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Abstract

The linear dynamics of zonal flows is addressed in stellarator geometry in the presence of an

ambient (neoclassical) radial electric field. Global gyrokinetic particle-in-cell simulations are used

to study the properties of the residual flow and its dependence on the plasma parameters and

magnetic geometry. Properties of the zonal flow are compared in different magnetic geometries.

∗ alexey.mishchenko@ipp.mpg.de

1



I. INTRODUCTION

Zonal flows are E × B flows caused by a radially varying electrostatic potential φ(r, t)

driven nonlinearly by microturbulence. They play an important role in the physics of anoma-

lous transport [1]. Zonal flows are of importance in tokamaks since the anomalous contri-

bution to transport is dominant there. In stellarators, the neoclassical transport (caused

by stellarator-specific locally-trapped particles) is significant, too. Since the early 1980s,

a range of approaches to the optimization of the stellarator geometry has been developed

[2, 3]. One of the main goals of this optimization has been a reduction of the neoclassical

transport. As a result, interest has also arisen to understand and, hopefully, reduce (through

some optimisation procedure) the turbulent transport [4]. In tokamaks, it is known that the

electric field associated with zonal flows is partially shielded due to the finite banana-orbit

width of the particles (the so-called Rosenbluth-Hinton shielding [5]). It can be important

to know how large the residual flow is because, to some extent, this flow indirectly indicates

how effectively the turbulence can be suppressed by zonal flows. It is therefore of interest

to study how the magnetic geometry affects the level of the residual zonal flow [6, 7].

In stellarator geometry, the Rosenbluth-Hinton shielding has been studied by Sugama

and Watanabe in Ref. [8], who found that the residual zonal flow response is strongly re-

duced compared with the tokamak case. This reduction is associated with an additional

shielding caused by the radial drift of locally-trapped particles (both ions and electrons). It

has been suggested that the neoclassical optimisation may have an effect on the anomalous

turbulent transport through an optimisation of the drift orbits. Indeed, it has been experi-

mentally observed in the heliotron Large Helical Device [9] (LHD) that not only neoclassical

but also anomalous transport is reduced by an inward shift of the magnetic axis. This

decreases the radial drift of helically-trapped particles but also increases the unfavorable

magnetic curvature which destabilizes pressure-gradient-driven instabilities such as the Ion-

Temperature-Gradient driven (ITG) modes (see Ref. [10] and the papers referenced therein).

It was argued that the larger linear growth rates of ITG modes in the LHD configuration

with an inward shift of the magnetic axis can be compensated by more effective turbulence

suppression through larger zonal flows. This effect of the drift optimisation in LHD on

microturbulence was studied numerically with a flux-tube Eulerian code GKV [8, 11].

In Refs. [12, 13], the initial zonal-flow problem was solved using Laplace transformation,
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and it was found that the linear zonal flow response is oscillatory in stellarator geometry (in

contrast to tokamaks). These oscillations are caused by the bounce-averaged radial drift mo-

tion of the locally-trapped particles [12]. They are damped by a Landau damping mechanism

since the radial drift depends on the particle energy, which varies over the trapped-particle

population, thus producing phase mixing [13]. In addition to the damped oscillations, the

linear zonal-flow response contains an algebraically-damped component and a residual flow

(studied in Refs. [8] and [13]). The zonal flow oscillations have been observed numerically

both in global particle-in-cell (PIC) simulations using the EUTERPE code [13, 14] and in

flux-tube Eulerian simulations using the GENE code [13, 15]. They appear to be more pro-

nounced in optimised configuration such as the Wendelstein 7-X (W7-X) [16] whereas their

damping is rather strong in a more “classical” heliotron (such as the LHD device).

In Ref. [17], the effect of the neoclassical electric field (needed in order to satisfy the

ambipolarity condition in non-symmetric plasmas) on the residual zonal flow was considered.

It was found that, in contrast to tokamaks, the residual level is strongly affected (increased)

by the ambient electric field. A similar conclusion was drawn in Ref. [18] using an action-

angle formalism. A more favourable ion-mass dependence than the conventional gyro-Bohm

scaling of the zonal-flow response has been found in Ref. [17], and collisionless detrapping

(producing so-called transitioning particles) was included in the theory. Numerically, the

role of the ambient electric field was studied with the poloidally-global (but local in the

radial direction) Eulerian code GKV in the LHD magnetic field [17, 19, 20]. The fully-

global EUTERPE code has been implemented [14] in the magnetic fields of W7-X, LHD

and Helically Symmetric Experiment (HSX).

In the present paper, we extend the analytical approach of Ref. [17] to include the tran-

sient dynamics (the zonal flow oscillations). For the numerical simulations, we employ the

fully-global (both in the poloidal and radial directions) gyrokinetic particle-in-cell code EU-

TERPE [14, 21]. As has been observed in Refs. [13, 15], zonal flow properties can strongly

depend on the magnetic configuration when the ambient electric field is assumed to vanish.

