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1. Outline. In this note, we specialize the theory of Thompson scattering
measurements of electron distribution functions to the case of the experimental
setup proposed by Kantor [1] for the ASDEX Upgrade tokamak; these cal-
culations have been used in the feasibility study by Tsalas et al. [2]. More
specifically, we begin from the theory reported by Sheffield [3] for the scattered
power, and we follow closely the analysis of Segre [4, 5]; then, we compute the
signal to noise ratio (SNR) as in the work of Carretta et al. [6].

In our analysis, we assume that electrons are well described by the Spitzer
and Härm distribution function [7]; such an assumption is common in the Thom-
son scattering literature [5, 6], though it implies that trapping effects, due to
the inhomogeneous magnetic field of a tokamak, as well as relativistic effects,
are neglected. Moreover, strictly speaking, the use of the Spitzer-Härm electron
distribution function is justified for an Ohmic current density only, i.e., a cur-
rent density driven by an external electric field. A more precise analysis would
require a detailed modeling of the electron distribution function, which could be
obtained, e.g., by solving the Fokker-Planck equation in the drift approximation.

In order to understand how far the results depend on the considered model
of electron distribution function, we study a class of distributions obtained as
perturbations of the Maxwellian distribution. Despite being limited to small
electron drift velocities (as compared to the electron thermal speed), such a
perturbation argument allows us to carry out explicit analytical calculations.
Both the Spitzer-Härm and the shifted Maxwellian distributions can be approx-
imated in this way in the limit of small drift velocity.

2. A bird-eye-view of Thomson scattering. To shorten a long story, let us
begin from equation (27) of Sheffield [3], which gives the electromagnetic power
Ps(ωs, ~v)dΩ scattered within the solid-angle element dΩ at the frequency ωs by
an electron located at a given spatial point, with initial velocity ~v, and accel-
erated by an incident monochromatic electromagnetic wave beam of frequency
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ωi, namely,

Ps(ωs, ~v)dΩ =
Pi
A
r20
ω3
s

ω3
i

(
1 +

v

c

)
dΩ. (1)

Here, and throughout this note, the subscripts i and s refer to quantities of
the incident and scattered radiation, respectively. In equation (1), c denotes
the speed of light, and Pi = (c/8π)E2

iA is the total electric-field power carried
by the incident beam with electric field amplitude Ei and cross-section area
A, while r20 is the Thomson cross section, with r0 = 2.82 · 10−13cm being the
classical electron radius. This result retains relativistic effects up to first-order
terms in β = v/c.

The difference in frequency between the incident and the scattered radiation
is due to Doppler shift, cf. equation (9) of Sheffield [3],

ωs = ωi
1− ı̂ · ~v/c
1− ŝ · ~v/c

, (2)

where ı̂ = ~ki/ki and ŝ = ~ks/ks stand for the unit vectors of the incident and
scattering (observation) direction, respectively, while ~v is the velocity of the
electron. Here, the electromagnetic radiation is described by plane waves in
free space (this is possible in view of the high frequency of the beam). Thus,

the incident and scattered wave vectors, ~ki and ~ks, have length ki = ωi/c and
ks = ωs/c, respectively, while equation (2) can be rewritten in the form

ωs − ωi =
(
~ks − ~ki

)
· ~v = ~k · ~v, (3)

which means that, given a fixed incident frequency ωi, the scattered radiation
at the frequency ωs comes from the electrons with a precise velocity component
along the direction of the differential wave vector ~k = ~ks − ~ki, namely,

vk = k̂ · ~v = ∆ω/k, ∆ω = ωs − ωi. (4)

According to equation (3) a single electron produces a spectral power distribu-
tion (power per unit frequency interval) given by[

Ps(ωs, ~v)dΩ
]
δ(ωs − ωi − kvk) =

[
Ps(ωs, ~v)dΩ

]
k−1δ(vk −∆ω/k),

where we have used the transformation properties of the Dirac delta function.
(It is worth recalling that delta functions are dimensional objects and carry the
dimensions of the inverse of their argument).

