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Abstract. A large variety of electromagnetic modes excited by NBI-generated ener-

getic ions are observed in the early phase of many discharges at ASDEX Upgrade. In

addition to the well known reversed shear Alfvén eigenmodes (RSAE) and the toroidal

Alfvén eigenmodes (TAE), a set of modes around 70 kHz is observed as recently de-

scribed in [7]. The modes were identified to be beta-induced Alfvén eigenmodes (BAE)

connected with the appearance of the q = 2 and the q = 1.5 surface during the current

ramp-up phase. In the view of ITER, these BAEs may occur in scenarios with q ≈ 2

(scenario 4) and therefore add significantly to the transport of energetic ions due to

RSAEs and TAEs.

Experimentally, the combination of ECE, Soft-X-ray and magnetic measurements al-

lows for a very reliable mode position and mode structure determination. The mea-

surements are compared with linear gyrokinetic calculations employing the LIGKA

code that uses a fully kinetic model to describe fast-particle-driven modes in general

tokamak geometry .
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1. Introduction

Alfvénic instabilities driven by energetic neutral beam ions are a very important

branch of fusion research. Not only their effect on the unfavorable redistribution

of energetic ions in present tokamaks has to be understood and extrapolated to the

International Tokamak Experimental Reactor (ITER) [1] but also their potential for

Alfvén spectroscopy[2, 3, 4], i.e. the determination of plasma parameters via the

frequency evolution of these modes has to be examined.

Recently, reversed shear Alfvén eigenmodes (RSAE) [5] attracted a lot of attention. Due

to advances in both the experimental measurements and the code simulation capabilities,

refined information about their 2d mode structures [6, 7] and transition to TAEs [8] could

be obtained. Furthermore, the radial harmonics of RSAEs can be used to constrain the

curvature of the q-profile at qmin [7] or allow to determine the GAM frequency [9].

Finally, also the non-linear interaction with other Alfvénic instabilities, such as TAEs

has been investigated[10].

In this paper, we aim to describe and model another, closely connected Alfvénic mode

in the same frequency regime as the RSAE, the beam-driven beta induced Alfvén

eigenmode (BAE) [11, 12, 13, 16, 17, 18, 19]. Although a lot of literature is available

for BAE modes they have so far not been investigated in the current ramp-up phase of

a tokamak discharge. Whereas in the ramp-up phase at JET [20, 21] and DIIID [22]

energetic particle driven geodesic acoustic modes (EGAMs) are observed regularly, at

ASDEX Upgrade electromagnetic modes with finite toroidal mode numbers n = 1, 2 are

detected. It will be shown, that the modes are not fishbones [15, 14]. Moreover, steady

state modes and bursting modes as well as transitions between these two states can be

observed.

Whereas some of the experimental properties of the BAE modes were already described

in ref. [7], this paper focuses on the theoretical description of the observed BAE modes

and in particular on their existence conditions, their damping and their drive by isotropic

and anisotropic energetic particle distribution functions.

In the first part, the experimental observations and the equilibrium parameters used for

the numerical investigations are presented. In the second part, the theoretical model,

the LIGKA code [23] is briefly described. In the third part, both local and global

results concerning the properties of the BAE modes are shown. Finally, conclusions and

an outlook to further experimental and theoretical work are given.

2. Experimental observations

2.5 MW of NBI heating (93 keV beam) was applied in the current ramp-up phase of

a series of low density discharges, identical to the scenarios described in [24, 25, 26].

The magnetic field was 2T . The time traces of the line integrated electron density

ne as well as electron temperature Te can be found in ref [7]. For convenience, these

traces are shown in the appendix, fig 9. As the current penetrates towards the magnetic
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Figure 1. spectrograms from ECEI (top), magnetic pick-up coils (middle), fast ion

loss detector (bottom left) and central SXR channel I53 (bottom right)

axis, a reversed q-profile is established. Although no MSE data was available for this

discharge, the value of qmin as a function of time and its radial position can be inferred

from the evolution of the RSAEs as described for the discharge in ref. [7]. As soon

as the q = 2 surface is crossed, a strong mode activity around 60 kHz is observed.

It is clearly visible in the magnetic pick-up coils, in the central soft-X-ray channels

(SXR-J 51) [27], the ECEI [28] and in the fast-ion loss detector (FILD) [29, 30]. In

fact, the losses between t = 0.44 − 0.58s are the only losses detected in this discharge.