Here, we study (numerically) which effect the magnetic geometry has on the zonal flow if

the ambient (neoclassical) radial electric field is finite. Using EUTERPE, we compare linear

zonal flow properties in two distinct stellarator configurations: LHD, which can be con-

sidered as a close relative to the classical stellarator configuration, and the drift-optimized

stellarator Wendelstein 7-X [16] (W7-X). By comparing these configurations, the effect of
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the ambient electric field on the zonal flow properties (such as the asymptotic residual level)

and on the transient dynamics (e. g. the zonal-flow oscillation frequency and the damping

rate) are considered. The role of the neoclassical electric field profile (shear etc) is also

addressed.

The structure of the paper is as follows. In Sec. II, basic equations are presented and

the zonal flow response is derived. In Sec. III, the gyrokinetic code EUTERPE is employed

to perform simulations in the stellarator configurations mentioned above. The simulation

results are discussed and conclusions are drawn in Sec. IV.

II. THEORY

A. Zonal-flow gyrokinetic equation in Boozer coordinates

An elaborate theory of the residual zonal flows in helical systems with radial electric

fields has been developed by Sugama and Watanabe in Ref. [17] using a multiple-helicity

model of the magnetic field. An alternative approach based on the action-angle formalism

was suggested by Mynick and Boozer [18]. Here, we derive the linear zonal flow response

for general non-axisymmetric magnetic field using Boozer coordinates. In addition to the

residual flow properties studied in Refs. [17, 18], we also consider transient dynamics (the

zonal flow oscillations and damping).

The magnetic field B in Boozer coordinates can be written as follows [22, 23]:

B = ∇ψ ×∇α = I∇ζ + β̃∇ψ (1)

Here, ψ = ψ0s is the toroidal flux with ψ0 being the toroidal flux at the plasma edge

and s the flux-surface label, α is a field-line label, ζ =
∫
B/I dl is the coordinate along

the field line (integration is performed along this line), and I = I(ψ). We consider a

stellarator plasma with the equilibrium magnetic field B, an ambient electrostatic potential

Φ(s) (e.g. of neoclassical origin) and a self-consistent zonal-flow potential φ(s, t) (we neglect

the sidebands). Any effects of the plasma pressure profile are neglected (the pressure is

taken to be flat) as are electromagnetic effects. Then, the linearized gyrokinetic equation

can be written as follows:

∂f1
∂t

+ v‖∇‖f1 + vd · ∇f1 + uE · ∇f1 = − f0 vd · ∇〈φ̂〉 , φ̂ =
eφ

T
(2)
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Here, f1 is the perturbed distribution function, f0 is assumed to be Maxwellian, 〈φ̂〉 is

the gyro-averaged normalized perturbed potential, v‖ = v · B/B is the parallel particle

velocity, vd = ρ‖∇× (v‖B/B) is the magnetic drift velocity, ρ‖ = mv‖/(eB) is the “parallel

gyroradius” and uE = B × ∇Φ/B2 is the E × B velocity associated with the background

electric field. The unperturbed particle energy ǫ = mv2/2 + eΦ is used as an independent

variable. The gyrokinetic equation is to be solved with the initial condition f1(t = 0) 6= 0

and φ(t = 0) = 0. Physically, it means that we study the response of the plasma to an initial

density perturbation. Substituting Eq. (1), the kinetic equation can be written in the form

(see Ref. [23]):

∂h

∂t
+
v‖B

I

∂h

∂ζ
+

(
ΩE − v‖B

ψ0

∂ρ‖
∂s

)
∂h

∂α
+
v‖B

ψ0

∂ρ‖
∂α

∂h

∂s
=
∂〈φ̂〉
∂t

(3)

where h = f1 + f0 〈φ̂〉 and ΩE = Φ′/ψ0.

B. Effect of the shearless ambient electric field on zonal-flow dynamics

We assume that the zonal-flow radial scale is much smaller than the plasma minor radius

and neglect the shear of the ambient radial electric field (shearless profile). In this case,

an eikonal approximation can be employed in the radial direction [i. e. we assume h =

hk exp(i
∫
krdr) and φ̂ = φk exp(i

∫
krdr)]. Then, one can write the kinetic equation to the

lowest order in 1/(krra) (here ra is the minor radius) as follows:

∂hk
∂t

+
v‖B

I

∂hk
∂ζ

+

(
ΩE − v‖B

ψ0

∂ρ‖
∂s

)
∂hk
∂α

+ iωrhk =
∂φk

∂t
J0g (4)

Here, J0g = J0(krρs) is the gyro-average in the eikonal representation (with ρs the particle

gyroradius), ωr = krvr with vr = (v‖B/ψ0) ∂ρ‖/∂α the radial drift velocity and kr the

radial wave number. The bounce-average operation in Boozer coordinates can be defined as

follows:

〈Q〉b = ω̂b

∮
Q

I

v‖B
dζ , ω̂b =

(∮
I

v‖B
dζ

)−1

(5)