The total incoherent contribution to the electromagnetic power per unit fre-
quency interval of the electrons contained in a small scattering volume V , cen-
tered around the probed point, amounts to

P̄s(ωs)dΩ = V ne

∫ [
Ps(ωs, ~v)dΩ

]
k−1δ(vk −∆ω/k)f(~v)d3v, (5)

where ne is the electron number density and f(~v) is the electron distribution
function, satisfying the normalization condition

∫
f(~v)d3v = 1, both being con-

sidered approximately independent of the position in the scattering volume.
Since we are interested in the periphery of the plasma column where the

electron temperature attains modest values, we can consider, as an order-of-
magnitude analysis, the totally non-relativistic limit β = v/c� 1 in the whole
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range of electron velocity probed by the Thomson scattering diagnostics; hence,
the correction terms of order β will be dropped in the subsequent analysis.
For such non-relativistic electrons, equation (2) implies ωs − ωi = O(β), hence,
ωs ≈ ωi, which, on the other hand, means ki ≈ ks. As a consequence of
this approximation, if θ is the angle between ~ki and ~ks, the amplitude of the
differential wave vector ~k = ~ks − ~ki is

k = 2ki sin
(
θ/2
)
. (6)

In addition, in view of the non-relativistic approximation, equation (1) simplifies
further,

Ps(ωs, ~v)dΩ ≈ Pi
A
r20dΩ. (7)

Those approximations can be used into (5), with the result that the factor[
Ps(ωs, ~v)dΩ

]
k−1 can be regarded as approximately independent of the electron

velocity, thus, significantly simplifying the velocity integral.
More specifically, upon choosing a reference frame such that the unit vector

êz of the third axis is êz = k̂, the remaining integral amounts to h(∆ω/k), where
the function

h(vk) =

∫ +∞

−∞

∫ +∞

−∞
f(vx, vy, vk)dvxdvy, (8)

is the projection of the distribution function along the direction of êz = k̂. With
τL and ∆Ω being the total time in which photons are collected and the solid
angle of the line of sight, respectively, we can write the collected energy per unit
frequency interval, namely,

Es(ωs) = τLP̄s(ωs)∆Ω = V neτL
[Pi
A
r20∆Ω

]
k−1h(∆ω/k). (9)

After dividing the total energy per unit frequency interval by the energy of a
single detected photon ~ωs, we obtain the number of photons that enter the
detector, namely,

Es(ωs)
~ωs

= ne

[τLPi
~ωs

]
r20L∆Ωk−1h(∆ω/k),

where L = V/A is the length of the scattering region. On using again the
approximation ωs ≈ ωi, the factor between square brackets amounts to

τLPi
~ωs

≈ Ei
~ωi

,

which is the total number of incident photons, Ei being the total output energy
of the laser during the time τL.

The photons actually converted into photoelectrons and, thus, detected are,
however, less than those that enter the detector due to the quantum efficiency
of the detector (η) as well as to the efficiencies of both the transmission (ρ) and
the receiving (χ) optical lines [6]. Correcting for the efficiencies, the number of
scattering photoelectrons per unit frequency interval collected by the detector
as a function of the scattered angular frequency is

Nsc,ω(ωs) = (ηρχ)ne
Ei
~ωi

r20L∆Ωk−1h(∆ω/k). (10)
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One can see that the observed signal is proportional to the projection h(vk)
of the electron distribution function evaluated at vk = ∆ω/k. Let us note,
however, that, when relativistic corrections are accounted for, the simple pro-
portionality relationship (10) is lost, as approximations (6) and (7) can no longer
be exploited, the scattering signal being then expressed in terms of a convolu-
tion integral of the power spectrum with the electron distribution function, cf.
equation (5).

