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Abstract 

Samples prepared from polycrystalline ITER-grade tungsten were damaged by irradiation 

with 20 MeV W ions at room temperature to a fluence of 1.41018 W/m2. Due to the irradiation, 

displacement damage peaked near the end-of-range, 1.35 μm beneath the surface, at 0.89 

displacements per atom. The damaged as well as undamaged W samples were then exposed to 

low-energy, high-flux (1022 D/m2s) pure D and helium-seeded D plasmas to an ion fluence of 

31026 D/m2 at various temperatures. Trapping of deuterium was examined by the D(3He,p)4He 

nuclear reaction at 3He energies varied from 0.69 to 4.0 MeV allowing determination of the D 

concentration at depths up to 6 μm. It has been found that (i) addition of 5% helium ions into the 

D plasma at exposure temperatures of 440-650 K significantly reduces the D concentration at 

depths of 0.5-6 µm compared to that for the pure plasma exposure; (ii) generation of the W-ion-

induced displacement damage significantly increases the D concentration at depths up to 2 µm 

(i.e., in the damage zone) under following exposure both to the pure D and D-He plasmas. 
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1. Introduction 

Due to its favorable physical properties, such as low erosion yield and high melting 

temperature, tungsten (W) is employed as a candidate material for plasma-facing high heat-flux 

structures in future fusion reactors. As plasma-facing material in the fusion reactors, W will be 

subject to intensive fluxes of energetic deuterium (D) and tritium (T) particles as well as helium 

(He) ions and 14 MeV neutrons (n) from the D–T fusion reaction. Neutron irradiation causes 

modification of the W crystal structure and creates displacements in the bulk [1, 2]. These 

processes lead to concerns about tritium inventory in the n-irradiated W after long-term 

deuterium-tritium plasma exposure. One of the ways to investigate the influence of n-produced 

defects on the hydrogen isotope inventory is to simulate displacement damage in tungsten using 

irradiation with energetic ions. It has been shown that defects produced by irradiation with H, Si, 

and W ions enhance deuterium retention in W materials after subsequent irradiation with D ions 

or exposure to D plasmas [3, 4, 5, 6, 7, 8, 9].  

Seeding of He ions into the D plasma significantly reduces the D retention at elevated 

temperatures in undamaged W materials [10, 11, 12, 13]. Dynamic nano-scale helium bubble 

formation and development of an open porosity in the near-surface layer create short-circuit 

paths to the surface thus enhancing the D re-emission and limiting the D diffusion into the bulk 

[11, 14]. He co-implantation reduces D inward diffusion when the He implantation range is 

similar to or greater than that of D [15].  

There are only few publications reporting on deuterium trapping at displacement damage in 

tungsten, namely in hot-rolled W foils, exposed to He-seeded deuterium plasma [4, 8]. The 

objective of this work are comparison studies of D retention at displacement damage in ITER-

grade W exposed to pure and He-seeded D plasmas at elevated temperatures (≥ 440 K).  

 

2. Experimental 

Polycrystalline ITER-grade W delivered from A.L.M.T. Corp. (Japan) has a purity of 99.99 

wt.% with main impurities being Mo, Fe, C and O. The ITER-grade W is deformed (rolled, 

swaged and/or forged) followed by appropriate heat-treatments to obtain better mechanical 

properties, e.g., strength and toughness, after the sintering process [16, 17]. In consequence, the 

microstructure of the ITER-grade W consists of anisotropically elongated grains along the 

deformation axis [18]. The grain size is 1-3 µm in section and up to 5 µm in length. Individual 

elongated cracks observed between grains are due to the deformation treatment. Square-shaped 
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samples, 1010 mm2 in size and 2 mm in thickness, were so prepared by the manufacturer that 

the irradiated surfaces were perpendicular to deformation axis (i.e., to the heat transfer direction), 

which corresponds to the ITER specification. The samples were mechanically polished, clean in 

the acetone ultrasonic bath, and then annealed in vacuum at 1473 K for 30 min for stress relief.  

Some of the W samples were irradiated with 3.33 MeV W6+ ions (20 MeV/W) to a fluence 

of 1.41018 W/m2 at room temperature. As a result, the near-surface layer of the samples was 

damaged to 0.89 displacements per atom (dpa) at the damage peak situated at a depth of 1.35 µm. 

The damage profile was calculated using the program SRIM 2008.03 [19], “full cascade option”, 

with a displacement energy of Ed = 90 eV [20, 21]. Hereafter, the W samples irradiated with the 

W ions will be designated as damaged ones.  

