avoid-
ing the strongest turbulent diffusion. As will be evalu-
ated in Secs. III–V, this results in a preferential exhaust
of counter-current momentum, leaving the plasma to spin
up in the co-current direction.

III. EXACT AND LARGE-Deff ANALYSIS

Eq. (8) resembles the “kinetic SOL” models of ear-
lier works,92,93 which were solved using the Wiener-Hopf
technique following Ref. 94. However, the procedure
of Ref. 94 assumes a spatially homogeneous differential
operator, thus cannot be applied to the explicitly u-
dependent diffusion operator of Eq. (8). Fortunately,
despite its inhomogeneity, the differential operator of
Eq. (8) does possess an exact Green’s function, which
will be determined in this section, then used to prove
existence and uniqueness of the solution for Eq. (8) and
to derive an iterative scheme with strict error bounds
for both fi and Γ, exhibiting rapid convergence for large
Deff. Efficient treatment of the small-Deff case requires
a different solution technique, which will be described in
Sec. IV. Since solutions at different v are independent
in this model, the explicit v-dependence is suppressed in
this section and in Sec. IV.

Taking an approach similar to Farnell and Gibson,95
one may obtain an exact Green’s function for Eq. (8).
The Green’s function G(u, ξ, ȳ) should satisfy the homo-
geneous equation

∂ȳG−
1

4
Deff

(
∂2
uG−

1

u
∂uG

)
= 0, (12)

subject to the boundary conditions G(u, ξ, 0) = δ(u− ξ),
G(0, ξ, ȳ) = 0, and G(u → ∞, ξ, ȳ) → 0. Laplace
transforming in ȳ yields an equation for G(u, ξ, s) =
LG(u, ξ, ȳ)

.
=
´∞

0
exp(−sȳ)G(u, ξ, ȳ) dȳ,

sG− 1

4
Deff

(
∂2
uG−

1

u
∂uG

)
= δ (u− ξ) , (13)

subject to G(0, ξ, s) = 0 and G(u → ∞, ξ, s) → 0.
Defining z .

= 2(s/Deff)1/2u, in which the root with pos-
itive real part is taken, the two homogeneous solutions
of Eq. (13) may be written in terms of modified Bessel
functions as zI1(z) and zK1(z), as is easily verified us-
ing Eqs. 9.6.27–28 of Abramowitz and Stegun (AS).96
To match the boundary conditions in u, the Green’s
function must then take the form G(u, ξ, s) = H(ξ −
u)gL(ξ, s)zI1(z) + H(u − ξ)gR(ξ, s)zK1(z), with H the
step function. Choosing gL and gR so that G is continu-
ous at u = ξ while ∂uG|u=ξ+−∂uG|u=ξ− = −4/Deff, and
noting AS Eq. 9.6.15, the Laplace-transformed Green’s
function is then uniquely determined to be

G (u, ξ, s)=
4u

Deff
K1

(√
4s

Deff
max(u, ξ)

)
I1

(√
4s

Deff
min(u, ξ)

)
.

(14)
The inverse Laplace transform, a special case of Eq. (A.8)
of Ref. 95, Eq. (13.96) of Ref. 97, or Eq. (53) of Stix98
Ch. 10,99 yields the Green’s function

G (u, ξ, ȳ) =
2u

Deffȳ
exp

(
−u

2 + ξ2

Deffȳ

)
I1

(
2uξ

Deffȳ

)
. (15)

The large-argument asymptotic approximation I1(w) ≈
ew/(2πw)1/2 (AS Eq. 9.7.1) may be used to verify that
G(u, ξ, ȳ) indeed approaches δ(u − ξ) for ȳ → 0, via
(u/ξ)1/2 exp(−(u− ξ)2/Deffȳ)/(πDeffȳ)1/2.

The Green’s function given by Eq. (15) provides an in-
tegral form for the solution to Eq. (8), given any appro-
priately integrable specified values for fi(u, 0). However,
since G vanishes at u = 0 while fi(0, ȳ) = fi0 is generally
nonzero, this integral form must be applied to fi − fi0:

fi (u, ȳ)− fi0 =

ˆ ∞
0

G (u, ξ, ȳ) [fi (ξ, 0)− fi0] dξ. (16)

Using Eq. 6.618.4 of Ref. 100, rewritten using AS
Eq. 10.2.13 as

ˆ ∞
0

G (u, ξ, ȳ) dξ = 1− e−u2/Deffȳ, (17)
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and incorporating the boundary condition fi(u > 1, 0) =
0 allows the Green’s function formula to be rewritten as

fi (u, ȳ) = fi0e
−u2/Deffȳ+

ˆ 1

0

G (u, ξ, ȳ) fi (ξ, 0) dξ. (18)

Assuming bounded, continuous initial conditions fi(0 ≤
u ≤ 1, 0), the formula given by Eq. (18) is continuous101
and solves Eq. (8) for ȳ > 0, with the additional bound-
ary conditions fi(0, ȳ) = fi0, fi(u → ∞, ȳ) → 0, fi(u >
1, 0) = 0, as may be verified by direct substitution.102
Under reasonable requirements, this solution is shown to
be unique in Appendix B.

To this point, the final boundary condition
fi(u ≤ 1, 0) = fi(u ≤ 1, 1) has not been addressed. To
do this, one may use Eq. (18) to recast the problem in
an integral form. Define an operator

Fȳ [ψ]
.
= fi0e

−u2/Deffȳ +

ˆ 1

0

G (u, ξ, ȳ)ψ(ξ) dξ, (19)

for all ȳ > 0. Consider the special case F1, taken now to
map a continuous 1-D function on [0, 1] to a continuous
1-D function on [0, 1]. If one can find a ψ̄ such that
F1[ψ̄] = ψ̄, then Fȳ[ψ̄] solves Eq. (8) with all the original
boundary conditions. Importantly, F1 (more generally,
any Fȳ) represents a contraction mapping, meaning that
for any continuous functions ψ1 and ψ2 on [0, 1], it is
true that sup |F1[ψ2]−F1[ψ1]| ≤ c sup |ψ2−ψ1| for some
Lipschitz constant c < 1: Noting that G is nonnegative,
one has

|F1 [ψ2]−F1 [ψ1]| =
∣∣∣∣
ˆ 1

0

G (u, ξ, 1) [ψ2 (ξ)− ψ1 (ξ)] dξ

∣∣∣∣

≤
[ˆ 1

0

G (u, ξ, 1) dξ

]
sup |ψ2 (ξ)− ψ1 (ξ)| . (20)

Since
´ 1

0
G (u, ξ, 1) dξ ≤

´∞
0
G (u, ξ, 1) dξ, Eq. (17) im-

plies that F1 is a contraction mapping for all Deff > 0,
with c = 1 − exp(−1/Deff). For Deff ≥ 1, recalling
u ≤ 1, one may use the facts that I0 is nondecreasing
and |I0(2/Deff)− 1| ≤ (I0(2)− 1)/D2

eff,
103 to show that

ˆ 1

0

G (u, ξ, 1) dξ ≤
ˆ 1

0

2u

Deff
I1

(
2uξ

Deff

)
dξ

= I0

(
2u

Deff

)
− 1 ≤ 1

D2
eff

[I0(2)− 1] , (21)

in which I0(2) − 1 < 1.28, thus one has the additional
Lipschitz constant c = 1.28/D2

eff. Since 1− exp(−1/Deff)
is less than 1.28/D2

eff for Deff < 1, one may simply use

c = min
[
1− exp (−1/Deff) , 1.28/D2

eff
]

(22)

for all Deff.
Since F1 represents a contraction mapping for contin-

uous functions on [0, 1], the Banach fixed point theo-
rem implies that there is one and only one continuous

function ψ̄ on [0, 1] satisfying F1[ψ̄] = ψ̄. Combined
with Appendix B, this implies existence and uniqueness
of the solution to Eq. (8) with the original boundary
conditions.104 The solution over all ȳ > 0 is simply Fȳ[ψ̄],
thus is continuous for all ȳ > 0, while the boundary con-
ditions then require continuity on u ∈ [0, 1), ȳ = 0 and
u > 1, ȳ = 0. For the nontrivial problem fi0 > 0, the
solution must however have a jump discontinuity at the
single remaining point u = 1, ȳ = 0 (the X-point), since
Eq. (18) implies that ψ̄(1) ≥ fi0 exp(−1/Deff) > 0 =
limu→1+ fi(u, 0). This fact will be important for correct
calculation of the small-Deff limit in Sec. IV.