3. Number and electric current density measurements. With an abso-
lute calibration of the detectors, it is possible to determine the electron density
ne from the zeroth-order moment of Nsc,ω(ωs), namely,

ne =
1

H

∫
Nsc,ω(ωs)dωs, (11)

where the constant

H = (ηρχ)
Ei
~ωi

r20L∆Ω, (12)

is known from the specifications of the laser and the characteristics of the diag-
nostics setup.

The z-component of the electron current density, that is, the component
along the direction of the differential wave vector ~k = ~ks−~ki, can be estimated
from the first-order moment of Nsc,ω(ωs) [5, 8],

jz =
e

H

∫
ωs − ωi

k
Nsc,ω(ωs)dωs, (13)

e being the elementary charge. When only a relative calibration of the detectors
is available, it is still possible to determine jz, if ne can be measured with
another diagnostics.

4. The electron distribution function of Spitzer and Härm. In order to
determine when the signal-to-noise ratio (SNR) is sufficiently high to make the
measurement of the electric current density possible, we start the analysis from
the expected theoretical distribution function in presence of an electric field ~E.
When | ~E| is smaller than the Dreicer field ED = mevthνcoll/e, a reasonable
approximation [5] of f(~v) is the Spitzer-Härm electron distribution function [7]

fSH(~v) =
1

π3/2v3th
e−v

2/v2th

[
1 +D(v/vth) cosαv

]
; (14)

here, me is the electron mass, vth =
√

2kBTe/me is the electron thermal speed,
νcoll the electron collisional frequency, v2 = v2x + v2y + v2z , vz = vk, and αv is the

velocity pitch-angle, i.e., the angle between ~E and ~v. Figure 1 represents the
geometry of a generic setup.

The deformation function D(x) in equation (14) depends on the effective
charge Z =

∑
j njZ

2
j /ne, where the index j labels ion species with charge Zje

and density nj . Upon following the approach of Segre [5], we write

D(x) = (vD/vth)qg(x),
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Figure 1: Scattering geometry represented in the laboratory coordinates
(X,Y, Z), with Z oriented along the direction of the current density. The two

angles γi and γs, between the current density ~j and the two wave vectors ~ki and
~ks, respectively, together with the angle θ, between ~ki and ~ks, are determined by
the direction of the incident laser beam and by the line of sight of the detector.

where ~vD = ~j/(ene) is the electron drift velocity associated to the current den-
sity ~j driven by the electric field. The function g(x) is tabulated in reference [7]
for Z = 1, 2, 4, 16,∞, and the coefficient q takes the values [5]

q = 0.7619, 0.6485, 0.5645, 0.4803, 0.4431,

respectively, in correspondence of the considered values of Z.
Alladio and Martone [9] have derived the plasma current values from the

Thomson scattering signals assuming both a shifted Maxwellian and Spitzer-
Härm distribution functions: the values obtained with the latter assumption
are in a much better agreement with the measurements done with coil probes.

In the calculation of h(vk) in equation (8), it is convenient to orient the axes

so that the unit vector êx is perpendicular to the plane defined by ~k and ~E,
while êz = k̂, as before, and êy = êz × êx, cf. figure 2; then, the function h(vk)
takes the form

hSH(vk) =
1√
πvth

e−v
2
k/v

2
th

+
(vD/vth)q

π3/2v3th

∫ +∞

−∞
dvx

∫ +∞

−∞
dvye

−v2/v2thg
( v

vth

)
cosαv.
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Figure 2: The reference frame {êx, êy, êz}. The z-axis is parallel to the differ-

ential wave vector ~k = ~ks − ~ki, with the current density lying in the z-y plane.
The physical orientations of the vectors ~k and ~j are shown in figure 1 above.