The damaged as well as undamaged W samples were exposed to low-energy, high-flux 

pure and helium-seeded deuterium plasmas at elevated temperatures (440-720 K). Note that the 

damaged samples were exposed to the plasmas on the damaged side. The linear plasma generator 

used for delivering plasma beams is described in Ref. [22]. To generate a pure D plasma, the D2 

working pressure was kept at about 1 Pa. As a result, a plasma beam with species of D2
+ (over 

80%) and D+ (less than 20%) was obtained. A bias voltage of -80 V was applied to the W sample, 

resulting in incident energy of 76 eV for D2
+ (38 eV/D), taking into account the plasma potential 

of about -4 V as measured by a Langmuir probe. The incident deuterium ion flux and fluence 

were fixed at 1022 D/m2s and 31026 D/m2, respectively. The sample was passively heated by the 

plasma itself and the exposure temperature was set by the thermal contact between the sample 

and the cooled holder. The temperature was monitored using a type K thermocouple tightly 

pressed onto the rear of the sample. 

To generate a helium-seeded D plasma (D-He plasma), 4He gas was injected into the 

plasma source region, and the He partial pressure was kept at 10-1 Pa. In consequence, the 

concentration of He ions in the D-He plasma was 10%, which was determined in additional 

experiments by measuring sputtering yields of a W target exposed to D-He plasmas with various 

He percentages [11]. Thus, the ion composition of the D-He plasma was determined to be D2
+ 

(>72%), D+ (<18%), and He+ (10%). Since D2
+ ions break up into two D atoms during collisions 

with the surface W atoms, the percentage of He in the flux of penetrating particles is estimated to 

be about 5%. The samples were exposed to the D-He plasma to a D ion fluence of 31026 D/m2. 

The deuterium profiles in the plasma-exposed W samples were determined by nuclear 

reaction analysis (NRA) at IPP, Garching. The D(3He,p)4He reaction was utilized, and both the  
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particles and protons were analyzed. To determine the D concentration at larger depths, an 

analyzing beam of 3He ions with energies varied from 0.69 to 4.0 MeV was used. The proton 

yields measured at different 3He ion energies allow measuring the D depth profile at depths of up 

to 6 μm [23].  

 

3. Results 

The deuterium depth profile in the undamaged ITER-grade W exposed to the pure D 

plasma at temperatures Texp = 460 and 560 K is characterized by a concentration of 0.1-0.2 at.% 

at depths of 1-6 μm (in the sub-surface layer). Concentration minima at depths up to 1 µm 

(Fig. 1a) may be connected with the appearance of small blisters and accompanying porosity 

development [24]. At Texp = 640 K, the D concentration in the sub-surface layer does not exceed 

10-2 at.%. A further increase of the exposure temperature leads to a decrease of the D 

concentration (Fig. 1a).  

Seeding of helium ions into the D plasma at exposure temperatures of 440-650 K 

significantly reduces the D concentration at depths of 0.5-6 μm (Fig. 1b). At Texp = 440 K, the D 

concentration is described by a sharp near-surface concentration maximum of about 1 at.%, and, 

at depths above 0.5 μm, by a concentration of about 310-2 at.% slowly decreasing into the bulk. 

As the exposure temperature increases up to 650 K, the near-surface D concentration decreases 

to about 0.2 at.%, whereas the sub-surface D concentration becomes below the NRA detection 

limit (510-4 at.%) (Fig. 1b).   

Generation of ion-induced displacement damage and following exposure both to pure D 

plasma and D-He plasma significantly increases the D concentration at depths up to 2 µm (i.e., in 

the damage zone) (Fig. 2). However, for all exposure temperatures, the D concentrations at 

depths of 4-6 µm in the undamaged and damaged W samples are comparable in a value (Figs. 1 

and 2). 