This observation underlines the importance of understanding the properties of this very

strongly redistributing mode. Analysing the phase information of the pick-up coils

shows that the mode whose frequency starts to chirp at 55kHz has a toroidal mode

number n = 1 whereas the mode at 75kHz has n = 2. The bursting mode at the later

time point t = 0.63 is related to the crossing of the q = 1.5 surface and has n = 2.

The modes’ radial and poloidal structure are shown in fig 2. Both modes are localised

around R = 1.80m , in terms of the square root of the normalised poloidal flux this is

%pol = 0.4. Here, %pol is the square root of the normalised poloidal flux. Figure 2 shows

clearly that they both (n = 1: b,c; n = 2: d,e ) move radially outwards with time. This

radial motion takes place on the time scale of the q-profile relaxation, i.e. due to the

movement of the q = 2 surface.The radial mode widths are 8 − 10cm and the poloidal

mode numbers determined from the ECEI data are m = 2 for the n = 1 mode and

m = 4 for the n = 2 mode.
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n=1
n=2

Figure 2. 2D ECEI mode structure of the n = 1 (at 55 kHz) and the n = 2 (at 75

kHz) BAE modes at different time points. The black and white figures show the 2D

ECE amplitude A whereas the colored plots give the 2D phase information (A cosϕ) .

3. Theoretical Model

Although it is well known that the transport of energetic particles due to resonant

mode interaction processes is essentially non-linear, a linear analysis is an important

intermediate step due to the following reasons: first, it allows to identify the nature of

the modes via analysing the frequency scaling. Secondly, the damping, the drive and

stability boundaries can be investigated and finally the mode structure can be obtained.

All these properties can be compared to the experiment and in the recent years it has

been shown that (gyro)-kinetic models rather than MHD or hybrid MHD models are

necessary to capture the properties of Alfvénic modes, especially when their frequencies

are in the intermediate regime between the Alfvén frequency, the sound frequency and

the diamagnetic frequency.

In this frequency range, the background ions start to influence not only the damping

rate but also the mode frequency. The lower the frequency, the more important is also

the influence of trapped background ions [18, 31]. In this paper no attempt to model the

non-linear phase of the mode evolution is made. However, the linear damping rate γd
and drive γL have to be known very accurately in order to predict the correct non-linear

behaviour (steady state, periodic, chaotic, bursting)[34] .

In this paper, the linear gyrokinetic code LIGKA[23, 18] is employed to describe the

linear properties and to compare with the experiment. Since the equations had to be

extended with respect to previous formulations [35] due to the inclusion of the NBI

drive, a review of the equations is carried out here. In the following, we expand all

Bessel functions (and Gamma functions for the background) due to the gyro-averaging

operators and include all terms up to the fourth order in k⊥%f (with k⊥ the perpendicular

wave vector and %f the fast particle gyro-radius) , since even for energetic NBI particles

with E = 93keV , k⊥%f is less than 0.55. Here, the upper limits %f =
mfv⊥
efB

≤ 3cm
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Figure 3. plasma background profiles (top left), radial fast particle profiles (bottom

left) and the anisotropic distribution function as given by TRANSP (bottom right)

and the fit used for the LIGKA simulations (top right)

and k⊥ =
√
k2
r + k2

θ =< 18.5m−1 were used with kθ = −m/r. For this estimate, the

highest mode number m = 4 and the innermost mode position r = 0.26m, and therefore

kθ = 15.4/m was used.kr was estimated based on the experimental data or ’a posteriori’

from the LIGKA eigenfunctions via kr ≈ 1/∆rmode ≈ 1/0.1m = 10/m. Here ∆r is the

radial mode width. The relative error E truncating 1− J2
0 (x) with x = k⊥%f at second

order (x2/2) , i.e. E =
(

1 − J2
0 (x) − (x2/2)

)
/
(

1 − J2
0 (x)

)
is for the largest possible

k⊥%f = 0.55 less than 6% and for truncating at fourth order (x2/2− 3/32x4) less than

0.3%. Note that we assumed for this estimate that all the energy of the NBI particles is

in the perpendicular motion, which is definitely not true for the particles in resonance

with the mode. It will be shown below that these particles are mostly circulating and

therefore have large parallel energy. Consequently, the truncation error is much smaller

in this situation. The quasi-neutrality equation (QN) is:

0 =
∑
a

eana1(x) =
∑
a

ea

∫
d2v(J0(%∇⊥)f)a
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+
∑
a

∇⊥
mana0

B2
∇⊥φ(x) +

∑
a

3Pa⊥
4B2Ω2

a

∇4
⊥φ(x)

Here, the index a counts the particles species, ea is the electrical charge, ma the particles’

mass, na1 is the perturbed density, fa the perturbed particle distribution function, Ωa

the cyclotron frequency eaB/ma, Pa⊥ the perpendicular pressure and φ(x) the perturbed

electrostatic potential. Note, that the integration over the gyro-phase (d3v → d2v) has

already been carried out.