One may apply the above arguments to directly con-
struct an iterative approximation and strictly bound its
error. Start with any initial guess ψ0 and let ψj+1

.
=

F1[ψj ], εj
.
= ψj − ψ̄, and εmax

j
.
= sup |εj |, with ψ̄ the

unique solution of F1[ψ̄] = ψ̄. Application of Eq. (20)
to |εj+1| = |F1[ψj ] − F1[ψ̄]| then implies that εmax

j+1 ≤
cεmax
j ≤ cj+1εmax

0 , thus iterative mapping on any ini-
tial guess ψ0 eventually approaches the fixed point ψ̄.
Eq. (17) then implies that the approximate solution re-
sulting from ψj , f

(j)
i (u, ȳ)

.
= Fȳ[ψj ], also has absolute

error strictly bounded by εmax
j . Since G is nonnegative,

a nonnegative (resp. nonpositive) initial error ε0 leads to
εj that are all nonnegative (resp. nonpositive).

The mere existence of this iterative solution procedure
has two simple but important implications for the solu-
tion, 0 ≤ fi ≤ fi0 and ∂ufi ≤ 0: For 0 ≤ fi ≤ fi0, first
note that the mapping Fȳ[ψ], when applied to a ψ satis-
fying 0 ≤ ψ ≤ fi0, results by Eq. (17) in a fi satisfying
0 ≤ fi(u, ȳ) ≤ fi0. Next, since F1 is just the ȳ = 1 case
of Fȳ, one may immediately conclude that 0 ≤ ψj ≤ fi0
implies 0 ≤ ψj+1 ≤ fi0. Since the series of functions ψj
generated by iterative mapping on any initial function
ψ0, including one satisfying 0 ≤ ψ0 ≤ fi0, approaches
the fixed point ψ̄ uniformly, one may conclude that the
true solution fi = Fȳ[ψ̄] also satisfies 0 ≤ fi ≤ fi0. By
identical logic, the fact that Fȳ maps nonincreasing func-
tions taking values between 0 and fi0 to nonincreasing
functions (see App. C) implies that the true solution fi
is nonincreasing.

The u partial of the exact and approximate solutions
are given simply by

∂uFȳ[ψ] = − 2u

Deffȳ
fi0e

−u2/Deffȳ +

ˆ 1

0

ψ ∂uGdξ, (23)

with ψ either the fixed point ψ̄ or any approximation ψj ,
thus the error in the u partial may be bounded by

∣∣∣∂uf (j)
i − ∂ufi

∣∣∣ =

∣∣∣∣
ˆ 1

0

(
ψj − ψ̄

)
∂uGdξ

∣∣∣∣ ≤ εmax
j

ˆ 1

0

|∂uG| dξ.
(24)

The Green’s function’s u partial,

∂uG=
4u

D2
effȳ

2
e−(u2+ξ2)/Deffȳ

[
ξI0

(
2uξ

Deffȳ

)
−uI1

(
2uξ

Deffȳ

)]
,

(25)
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Figure 2. Bounds for
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Deffȳ

´ 1

0
|∂uG| dξ evaluated at u = 1,

used to bound the error in Γ. The analytical formulas of
Eqs. (27) (dash-dotted purple) and (28) (dashed green) may
be compared with the numerical evaluation leading to Eq. (29)
(solid black), while the inset also shows the inferred upper
bound 0.58 (thin red).

is exactly integrable in ξ since ∂ξGI = −∂uG for

GI (u, ξ, ȳ)
.
=

2u

Deffȳ
e−(u2+ξ2)/DeffȳI0

(
2uξ

Deffȳ

)
. (26)

When u2 ≤ Deffȳ, the inequality wI0(w) ≥ 2I1(w) im-
plies ∂uG ≥ 0 for all ξ, so we may use the exact integral,
I0(w) ≥ 1, and 1− e−w ≤ w to obtain

u2

Deffȳ
≤ 1:

ˆ 1

0

|∂uG| dξ=
2ue−u

2/Deffȳ

Deffȳ


1−

I0

(
2u
Deffȳ

)

e1/Deffȳ




≤ 2ue−u
2/Deffȳ

Deffȳmax (1, Deffȳ)
. (27)

To bound generally for all u and Deffȳ, note that Ap-
pendix C shows that there is a ξ0 ≥ 0 such that ∂uG < 0
for 0 < ξ < ξ0 and ∂uG > 0 for ξ > ξ0, which implies
that

´ 1

0
|∂uG|dξ ≤ 2GI(ξ0)− [GI(0) +GI(1)]. The func-

tion (Deffȳ)1/2GI , dependent only on u/(Deffȳ)1/2 and
ξ/(Deffȳ)1/2, is bounded above by

√
2e−1/2,105 allowing

us to conclude that
ˆ 1

0

|∂uG| dξ ≤
2
√

2e−1/2

(Deffȳ)
1/2
−[GI(u, 0, ȳ) +GI(u, 1, ȳ)] .

(28)

Numerical evaluation, compared with Eqs. (27) and (28)
in Fig. 2, shows that for the special case u = 1 one gets

u = 1 :

ˆ 1

0

|∂uG| dξ ≤ 0.58/
√
Deffȳ. (29)

Since the true solution fi satisfies 0 ≤ fi ≤ fi0, the
simple initial guess ψ0 = 0 satisfies εmax

0 ≤ fi0. The
corresponding first-order solution

fAi (u, ȳ)
.
= Fȳ [F1 [0]]

= fi0e
−u2/Deffȳ + fi0

ˆ 1

0

G (u, ξ, ȳ) e−ξ
2/Deff dξ (30)

has absolute error strictly bounded by cfi0. One may
therefore use Eqs. (22), (24), (27), and (29) to bound the
absolute error in the corresponding flux estimate106,107

ΓA
.
= −1

2
Dy0u

−1

ˆ 1

0

∂uf
A
i dȳ

= fi0 |v|
[
ln (Deff)− γ + 2/Deff +O

(
D−2

eff

)]
, (31)

evaluated at u = 1 and with γ ≈ 0.5772 the Euler con-
stant, with

∣∣ΓA − Γ
∣∣ /fi0 |v| ≤

1

2
(Deff/fi0)

ˆ 1

0

∣∣∂ufAi − ∂ufi
∣∣ dȳ

≤ min
[
0.58

√
Deff

(
1− e−1/Deff

)
, 0.75/D

3/2
eff , 1.21/D2

eff

]
.

(32)

The first two bounds only use Eq. (29), while the third
uses Eq. (27) for ȳ > D−1

eff .

IV. SMALL-Deff ANALYSIS

Although the iterative method of Sec. III is conver-
gent for all Deff, the rate of convergence becomes slow for
Deff � 1. In this limit, Eq. (8) may be solved separately
in the edge and SOL, using a Fourier series for u < 1 and
a Laplace transform for u > 1. Following Oldham and
Spanier,108 the Laplace-transformed relation between fi
and ∂ufi may be approximately inverted for small Deff.
The real-space relation may then be used to enforce con-
tinuity of fi and ∂ufi at u = 1 for all ȳ > 0. The re-
sulting dense matrix equation for the Fourier coefficients
must be truncated and solved numerically, yielding the
desired small-Deff relation between Deff and Γ. With this
relation in hand, approximations to Γ that are good for
all Deff are finally identified.

To solve Eq. (8) for u < 1, take fi(u, ȳ) =∑∞
m=−∞ fm(u) exp(2πimȳ), obtaining ODEs for the

m ≥ 0 coefficients,

f ′′m (u)− 1

u
f ′m (u)− 8πim

Deff
fm (u) = 0, (33)

with the reality constraints determining f−m = f∗m. In-
corporating the boundary condition fi(0, ȳ) = fi0 and
defining ze,m

.
= (8πim/Deff)1/2u, Eq. (33) has the solu-

tions f0(u) = fi0− cqu2 and fm = cmze,mI1(ze,m) for as-
yet-undetermined complex coefficients cq and cm. This
may be straightforwardly verified using AS Eqs. 9.6.27–
28, which also show f ′m = cmz

2
e,mI0(ze,m)/u.

For u > 1, Laplace-transform Eq. (8) in ȳ,109 obtaining
an equation for F (u, s)

.
= Lfi(u, ȳ):

∂2
uF −

1

u
∂uF −

4s

Deff
F = 0. (34)

Incorporating the boundary condition fi(u→∞, ȳ)→ 0

and defining zS
.
= 2u

√
s/Deff with positive real part,
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Eq. (34) has the solution F = cS(s)zSK1(zS), with cS
an as-yet-arbitrary function of s. AS Eqs. 9.6.27–28 may
again be used to verify the solution, also yielding ∂uF =
−cS(s)z2

SK0(zS)/u.
Since small Deff corresponds to large zS , use AS

Eq. 9.7.2 to obtain the asymptotic approximation to the
ratio of F and ∂uF :

F

∂uF
= − u

zS

K1(zS)

K0(zS)

|zS |→∞∼ − u

zS
− u

2z2
S

+ · · · . (35)

Multiplying the asymptotic relation by ∂uF , one may
invert the Laplace transform using the convolution the-
orem [L(

´ t
0
f(τ)g(t − τ)dτ) = (Lf)(Lg) for arbitrary

functions f(t) and g(t)] and the Laplace transform pairs
L(πȳ)−1/2 = s−1/2 and L (1) = s−1, obtaining the u > 1
relation

fi ≈ −
1

2
√
π
D

1/2
eff

ˆ ȳ

0

∂ufi√
ȳ − y′ dy

′ − 1

8u
Deff

ˆ ȳ

0

∂ufi dy
′.