Iψ0 = B2√g , 1√
g
= (∇sV ×∇α) · ∇ζ (6)

Here, as usual, the integration is performed between the bounce points for the reflected

particles with well-defined bounce motion and over the entire flux surface for the passing

5



particles. The radial drift velocity can be split into a bounce-dependent part ṽr = v‖∇‖δr

and a bounce-averaged part 〈vr〉b = mω̂b/(eψ0) ∂J/∂α (which is non-zero for most locally-

trapped particles). Here, δr =
∫
l dl/v‖(vr − 〈vr〉b) represents the radial displacement of the

gyrocenter from the bounce-averaged radial position, J =
∮
v‖dl is the second adiabatic

invariant and dl = (I/B) dζ is the length element along the magnetic field line. In this

notation, the gyrokinetic equation takes the form:

∂ĥk
∂t

+
v‖B

I

∂ĥk
∂ζ

+
(
ΩE + ωα

) ∂ĥk
∂α

+ i 〈ωr〉bĥk =
∂φk

∂t
J0g exp(ikrδr) (7)

Here ĥk = hk exp(ikrδr) and ωα = − (v‖B/ψ0) ∂ρ‖/∂s, we have neglected ∂δr/∂α for

simplicity (although this neglect cannot rigorously be justified in general stellarator geom-

etry). In this section, we will also assume that the ambient electric field is strong enough

so that ωα can be neglected, too (compared with ΩE). The gyrokinetic equation coupled to

the quasineutrality equation describes the linear multiple time-scale dynamics of the radial

self-consistent electric field in stellarator geometry. The relevant time scales include the

bounce time ω̂b t ∼ 1, the radial drift time 〈ωr〉b t ∼ 1 and the poloidal E × B-drift time

ΩE t ∼ 1 (which can be larger or smaller than the magnetic drift time depending on the

Mach number M = uE/vthi with uE the E×B velocity and vthi the thermal speed of ions).

On the fastest bounce time scale (since the gyro-time scale is excluded from the gyrokinetic

equation), the Geodesic Acoustic Mode (GAM) dynamics occurs (corresponding to ω̂bt ∼ 1

but 〈ωr〉bt ≪ 1). This dynamics involves non-zonal components of the self-consistent po-

tential which are not considered here. As has been shown in Ref. [8], the GAM dynamics

in stellarators is qualitatively similar to that in tokamaks (the stellarator-specific drifts do

not alter the physics qualitatively on these fast time scales). Assuming the time scales of

interest to be much longer than the bounce time (this filters out the GAM oscillations [8]),

one can write the gyrokinetic equation to lowest order in 1/(ω̂bt) as follows [here we employ

the bounce-average in Eq. (7) and define J0b = 〈exp(ikrδr)〉b]:

∂ĥ
(0)
k

∂t
+ ΩE

∂ĥ
(0)
k

∂α
+ i 〈ωr〉bĥ(0)k =

∂φk

∂t
J0g J0b (8)

This equation (coupled to the quasineutrality equation) describes the slow ”residual” dy-

namics of the perturbed radial electric field. One way to solve Eq. (8) is to introduce the

following coordinate transformation:

η = α− ΩEt , τ = t (9)
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In these coordinates, the kinetic equation takes the form:

∂ĥ
(0)
k

∂τ
+ i〈ωr〉b(η, τ)ĥ(0)k =

∂φ̂

∂τ
J0g J0b (10)

The solution of this equation is straightforward:

ĥ
(0)
k = ĥ

(0)
k (τ = 0) +

τ∫

0

dτ ′
∂φk

∂τ ′
J0g J0b exp {i kr [∆r(τ

′)−∆r(τ)]} (11)

Here, ∆r(τ) =
τ∫
0
〈vr〉b(τ)dτ ′ is a radial width of the particle drift orbit. Obviously, in the

absence of the ambient radial electric field 〈vr〉b = const(τ) so that ∆r = 〈vr〉bτ . This results
in a qualitatively different dynamics of the self-consistent electrostatic potential [8, 13].

The solution of the kinetic equation has to be substituted into the quasineutrality condi-

tion. Assuming the electron response to be purely adiabatic and using the definition of the

non-adiabatic part of the perturbed ion distribution function h = f1 + f0 〈φ̂〉, we obtain the

quasinetrality equation in our notation as follows:

− n0φk +
〈 ∫

d3v hkf0J0g
〉(ions)

= 0 (12)

Here, the flux-surface average is defined as usual [the Jacobian
√
g has been defined in

Eq. (6)]:

〈Q〉 = 1

V ′

∫
Q
√
g dζdα , V ′ =

∫ √
g dζdα (13)

The resulting equation determines the evolution of the zonal flow potential. It has the form:

− n0φk + 〈k2rρ2i 〉n0φ0 +

τ∫

0

dτ ′
∂φk

∂τ ′

{
J2
0g J0bJ̄0b exp (ikr[∆r(τ

′)−∆r(τ)])
}
= 0 , (14)