Due to the low density of the energetic particles and the small 4th-order

contribution, the energetic particles are neglected in the QN.

The gyrokinetic moment equation (GKM) reads:

− ∂

∂t

[
∇ 1

v2
A

∇⊥φ
]

+ B · ∇

(
∇×∇× A

)
‖
·B

B2
+ (b×∇A‖) · ∇

µ0j0‖

B
=

−
∑
a

µ0

∫
d2vea(vd · ∇J0f)a +

∑
a

b×∇
(βa⊥

2Ωa

)
· ∇∇2

⊥φ

+
∑
a

3βa⊥
8Ω2

a

∇4
⊥
∂

∂t
φ+ B · ∇ 1

B

∑
a

βa
4
∇2
⊥A‖

Here, vA is the Alfvén velocity, A(x) the vector potential, j0‖ the parallel equilibrium

current, vd the particles’ drift velocity and βa⊥ = 2µ0Pa⊥/B
2.The term b × ∇

(
β⊥
2Ω

)
·

∇∇2
⊥φ can be rewritten for the background ions to be iω∗p

v2A
∇2
⊥φ with ω∗p = b× ∇(nT )

ienB
·∇.

It vanishes for electrons due to their small mass, but there can be a contribution from

the EPs if their spatial pressure gradient is comparable to that of the background ions.

However, one has to keep in mind that the gyroradius expansion discussed above is only

valid for k⊥% < 1 and therefore, in general, the full Bessel operator 1 − J2
0 has to be

retained for EPs. This term is the source for the diamagnetic correction of the first term

on the lhs of the GKM equation, whereas the term ∇4
⊥φ leads to the kinxetic Alfvén

wave correction. The last term on the rhs of the GKM equation can be interpreted as a

finite-β correction to the second term of the lhs. Since it does not contain perpendicular

gradients of βa, this correction is small, also for energetic particles.

The perturbed distribution function f is governed by the gyrokinetic equation. After

splitting off the adiabatic part by introducing

f = h+H1
∂F0

∂E
− [e

∂F0

∂E
− c∇F0

iωB
· (b×∇)]J0ψ(x) (1)

with ψ defined by A‖ =
(
∇ψ(x)

)
‖
/(iω), H1 = eJ0φ − eJ0UA‖ and U the parallel

gyrocentre velocity, the integrals in the QN and GKM equation can be written in the

following form:(∫
J0hd

2v

)
circ = −π

2
eav

3
th

∑
m

∫ Λmin(r)

0

dΛ

∫ ∞
0

dY
√
Y ·
∑
k

∑
σ

∂F0

∂E
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(ω − ω̂∗)Km,p,k

ω − ωD − (σSm + k)ωt
· J2

0

[
ak,m,σφm(r)− (ak,m,σ − aGk,m,σ)ψm(r)

]
(2)

(∫
J0hd

2v

)
trapped = −π

2
eav

3
th

∑
m

∫ Λmax(r)

Λmin(r)

dΛ

∫ ∞
0

dY
√
Y ·
∑
k

∂F0

∂E

(ω − ω̂∗)Km,p,k

ω − ωD − kωt
· J2

0

[
ak,mφm(r)− (ak,m − aGk,m)ψm(r)

]
(3)

Here, Λ = µB0/E with µ the magnetic moment, B0 is the on-axis magnetic field, Λmin

and Λmax the minimal and maximal values of Λ for passing and trapped particles, E

is the energy variable, Y = E/T , vth =
√

2T/m, Sm = nq −m and ω̂∗ = − b×∇F0

ieB∂F0/∂E
.

The summation over co- and counter-passing particles is indicated by the sign variable

σ = ±1.