(36)
As demonstrated in App. D, the true relation between
fi and ∂ufi lays between that given in Eq. (36) and
the leading-order truncation [Eq. (36) omitting the last
term], with the relative error of either approximation
therefore vanishing as Deff → 0. Note that the formula-
tion of Eq. (36) may be used even if limȳ→0 fi(u, ȳ) 6= 0,
as in fact occurs for u = 1 due to the jump discontinuity
in fi at u = 1, ȳ = 0 discussed in Sec. III. Eq. (36)
then implies that ∂ufi has a corresponding ȳ-integrable
singularity, with ∂ufi(u = 1, ȳ → 0) asymptoting to
−2/(πDeffȳ)1/2 times limȳ→0 fi(1, ȳ).

By continuity of fi and ∂ufi at u = 1, ȳ > 0, the u < 1
solution must satisfy Eq. (36) at u = 1. Straightforward
substitution of the Fourier series expansion into Eq. (36)
at u = 1 yields

fi0 − cq +
∑

m6=0

fme
2πimȳ − 2√

π
D

1/2
eff cq

√
ȳ − 1

4
Deffcq ȳ

+
1

2
D

1/2
eff

∑

m 6=0

f ′me
2πimȳ erf

(√
2πimȳ

)
√

2πim

+
1

8
Deff

∑

m 6=0

f ′m
e2πimȳ − 1

2πim
≈ 0, (37)

with erf the error function. [The ratio
erf((2πimȳ)1/2)/(2πim)1/2 is independent of branch
choice as long as the branch is chosen consistently for
the two roots, a property that will hold for all similar
square-root pairs in this section.]

Recall the goal: to calculate the Deff-dependent rela-
tion between fi0 and Γ, the latter of which may be easily
evaluated as Γ = Dy0cq. In principle, Eq. (37) must fur-
nish cq as a function of fi0. However, since fi0 appears
only in the m = 0 component of Eq. (37), it is easier
to take cq as given and solve for fi0, then invert the re-
sulting scalar function fi0(cq) after the fact. Specifically,

let the real and imaginary portions of the m > 0 com-
ponents of Eq. (37) define an inhomogeneous real matrix
equation for the real and imaginary parts of the m > 0
coefficients, f ′m,r

.
= Ref ′m and f ′m,i

.
= Imf ′m, using the

relation fm = [uI1(ze,m)/ze,mI0(ze,m)]f ′m, obtaining

M ·
(
f ′1,r, f

′
2,r, · · · , f ′1,i, f ′2,i, · · ·

)
≈ cqv, (38)

at which point the m = 0 component may be written as

fi0 −
(

1 +
4

3
√
π
D

1/2
eff +

1

8
Deff

)
cq

≈ D1/2
eff u·

(
f ′1,r, f

′
2,r, · · · , f ′1,i, f ′2,i, · · ·

)
= cqD

1/2
eff Ψ (Deff) ,

(39)

in which the scalar function Ψ(Deff)
.
= u · M−1 · v

approaches a finite nonzero value for Deff → 0. Noting
the relations erf((2πi)1/2w)/(2i)1/2 = C(2w) − iS(2w)
and erf((−2πi)1/2w)/(−2i)1/2 = C(2w) + iS(2w), where
the Fresnel integrals C(w)

.
=
´ w

0
cos( 1

2πt
2)dt and S(w)

.
=´ w

0
sin( 1

2πt
2)dt are odd and are purely real for real argu-

ment, one may obtain the vector and matrix components:
vm,r = −S(2

√
m)/(πm)3/2, vm,i = [2/

√
π + D

1/2
eff /4 −

C(2
√
m)/
√
πm]/πm, um,r = S(2

√
m)/2(πm)3/2,

um,i = [2/
√
π + D

1/2
eff /4 − C(2

√
m)/
√
πm]/2πm,

Mmr,mr = cRe − S(2
√
m)/2(πm)3/2, Mmr,mi = −cIm,

Mmi,mr = cIm, Mmi,mi = cRe + S(2
√
m)/2(πm)3/2,

with cRe
.
= Re(I1(ze,m)/

√
2πimI0(ze,m)) +

[C(2
√
m) + S(2

√
m)/4πm]/

√
πm and cIm

.
=

Im(I1(ze,m)/
√

2πimI0(ze,m))− (1/
√
π + 1

4D
1/2
eff )/2πm+

[C(2
√
m)/4πm − S(2

√
m)]/

√
πm, and for n 6= m:

Mmr,nr = [
√
mS(2

√
m) − √nS(2

√
n)]/π3/2(n2 − m2),

Mmr,ni = [
√
nC(2

√
n) − nC(2

√
m)/
√
m]/

π3/2(n2 − m2), Mmi,nr = [−mC(2
√
n)/
√
n +√

mC(2
√
m)]/π3/2(n2 − m2), and Mmi,ni =

[nS(2
√
m)/
√
m−mS(2

√
n)/
√
n]/π3/2(n2 −m2).

Eqs. (38)–(39) have been truncated and numerically
solved, obtaining Ψ(Deff) for values of Deff between 0
and 104, retaining up to m = 10000 in each case. The
truncation-induced error in Ψ was estimated with the
quantity ε obtained by evaluating the LHS of Eq. (37)
for the approximate result, dividing by cqD

1/2
eff , and av-

eraging (rms) over 0 ≤ ȳ ≤ 1. Fig. 3 shows Ψ along
with its error estimate and the least-squares fit Ψ ≈
0.0701 + 0.0513D

1/2
eff , calculated using only values of Ψ

for Deff ≤ 1 since the asymptotic approximation becomes
inaccurate for larger Deff. Using the fit in Eq. (39), one
finally obtains the desired approximate small-Deff rela-
tion

Γ ≈ Γa
.
= fi0 |v|

Deff

1 + a1D
1/2
eff + a2Deff

, (40)

with a1 = 0.8224 and a2 = 0.1763.
The large- and small-Deff results for Γ overlap quite

well for for a range of intermediate Deff including some
tight error bounds on the large-Deff solution [Eq. (32)],
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Figure 4. Large-Deff (ΓA/fi0|v|, thick dashed blue) and small-
Deff (Γa/fi0|v|, thick dash-dotted red) approximations for
Γ/fi0|v|, along with the large-Deff error bounds (thin dashed
blue) and uniform approximation Γ`/fi0|v| (thin solid black).

as shown in Fig. 4, so one may splice them together to
obtain an expression for Γ good over all Deff. Comparing
Eqs. (31) and (40), one sees that any fitted approximation
for Γ/fi0|v| must asymptote to lnDeff for large Deff and
drop off linearly with Deff → 0. The simple form

Γs
.
= fi0 |v| ln

(
1 + e−γDeff

)
(41)

does this, additionally capturing the constant term and
approximating the D−1

eff term at large Deff. One may im-
prove the fit using the log of the higher-order polynomial

Γ`
.
=

1

4
fi0 |v| ln


1 +

8∑

j=2

cjD
j/2
eff


 , (42)

with c2 = 4 and c3 = −4a1 chosen to match Γa to order
D

3/2
eff for small Deff; c5 = c7 = 0, c6 = 8e−4γ , and c8 =

e−4γ to match ΓA to order D−3/2
eff for large Deff; and

c4 = exp(4/(1 + a1 + a2)) + 4a1 − 5 − 9e−4γ to set Γ`

equal to Γa at Deff = 1.