Here, the phase-space average is {Q} = 〈∫ d3vf0Q〉 and J̄0b = 〈−exp(ikrδr)〉b. To include the
effect of the transitioning particles, one can modify this definition introducing probabilities

for a particle to be either trapped or passing (as it has been done in Ref. [17]). Here, we skip

this effect for simplicity. Also, we have employed the long-wavelength approximation in the

polarization density (krρi ≪ 1) and, as has already been mentioned, assumed the electron

response to be purely adiabatic. Clearly, in stellarator geometry there is also a non-adiabatic

electron contribution to the zonal-flow response (in contrast to the tokamak case) because the

width of the electron drift orbit∆r is comparable to the ion one [8, 11, 13]. However, inclusion

of the non-adiabatic electron part does not make any qualitative difference. In addition, the
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gyrokinetic simulations of the zonal flow response usually employ the adiabatic-electron

approximation (also in this paper). The initial condition for the perturbed ion distribution

function is chosen, as usual [8], so that the initial electrostatic field perturbation is shielded

by the classical polarization: f1i(τ = 0) = 〈k2rρ2i 〉f0 φ0.

To solve Eq. (14), we assume that the bounce-averaged drift velocity is given by the

simple expression 〈vr〉b = Vr(s, µ, v) sinα and neglect all other α-dependencies (here, µ

denotes the magnetic moment). Note that this approximation of the bounce-averaged radial

drift velocity is consistent with the magnetic field model used in the so-called σ-optimization

(see e. g. Ref. [24] for details). Then, the field-evolution equation takes the form:

− n0φk + 〈k2rρ2i 〉n0φ0 +

τ∫

0

dτ ′
∂φk

∂τ ′

{
J2
0g J0bJ̄0b J0

[
K(τ − τ ′) dr

]}
= 0 , (15)

where J0[K(τ)dr] is a Bessel function and

K(τ) = 2kr sin
(
ΩEτ

2

)
, dr = Vr/ΩE (16)

Note that the “averaging factors” (the Bessel functions) similar to Eq. (15) have appeared

also in Ref. [18] derived by Mynick and Boozer using the action-angle formalism.

In the long-wavelength approximation (assuming krρi, krδr, krdr ≪ 1), the equation for

the electrostatic potential has the form (here {δ̂2r} = {〈δ2r〉b − 〈δr〉2b} and {d̂2r} = {d2r/2}):
(
1 +

{δ̂2r}
〈ρ2i 〉

)
φk(t) +

{d̂2r}
〈ρ2i 〉

t∫

0

φk(t− τ) sin(ΩEτ) ΩE dτ = φ0 (17)

This equation is straightforward to solve using the Laplace transform. The solution is

φk(t)

φ0
=

1

R̂

[
1 +

d̂2

R̂− d̂2
cos(ωZF t)

]
(18)

with

R̂ = 1 +
{δ̂2r}
〈ρ2i 〉

+
{d̂2r}
〈ρ2i 〉

, d̂2 =
{d̂2r}
〈ρ2i 〉

, ωZF = ΩE

√√√√ R̂

R̂− d̂2
(19)

The resulting zonal flow represents oscillations around the residual level 1/R̂. This residual

level coincides with that derived by Sugama and Watanabe [17] when the transitioning orbits

are neglected (see the discussion below). The constant part of the residual flow increases

with the electric field (see [17] for a detailed discussion on the scalings), and so does the

frequency of the oscillations ωZF (it is proportional to ΩE), but the oscillation amplitude

8



decreases with the Mach number M = uE/vthi [through the dependence of d̂ on ΩE in

Eq. (18)]. It is interesting that the oscillations considered here show no damping. This

happens since we have assumed that the dominant part of the poloidal drift is due to the

E×B-motion which is independent of the particle velocity (hence, no phase mixing occurs

in velocity space). The situation would change if we included the poloidal magnetic drift

into the consideration. Note however, that Eq. (18) indicates that a phase mixing in real

space also possible if the ambient radial electric field and, hence, the zonal flow frequency

have a radial dependence ωZF = ωZF(s).

In Ref. [17], Sugama and Watanabe derived the expression for the residual zonal flow,

too. However, they solved the bounce-averaged kinetic equation (8) asymptotically assuming

ΩEt≫ 1. Their solution contains the zonal flow residual part but neglects (unsurprisingly)

the zonal-flow oscillations with the frequency close to ΩE . The zonal flow residual derived

by Sugama and Watanabe (see, for example, Eq. (33) in Ref. [17]) can be shown to coin-

cide with our result when the effects of the transitioning particles (collisionless detrapping)

are neglected (as we did in our derivation). Technically, it means a simple definition for

the poloidal average instead of the elaborated one (expressed in terms of the transition

probabilities) which has been employed in [17] (for a simple poloidal average, one can write

〈∆r〉po ∼
2π∫
0
Vr(α)dα = 0). Our expression for the residual part of the zonal flow [see Eq. (19)]

agrees also with that of Mynick and Boozer (see e. g. Eq. (16b) of Ref. [18]). The classi-

cal Rosenbluth-Hinton expression for the residual zonal flow in the tokamak limit follows

immediately from Eq. (19), too ({d̂2r} = 0 in this case).