With γ being the angle between ~E and ~k, one has ~E/E = (0, sin γ, cos γ),

cosαv =
~E · ~v
Ev

=
vy
v

sin γ +
vk
v

cos γ,

and the integral then splits into the sum of two terms proportional to sin γ
and cos γ; the integrand of the former, however, is odd and the corresponding
integral vanishes with the result that

hSH(vk) =
1

vth
h̃SH

( vk
vth

)
=

1√
πvth

e−v
2
k/v

2
th

[
1 +

vD
vth

cos γP
( vk
vth

)]
, (15)

where we have introduced the function (slightly different from the corresponding
quantity in the work of Segre [5])

P(x) = 2qxex
2

∫ ∞
|x|

e−w
2

g(w)dw. (16)

Figure 3 shows the function P(x)/(2x) for Z = 1, 2, 4, 16,∞, with g(x) cal-
culated by interpolation of the values given in Table 1 of reference [7]. The
function P(x) represents the part of the signal due to the presence of an electric
current density, properly normalized to the driving (vD/vth) cos γ; in order to
highlight the behavior near x = 0, we plot P(x)/(2x), which is an even function
(P is odd), hence the positive domain x ≥ 0 only is shown. As expected, the
deformation of the signal due to the current density increases with the frequency

6



0.0 0.5 1.0 1.5 2.0 2.5
x=∆ω/(kvth)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
(x

)

Z=1

Z=2

Z=4

Z=16

Z=∞

Figure 3: The function P (x) = P(x)/(2x), with P(x) defined in equation (16),
using the values computed by Spitzer and Härm [7] for different values of the
effective charge Z.

shift x = ∆ω/(kvth), i.e., it is large on the tail of the measured spectrum, where,
on the other hand, the number of collected photoelectrons drops.

Therefore, the feasibility of the measure, i.e., the possibility of distinguishing
a Spitzer-Härm distribution from a Maxwellian distribution, depends on the
balance between the magnitude of the deformation and the statistics of the
signal: where the statistics is good the deformation is small, and vice versa.

Let us compute the number of detected photoelectrons per unit frequency
interval by assuming the Spitzer-Härm distribution for the probed electrons.
According to equation (10), that is given by

Nsc,ω(ωs) = (ηρχ)ne
Ei
~ωi

r20L∆Ω
1

kvth
h̃SH

( ∆ω

kvth

)
, (17)

where ∆ω = ωs − ωi is the frequency shift of the scattered radiation. In the
experimental practice, the probed frequency interval is divided into a number
of discrete spectral channels so small that Nsc,ω can be considered constant
within each channel. Hence, the number of photoelectrons detected in a spectral
channel of width ∆ωs centered around the frequency ωs is given by

Nsc(ωs) = (ηρχ)ne
Ei
~ωi

r20L∆Ω
∆ωs
kvth

h̃SH

( ∆ω

kvth

)
. (18)

In order to compute this number, we need to evaluate the width ∆ωs of the
channel. Typically, the spectral width is given in terms of the wave length, and
one has

∆ωs ≈
2πc

λ2i
∆λs, or

∆ωs
ωi
≈ ∆λs

λi
. (19)

The latter identity suggests that it is convenient to express the number of de-
tected photoelectrons in each spectral channel as a function of ∆ω/ωi, and that
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reads, upon making use of equation (6),

Nsc(ωs) = (ηρχ)ne
Ei
~ωi

r20L∆Ω
c/vth

2 sin(θ/2)

∆ωs
ωi

h̃SH

( c/vth
2 sin(θ/2)

∆ω

ωi

)
, (20)

where c/vth = (0.5 · 511/Te[keV])1/2.
Particularly, let us note that the result of equation (20) can be rather sen-

sitive to the scattering angle θ in view of the factor 1/ sin(θ/2) both in front of
and in the argument of the function h̃SH.