V. ROTATION

In Secs. III and IV, explicit expressions for the velocity-
dependent flux Γ(v) were determined in both large- and
small-Deff approximations, then fitted with simple (Γs)

and more precise (Γ`) approximations to Γ good for
all Deff. In this section, these flux expressions will
be combined with the assumption of a rigidly-rotating
Maxwellian at the boundary with the core, fi0(v) =

e−v
2/2/
√

2π in the rotating frame, to obtain a general
momentum balance equation determining the pedestal-
top rotation velocity in the presence of an arbitrary
specified torque on the core plasma. The special cases
of intrinsic rotation and zero rotation will be evaluated
and discussed. Although the general formulas may be
used for any D(y) > 0, plots and linearizations will
assume a simple ballooning diffusivity D(y) = D0(1 +
dc cos y) with constant D0 and |dc| < 1, for which AS
Eq. 9.6.19 yields Deff(v) = 2πD0 exp(δv cos y0)[I0(δv) −
dcI1(δv)]/|v|. Plots use the parameters D0 = 0.033,
dc = 0.8, y0 = −5π/8, and δ = 0.28, representative
of AUG H-mode values.110 Numerical evaluation uses Γ`

and analytical formulas use Γs.
The predicted total fluxes of density, toroidal angular

momentum, and parallel heat may now be straightfor-
wardly obtained as appropriate moments of Γ. In the
rotating frame, these are

Γp
.
=

ˆ ∞
−∞

Γ dv ≈
√

2

π
g1, (43a)

Π
.
=

ˆ ∞
−∞

vΓ dv ≈ 8δ

√
2

π

(
cos y0 −

dc
2

)
(g3 − g5),

(43b)

Q‖
.
=

ˆ ∞
−∞

v2

2
Γ dv ≈

√
2

π
g3, (43c)

respectively normalized to ni|ptvti|ptLφLtorBθ/B0 times
1, mivti|ptR0Bφ/B0, and mivti|2pt, and in which
gp(D0)

.
= ln(1 + 2πD0/e

γp1/2). (Details of the lineariza-
tion are given in App. E.) The integrands for Γp, Π,
and Q‖, plotted in Fig. 5, show the momentum and heat
transport to be dominated by somewhat suprathermal
pedestal-top ions. The momentum transport Π is nega-
tive, indicating an outward flux of counter-current mo-
mentum, thus a co-current acceleration for a nonrotat-
ing plasma. Since Π is independent of the rigid toroidal
rotation or its gradient, it represents a residual stress.
The fact that Π is a significant fraction of Γp and Q‖
demonstrates the robustness of the mechanism and im-
plies significant momentum transport for a nonrotating
plasma.

In the lab frame, one obtains the general steady-state
momentum balance equation

τ =

ˆ ∞
−∞

(vrig + v) Γ dv = vrigΓp + Π, (44)

balancing the co-current torque τ applied to the plasma
core, normalized to ni|ptTi|ptLφLtorR0BθBφ/B

2
0 , with

the outward flux of co-current momentum through the
pedestal. The central result of this article, Eq. (44) may
be used to estimate pedestal-top rotation in the pres-
ence of some specified torque on the core (for which
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Figure 5. Integrands for Γp, Π, and Q‖, summed over positive
and negative v.

intrinsic rotation is a special case) or to infer the ap-
proximate torque required to obtain a specific pedestal-
top rotation (for which null rotation is a special case).
Being determined by a balance of fluxes through the
pedestal, the pedestal-top rotation should settle to its
steady-state value on the rather rapid pedestal transport
timescale, a few times the ion transit time at the LCFS,
∼ q95R0/vti|sep. Since the core rotation evolution is typ-
ically much slower, Eq. (44) may often be used to esti-
mate the quasistatic response of pedestal-top rotation to
a slowly changing momentum flux from the core. As an
example, such an estimate could be used to provide an
outer boundary condition for a global simulation of core
momentum transport. When the predicted momentum
flux from the core (τ) is small relative to Π, the edge
rotation becomes effectively “stiff,” approximately taking
a fixed value regardless of τ .

Intrinsic rotation is an important special case, defined
by vanishing core torque τ . In the absence of toroidal
momentum sources and damping, the net outward flux
of toroidal angular momentum through the pedestal must
vanish. Since Eq. (1) is independent of vrig, so are Γp and
Π, thus one may solve Eq. (44) trivially for the intrinsic
rigid rotation vint:

vint = − Π

Γp
≈ 8δ (dc/2− cos y0)

g3 − g5

g1
. (45)

As shown in Fig. 6(a), the intrinsic rotation is co-current
and represents a Mach number of up to a few tenths for
realistic parameter values. The dimensional linearization
in the small-D0 limit,

vdimint ≈ 1.04
Bφ
B0

(dc/2− cos y0) vti|pt
qρi|pt
Lφ

∝ Ti|pt
LφBθ

,

(46)
shows the basic physical scaling of the pedestal-top ro-
tation velocity: linear in the product of the pedestal-
top passing-ion drift-orbit width qρi|pt and ion thermal
speed vti|pt. The drift orbit width introduces a 1/Bθ ∝
1/Ip scaling, as typically observed in experiment,6,24
while the predicted linear dependence of edge rotation
on temperature has been recently observed in dedicated
experiments.10,15 A co-current spin-up at the L-H tran-
sition is expected due to increasing Ti|pt and steepening
gradients, thus decreasing Lφ. The strong dependence on

∆
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Figure 6. Normalized intrinsic rotation velocity (a) and un-
balanced NBI fraction for zero rotation (b), plotted against
drift orbit width δ for several values of the poloidal X-point
angle y0, with numerical integrals (thick dashed) and analyt-
ical linearizations (thin solid).

poloidal X-point angle y0 is striking, with a 22◦ inboard
X-point having nearly double the rotation of a straight-
down X-point and a 22◦ outboard X-point having essen-
tially zero intrinsic rotation. This prediction is not yet
tested.

Recent experiments on DIII-D applied unbalanced NBI
heating to zero out the rotation profile.16 This case may
be addressed by requiring concurrent power and torque
balance,111

PNBI
fNBI

= ni|ptTi|ptvti|ptLφLtor
Bθ
B0

(Γp +Q‖)/fc, (47)

funbR02
PNBI
vNBI

= ni|ptTi|ptLφLtorR0
BθBφ
B2

0

(vrigΓp + Π),

(48)

setting vrig = 0, and solving for

funb =
fc

2fNBI

Bφ
B0

vNBI
vti|pt

Π

Γp +Q‖
, (49)

with PNBI the total beam power, funb
.
= (P co

NBI −
P ctr
NBI)/PNBI the unbalanced beam fraction, fNBI the frac-

tion of heating by NBI, fc the fraction of heat trans-
ported by ions, and vNBI the beam ion velocity. The ratio
Π/(Γp + Q‖) is plotted in Fig. 6(b). Since vNBI/vti|pt is
typically large, funb may be a significant fraction of −1,
as observed by Ref. 16.

Physical understanding is aided by consideration of
the inboard and outboard rotation profiles in real space.
Using the approximate solutions fAi from Eq. (30) for
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Figure 7. Radial profiles of the toroidal momentum´∞
−∞ vfi dv (total, purple) at the inboard (left) and outboard
(right) midplane, separately showing the absolute contribu-
tions of co-going ions

´∞
0

|v|fi dv (co, blue) and counter-going
ions

´ 0

−∞ |v|fi dv (ctr, red).

Deff(v) > 2.4 and Fȳ[fi0(1 − ξ2/(1 + a1D
1/2
eff + a2Deff))]

for Deff(v) < 2.4,112 and inverting the coordinate trans-
forms of Sec. II, one obtains an approximate fi(x, y, v).
Fig. 7 shows the radial profiles of toroidal momentum for
vrig = 0 at the inboard and outboard midplane, in ad-
dition to the separate contributions of co- and counter-
going ions. The co- and counter-going contributions to
the momentum profiles decrease monotonically in radius,
showing that the turbulent flux of momentum is always
radially outward in this purely diffusive model. There is
no pinch or other inward turbulent flux of momentum.
However, at the outboard midplane, the steep-gradient
region for co-current ions is shifted outward to a region
of weaker diffusivity, resulting in a smaller outward flux of
co- than counter-current momentum. Although counter-
current ions are shifted outward at the inboard midplane,
the diffusivity there is weak so no cancellation results,
leaving a net outward flux of counter-current momentum
for a nonrotating pedestal top, vrig = 0.

Fig. 7 highlights the radially global nature of the spin-
up, which results from the interaction of nontrivial ra-
dial profiles with the geodesic curvature drift and spatial
variation of the diffusivity. Recall that fi is the equi-
librium distribution function, usually referred to as F0

or FM in a radially local model. A standard radially
local model neglects radial variation of both F0 and its
gradient, setting the effect of the orbit shifts on ∇F0—
therefore also on the turbulent dynamics—identically to
zero. The assumed radial homogeneity of F0 and of the
magnetic geometry also artificially set the radial gradient
of fluctuation intensity identically to zero.

