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Abstract

We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by

femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first

Born approximation (FBA) and the classical (CL) methods. The calculations are performed using

the plasma-screened Rogers potential introduced by Moll et al. (M. Moll, P. Hilse, M. Schlanges,

Th. Bornath, V. P. Krainov, J. Phys. B. 43, 135103 (2010)) as well as the Debye potential for

a wide range of experimental parameters. We find that the magnitudes of electron-ion collision

frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the

FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA

shows that the effect of the inner structure of ion is most dominant for the lowest charge state of

xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results

for all three different charge states of xenon, whereas for the Debye potential, both the FBA and

CL methods predict collision frequencies which are nearly close to each other.
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1. INTRODUCTION

The high density and high temperature plasmas can be produced by the interactions

of atomic clusters with intense ultrashort laser pulses. In recent years, a number of ex-

periments have been carried out in laboratory plasmas [1–6]. On the other hand, various

theoretical attempts have been made to study the laser-cluster interactions process [3, 7–13].

The physical processes which occur in the clusters irradiated by the laser fields are (i) pho-

toionization of atoms, (ii) inverse bremsstrahlung heating, (iii) inelastic and elastic collisions

between atoms/ions and electrons, (iv) many-body recombination of ions with electrons and

(v) the electromagnetic interaction of electrons/ions with the laser field. The screening due

to plasma environment and proper choice of atomic potential play important roles for calcu-

lating transport cross section, collision frequency, inverse bremsstrahlung cross section etc.

when the above physical processes are concerned. Recently, inverse bremsstrahlung (IB)

cross sections estimated within the evolving plasmas are studied by Wang et al. [14]. They

applied the first Born approximation (FBA) method to evaluate IB cross sections in both

the weakly and strongly coupled plasmas. Their results show that the above cross section

estimated using the effective atomic potentials is not affected much by the plasma environ-

ment. Their observation validates the estimations of the enhanced heating effect obtained

by Walters et al. [10]. Very recently, Moll et al. [15] calculated electron-ion collision rates

in atomic clusters irradiated by femtosecond laser pulses and found that FBA was not ap-

plicable for the wide range of experimental parameters. They considered the energy region,

E<2Z2
i , where E represents the mean kinetic energy (in a.u.) of the quasi-free electrons

inside the cluster, and Zi stands for the ion charge number. In essence, this is the energy

region where classical methods should be valid. They also calculated electron-ion collision

frequency for argon, krypton and xenon ions using a classical method and pointed out that

it was important to take into account the inner sturucture of ions and the screening by the

surrounding plasma medium.

In the present paper, we have concentrated on the ponderomotive heating of the cluster.

This heating is due to the acceleration of the electrons in the presence of multiply charged

atomic ions inside the cluster. The screening due to the plasma electrons can be accounted

through the Debye potential. We have applied the eikonal approximation (EA) [16, 17] to

calculate the electron-ion collision frequency using the Debye potential as well as a realistic
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model potential given by Rogers [18] in the applicable experimental regime [19]. Besides

EA, we have also examined the effectiveness of FBA and classical (CL) methods in order to

predict the electron-ion collision frequency which determines the absorption of laser energy

in the plasma. In contrast to the FBA, EA contains higher-order contributions. The eikonal

amplitude also satisfies the optical theorem within its range of validity [20]. In the present

study, besides the classical region, E<2Z2
i , we have also extended our investigation in the

energy region E>2Z2
i , where the perturbative methods are valid. A comparison is made

between the predictions of EA with the corresponding results obtained in the FBA and CL

methods throughout the two energy regions. It is worth stressing that the EA has been found

to be successful in a wide variety of collisions [21–27] such as ionization, ionization-excitation

etc. .

2. THEORY

2.1. Effective atomic potential

In the present investigation we have used the following atomic potential as was intro-

duced by Rogers [18] to calculate electron-ion collision cross sections, (atomic units are used

throughout, unless otherwise indicated),

V (r) = −1

r

(

Zi +
n∗
∑

n=1

Nne
−αnr

)

(1)

where Nn is the number of electrons in the nth occupied electron shell and n∗ is the number

of shells. The screening parameters αn are taken from [18]. In Eq.(1) Zi is the ion charge

number. Normally the ions and electrons inside the plasma interact via an electrostatic

interaction potential. A simple form of this potential is the Debye potential and is given by

VD(r) = −Zi

r
exp(−κDr) (2)

where κD is the inverse of the plasma Debye screening length λD,

λD =

[

kBTe

4πniZ̄i

]1/2

.
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Here, kB is the Boltzmann constant and ni represents the number density of atomic ions

inside the cluster. For simplicity, the mean ion charge Z̄i is replaced by the respective ion

charge Zi. Te is the electron temperature which is related to the mean kinetic energy of

electron as follows:

E =
3kBTe

2
.