5. Signal-to-noise ratio and modeling of the background light. There
are at least two sources of noise in the measurement of Nsc(ωs), [4]: the statisti-
cal fluctuations of the number of photoelectrons and the background radiation
emitted by the plasma (mainly due to stray radiation and bremsstrahlung; an
estimate of the latter is given in equation (3) of reference [10]). If Nb is the num-
ber of background photoelectrons collected by the detector, the signal-to-noise
ratio of this measurement is [10],

SNR =
Nsc√

Nsc + 2Nb

. (21)

The particular expression of the denominator (i.e., the noise) can be under-
stood if one considers that, in practice, the signal Nsc is the result of two
measurements: that of the total collected photoelectrons Nsc + Nb and that
of the background Nb. We recall that the probability distribution of photo-
electron counting is Poissonian (at least for an ideal counting), thus the statis-
tical fluctuations of a number N of counts is given by the standard deviation√
N of the Poissson distribution; therefore, Poissonian standard deviations of

these two measurements are
√
Nsc +Nb and

√
Nb, respectively. Assuming that

the two measurements are statistically uncorrelated, the variance of the differ-
ence Nsc = (Nsc + Nb) − Nb amounts to the sum of the variances, namely,
Nsc + 2Nb, and the corresponding standard deviation gives the denominator in
equation (21).

In a Thomson scattering experiment, the noise is typically dominated by the
background term, hence, a realistic estimate of Nb is crucial for a quantitative
analysis. We need to specify a model for the number Nb,ω of background pho-
toelectrons per unit frequency interval, from which we have Nb = Nb,ω∆ωs,
with ∆ωs being the width of each spectral channel. With the due exception of
a narrow interval around the laser frequency ωi, where the stray radiation is so
high that an appropriate filter must be applied, thus, excluding that interval
from the measurement, the background Nb,ω is usually found to be constant on
the spectral band actually observed by the diagnostics. We choose to specify
such a constant as a fraction of the average scattering signal over one thermal
width [11], namely,

N sc,ω =
1

2∆ωth

∫
Nsc,ωdωs,

where ∆ωth = kvth is the band width corresponding to one thermal speed,
cf. equation (10). Strictly speaking, the integration should be limited to the
interval |ωs − ωi| ≤ ∆ωth, but we extend that to the whole observed frequency
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range for convenience; as a consequence, Nb,ω = µbN sc,ω and

Nb = µb
∆ωs

2∆ωth
Nsc,tot,

where Nsc,tot is the total number of scattering photoelectrons collected by the
diagnostics, and µb is a free parameter that characterizes the background level
of the considered experimental setup.

It is worth noting that, since Nb has been considered constant, the total
number of collected background photoelectrons is proportional to the width of
the spectral band observed by the diagnostics; it is, therefore, not always con-
venient to increase the band-width. More specifically, if the observed frequency
interval is [ωi−∆ωtot, ωi+∆ωtot], the total number of collected photoelectrons is
Nb,tot = µbNsc,tot∆ωtot/∆ωth. It is convenient to define the half-width ∆ωtot

in terms of ∆ωth, namely, ∆ωtot = ξ∆ωth, hence, Nb,tot = µbξNsc,tot. The
choice of the parameter ξ is crucial for a correct analysis of the data and will
be discussed in the next two sections.

6. Results for the new setup in ASDEX Upgrade using the Spitzer-
Härm distribution function. Let us specialize our analysis to the case of the
proposed ASDEX Upgrade setup [2]. With reference to figure 1, the laboratory
coordinates (X,Y, Z) are such that Z points along the toroidal direction, while
X and Y span the poloidal plane; the laser beam impinges vertically from the
top, hence γi = 90◦, and the detector is placed so that θ = 90◦ and γs = 18◦.
Among the proposed scenarios, we consider those corresponding to the following
parameters:

• electron density ne = 2.5 · 1013cm−3;

• electron temperature Te = 500eV and 700eV;

• drift velocity vD/vth = 0.02, 0.03, 0.05;

• effective charge Z = 1;

• solid angle ∆Ω = 0.01sr;

• scattering length L = 2.0cm;

• incidence angle γi = 90◦;

• line-of-sight angle γs = 18◦;

• scattering angle θ = 90◦;

• laser energy Ei = 20J;

• laser wave length λi = 694.3nm;

• width of spectral channels ∆λs = 2nm;

• spectral band of the diagnostics ξ = vmax/vth = 2.0;

• efficiencies ηρχ ≈ 0.03, [11];

• filter −0.0134 ≤ ∆ω/ωi ≤ 0.0154, [11];
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• background photoelectrons µb = 1/10, [11].