One may also compare with heuristic pictures of edge
rotation. For example, ion orbit loss physics appears in
the model’s outboard co-current and inboard counter-
current rotation layers at the LCFS, because there are
less ions on loss orbits (u > 1) than confined orbits
(u < 1). Transport-driven SOL flows, as observed in
C-Mod,52 also occur naturally in the present model.
However, without a radial diffusivity gradient (or some
other symmetry-breaking mechanism), neither of these
effects drive pedestal-top rotation: limδ,D→0 vint = 0.
To understand this physically, for orbit loss note that
the flow layers are caused by the orbit shifts of Fig. 1,

then compare co- and counter-going orbit-averaged dif-
fusivities for radially constant diffusivity. For transport-
driven flows, take diffusivity as radially constant and con-
sider a poloidal “halfway point” y1/2 defined such that´ y1/2
y0

D(y′) dy′ = 1
2

´ y0+2π

y0
D(y′) dy′. From y0 to y1/2,

co- and counter-going ions have both diffused equally out
into the SOL to drive SOL flows, and they have an equal
amount of diffusion remaining to return to the confined
edge and drive flows there.

VI. GENERALIZATIONS AND DISCUSSION

Many simplifications were needed in order to obtain
the tractable Eq. (1). In this section, generalizations rein-
troducing some effects of the E × B and ∇B drifts are
presented. Other generalizations and the implications of
omitted terms are qualitatively discussed.

A spatially-constant poloidal “offset”113 E × B drift
vE , normalized to vti|ptBθ/B0 and defined positive for
Er < 0, and a ∇B drift, evaluated with v2

⊥ → 2vti|2pt,
may be reintroduced to Eq. (1), resulting in

∂tfi + bφ (v + vE) ∂yfi − bφδ
(
1 + v2

)
(sin y) ∂xfi

−D(y)∂x
(
e−x∂xfi

)
= 0. (50)

Following Sec. II but modifying the definitions of x̄, ȳ,
and Dy0 with the substitution δv → δ(1 + v2)/(v + vE),
transforming ȳ → 1 − ȳ for the modified criterion
bφ(v + vE) < 0, and setting Deff

.
= Dy0/|v + vE |, one

may transform Eq. (50) to the form of Eq. (8) and the
corresponding flux Γ to the form of Eq. (11). The re-
sults of Secs. III–V thus hold for Eq. (50), using the new
definitions and making the substitution |v| → |v + vE |
in Eqs. (31), (32), and (40)–(42). Linearization of
Eqs. (43) in small δ and vE with the new definitions
produces identical forms for Γp and Q‖, while Π lin-

earizes to Π ≈ 2
√

2
π δ
(
cos y0 − 1

2dc
)

(g1 + 3g3 − 4g5) +
√

2
πvE (2g3 − g1). Without vE , the inclusion of the ∇B

drift typically causes a moderate (∼50%) enhancement of
the co-current intrinsic rotation due to larger drift-orbit
excursions. For D0 & O(1), the vE from a negative (posi-
tive) Er induces a counter- (co-)current increment to the
intrinsic rotation, due to a flattening of the gradients and
corresponding flux reduction for ions with poloidal com-
ponents of v‖ and vE in opposition. For D0 much smaller
than 1, the non-linearized momentum flux due to vE can
change sign, but this occurs mostly due to particles with
v + vE ≈ 0, for which Eq. (50) becomes inaccurate.

Other effects of Er, difficult to incorporate into the
present framework, may contribute to rotation in exper-
iment. Er shear likely reduces the size of the vE correc-
tion just discussed, due to partial cancellation between
the pedestal Er < 0 and SOL Er > 0. To some extent, ef-
fects of Er shear on the turbulence are implicitly included
in the present work via the modeling of experimental tur-
bulence parameters with Dturb. Although small by this
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paper’s orderings, the divergence of the E×B drift can
drive poloidally asymmetric toroidal flows that compete
with the corresponding curvature-driven toroidal flows
for nieEr ∼ ∇pi and a straight-down X-point in a fluid
model. However, in addition to any kinetic enhancements
of the curvature-driven flows, a typical inboard X-point
doubles the flow-driving effect of curvature but not of
∇ · vE .

Interpretation of the rotation saturation term vrigΓp

in Eq. (44), a diffusive momentum flux resulting from
a momentum gradient, is somewhat nuanced. Formally,
the present model is core-fuelled and vrigΓp represents the
convective flux of momentum due to density transport in
the presence of bulk rotation. Quasineutrality forces real
ion density transport to be coupled to electron physics,
possibly introducing corrections to the predicted density
flux. Also, in experiment most density fuelling occurs in
the outer edge or SOL, as could be modeled by adding a
source term to the RHS of Eq. (1). Inside the fuelling ra-
dius, this reduces the density gradient and increases the
velocity gradient without affecting the total momentum
gradient, assuming the neutrals have negligible toroidal
velocity. So, in an edge-fuelled plasma, the term vrigΓp

may effectively model turbulent viscosity (diffusive mo-
mentum transport without net density transport), which
is not directly constrained by quasineutrality.

In the Introduction, the spatial decay of potential fluc-
tuations for increasing r was used to argue that Dturb
should also drop with increasing r. In transport modeling
of the SOL, the inferred diffusivity often increases with
r. However, this diffusivity is based on a comparison of
SOL fluxes with SOL gradients, which are dominated by
the contribution of ions with energies much lower than
Ti|pt. Such ions enter the SOL predominantly by ra-
dial transport, a large and radially-increasing fraction of
which is convective transport due to blobs, leading to
large inferred diffusivities. In contrast, the high-energy
ions that dominate the pedestal momentum flux enter the
SOL primarily due to radial drift orbit excursions so, un-
like the low-energy ions, their position in the SOL is un-
correlated with the position of the intermittent blobs and
they usually hit empty space, supporting the assumption
of radially decreasing Dturb in evaluation of the pedestal
momentum flux.

A number of other approximations may also be of im-
portance. Although unlikely to directly cause large mo-
mentum flux, collisions cause particles to “forget” their
orbits. The collision times of the spin-up-dominating
suprathermal pedestal-top ions are typically longer than
their pedestal-crossing time, suggesting the spin-up
mechanism to be relatively weakly affected by collisions.
However, the more collisional lower-energy ions con-
tribute to the toroidal viscosity, thus collisions may mod-
ify the saturation mechanism. Note also that Eq. (1)
[Eq. (50)] replaces trapped particle orbits with narrow
[very fat] passing orbits. Since the very fat passing or-
bits should greatly overestimate these ions’ effect, the
typically rather modest difference between the rotation

results of Eqs. (1) and (50) suggests that inclusion of
particle trapping should not qualitatively change the pre-
sented results. Other omitted factors such as flux surface
shaping, ELMs, and magnetic field errors may also play a
role in rotation in experiments. Finally, recall again that
this article takes the turbulent transport parametrization
as an input, not calculating it self-consistently.

The asymmetric diffusivity sketched in Fig. 1(a), when
evaluated for outboard ballooning and radially increas-
ing fluctuations, predicts a net outward flux of co-current
momentum leading to a counter-current rotation incre-
ment. As an interesting example, should the fluctuation
level inside an internal transport barrier (ITB) be lower
than the fluctuation level outside, and should the change
in fluctuation level occur over a sufficiently short scale
length, the physics of Fig. 1(a) suggests that there should
be a counter-current rotation increment inside the ITB,
as has in fact been observed in experiment.11,114 Further
investigation is needed to determine if this effect or other
core rotation physics is dominant in this case.

VII. SUMMARY

In a simple transport model for the tokamak pedestal
and SOL, the interaction of magnetic drifts with the spa-
tial variation of inhomogeneous but purely diffusive tur-
bulent transport has been demonstrated to cause residual
stress and intrinsic rotation of experimentally relevant
magnitude (Fig. 6). The physical origin of the sponta-
neous rotation is an asymmetry of the orbit-averaged dif-
fusivities for co- and counter-going passing ions (Fig. 1).
Equivalently, toroidal angular momentum profiles given
by the model (Fig. 7) show that the intrinsic rotation
results from a shift between the steep-gradient regions
for co- and counter-current ions in the presence of a ra-
dial diffusivity gradient, a nontrivial profile effect that is
identically set to zero in a standard local model. The
dimensional prediction for pedestal-top intrinsic rotation
is co-current and proportional to Ti|pt/BθLφ [Eq. (46)],
in agreement with experimental observations. To achieve
null pedestal-top rotation, the model predicts that NBI
heating must be order-unity unbalanced in the counter-
current direction [Eq. (49)], as observed in experiment.
Through its effect on the orbit shifts, an inboard (out-
board) angle of the X-point is predicted to strongly drive
co- (counter-) current rotation [Fig. (1)(b)].
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Appendix A: Model derivation

In this appendix, Eq. (1) will be obtained as a re-
duction of the ensemble average of Hahm’s collisionless,
electrostatic gyrokinetic formulation,90 treating approx-
imations consecutively: a purely diffusive ansatz for the
transport, a radially thin simple-circular geometry moti-
vated by L⊥/a ∼ ε� 1, equilibrium parallel acceleration
ordered out by large safety factor q ∼ ε−1 and aspect ra-
tio a/R0 ∼ ε , integration over the magnetic moment,
and finally the assumption of small poloidal E×B Mach
number and a specific form for the turbulent diffusivity.