In order to account for the surrounding plasma medium an additional Debye screening

factor is introduced in Eqn(1) and then the resultant expression for the potential becomes

Vsc(r) = −1

r

(

Zi +
n∗
∑

n=1

Nne−αnr

)

exp(−κDr). (3)

Next, we will describe two different approches, quantum mechanical and classical, to calcu-

late the transport cross section for the electron-ion collisions.

2.2. Quantum mechanical calculations

For spherically symmetric potentials, the eikonal scattering amplitude for electron-atom

collision [17] is given by

F (θ) =
k

i

∫

∞

0

dbJ0(qb)[exp[i(χ(b))] − 1], (4)

where

χ(b) = −1

k

∫

∞

−∞

dzV (b, z) (5)

and

q = 2k sin

(

θ

2

)

.

Here, k is the wavenumber of the incident particle, J0 is the zeroth-order Bessel function of

the first kind, q is the magnitude of momentum transfer and V is the atomic potential. b

and z denote the two components of the position vector r, and are defined as r = b + k̂z.

The impact parameter b is perpendicular to the incident z direction.
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The FBA amplitude is calculated in the same way as in Moll et al.[15]. The quantum

momentum transport cross section is defined by

σtr =
∫

dΩ
dσ

dΩ
(1 − cos(θ)) (6)

where θ and Ω are the scattering angle and the solid angle, respectively. The differential

cross section can be obtained from Eqn(4) and is written as,

dσ

dΩ
=| F (θ)|2. (7)

2.3. Classical calculation

The momentum transport cross section (σtr) for classical elastic scattering is given by

σtr = 2π
∫ bmax

0

db b(1 − cosθCL(b)), (8)

where the scattering angle θCL is related to the deflection angle Θ(b) [28] such as

Θ(b) = ±θCL(b) − 2πn, θCL ∈ [0, π]. (9)

The angle Θ(b) can also be expressed in terms of V (r)

Θ(b) = π − 2
∫

∞

rmin

dr r−2

[

b−2

(

1 − V (r)

E

)

− r−2

]

−1/2

. (10)

Here rmin is the classical distance of closest approach. The maximum value of b (bmax) is

taken to be bmax=n
−1/3

i which was also used by Moll et al. [15].

We have evaluated the one-dimensional integrals (in case of both the FBA and EA meth-

ods) numerically to calculate momentum transport cross sections for electron-ion scattering.

For the estimation of classical elastic scattering angle (θCL), we have followed the same

procedure as was proposed by Neumann et al. [29].

The electron-ion collision frequency νei is given by

νei = ni〈vσtr(v)〉 ≈ niveσtr(ve) (11)
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FIG. 1: Electron-ion collision frequency calculated with the plasma-screened Rogers potential as

a function of kinetic energy of electrons for a fixed value of ni = 0.00239 a.u. for (a) Xe1+ (b)

Xe8+ and (c) Xe14+ ions. The solid curve represents the present EA results. The dashed curve is

the present FBA results. The dashed-dot curve represents the present classical results. The inset

represents the extended view of the classical region.

where the mean electron velocity is calculated from

ve =
√

2E =
√

3kBTe.

Here the validity condition is that the laser frequency has to be greater than the electron-ion

collision frequency, the same as was mentioned by Moll et al. [15].

6



200 400 600 800 1000
10

−1

10
0

10
1

Xe1+(a)

200 2000 4000 6000
1

8

Xe8+(b)

ν ei
 (

10
15

 s
−1

)

2000 4000 6000 8000
1

8

Xe14+(c)

E (eV)

FIG. 2: Electron-ion collision frequency as a function of kinetic energy of electrons for a fixed value

of ni = 0.00239 a.u. for (a) Xe1+ (b) Xe8+ and (c) Xe14+ ions. The solid curve represents the

present EA results for the plasma-screened Rogers potential. The dashed-dot curve is the present

EA results with the Debye potential.