From the three angles γi, γs, and θ, one can compute γ in equation (15): by

definition, we have ~j · ~k = jk cos γ, and

~j · ~k = ~j · ~ks −~j · ~ki ≈ jki
(

cos γs − cos γi
)
,

with the non-relativistic approximation ks ≈ ki; equation (6) then gives,

cos γ =
cos γs − cos γi

2 sin(θ/2)
, (22)

and, for the foregoing parameters, one finds γ = 47.74◦.
The given laser energy refers to a single pulse. If the repetition rate of the

laser is high enough, however, it is possible to collect photons from a whole
burst of several laser pulses, thus, increasing the total laser output energy Ei at
the price of a reduced temporal resolution.

The parameter ξ, which determines the band-width of the diagnostics, has
been defined in section 5 together with the background level µb. Particularly, ξ
controls how many thermal widths are included in the observed spectral band:
the higher is ξ the lower is the discretization error [8], i.e., the error associated to
replacing the integral (13) by a discrete sum over a finite number of channels; on
the other, hand, increasing ξ will increase the number of collected background
photoelectrons. Therefore, there is a trade off between the discretization error
and the background light. An appropriate choice of this parameter in the anal-
ysis of the experimental data depends on the expected theoretical form of the
electron distribution function: when the deformation of the electron distribu-
tion function, due to the presence of an electron drift velocity, occurs mainly
in the bulk, it will suffice to take into account a few spectral channels; on the
other hand, when the deformation occurs on the tails, more spectral channels
are needed. In the specific case of the Spitzer-Härm distribution function, the
deformation, i.e., the function D(v/vth) in equation (14), is vanishingly small in
the bulk, hence, we have to pick the relatively high value of ξ = 2, which, for the
considered setup, corresponds to 87 and 103 spectral channels for Te = 500eV
and 700eV, respectively. (Anyway, the value of ξ must be such that the argu-
ment x of the function P(x) stays well within the range tabulated by Spitzer
and Härm [7]; this gives the upper limit ξ ≤ 3.2.)

In figure 4, the Thomson scattering signal (20) is shown as a function of the
normalized frequency shift ∆ω/ωi (red curves) for Te = 500eV and for different
values of vD/vth = 0.02, 0.03, and 0.05, together with the signal produced by
the corresponding Maxwellian distribution (blue dots), and the background level
(magenta dashed curve); we recall that the value of vD/vth in the experimental
setup considered by Tsalas et al. [2] falls within the interval [0.005, 0.06]; the
reference scenario corresponds to the value 0.02, while the high value of 0.05 is
shown here just as an example. Analogously, figure 5 shows the same quantities
for the higher electron temperature Te = 700eV. The most important infor-
mation in figures 4 and 5 is the signal-to-noise ratio (SNR). We recall that a
threshold of SNR≥ 2 is usually required for reliable measurements [6], and this
requirement is satisfied in the considered cases.

From a physical point of view, let us note that the higher is vD/vth the
more the signal differs from the corresponding Maxwellian distribution, though