Splitting the total dimensional distribution function
Ftot into its ensemble average F .

= 〈Ftot〉 and fluctuation
F̃

.
= Ftot − F and similarly decomposing the gyroaver-

aged potential Φtot → Φ + Φ̃ (denoted by Hahm as Ψ),
the ensemble average of Hahm’s Eq. (24) may be written
as

∂T (FB∗) +∇ · (FB∗dTX) + ∂V ‖
(
FB∗dTV‖

)

= −∇ · b× c
〈
F̃∇Φ̃

〉
+

e

mi
∂V ‖

(
B∗ ·

〈
F̃∇Φ̃

〉)
,

midTV‖ = −
(
b +

mic

eB∗
V‖b× b · ∇b

)
· (M∇B + e∇Φ) ,

dTX = V‖b +
c

B∗
b×

(
1

e
M∇B +

mi

e
V 2
‖ b · ∇b +∇Φ

)
,

(A1)
with time T , gyrocenter position X, magnetic direc-
tion b, parallel gyrocenter velocity V‖, magnetic moment
M

.
= miV

2
⊥/2B, Jacobian B∗ .= B+ (mic/e)V‖b · ∇×b,

and B∗
.
= B∗b + (mic/e)V‖b × b · ∇b. All quantities

are evaluated at the gyrocenter position. Axisymmetry
implies that all ensemble averages including F and Φ are
independent of the toroidal angle.

Consider first the two fluctuation terms. Taking b ·
∇Φ̃×∇F̃ ∼ k2

⊥Φ̃F̃ , b ·∇Φ̃ ∼ Φ̃/qR0, and ∂V ‖F̃ ∼ F̃ /vti,
the second fluctuation term (turbulent parallel accelera-
tion) is small relative to the first (turbulent E×B trans-
port) by the very small factor 1/k2

⊥ρiqR0, and will be
neglected from now on. For the E × B transport term,
since the turbulent autocorrelation times ∼ L⊥/vti are
much shorter than the radial transport time ∼ qR0/vti,
the radial transport process consists of many small un-
correlated steps. The central limit theorem then sug-
gests that a diffusive transport approximation is well-
motivated. Since parallel wavelengths of the fluctuations
are also of order 1/qR0, the parallel phase advance of
an ion in a turbulent autocorrelation time is of order
L⊥/qR0 ≪ 1, so it is unlikely that the E × B diffu-
sivity depends significantly on the ions’ parallel veloc-
ity. Although gyroaveraging suggests that the diffusivity
should have some M dependence, this should not play
a central role in the toroidal momentum transport, so
neglect that for simplicity. Finally, since the radial gra-
dient of F is much steeper than its poloidal gradient

and the gradients of the confining magnetic field, take
−∇ · b × c

〈
F̃∇Φ̃

〉
→ ∂r[Dturb∂r(FB

∗)] for some tur-
bulent diffusivity Dturb, allowed at this point to have
arbitrary spatial dependence.

The topology change from closed to open field lines pre-
dominantly involves variation of the poloidal magnetic
field in the immediate poloidal vicinity of the X-point.
Neglect the details of this variation and retain this de-
pendence only as a SOL boundary condition of outgoing
ions at a specific poloidal angle, equivalent to an ideal
limiter. Note that such a purely outgoing boundary con-
dition is appropriate for the ions that dominate the spin-
up mechanism discussed in this article, which have rela-
tively large energies, comparable to the pedestal-top ion
temperature.

The remaining variation of the confining magnetic field
occurs on the R0 scale both poloidally and radially. In
contrast, F and Φ should vary radially on the short
length scale L⊥, but poloidally on a much longer scale
& a. Since the magnetic gradients are crossed with per-
pendicular gradients of F or Φ, the terms with minor-
radial gradients of the magnetic field are small in L⊥/a.
Since the minor-radial width of the domain of interest is
also of order L⊥ � R0, one may neglect the minor-radial
variation of magnetic quantities altogether.

Neglecting all other details of magnetic shaping, adopt
a radially-thin simple-circular geometry. Specifically,
with θ and φ the simple poloidal and toroidal angles
oriented such that r̂ × θ̂ = φ̂, take magnetic field B =

(Bθbθ θ̂+Bφbφφ̂)R0/R with constant magnitudes Bφ, Bθ,
and R0 and signs bφ and bθ, letting B0

.
= (B2

θ + B2
φ)1/2.

The minor-radial position is then r = a+X, with a con-
stant and X/a ∼ L⊥/a � 1. Consistently neglect X in
evaluation of B, major-radial position R→ R0 + a cos θ,
and the metric factors→ dX, a dθ, and (R0 +a cos θ) dφ.
In this approximation, B∗ → B, ∇×b = b× (b · ∇b) =

B−1b × ∇B = −X̂(sin θ)Bφbφ/B0R, and b · ∇B =
(sin θ)BθbθR0/R

2.
Before any further simplifications, it is worthwhile to

consider toroidal angular momentum conservation in the
reduced geometry. The dominant contribution to the
toroidal angular momentum density is that in the par-
allel flow of ions, pφ,‖, with pφ,‖

.
= (Bφbφ/B0)miRV‖F

and the overbar indicating velocity space integration´
dV‖
´
B dM · This can now be straightforwardly eval-

uated as

∂T pφ,‖ +∇ ·
(
pφ,‖dTX− X̂Dturb∂Xpφ,‖

)

− (pφ,‖/V‖)dTV‖ − pφ,‖dTX · ∇ lnR = 0. (A2)

The four terms indicate time variation, momentum flux,
parallel acceleration and change of radius. Recalling
Eqs. (A1) and the simplified geometry, the parallel ac-
celeration can be seen to result from the mirror force,
parallel electric field E‖, and parallel energy loss due
to curvature drift up a potential gradient. [Consider-
ing the characteristics, the latter contribution results
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from a geometric parallel-perpendicular exchange term,
vE · (V‖b · ∇b), which appears in the second term of
dTV‖ = b · dTv + v · dTb.] The change of radius follows
from parallel free streaming and the E × B drift. The
parallel acceleration due to curvature drift along ∇Φ and
change of radius due to the E × B drift cancel, jointly
conserving angular momentum. By quasineutrality and
negligible electron mass, the acceleration by E‖ must rep-
resent momentum redistribution within a flux surface via
the electrons, basically cold-ion sound wave physics. The
mirror force and the change of radius due to parallel flow
correspond to the toroidal Lorentz torque density, as is
directly seen by evaluating F (e/c)(BθbθR0)dTX · X̂. (Of
course, it is exactly this balance that leads to conserva-
tion of the canonical toroidal angular momentum.) The
combination of these terms with the corresponding elec-
tron terms would constitute the torque due to the radial
gyrocenter current. In order that the true flux-surface
averaged radial current vanish, and with it the corre-
sponding torque, this gyrocenter current is balanced by
an opposing ion polarization current, showing in essence
that the change in parallel toroidal angular momentum
is canceled by a corresponding change in the E×B con-
tribution to the toroidal angular momentum, as has been
elegantly and quite generally demonstrated.62,63

To obtain a simplest-possible conservative model re-
taining only the ion parallel toroidal angular momen-
tum, the terms constituting momentum exchange via the
electrons and with the E × B rotation must be ordered
small relative to the radial transport terms. This may
be accomplished, while retaining the radial drifts, by
taking q ∼ 1/ε � 1 and a/R0 ∼ ε � 1, as may be
seen by comparing the surviving terms of (pφ,‖/V‖)dTV‖
and pφ,‖dTX · ∇ lnR with the corresponding terms of
∇ · (pφ,‖dTX) ∼ pφ,‖dTX/L⊥. Physically, the poloidal
magnetic field has been ordered small, and with it the
toroidal Lorentz torque. Although these orderings are
only modestly satisfied for typical experimental param-
eters, and although they neglect the physics of particle
trapping, they lead to a simple, well-behaved, conserva-
tive reduction capturing the largest terms in the edge
toroidal momentum balance.

The assumptions of large q and small a/R0, combined
with the orderings ∂V ‖F ∼ F/vti, ∂XF ∼ F/L⊥, ∂θF ∼
F , ∂XΦ ∼ Φ/L⊥, and ∂θΦ ∼ Φ now yield

∂T (FB∗) + dTX · ∇ (FB∗) = ∂X [Dturb∂X (FB∗)] ,

with dTX from Eqs. (A1). Both parallel acceleration
and the divergence of dTX have been neglected relative
to advection by dTX.