3. RESULTS AND DISCUSSION

Fig.1 shows the present electron-ion collision frequency obtained in the EA, FBA and CL

methods as a function of kinetic energy E for the plasma-screened effective potential Vsc for

Xe1+, Xe8+ and Xe14+ ions. In view of the estimation of the mean electron energies of the

charged Xe ions by Petrov and Davis [19] we have limited the energy region upto 1, 6 and

8.8 KeV for Xe1+, Xe8+ and Xe14+ ions, respectively. We have considered the ion number

7



200 400 600 800 1000
10

−2

10
0

10
2

Xe1+

(a)

20 40
10

−1

10
2

200 2000 4000 6000

10
0

10
2

Xe8+
(b)

ν ei
 (

10
15

 s
−1

)

500 1000 1500
10

−1

10
1

2000 4000 6000 8000

10
−1

10
0

10
1

Xe14+

(c)

E (eV)

500 1000 1500

10
0

10
1

FIG. 3: Electron-ion collision frequency as a function of kinetic energy of electrons for a fixed value

of ni = 0.00239 a.u. for (a) Xe1+ (b) Xe8+ and (c) Xe14+ ions. The solid curve represents the

present FBA results with the potential (3). The dashed curve displays the present FBA results

with the potential (2). The dashed-dot curve represents the present CL results with the potential

(3). The dotted curve is the present CL results with the potential (2). The inset represents the

extended view of the classical region.

density 0.00239 a.u. for xenon which is the same as was used by Moll et al. [15]. In the

present calculation, the electron density ne for the quasi-free electrons inside the plasma is

taken to be ne=niZi. Consequently, the electron densities for Xe1+, Xe8+ and Xe14+ ions are

1.610×1022, 1.290×1023 and 2.263×1023 cm−3, respectively. The screening parameter (κD)

varies from 0.066-3 Å−1, 0.075-0.417 Å−1 and 0.083-0.550 Å−1 for Xe1+, Xe8+ and Xe14+

ions, respectively, for the energy range considered here. We notice that the νei predicted by
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FBA and CL methods falls rapidly with the increase of kinetic energy of electrons for Xe8+

and Xe14+ ions. We also observe that FBA frequencies are much higher than those of the EA

and classical calculations throughout the energy range considered here for the lowest charge

state of xenon ion (Xe1+). Furthermore, the CL results overestimate the corresponding EA

values by a factor of about 2 in the whole energy range for Xe1+ ion (see, the inset of panel

(a) for the classical energy region). For the Xe8+ and Xe14+ ions, FBA yields frequencies

higher than the EA and CL methods upto the electron energy E≈2 KeV (see, the inset of

panel (b) and (c) of Fig.1). Beyond this, FBA results overestimate CL calculation by about

1.57-2.10 (1.44-1.98) times and underestimate the EA by 1.10-2.68 (1.15-5.12) times for Xe8+

(Xe14+) ion in the entire energy range. It is worth noting that the qualitative nature of FBA,

EA and CL curves is almost similar for both the higher charge states of xenon ion, although

the magnitudes differ by a significant margin. For example, the EA magnitude deviate by

about 30 % in the energy range 2-8.8 KeV while FBA and classical results show variations of

83 % and 77 %, respectively for Xe14+ ion. EA is expected to yield reliable results at these

higher energies (for example, E>54.4 eV for Xe1+ and E> 3.7 KeV for Xe8+) because this

energy range is nearly appropriate for the applicability of eikonal approximation. At higher

energies, FBA is seen to fall steeper than the EA (see panel (c) of Fig.1). The reason for the

discrepancy may be ascribed to the fact that FBA is not applicable for strong potential. On

the other hand, the CL method is also not quite expected to be valid for these high energy

regimes, especially at E>54.4 eV for Xe1+ and E> 3.7 KeV for Xe8+.

Fig. 2 exhibits a comparison of the eikonal collision frequencies for the screened Rogers

potential Vsc with the corresponding results for the Debye potential VD in the case of Xe1+,

Xe8+and Xe14+ ions. For higher charge states of xenon ion (Xe8+ and Xe14+), eikonal results

are not very sensitive to the choice of potentials. However, the collision frequencies calculated

with the screened Rogers potential are slightly greater than those with the Debye potential

in the present range of kinetic energy of electrons. In the case of the lowest charge state

of xenon ion (Xe1+), EA frequencies computed with the Debye potential are found to be

much lower than the corresponding EA results obtained with the screened Rogers potential.