C. Damping of zonal flow oscillations

Consider now the situation where the magnetic contribution to the poloidal drift of the

reflected (helically-trapped) particles is comparable to the E×B contribution. In contrast

to ΩE , the magnetic poloidal drift is related to ωα(v), which depends on the particle velocity

and, physically, it is natural to expect some kind of phase mixing (damping of the oscilla-

tions) resulting from this dependency. Formally, we cannot neglect ωα compared with ΩE

in Eq. (7). Hence, Eq. (8) must be replaced by

∂ĥ
(0)
k

∂t
+
(
ΩE +

〈
ωα

〉

b

) ∂ĥ(0)k

∂α
+ i 〈ωr〉bĥ(0)k =

∂φk

∂t
J0g J0b (20)
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Proceeding with the solution in the same way as in Sec. II B, we obtain the Laplace transform

of the electrostatic potential:

Φ(p) =
φ0

p

[
1 +

{δ̂2r}
〈ρ2i 〉

+ I(p)

]−1

(21)

with

I(p) =
2F ′

Tvth
V ′

√
π

∫
dθ
∫

dλτ̂b
d̄2r
〈ρ2i 〉

∞∫

0

x6(ΩE + ω̄αx
2)2 e−x2

dx

p2 + (ΩE + ω̄αx2)2
(22)

Note that the poloidal magnetic drift frequency is expressed as 〈ωα〉b = ω̄α x
2 where x = v/vth

and ω̄α > 0 is assumed (here, we neglect the α-dependent part of 〈ωα〉b). For convinience,

we now define a function G(p) as follows:

G(p) =

∞∫

0

N (p, x) dx , N (p, x) =
x6(ΩE + ω̄αx

2)2 e−x2

p2 + (ΩE + ω̄αx2)2
(23)

In this notation, Eq. (22) takes the form:

I(p) =
2F ′

Tvth
V ′

√
π

∫
dθ
∫

dλτ̂b
d̄2r
〈ρ2i 〉

G(p) (24)

Note that in the complex x-plane, the function N (p, x) defined in Eq. (23) has four poles:

x1,2 = ±i
(
ΩE + ip

ω̄α

)1/2

; x3,4 = ±i
(
ΩE − ip

ω̄α

)1/2

(25)

The inverse Laplace transform (here a > 0 is a positive real number)

φ(t) =
1

2πi

i∞+a∫

−i∞+a

Φ(p) eptdp (26)

is to be taken along the contour shown in Fig. 1. Since this integral can hardly be evaluated

analytcally, we deform the contour as shown in Fig. 2 (this manipulation is in the spirit

of Landau damping derivation and has already been used for zonal flows in Ref. [13]).

Singularities of Φ(p) in the complex plane include the simple pole in p = 0 (defining the

residual flow) and the singularities related to the poles of the function N (p, x) defined

in Eq. (23). In contrast to the usual Landau damping problem, the poles Eq. (25) are

proportional to (p± iΩE)
1/2 instead of p. Hence, the poles of N (p, x) in the complex x-plane

generate branch points at p = ±iΩE as singularities of Φ(p) in the complex p-plane when

shifting the inverse Laplace transform integration contour to the left as shown in Fig. 2.

Mathematically, the presence of these branch points causes damped/oscillatory behavior

of linear zonal flows in non-axisymmetric geometry. In order to see why, we note that an

10



analytic continutation for the functions G(p) and, consequently, I(p) is needed when the

Laplace integration contour (Fig. 1) is deformed. This analytic continuation is non-trivial

only when a pole of N (p, x) [see Eq. (25)] crosses the positive half of the real axis in the

complex x-plane when the integration contour in the complex p-plane is shifted to the left

(as shown in Fig. 2). One can show that for the upper cut, such a crossing happens only on

the upper branch. For the lower cut, only the lower branch is involved (the corresponding

integration contours both in the complex p-plane and the complex x-plane are shown in

Figs. 3, 4 and 5).

Thus, for the upper branch of the upper cut one can write:

G(p) = Ĝ(p) +
π

4
p̂5/2u exp(ip̂u + iπ/4)

(
ΩE

ω̄α
− ip̂u

)
, p̂u =

p− iΩE

ω̄α
, arg(p̂u) = π (27)

Here, the quantitiy Ĝ(p) is defined below in Eq. (29). The pole in the velocity integrals that

is to be taken into account during the analytical continuation is x2 = p̂1/2u exp(− iπ/4). On

the lower branch of the lower cut, one obtains:

G(p) = Ĝ(p)+
π

4
p̂
5/2
l exp(−ip̂l−iπ/4)

(
ΩE

ω̄α
− ip̂l

)
, p̂l =

p+ iΩE

ω̄α
, arg(p̂l) = −π (28)

Here, the corresponding pole on the complex velocity plane is x3 = p̂
1/2
l exp(iπ/4). Oth-

erwise (for the lower branch of the upper cut and the upper branch of the lower cut), the

analytic continuation is trivial:

G(p) = Ĝ(p) = P.V.