The advantage of rewriting the equations in terms of ψ instead of A‖ is that the (small)

perturbed electric field responsible for damping and drive can be expressed by the

difference of φ and ψ, more precisely E‖ = −(∇φ)‖−∂A‖/∂t = −∇(φ−ψ)‖ = −k‖(φ−ψ).

For stable Alfvén waves with negligible damping no electric field is present and φ = ψ.

This is the reduced MHD limit of the GKM equation shown above. At lower frequencies

the Alfvén waves couple to the electrostatic/acoustic waves and φ 6= ψ. Therefore, the

difference φ−ψ is a signature of the polarisation of a wave and its radial envelope allows

to identify the radial location of damping and drive.

These integrals of equations 2 and 3 are solved numerically. The transit/bounce

frequencies ωt,b, the precession frequency ωD and the orbit-integrated coefficients ak,m,

aGk,m and Km,p,k (given in the appendix) are calculated accurately using the HAGIS

[33] code. For the denominator a rational interpolation scheme is used to allow for an

accurate calculation of the residuum in case of damped modes, i.e. γ < 0.

It can be shown [35] that this set of equations can be simplified to the reduced MHD

equations and therefore the influence of kinetic extensions can be traced. The structure

of the equations is a second order integro-differential equation. As in reduced MHD, the

(local) continuous spectrum can be determined by finding the zeros of the coefficient

of the second order term. Fourth order terms are neglected for this local analysis. It

should be noted that also EPs can contribute to this second order term: both iω∗p
v2A
∇2
⊥φ

and
∫
d3v(evd ·∇J0f)EP,radial are proportional to βEP and therefore modify the real and

the imaginary part of the second order coefficient.

The relevant dispersion relation was re-derived [18] for the gyrokinetic model [35]

underlying the eigenvalue code LIGKA. As can be seen in equations 2 and 3, the

integration over velocity space is carried out completely numerically, and therefore it

is possible to include a rather general distribution function for the EPs. Based on a

TRANSP simulation [32] (see fig 3), a parameterised fit is generated, ensuring that

the distribution is smooth in energy E and pitch angle λ = v‖/v . Although this fit

does not reproduce the small-scale details of the TRANSP simulation, it is a reasonable

approximation for the anisotropy in λ and the energy dependence of the width of FEP
in the λ direction.



NBI-driven Alfvénic modes at ASDEX Upgrade 8

4. Numerical results

Using the CLISTE code [36], a sequence of equilibria for #25506 between t = 0.35

and t = 0.55 was reconstructed. The on-axis EP pressure is, based on the equilibrium

reconstruction and the TRANSP simulations, β(r = 0) = 0.7%. The other kinetic

profiles are shown in fig 3. The analysis at t = 0.35s for the RSAEs and its radial

harmonics is carried in ref [7]. One of the main conclusions of that paper was that

the q-profile in the centre is only very slightly reversed, i.e. it is basically almost flat.

Therefore, also at t = 0.45s a flat q-profile was assumed (see fig 3). The corresponding

kinetic continuum (in the sense of the equations of the last section) can be seen in

fig 4. Both the solution with and without trapped background ions are plotted. As

shown previously [31, 18], trapped particles cause a downshift of the local spectrum.

The minimum in the continuum is caused by the geodesic coupling. Since at q = 2

the sideband corrections ( 1/q2) are not very large, the simple dispersion relation

ω2
BAE =

v2th
R2

0
[7
4

+ Te/Ti] is approximately valid and therefore ωBAE is approximately

constant as q varies. This behaviour is clearly seen also experimentally (see fig 1).

One expects a small increase of ωBAE due to the rising temperature during the time

window under consideration, however this effect is cancelled (by coincidence) by the

movement of the mode radially outwards as can be seen experimentally and from the

local analysis (see ref [7], fig 3). Including the measured toroidal rotation 8kHz, the

minimum frequency is found to be 54kHz, if trapped background ions are included.

For n = 1,m = 2, the inclusion of energetic ions results in a small up-shift of the

local continuum whereas for n = 2,m = 4, an offset of 15kHz is found (see fig 4). As

mentioned in the previous section, this up-shift is due to the ω∗p contribution of the EPs

that depends on the poloidal mode number m. It has to be noted that for this local

analysis the orbit widths of the EPs is neglected. That means that their contribution is

overestimated. But since the bulk of the EPs is mainly passing (thin radial orbits) this

error is not very large. Adding n · 8kHz of rotation, one finds a frequency separation of

17kHz between the n = 2 mode (75kHz) and the n = 1 mode (58kHz) that is close to

the experimentally observed value of 20kHz (see fig 2).