Evidently, for the lowest charge state and for the lower kinetic energy of electrons the inner

structure of the ions is responsible for the big difference between the two results.

Fig. 3 displays the present FBA and CL results for the two different potentials Vsc and

VD. We notice that the collision frequencies obtained with the screened Rogers potential
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Vsc are much higher than those computed with the Debye potential VD for both the FBA

and CL methods. This clearly reflects the influence of the inner structure of the ions. On

the other hand, in the case of Debye potential both the FBA and CL methods predict

collision frequencies which nearly coincide with each other. Furthermore, for Xe1+ ion,

collision frequencies predicted by the CL method for the screened Rogers potential are

almost constant in the classical region (E> 5 eV) while those computed using the above

method for the Debye potential fall rapidly along E (see, inset of panel (a) of Fig.3).

4. CONCLUSIONS

Electron-ion collisions are investigated for plasma conditions in a xenon gas cluster where

the ponderomotive heating of the cluster is considered. The present calculations for the

electron-ion collision frequency are performed using the EA, FBA and CL methods for the

plasma-screened Rogers potential as well as the Debye potential for three different charge

states of xenon (Xe1+, Xe8+ and Xe14+). In a wide range of experimental parameters, the

magnitudes of EA do not fall as rapidly with the electron energy as those obtained in the

FBA and CL methods for higher charge states of xenon ion (Xe8+and Xe14+). EA also

shows that the effect of the inner structure of ion is most dominant in the lowest charge

state of xenon ion (Xe1+). It does not depend very much on the choice of potentials.

In the case of plasma-screened Rogers potential, FBA is found to overestimate the CL

results for all three different charge states of xenon ion. However, for the Debye potential,

both FBA and CL methods predict collision frequencies which are nearly close to each other.
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[12] T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, E. Suraud,

Rev. Mod. Phys. 82, 1793 (2010).

[13] M. Arbeiter, T. Fennel, New Journal of Physics 13, 053022 (2011).

[14] F. Wang, E. Weckert, B. Ziaja, J. Plasma Physics 75, 289 (2009).

[15] M. Moll, P. Hilse, M. Schlanges, Th. Bornath, V. P. Krainov, J. Phys. B. 43, 135103 (2010).

[16] R. J. Glauber, in: W. E. Brittin, et al (Eds), Lectures in the Theoretical Physics, Vol. I,

(Interscience New Work), p.315 (1959).

[17] A. C. Roy, N. C. Sil, J. Phys. B: Atom Molec. Phys. 11, 2729 (1978).

[18] F. J. Rogers, Phys. Rev. A 23, 1008 (1981).

[19] G. M. Petrov, J. Davis, Phys. of Plasmas 15, 056705 (2008).

[20] E. Gerjuoy, B.K. Thomas, Rep. Prog. Phys. 37, 1345 (1974).

[21] R. Dey, A. C. Roy, Phys. Lett. A 332, 60 (2004).

[22] R. Dey, A. C. Roy, Phys. Lett. A 353, 341 (2006).

[23] R. Dey, A. C. Roy , C. Dal Cappello, Nucl. Instr. Methods B 266, 242 (2008).

[24] R. Dey, A. C. Roy, Nucl. Instr. Methods B 267, 2357 (2009).

[25] M. Schulz, A. C. Laforge, K. N. Egodapitiya, J. S. Alexander, A. Hasan, M. F. Ciappina, A.

C. Roy, R. Dey, A. Samolov, A. L. Godunov, Phys. Rev. A 81, 052705 (2010) .

[26] R. Dey, A. C. Roy, Nucl. Instr. Methods B 269, 364 (2011).

11



[27] R. Dey, A. C. Roy, C. Dal. Cappello, Nucl. Instr. Methods B 271, 82 (2012).

[28] R. G. Newton, Scattering Theory of Waves and Particles (Berlin: Springer), (1982).

[29] H. Neumann, T. Q. Le, B. Van Zyl, Phys. Rev. A 15, 1887 (1977).

12