∞∫

0

x6(ΩE + ω̄αx
2)2 e−x2

dx

p2 + (ΩE + ω̄αx2)2
(29)

Substituting the analytic continuation of G(p) into Eq. (23) and performing the inverse

Laplace transform along the deformed integration contour (shown in Fig. 2), one obtains for

large times ΩE t > 1:

φ(t)

φ(t = 0)
=

(
1 +

{δ̂2r}
〈ρ2i 〉

+
{d̂2r}
〈ρ2i 〉

)−1 [
1 +

c1
t7/2

sin(ΩEt+ π/4)
]

(30)

Here, the Watson Lemma has been used to compute the integral along the branch cut (small

values of p̂u and p̂l give the dominant contribution).

One sees that the zonal flow evolution includes a constant residual and an oscillatory

algebraically-damped parts. The oscillation frequency coincides with the frequency of the
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E×B rotation. The quantity c1 depends on the magnetic configuration and on the ambient

magnetic field:

c1 =

[
1 +

{δ̂2r}
〈ρ2i 〉

+ Î0

]−2 ({δ̂2r}
〈ρ2i 〉

+ Î0

)
F ′
Tvth

2V ′
√
π

∫
dθ
∫

dλτ̂b
d̄2r
〈ρ2i 〉

Γ(7/2)

ω̄
7/2
α

(31)

Î0 =
2F ′

Tvth
V ′

√
π

∫
dθ
∫
dλτ̂b

d̄2r
〈ρ2i 〉

∞∫

0

x6(ΩE + ω̄αx
2)2 e−x2

dx

ω̄α(2ΩE + ω̄αx2)
(32)

Depending on the quantity c1 (or, more precisely, on the ratio between ΩE and ω̄α), the ZF

oscillations may seem almost undamped (this is the case for vanishingly small ω̄α considered

in the previous section) or heavily damped, since the power of the algebraic damping is

rather large (φ ∼ t−7/2). One can speculate that different magnetic configurations may

show rather disparate zonal flow responses, depending on the magnetic field optimization

(which usually reduces the magnetic drift velocity).

III. SIMULATIONS

In this section, global gyrokinetic simulations using a global particle-in-cell code EU-

TERPE [14, 21] will be presented. The purpose of these simulations will be to confirm (at

least qualitatively) and extend our analytical findings from the previous Section. Before

proceeding with numerics, let us summarize our analytical findings:

1. The linear zonal flow response consists of a constant (residual) and an oscillatory parts.

2. The residual part increases with the ambient radial electric field (this is consistent

with Ref. [17]).

3. The residual level does not depend on the perpendicular wave number if the ambient

electric field is finite (also discussed in Ref. [17]).

4. The frequency of the oscillations is close to the frequency of the poloidal E ×B drift

motion.

5. The amplitude of the oscillations decreases with the ambient electric field.

6. The oscillations are essentially undamped when the magnetic contribution to the

poloidal drift is negligible compared with ΩE (no phase mixing in velocity space).
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This case occurs in W7-X (details will be discussed in this Section). The oscillations

are heavily damped when the magnetic poloidal drift frequency is comparable to the

E×B contribution (strong phase mixing in velocity space). This situation appears to

be typical for the LHD configuration with the major radius R0 = 3.75 m (see below).

7. A phase mixing in the real space is also possible (although not yet explicitely consid-

ered) since the oscillation frequency can be a strong function of the radial coordinate

(if the shear of the ambient electric field is large enough).

Now, consider the standard W7-X geometry [16]. The plasma temperature and density

profiles are assumed to be flat, the electrons are adiabatic, only the electrostatic part φ of

the perturbation is considered. As an initial condition for the ion perturbed distribution

function, we employ δfi(t = 0) ∼ cos(πρ2/2) with ρ =
√
ψ/ψ0 (recall that ψ is the toroidal

flux). We are interested in the self-consistent response of the gyrokinetic non-axisymmetric

plasma in the presence of a constant ambient radial electric field corresponding to ΩE/ωci =

3.996 × 10−5 (here ωci is the ion cyclotron frequency). The resulting radial profile of the

electrostatic potential (corresponding to the end of the simulation) is shown in Fig. 6. One

can see that it resembles, essentially, the initial cosine profile. The time evolution of φ′ =

∂φ/∂s at different radial positions is shown in Fig. 7. One can see some GAMs at the very

beginning (note that GAMs are very weak in W7-X, see also Refs. [13, 14]). At later times,

a low-frequency almost undamped mode is observed. The frequency of this mode is close

to ΩE , in agreement with the analytical indications mentioned above. It is striking how the

plasma oscillates with the same frequency at all radial locations. Of course, this is related

to the flat profile of the ambient electric field chosen in this simulation.