In fig 5 the global solution for the n = 1 case is plotted. The mode exists just below the

minimum of the continuum f = 53.5kHz, even without energetic particles. At a later

time-point, when the magnetic shear at the minimum of the continuum accumulation

point increases (all other parameters are kept constant), no global solution can be found.

This demonstrates that only weak shear s = rq′/q < 0.8 allows the mode to exist and

it disappears when it moves radially outwards. The damping γ/ω = −2.0% is mainly

radiative damping and some ion Landau damping, as can be seen when the radial electric

field is plotted (see fig 5). However, since φ and ψ are almost equal, the polarisation of

the mode is mainly Alfvénic.

Comparing this mode to the experimental ECE mode structure (fig. 2) one finds

that the radial mode width as calculated with LIGKA (w/o EPs) is slightly smaller.

Now the drive mechanism is investigated. Analysing the resonance condition ω−nωprec−



NBI-driven Alfvénic modes at ASDEX Upgrade 9

ASDEX Upgrade

12th IAEA TCM on Energetic Particles, Austin, September 2011

  kinetic continuum at mode onset

n=1 mode just below continuum - steady state, ‘non-EP’ solutions possible!

n=1 mode
q=2

n=1 
continuum 
without 
trapped 
background 
particles
n=1 
continuum 
with trapped 
particles

!"#

$

$"$

$"%

$"&

$"#

'

'"$

'"%

'"&

( ("! ("$ ("' ("% (") ("& ("* ("#

+,
-.
/0
123

.4/5-/2

!"

#"

$"

%"

&"

'"

("

)""

))"

)*"

" "+) "+* "+! "+# "+$ "+% "+& "+'

,-
./
0-1
21
3.
0-.
44
5
26
,7

89

:;3<=3>
!"

!!

#"

#!

$"

$!

%"

%!

"&' "&'! "&( "&(! "&) "&)! "&! "&!! "&#

*+
,-
.+/
0/
1,
.+,
22
3
04
*5

67

8

,9:0;<10=>

,9'0;<10=>

,9:0;0=>

,9'0;0=>

ρpol

circulating particles
 only

circulating and 
trapped particles

ρpol

Figure 4. local kinetic continuum for 25506 at 0.47s: left the effect of trapped

background particles; right: the inclusion of EPs in a local approximation shifts the

spectra

Figure 5. mode structures (n = 1) : real part of the electrostatic potential φ (left),

imaginary part i.e. phase shift of φ (middle) and electric field φ − ψ ∼ E‖ (right).

The stable BAE is shown (solid red) as well as the unstable BAE with an isotropic

distribution function (dotted blue) and the NBI-driven BAE (dashed magenta). Note

that the real part of the eigenfunctions is scaled to unity, whereas the imaginary part

and the difference φ − ψ ∼ E‖ do not contain further scaling factors. Since φ − ψ is

much smaller than φ or ψ itself, the mode is called mainly Alfvénic.

(nq−m+k)ωt = 0 at %pol = 0.45, one finds (see fig 6) that the principle resonances occur

for the fundamental harmonics (k = 1, 2) of the transit frequency ωt. The precessional

resonances do not play a significant role since ωprec � ω in the whole velocity space

and in particular for passing NBI ions (see fig. 7). The fraction of trapped NBI ions is

very small at %pol = 0.45 and is therefore not plotted in fig. 6. The NBI destabilisation

mechanism can be directly analysed, if the expressions (2) and (3) that are proportional

to δW are plotted as a function of %pol. In fig. 6, the sum of the circulating and trapped

coefficients (eqn 2 and 3) for φ are plotted, neglecting the radial structure of φ in order

to demonstrate the effect of the EP distribution function alone: both the isotropic

and the NBI distribution function of fig. 3 (right) have a positive, i.e. destabilising

imaginary part. The total βfast was kept constant and only the distribution function in
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Figure 7. precession frequency of passing and trapped deuterium ions (NBI) at

%pol = 0.45: the frequencies are too low (max 35kHz) to drive the observed BAE

modes via the precessional resonance

the coordinate λ was changed. For the NBI case, the drive is much stronger since there

is a maximum in the distribution function at the main resonances around λ = 0.6 and

therefore Λ = (1− λ2) ∗B0/B ≈ 0.7.