At this point, integrate out theM dependence. Since Φ
is ensemble-averaged, it varies only on the L⊥ scale, thus
the M -dependent gyroaveraging in Φ is small in ρi/L⊥.
Outside of F , the only remaining dependence is in the
∇B drift. Assuming that the rotation drive is not too
sensitive to the details of F ’s M dependence, approxi-
mate thisM with mivti|2pt/B. Defining F‖

.
=
´
B∗F dM ,

one then has

∂TF‖ + dTX‖ · ∇F‖ = ∂X
(
Dturb∂XF‖

)
,

dTX‖
.
= V‖b +

c

B∗
b×

(
mi

e

(
vti|2pt + V 2

‖

) ∇B
B

+∇Φ

)
.

Poloidal and radial advection by vE are formally of the
same order, (c/B∗)b × ∇Φ · ∇F‖ ∼ (c/B∗)(F‖Φ/L⊥a),
thus both may be neglected relative to parallel advection
when the poloidal E×B velocity is small relative to the
poloidal parallel velocity, cEr/vtiBθ � 1.

The turbulent diffusivity is assumed separable with
exponential decay in the radial direction, Dturb =
DY (Y ) exp(−X/Lφ), with Y

.
= aθ. The fact that the

diffusivity decays in radius is motivated by extensive ex-
perimental data67,81–86 and determines the sign of the
predicted residual stress. The separability and the spe-
cific exponential form of the radial decay are of great
technical expedience, but are not central to the qualita-
tive results of the calculation.

Explicitly written in X, Y , φ coordinates, one then has

∂TF‖ +
Bθbθ
B0

V‖∂Y F‖

− Bφbφ
B0

1

ΩiR0

(
vti|2pt + V 2

‖

)
sin

(
Y

a

)
∂XF‖

= DY ∂X

(
e−X/Lφ∂XF‖

)
, (A3)

which, upon neglect of the ∇B drift, becomes the dimen-
sional form of Eq. (1).

Appendix B: Uniqueness of Green’s Function solution

In this appendix, the uniqueness of the solution of
a weak formulation nearly equivalent to Eq. (8), with
boundary conditions fi = fi0 for u = 0, fi → 0 for
u → ∞, and fi → finit(u) for ȳ → 0, will be demon-
strated. The nature of the approach to the initial condi-
tions and some restrictions on the initial conditions them-
selves are given precisely in the following proof.115

For any specified constant ȳ0 > 0, the function fbc
.
=

fi0 exp(−u2/Deff(ȳ + ȳ0)) solves Eq. (8) and approaches
the initial conditions fbc,0

.
= fi0 exp(−u2/Deffȳ0) as ȳ →

0. The function f .
= fi−fbc then solves Eq. (8) with the

boundary conditions f = 0 for u = 0, f → 0 for u→∞,
and f → f0

.
= finit − fbc,0 for ȳ → 0. Define a weighted

L2 inner product

〈η,$〉 .=
ˆ ∞

0

η$
du

u
, (B1)

with the associated norm ‖η‖ .= 〈η, η〉1/2, in which η and
$ are functions of u. Define the solution f on all ȳ > 0

and require that
∥∥f
∥∥2

+
∥∥∂uf

∥∥2
is well-defined. [More

precisely, the solution f must belong to the Sobolev space
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H1 corresponding to the inner product of Eq. (B1).] As-
sume that the initial conditions f0(u) have well-defined
norm

∥∥f0

∥∥2
. (The periodic boundary conditions in the

full problem imply this, given that
∥∥f
∥∥2

+
∥∥∂uf

∥∥2
is well-

defined at ȳ = 1.) Require f to solve a weak form of
Eq. (8),

∂ȳ
〈
η, f
〉

= −1

4
Deff

〈
∂uη, ∂uf

〉
, (B2)

for all ȳ > 0 and all η with well-defined ‖η‖2 + ‖∂uη‖2
(in the Sobolev space). [This form may be obtained from
Eq. (8) via integration by parts, for which local analy-
sis shows the boundary contribution at zero must van-
ish for any solution of Eq. (8) that is C2 in u. The
boundary term also vanishes for the weak solution.] Re-
quire that f approach the initial conditions f0 in the
sense limȳ→0

∥∥f − f0

∥∥ = 0, equivalent to the require-
ment limȳ→0 ‖fi − finit‖ = 0.

Let f1 and f2 both solve Eq. (B2) with the same initial
conditions f0. Their difference fd

.
= f1 − f2 must also

solve Eq. (B2) but with the homogeneous initial condi-
tions, limȳ→0

∥∥fd
∥∥ = 0. Since fd may be used as the test

function in Eq. (B2), we find

∂ȳ
∥∥fd

∥∥2
= −1

4
Deff

∥∥∂ufd
∥∥2

Combined with
∥∥fd

∥∥ ≥ 0 and limȳ→0

∥∥fd
∥∥ = 0, this

implies
∥∥fd

∥∥ = 0, thus f1 and f2 are equal and the
weak solution is unique, both in the L2 sense. There
may therefore be at most one solution of Eq. (B2) that
is continuous and has nondivergent norm [as defined by
Eq. (B1)] on all ȳ > 0.

Appendix C: Mapping of nonincreasing functions

The application of the mapping Fȳ[ψ] to a nonincreas-
ing test function ψ that takes values between 0 and fi0 is
nonincreasing: One may replace the integral in Eq. (23)
with

´∞
0
ψext∂uGdξ, defining the nonincreasing function

ψext to equal ψ for 0 ≤ ξ ≤ 1 and 0 for ξ > 1. As we
will show below, there is a ξ0 ≥ 0 such that ∂uG > 0 for
ξ > ξ0 and ∂uG < 0 for 0 < ξ < ξ0. We may then use
Eqs. (23) and (26) to bound ∂uFȳ[ψ] from above:

∂uFȳ [ψ] ≤ − 2u

Deffȳ
fi0e

−u2/Deffȳ

+ ψext (ξ0)

ˆ ξ0

0

∂uGdξ + ψext (ξ0)

ˆ ∞
ξ0

∂uGdξ

= − 2u

Deffȳ
e−u

2/Deffȳ [fi0 − ψext(ξ0)] ,

which is nonpositive for nonincreasing ψ, as desired.
Consulting Eq. (25), the sign of ∂uG is the same as

that of gs(ξ)
.
= ξ/u − I1(2uξ/Deffȳ)/I0(2uξ/Deffȳ). The

ratio I1(w)/I0(w) ranges from zero at w = 0 to one for
w → ∞, with positive slope and negative curvature for
all w > 0. The function gs therefore takes the value
zero at ξ = 0, grows large and positive at large ξ, and
has monotonically increasing slope. If g′s(0) ≥ 0 (which
occurs for u2 ≤ Deffȳ), then gs, and therefore also ∂uG,
is positive for all positive ξ. If g′s(0) < 0 then gs, and
therefore also ∂uG, is negative for ξ between 0 and some
ξ0 > 0 and is positive for ξ > ξ0.

Appendix D: Convergence of small-Deff approximation

In this appendix, it is demonstrated that the true re-
lation between fi and ∂ufi for u > 1 lays between that
given by Eq. (36) and the leading-order truncation ob-
tained by omitting Eq. (36)’s last term. In addition, these
two approximations approach each other as Deff → 0,
thus they must also approach the true relation. To make
the estimate, we will take the true ∂ufi as known and
evaluate the error resulting from the approximate expres-
sion for fi.

First, rewrite the exact SOL relation between F and
∂uF in the convenient form

F =

[
1 +

(
K1(zS)

K0(zS)
− 1

)](
− u

zS
∂uF

)
.

Defining f̂ .
= − 1

2 (Deff/π)1/2
´ ȳ

0
(ȳ − y′)−1/2∂ufi dy

′ and
χ
.
= L−1(K1(zS)/K0(zS)−1), the exact relation between

fi and ∂ufi may be compactly written as

fi = f̂ +

ˆ ȳ

0

χ(y′)f̂(ȳ − y′) dy′. (D1)

Since the true ∂ufi is nonpositive (c. f. Sec. III), the true
f̂ is nonnegative. As we will show, the function χ is
also nonnegative. This shows that the fi resulting from
neglecting the last term of Eq. (D1), or equivalently from
neglecting the last term of Eq. (36), underestimates the
true fi. We will also show that χ(ȳ) ≤ (Deff/16πu2ȳ)1/2,
which implies [using a change of variables to w .