It is interesting to study how the zonal flow evolution changes when the ambient electric

field increases. This is shown in Fig. 8, where the evolution of φ′ at the same radial location

is plotted for different Mach numbers M = uE/vthi. Here, one can see that the residual

level, the oscillation frequency and the oscillation amplitude – all change (as expected).

The change in the residual is shown in Fig. 9 (this result is consistent with Ref. [17]). The

dependence of the frequency is plotted in Fig. 10. Again, it is striking how robustly the

simulations reproduce ωZF ≈ ΩE for the magnetic configuration considered.

Now, let us consider how the zonal flow depends on the radial wave number. Strictly

speaking, there is no explicit radial wave number in global simulations. We can, however,
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initialize the perturbed ion distribution functions with various characteristic radial scales.

Thus, we choose δf(t = 0) ∼ cos(kψ/ψ0) and compare the k-dependence for cases with small

Mach number (corresponding to ΩE/ωci = 0.8×10−5 or, equivalently, uE/vthi = 0.0036) and

“moderate” Mach number (here ΩE/ωci = 4 × 10−5 and uE/vthi = 0.018). The evolution

in the moderate-Mach-number case is shown in Fig. 11 and the global radial profiles of

the perturbed electrostatic potential in Fig. 12. One sees that, despite a rather strong

difference in the radial structure, the zonal flows evolution is similar for small k = 2 and

“large” k = 5 “wave numbers”. This is in accordance both with our expectations and with

results of Ref. [17]. The situation is quite different if the Mach number becomes very small.

In this case, the evolution is shown in Fig. 13 and the radial profiles of φ are plotted in

Fig. 14. One sees an obvious sensitivity of the zonal flow to the characteristic radial scale

of the perturbation at small/vanishing ambient radial electric field. This is consistent with

findings of Refs. [8, 13].

In all simulations shown above we have assumed the ambient electric field to be constant

(flat). What will happen, however, if we relax this limitation? The answer is shown in

Fig. 15. Here, the zonal flow evolution at the Mach number uE/vthi = 0.018 is compared

for the ambient radial electric field profiles shown in Fig. 16 (one profile is flat, another is

proportional to the toroidal flux). One sees that the non-oscillatory part remains almost

unchanged, in contrast to the zonal flow oscillations, which are strongly damped. The nature

of this damping is indicated in Eq. (18). Since φ ∼ cos(ωZF t) with ωZF ≈ ΩE(s), it is clear

that a phase mixing can occur in real space if the ambient electric field has a finite shear. The

associated damping mechanism is reminiscent of the well-known continuum damping of the

shear Alfvén waves [25–27]. An appropriate analytical treatment of this problem must start

from the initial-value formulation and involve solution of an inhomogeneous boundary-value

problem. We do not consider it here.

Finally, let us consider which effect the magnetic geometry can have on the zonal flow

evolution. All the results above were obtained in the magnetic field of W7-X, which is

drift-optimized. Now, we perform our simulations in a more “classical” heliotron magnetic

geometry (similar to the LHD configuration with the major radius R0 = 3.75 m). The results

are shown in Fig. 17. Here, the zonal flow evolution at different radial positions is shown for

the Mach number uE/vthi = 0.025 (flat profile). Again we can see GAMs (which are quite

strong in LHD). The zonal flow oscillation mode, however, can hardly be seen (although
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it is present and has properties similar to what have been observed in the standard W7-X

geometry [13, 14]). A possible explanation for this difference is due to the bounce-averaged

poloidal magnetic drift frequency, which is larger in a conventional stellarator geometry

compared to the drift-optimized configurations [3]. As a result, the algebraic damping of

the zonal flow mode dominates its evoulution. The residual level is also clearly smaller in

conventional stellarator/heliotron geometry than it is in optimized geometries [this can be

seen from Eq. (18) noting that dr ∼ Vr/ΩE ].

IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the effect of the radial electric field on the zonal flow (linear

collisionless dynamics) in stellarator geometry. A radial neoclassical electric field is always

present in stellarators because the neoclassical transport is not automatically ambipolar in

non-axisymmetric magnetic field [28]. Thus, studying the effect of this field on the residual

zonal flow should have a practical relevance. Note that there are, in principle, certain means

to affect the neoclassical electric field (and, consequently, the zonal flow) in experiments (for

example, applying Electron Cyclotron Heating in the plasma center etc).

Two different configurations have been considered representing distinct types of the stel-

larator design: a heliotron configuration and the drift-optimized geometry of W7-X. Simi-

larly to Refs. [14, 17, 18], we have found that the ambient radial electric field strongly affects

the residual level, which increases with the electric field. This phenomenon is caused by the

reduction of the poloidal-drift orbit width with increasing radial electric field. Clearly, the

effect depends on the magnetic drift velocity and, hence, can strongly be affected by the

magnetic geometry, what indeed has been observed in our simulations: the residual in the

drift-optimized W7-X was larger than in LHD at similar ambient electric fields. Another

difference between zonal flows in these devices is the transient dynamics (the zonal flow

oscillations), which is clearly observed in W7-X (and may be important since the associated

time scales can be comparable to the nonlinear correlation time). In LHD, this transient

dynamics is strongly damped, which may also be caused by the larger magnetic drift velocity

there.