The temperature dependence of the total D retention at depths up to 6 µm in the 

undamaged and damaged ITER-grade W exposed to the pure deuterium and He-seeded 

deuterium plasmas is shown in Fig. 3. As illustrated in this Figure, the displacement damage 

increases significantly the hydrogen isotope retention in the sub-surface layer.   
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4. Discussion 

For tungsten exposed to a high flux D plasma at ion energies well below the displacement 

threshold, the mechanism of plastic deformation due to deuterium supersaturation [ 25 ] is 

considered to be responsible for the modification of the subsurface structure and formation of 

trapping sites for deuterium [26, 27]. As illustrated for the example of recrystallized W exposed 

to the D plasma [28, 29], intragranular cracks and large cavities at the grain boundaries are 

formed at depths up to several micrometers. As for the ITER-grade W with the strongly modified 

grain structure textured perpendicular to the surface, after its exposure to the high-flux D plasma 

at temperatures in the range from 320 to 600 K, Lindig et al. [24] have only observed blister-

associated cracks elongated in parallel to the surface and localized at depths of several hundreds 

of nanometers in the near-surface layer strongly distorted by mechanical polishing, without 

formation of large cavities and extrusions along slip systems like in the recrystallized W, with 

the exception of solitary cavities formed inside large grains. However, intrinsic intergranular 

cracks are a feature of the bulk structure of the mechanically-deformed ITER-grade W. These 

cracks may contribute to the trapping of deuterium in the bulk of the W material both in the 

molecular form inside the cracks and as D atoms chemisorbed at the walls of the cracks [18]. 

Under exposure of the ITER-grade W to the D-He plasma at elevated temperatures, a 

dynamic mechanism of nano-scale helium bubble formation [30] can lead to development of an 

open porosity in the near-surface layer and can create short-circuit paths to the surface thus 

enhancing the D re-emission and reducing the flux of D atoms diffusing into the bulk [31]. As 

consequence, the D concentration in the bulk of the W material is significantly lower than that 

after exposure to the pure D plasma (compare Figs. 1a and 1b).  

In the damaged ITER-grade W exposed to the pure D and D-He plasmas, the diffusing D 

atoms are additionally trapped at the W-ion-induced defects like vacancies and vacancy 

complexes [32, 33] up to concentration higher than that for the undamaged W (Figs. 1 and 2).   

Values for the concentration of deuterium at the depth of the damage peak, damageCD, in the 

damaged ITER-grade W exposed to the pure D and D-He plasmas at various temperatures are 

shown in Fig. 4 in units of D to W atomic ratio. After exposure to the pure D plasma at 

temperatures above 450 K, the concentration damageCD is always higher than that for the D-He 

plasma. This observation is in line with reported data [4] on D trapping at displacement damage 

in hot-rolled W irradiated with 12 MeV Si ions to 0.6 dpa and then exposed to pure D and D-

5%He plasmas at about 473 K. As the exposure temperature increases, the concentration damageCD 

decreases, both for the pure D plasma and helium-seeded D plasma (Fig. 4). 
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Deuterium atoms injected into tungsten from a D plasma quickly reach thermal energies, 

settle into interstitial solution sites within a few nanometres of the surface, and diffuse through 

the metal lattice. The concentration of D in solution near the surface and the flux of D atoms 

diffusing into the bulk are governed by the incoming flux of D ions. Seeding of He ions into the 

D plasma evidently reduces significantly the solute D concentration and flux of diffusing D 

atoms. Comparing deuterium filling of Si-ion-induced traps in W exposed to D-5%He plasma to 

fluences up to 1.51026 D/m2 [4] with the present D ion fluence of 31026 D/m2, we can state 

with assurance that the ion-induced defects in the damage zone become fully occupied. Higher 

concentration of D trapped in the damage zone observed after exposure to the pure D plasma 

(Fig. 4) can be explained by modification of vacancy-type defects. Under exposure to the pure D 

plasma, high supersaturation solute D concentration maintained in the damage zone is thought to 

stimulate the growth of the vacancy-type defects thus increasing the retention capacity for D 

atoms.  

 

5. Summary 

In polycrystalline ITER-grade W exposed at 460 and 560 K to D plasma (76 eV D2
+) with 

high ion flux of 1022 D/m2s to a fluence of 31026 D/m2, deuterium is trapped at intrinsic 

intergranular cracks and accumulated up to concentration of 0.1-0.2 at.% within the analyzable 

depths up to 6 μm. At exposure temperatures above 560 K, the D concentration decreases with 

the temperature and falls to about 10-3 at.% at 720 K. Seeding of He ions into the D plasma {76 

eV (D2
+ + 10% He+)} at elevated temperatures (440-650 K) significantly reduces the D 

concentration at depths of 0.5-6 μm. 

Displacement damage peaked at 0.89 dpa, preliminary generated in the ITER-grade W by 

irradiation with 20 MeV W ions at room temperature, significantly increases retention of 

deuterium in the damage zone during subsequent exposure the pure D and D-He plasmas. After 

exposure of the damaged W to the pure D plasma, the D concentration (in units of D to W 

atomic ratio) at a depth of the damage peak, damageCD, decreases with increasing exposure 

temperature from about 210-2 D/W at Texp = 440 K to about 210-3 D/W at Texp = 710 K. 