10



100

101

102

si
gn

al
-to

-n
oi

se
 ra

tio

Z=1,   (vD /vthe)cosγ=0.0134,  efficiency = 0.03

0.15 0.10 0.05 0.00 0.05 0.10 0.15
∆ω/ωi

101

102

103

104

n.
 o

f p
ho

to
el

ec
tr

on
s

signal
Maxwellian
Background

100

101

102

si
gn

al
-to

-n
oi

se
 ra

tio

Z=1,   (vD /vthe)cosγ=0.0202,  efficiency = 0.03

0.15 0.10 0.05 0.00 0.05 0.10 0.15
∆ω/ωi

101

102

103

104

n.
 o

f p
ho

to
el

ec
tr

on
s

signal
Maxwellian
Background

100

101

102

si
gn

al
-to

-n
oi

se
 ra

tio

Z=1,   (vD /vthe)cosγ=0.0336,  efficiency = 0.03

0.15 0.10 0.05 0.00 0.05 0.10 0.15
∆ω/ωi

101

102

103

104

n.
 o

f p
ho

to
el

ec
tr

on
s

signal
Maxwellian
Background

Figure 4: Thomson scattering signals (red curves) according to equation (20)
with Te = 500eV and vD/vth = 0.02 (upper panel), vD/vth = 0.03 (central
panel), and vD/vth = 0.05 (lower panel). Here, Z = 1. Each signal is compared
to the corresponding Maxwellian (blue dots), to the constant background light
(magenta dashed line), and to the signal-to-noise ratio (21).
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Figure 5: The same as in figure 4, but with Te = 700eV.
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Figure 6: Difference between the Spitzer-Härm signal and the corresponding
Maxwellian signal according to equation (20) (lower panel) together with the
statistical error

√
Nsc + 2Nb (upper panel) for Te = 500eV, and vD/vth = 0.02.

The green shadowed area denotes the part of the spectrum which is cut off by the
filter of the diagnostics. It is worth noting that one thermal speed corresponds
to ∆ω/ωi ≈ 0.06, and that is the approximate location of the maximum of the
signal difference.

the differences are tiny. On comparing figure 4 with figure 5, we note that the
dependence on the temperature is weak: the number of collected photoelectrons
slightly decreases with the temperature in agreement with the factor c/vth in
equation (20). One can verify that the dependence on the effective charge Z
is weak as well, except on the very tails of the distribution function; this can
be understood by inspection of the function P(x) defined in equation (16) and
represented in figure 3 for different values of Z.

In order to be quantitative, the difference between the Spitzer-Härm signal
and the corresponding Maxwellian signal is displayed in figure 6 together with
the statistical error

√
Nsc + 2Nb for the reference case Te = 500eV, vD/vth =

0.02; the estimate of the total number of collected scattering photoelectrons
(integrated over all spectral channels) in this case amounts to 8.242 · 104, which
is one order of magnitude lower then the number foreseen by Kantor [1]; such a
discrepancy in the total number of collected photoelectrons is due to the value
of the laser energy [2], which was one order of magnitude larger in previous
estimates [1] (accounting for a burst of several pulses). The total number of
background photoelectrons is found to be 1.651 · 104, in agreement with the
relation given at the end of section 5. The green shadowed area shows the part
of the signal which is cut off by the filter of the diagnostics: that corresponds
to the maximum of the distribution function where the deformation due to the
presence of a current density is small. Let us remark that this depends strongly
on the scattering angle θ: for small values of θ the width of the distribution
decreases significantly, cf. the argument of h̃HS in equation (20). Figure 6
clearly shows that, for the considered value vD/vth = 0.02, the fluctuations are
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larger than the signal difference.
In order to understand the consequences of the results of figure 6, given

the signal (20) produced by a Spitzer-Härm distribution function, it is possible
to simulate the measure of the plasma electric current density. Indeed, we can
compute jz by approximating equation (13) with the sum over spectral channels,
namely, [8]

jz ≈
ec

H2 sin(θ/2)

∑
channels

∆ω

ωi
Nsc(ωs). (23)

For the case of figure 6, for which, in particular, vD/vth = 0.02, the result of the
discrete sum (23) is in agreement with the relationship vD cos(γ) = jz/(ene),
which comes from the definition of vD, within an error of ∼ 9.3%. Such an error
can be regarded as an estimate of the discretization error [8] coming from the
substitution of the integral (13) with the discrete sum (23) over a finite number
of spectral channels (for the considered channel width ∆λs = 2nm and band-
width ξ = 2 of the simulated diagnostics). One can verify that the discretization
error depends in a non-trivial way on the temperature as well as on the geometry
of the experimental setup.