In our simulations, we have seen that the profile of the ambient electric field (its shear)

is important for the zonal-flow evolution, too. Finite shear causes continuum damping of
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the zonal flow oscillations (but does not strongly affect the residual). Global simulations are

probably needed to observe such an effect. This dependence on the electric field profile is

interesting since a variety of profiles are possible for neoclassical electric fields in stellarators

(depending on plasma properties, e. g. the pressure profile, collisional regimes etc). Note that

also direction of the radial electric field will influence the zonal flow response. Physically, it

determines the direction of the poloidal E×B drift which can either be in the direction of

the magnetic drift or in the opposite one. This effect has been discussed in Ref. [17]. It has

also been observed numerically in our simulations (not shown here).

Concluding, the linear zonal flow dynamics in non-axisymmetric geometry is considerably

more complicated than it is in tokamaks. The details of this dynamics depend strongly on

the particular stellarator type considered. In addition to the asymptotic residual level,

transient effects such as zonal-flow oscillations may be of practical importance unless they

are strongly damped as is the case in LHD. The neoclassical electric field is an important

control parameter which can substantially affect the zonal flow physics in stellarators. In

addition, collisional and, of course, nonlinear phenomena are of importance on the time

scales considered (e. g. transient times). The associated physics remains to be studied.

In the outlook, we believe that the quantitative numerical study of the zonal flows in

stellarators must be supported by numerical benchmarks between different gyrokinetic

codes capable to simulate them in the global or full-surface non-axisymmetric geometry.

Such a benchmark has already been successfully undertaken in Ref. [15] in the stellarator

flux-tube geometry (GKV results [8] have been compared with GENE). A global-geometry

(or full-surface) benchmark has been beyond the scope of the present paper but it is an

important piece of work for the next step. We believe that both the understanding of the

zonal flow physics and the associated numerical framework would benefit from this effort.
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FIG. 1: (Color online): Initial integration contour in the Laplace transform.
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FIG. 2: (Color online): Deformed integration contour in the Laplace transform.
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FIG. 3: (Color online): Lower cut in the inverse Laplace transform integration contour.
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continuation on the upper branch of the lower cut in the inverse Laplace transform.
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FIG. 5: (Color online): Integration contour in the velocity space corresponding to the analytic

continuation on the lower branch of the lower cut in the inverse Laplace transform.

23



0 0.2 0.4 0.6 0.8 1
ρ  (sqrt toroidal flux)

0

0.2

0.4

0.6

0.8

1

G
lo

ba
l p

er
tu

rb
ed

 p
ot

en
tia

l  
 |φ

|

n = -1, m = 0
n, m = 0
n = 0, m = 1
n = 2, m = 2

FIG. 6: (Color online): Global radial profile of the perturbed electrostatic potential. One sees that

the zonal component is dominant.
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FIG. 7: (Color online): Time evolution of ∂φ/∂s (zonal component) at different flux surfaces.

25



0 50000 1e+05 1.5e+05 2e+05
time (ion cyclotron units)

-0.2

0

0.2

0.4

0.6

0.8

1

dφ
 / 

ds

ΩE/ωci = 0.8 x 10
-5

ΩE/ωci = 1.6 x 10
-5

ΩE/ωci = 2.4 x 10
-5

ΩE/ωci = 3.2 x 10
-5

ΩE/ωci = 4.0 x 10
-5

ZF at position s = 0.55

FIG. 8: (Color online): Zonal flow evolution pattern at the same radial position as a function of

the ambient electric field.
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FIG. 9: (Color online): Zonal flow residual as a function of the ambient electric field.
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FIG. 10: (Color online): Zonal flow frequency as a function of the ambient electric field.
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FIG. 11: (Color online): Zonal flow evolution at “moderate” Mach number does not depend on

the “radial wave number”.
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FIG. 12: (Color online): Global radial profiles of the perturbed electrostatic potential for different

“radial wave numbers” at moderate ΩE.
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FIG. 13: (Color online): Zonal flow evolution at small Mach number is sensitive with respect to

the “radial wave number”.
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FIG. 14: (Color online): Global radial profiles of the perturbed electrostatic potential for different

“radial wave numbers” at small ΩE.
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FIG. 15: (Color online): Zonal flow evolution; flat ambient electric field profile case compared to

evolution employing profile with finite shear (see Fig. 16).
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FIG. 16: (Color online): Ambient radial electric field profiles used for simulations shown in Fig. 15.
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FIG. 17: (Color online): Zonal flow evolution in LHD at the Mach number uE/vthi = 0.025.
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