The influence of the EPs on the n = 1 mode structure is shown in figure 5: the radial

mode structure becomes slightly broader (left) and the phase shift (middle) increases

(anti-symmetrically) around the mode peak location. The parallel electric field that is

a measure for the damping (w/o EPs) or a measure for the mode drive i.e. the inverse

Landau damping (w EPs) is shown on the right of fig. 5. The damping occurs at

the position of the mode and is therefore local. Consequently, the damping must be a

combination of radiative damping (the mode is close to the continuum) and ion Landau

damping ( ω ∼ 1, 2, .. ·ωtransit for background ions in the Maxwell tail). The continuum

damping at %pol = 0.7 is very small.The drive with a different sign than the damping

occurs also locally but is maximal in the steepest gradient region (%pol = 0.35) as shown

in fig. 3.
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Figure 8. 2d mode structures(n = 1) : on the left LIGKA (φ ∼ δTe), on the right the

ECEI data (see also fig 2)

The damped mode γ/ω = −2.0% becomes unstable, γ/ω = 0.9% for an isotropic

distribution function and γ/ω = 2.1% for the NBI distribution function. The real

mode frequency shifts from 53 kHz to 54kHz (isotropic) and 55.5kHz (NBI). The 2d

mode structure of the anisotropic NBI driven mode (dashed magenta in figure 5) is very

similar to the experimental one (fig. 8, right).

The n = 2 mode can only be found in the anisotropic case at a frequency of 76kHz, i.e.

in the kinetic continuum. As can be seen experimentally (fig. 2) the mode stops to exist

after t = 0.47s i.e. at t = 0.45s the mode existence criteria become already marginal

and therefore no detailed investigation as for the n = 1 mode could be carried out.

5. Conclusions

In plasmas with weak reversed shear, electromagnetic NBI-driven modes at the

BAE/GAM frequency were observed at ASDEX Upgrade. Using a linear gyrokinetic

model the local continuum and the global self-consistent eigenfunctions were determined.

Both, the mode frequencies and the mode structure are in reasonable agreement with

the experimental findings. The existence of global modes below the minimum of the

kinetic continuum was demonstrated for small shear.

The observed modes cannot be precessional fishbones or double tearing modes for the

following reasons: 1. The precessional frequency of the EPs is not large enough to drive

the mode at that large frequency ( 60kHz). 2. The mode structures are rings moving

radially outwards. 3. The frequencies of the n = 1 and n = 2 modes are very similar and

are not higher harmonics (as it would be the case for fishbones). 4. In other discharges

[37] transitions from steady state to bursting and vice versa were observed.

A very important result of this paper is that the mode structure of the bursting modes

does not seem to be substantially different from the linear gyrokinetic solution. Although

further cases with different mode numbers and different EP drive will have to be

analysed, so far, both the radial envelope and the phase shift match quite accurately.
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Figure 9. time traces of #25506 for central Te, line averaged ne, NBI power and the

current ramp Ip.

This gives some confidence that non-linear hybrid models with a slowly evolving mode

structure but full EP dynamics in velocity space will be able to capture the main features

of non-linear EP transport.

Another important future research area is the role of these modes in reversed shear

scenarios at ITER (scenario 4): since the BAEs are located closer to the plasma edge

than RSAEs they might be more efficient in expelling EPs (as it is seen at ASDEX

Upgrade), especially in the non-linear bursting phase.

6. Appendix

am,k =
1

τt

∫ τt/2

−τt/2
dt̂ei[Smθ−(k+Sm)ωt t̂]

aGkm =
1

τb,t

∫ τb,t/2

−τb,t/2
dt̂
ωd(r, θ)

ω̄d(r)
ei[Smθ−(k+Sm)ωt t̂]

Km,p,k =
1

2π

∫ π

−π

dθ

b(r, θ)
√

1− Λ/b(r, θ)
e−i[Spθ−(k+Sm)ωt t̂(θ)] (4)

where t̂ is the time since the particle passed through a reference point on its orbit e.g.

the outboard midplane. Furthermore, b(r, θ) = B0/B(r, θ), Sp = nq − p and ω̄D is the

orbit averaged precession drift. Here, p is the ’mode’ number of the projection operator

eipθ that is needed to construct the weak form of the integral expressions. For further

details refer to reference [23].
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