However, after exposure to the D-He plasma at temperatures above 450 K, the concentration 
damageCD is always lower than that for the pure D plasma. It is speculated that high 

supersaturation solute D concentration maintained in the damage zone under exposure to the 

pure D plasma stimulates the growth of the vacancy-type defects increasing thus the capacity for 
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D atoms. In the case of D-He plasma exposure, the growth of the defects is less significant due to 

the significantly lower solute D concentration.  
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Figure captions 

 

Figure 1. Depth profiles of deuterium retained in undamaged polycrystalline ITER-grade W after 

exposure to pure D plasma (76 eV D2
+) (a) and D-He plasma {76 eV (D2

+ + 10% He+)} (b) with 

D ion fluence of 31026 D/m2 at various temperatures.  

 

Figure 2. Depth profiles of deuterium retained in polycrystalline ITER-grade W, damaged to 

0.89 dpa by irradiation with 20 MeV W ions at room temperature, after exposure to pure D 

plasma (76 eV D2
+) (a) and D-He plasma {76 eV (D2

+ + 10% He+)} (b) with D ion fluence of 

31026 D/m2 at various temperatures. In both panels, damage depth profiles are additionally 

shown, and the damage level scales coincide with the D concentration scales. 

 

Figure 3. Deuterium retention up to 6 µm in polycrystalline ITER-grade W, undamaged and 

damaged to 0.89 dpa by irradiation with 20 MeV W ions at room temperature, after exposures to 

pure D plasma (76 eV D2
+) and D-He plasma {76 eV (D2

+ + 10% He+)} with D ion fluence of 

31026 D/m2, as a function of exposure temperature. The D retention was determined by NRA.  

 

Figure 4. Deuterium concentration (in units of D to W atomic ratio) at a depth of the damage 

peak in damaged ITER-grade W exposed to pure D plasma (76 eV D2
+) and D-He plasma {76 

eV (D2
+ + 10% He+)}, as a function of the exposure temperature. Additionally, data on the D 

concentration in damaged W foil exposed to pure D plasma (76 eV D2
+) (Tyburska et al. [6]) and 

damaged hot-rolled W exposed to pure D plasma (90 eV D+) and D-He plasma {90 eV (D+ + 5% 

He+)} (Wampler et al. [4]) are shown for a comparison. The displacement damage characteristics 

and applied D ion fluences, Φ, are indicated in the legends.   
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Figure 1. Depth profiles of deuterium retained in undamaged polycrystalline ITER-grade W after 

exposure to pure D plasma (76 eV D2
+) (a) and D-He plasma {76 eV (D2

+ + 10% He+)} (b) with 

D ion fluence of 31026 D/m2 at various temperatures.  
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Figure 2. Depth profiles of deuterium retained in polycrystalline ITER-grade W, damaged to 

0.89 dpa by irradiation with 20 MeV W ions at room temperature, after exposure to pure D 

plasma (76 eV D2
+) (a) and D-He plasma {76 eV (D2

+ + 10% He+)} (b) with D ion fluence of 

31026 D/m2 at various temperatures. In both panels, damage depth profiles are additionally 

shown, and the damage level scales coincide with the D concentration scales. 
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Figure 3. Deuterium retention up to 6 µm in polycrystalline ITER-grade W, undamaged and 

damaged to 0.89 dpa by irradiation with 20 MeV W ions at room temperature, after exposures to 

pure D plasma (76 eV D2
+) and D-He plasma {76 eV (D2

+ + 10% He+)} with D ion fluence of 

31026 D/m2, as a function of exposure temperature. The D retention was determined by NRA.  
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Figure 4. Deuterium concentration (in units of D to W atomic ratio) at a depth of the damage 

peak in damaged ITER-grade W exposed to pure D plasma (76 eV D2
+) and D-He plasma {76 

eV (D2
+ + 10% He+)}, as a function of the exposure temperature. Additionally, data on the D 

concentration in damaged W foil exposed to pure D plasma (76 eV D2
+) (Tyburska et al. [6]) and 

damaged hot-rolled W exposed to pure D plasma (90 eV D+) and D-He plasma {90 eV (D+ + 5% 

He+)} (Wampler et al. [4]) are shown for a comparison. The displacement damage characteristics 

and applied D ion fluences, Φ, are indicated in the legends.  
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