= (y′ −
y′′)/(ȳ − y′′)] that
ˆ ȳ

0

χ(ȳ − y′)f̂(y′) dy′

≤ −Deff

8uπ

ˆ ȳ

0

ˆ ȳ

0

∂ufi(y
′′)

H (y′ − y′′)√
ȳ − y′√y′ − y′′ dy

′′ dy′

= −Deff

8uπ

(ˆ ȳ

0

∂ufi(y
′′) dy′′

)(ˆ 1

0

dw√
1− w√w

)

= −Deff

8u

ˆ ȳ

0

∂ufi(y
′′) dy′′,

showing that the true fi is bounded from above by the
estimate of Eq. (36), as desired. Since the true solution
lays between the two estimates, the relative error of ei-
ther estimate is bounded from above by their relative
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deviation. Since (ȳ − y′)−1/2 ≥ 1 for 0 ≤ y′ ≤ ȳ ≤ 1,
one may immediately bound this relative deviation with
(πDeff)1/2/4u, vanishing for Deff → 0 as desired.

We must now show that 0 ≤ χ ≤ (Deff/16πu2ȳ)1/2, as
assumed. The inverse transform defining χ is

χ(ȳ) =
1

2πi

ˆ ε+i∞

ε−i∞
esȳ
(
K1(zS)

K0(zS)
− 1

)
ds,

with ε positive and infinitesimal. Recall that zS ∝ s1/2

has positive real part, thus the integrand is analytic over
the complex plane cut along the nonpositive real axis.
One may therefore close the integration path for χ out to
s→ −∞, avoiding the nonpositive real axis. Consulting
AS Eqs. 9.6.8–9 and 9.7.2, the contribution of the legs
at infinity and the origin vanish, thus letting w .

= ∓izS
for the leg just above/below the negative real axis one
obtains

χ(ȳ)=− Deff

4πu2

ˆ ∞
0

e−Deffȳw
2/4u2

[
K1(iw)

iK0(iw)
−K1(−iw)

iK0(−iw)

]
w dw.

Using AS Eqs. 9.6.32, 9.6.4, 9.1.4, 9.1.40, and 9.1.28,
the square-bracketed factor may be more simply rewrit-
ten as ∂w ln(J2

0 (w) + Y 2
0 (w)), which is negative definite,

thus χ is positive definite. A simple plot shows that
−∂w ln(J2

0 (w) + Y 2
0 (w)) is bounded from above by its

asymptotic value 1/w, obtained with AS Eq. 9.2.28, thus
we may bound χ from above with

χ(ȳ) <
Deff

4πu2

ˆ ∞
0

e−Deffȳw
2/4u2 1

w
w dw =

D
1/2
eff

4u
√
πȳ
,

as desired.

Appendix E: Linearized flux moments

In this Appendix, the small-δ linearizations of the
fluxes in Eq. (43) are derived.

Linearizing the simple-ballooning Deff(v) = 2πD0[1 +
δv(cos y0 − dc/2) +O(δ2)]/|v|, one may immediately ob-
tain the linearized Γs = fi0|v|[ln(1 + 2πD0/e

γ |v|) +
δv(cos y0 − dc/2)/(1 + |v|eγ/2πD0) + O(δ2)]. For an
even fi0, the δ0 (δ1) term is even (odd) in v, thus the
even moments are

´∞
−∞ v2jΓs dv = 2

´∞
0
v2j+1fi0 ln(1 +

2πD0/e
γv) dv + O(δ2) and the odd moments (with

an integration by parts) are
´∞
−∞ v2j+1Γs dv =

2δ(cos y0 − dc/2)
´∞

0
ln(1 + 2πD0/e

γv)∂v(v
2j+4fi0) dv +

O(δ2). Although the integrals possess exact solu-
tions for Maxwellian fi0, the special functions in-
volved are not easily interpreted. The basic integral´∞

0
vpe−v

2/2 ln(1 + 2πD0/e
γv) dv may be approximated

by Taylor-expanding ln(1 + 2πD0/e
γv) about v =

√
p,

the maximum of vpe−v
2/2. One obtains surprisingly

good accuracy by retaining only the constant term ln(1+
2πD0/e

γp1/2), leading directly to the linearized forms of
Eq. (43).
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106Since the family of continuous functions Γ∆(u)
.
=

− 1
2
Dy0u−1

´ 1
∆ ∂uFȳ [ψ] dȳ (with parameter 0 < ∆ < 1) ap-

proaches the corresponding Γ(u) = − 1
2
Dy0u−1

´ 1
0 ∂uFȳ [ψ] dȳ

uniformly in u ≥ u0 for any u0 > 0 and bounded, absolute-
value-integrable ψ, as may be straightforwardly shown using
Eq. (28), one may conclude that Γ is continuous for all u > 0,
including at u = 1.

107The large-Deff series for ΓA may be obtained using AS
Eqs. 5.1.1, 5.1.11, and 9.6.10 along with Eq. 6.611.4 of Ref. 100.

108K. B. Oldham and J. Spanier, J. Math. Anal. Appl. 39, 655
(1972).

109We are only interested in the solution for ȳ ≤ 1, but it is techni-
cally easier to solve on all ȳ > 0 and discard the ȳ > 1 portion.

110δ and D0 were obtained for a pure deuterium plasma with
ni|pt = 5 · 1019m−3, Ti|pt = 600eV, B0 = 2.5T, q = 4,
Lφ = 0.02m, R0 = 1.7m, Bθ = 0.21T, and an ion heat flux
of 3MW.91 D0 was chosen to match the dimensional heat flux
prediction of Eqs. (43) (with v2

⊥ → 2vti|2pt) to 3MW. Recall-
ing the normalizations and LCFS transport balance, D0 is best
thought of as determined by the ratio (Lpi/Lφ) at the LCFS,
with small D0 proportional to(Lpi/Lφ)2 and large D0 propor-
tional to (Lpi/Lφ)1 for δ = 0. [For δ > 0, nonvanishing orbit
shifts prevent Lpi from dropping much below Lφ at the separa-
trix, even for small D0.].

111The Γp in Eq. (47) appears as an estimate of the transport of
perpendicular heat, taking v2

⊥ ∼ 2vti|2pt.
112The operand in the second form results from the small-Deff so-

lution by neglecting the m 6= 0 modes, which decay rapidly for
u < 1 when Deff is small.

113Eq. (1) does implicitly retain the portion of the E × B drift
that contributes to the rigid toroidal rotation vrig, which should
correspondingly be subtracted out of the “offset” E×B drift.

114J. E. Rice, R. L. Boivin, P. T. Bonoli, J. A. Goetz, R. S. Granetz,
M. J. Greenwald, I. H. Hutchinson, E. S. Marmar, G. Schilling,
J. A. Snipes, et al., Nucl. Fusion 41, 277 (2001).

115The Green’s function solution to the full problem Fȳ [ψ̄] and
the corresponding initial conditions fi(u, 0) are consistent with
all the assumptions made in App. B. For example, one may
show that that the Green’s function solution approaches the
initial conditions in the given L2 norm if the initial condi-
tions are bounded by |fi(u, 0) − fi0| ≤ Muuα and |fi(u, 0)| ≤
MUu

−β (for some Mu, α,MU , β > 0) and are Hölder contin-
uous (with some strictly positive exponent) outside of a fi-
nite number of jump discontinuities, criteria which are met
by the actual initial conditions. The integral bounds neces-
sary to prove the preceding statements may be completed us-
ing Eqs. (15) [implying G(u, ξ, ȳ) ≥ 0], (16) (mostly for small
u), (17), (18) (mostly for large u), (23), (27) (for small u),
(28) (for larger u), I′0 = I1, and the inequalities [assuming
u,w ≥ 0] (b1 + b2)2 ≤ 2(b21 + b22), e−w ≤ 1, 1 − e−w ≤ w,
0 ≤ I1(w) < ew/4, ew/

√
2πw, 1 ≤ I0(w) ≤ ew,

´∞
w e−t

2
dt ≤

e−w
2
/2w, erf(w) ≤ 1, (u − w2)2 ≥ u(

√
u − w)2, γa >

0 ⇒
∣∣w +

√
u
∣∣γa ≤ 2γa [

∣∣w −√u∣∣γa +
∣∣2√u∣∣γa ] along with

1 ≤ ξ ≤ u ⇒ ξ−(β+1/2) ≤ u−(β+1/2) + (u − ξ)/(u − 1) and
u ≥ (Deffȳ)1/2 + 1 ⇒

´ 1
0 |∂uG| dξ ≤ (2u/Deffȳ)e−(u−1)2/Deffȳ

[follows since I1(w)/I0(w) ≥ w/(2 +w), which implies ∂uG ≤ 0
for 0 ≤ ξ ≤ 1, u ≥ (Deffȳ)1/2 + 1].