In this simulated measure, the noise can be estimated by computing the
error due to the expected fluctuations of the number of photoelectrons, namely,√
Nsc + 2Nb. The absolute error associated to each of the term of the sum (23)

is
ec

H2 sin(θ/2)

|∆ω|
ωi

√
Nsc + 2Nb.

More precisely, this is the standard deviation of the statistical distribution of the
contribution of each channel to the current density. The standard deviation of
the current density is then obtained as the square root of the sum of variances of
each channel, assuming that channels are statistically uncorrelated. The relative
error on the electric current density then reads

∆jz/jz =

√∑
|∆ω|2(Nsc + 2Nb)∑

∆ωNsc(ωs)
, (24)

the two sums being over all spectral channels. The relative error (24) is plotted
in figure 7 as a function of vD/vth for Te = 500eV and Z = 1; the case of
a single laser pulse is reported together with the cases of a burst of 5 and 10
laser pulses. As expected, for low values of vD/vth the deformations of the
distribution function are hardly visible causing the relative error on the current
density measurement to blow up. On the other hand, as the drift velocity vD,
and, thus, the electric current density, becomes large, the relative error decreases
and drops below 20% at vD/vth ≈ 0.03, when a single pulse is used. For the case
of figure 6 (vD/vth = 0.02), the relative error on the current density amounts to
30% (single pulse), but can be improved considerably by using a longer burst
with multiple laser pulses.

7. Analytical estimates and sensitivity of the error to the shape of the
electron distribution function. Strictly speaking, the electron distribution
function of Spitzer and Härm describes a current density driven by an exter-
nal electric field (Ohmic current). On the other hand, current densities that
are generated by different mechanisms exist in plasmas, such as the bootstrap
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Figure 7: Relative error on the simulated measure of the plasma electric cur-
rent density as a function of vD/vth, according to equation (24) with signals
produced by the Spitzer-Härm distribution function, for the reference scenario
Te = 500eV, and Z = 1. The case of a single laser pulse (blue curve, Ei = 20J)
is reported together with the cases of a burst of 5 (green curve, Ei = 100J) and
10 (red curve, Ei = 200J) laser pulses.

current [12]. In addition, as mentioned in the introduction, the distribution
function of Spitzer and Härm is obtained under a number of simplifying as-
sumptions that are not strictly fulfilled in a tokamak plasma. It is therefore
natural to ask how much sensitive the estimates presented in the last section
are to the details of the electron distribution function.

In order to quantify this point, we can compare the expected relative error
on the current density measurements corresponding to different electron distri-
bution functions that carry the same current density.

With this aim, let us consider the family of distributions given by

f(~v) =
1

(πv2th)3/2
e−v

2/v2th

[
1 + cp

~vD · ~v
v2th

p
(
v/vth

)]
, vD � vth, (25)

which is parametrized by a velocity ~vD and an arbitrary (polynomially bounded)
function p(x) ≥ 0; the normalization constant cp depends on the choice of the
function p, namely,

c−1p =
1√
π

∫ +∞

−∞
x2e−x

2( ∫ +∞

0

e−wp(
√
x2 + w)dw

)
dx. (26)

This normalization ensures that the vector ~vD is the electron drift velocity,∫
~vf(~v)d3v = ~vD; in addition, by a symmetry argument, it is straightforward to

verify that f(~v) is normalized to unity,
∫
f(~v)d3v = 1, as it should be.

Equation (25) describes a set of deformations of a Maxwellian distribution
function in the direction of the drift velocity ~vD, the deformation being con-
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trolled by the ratio vD/vth � 1, where vth is the thermal speed. The arbitrary
function p(x) controls the shape of the deformation. One can see that p(x) and
κp(x) generate the same distribution for any constant κ > 0.

More precisely, the distribution functions (25) are meant to be approxima-
tions only: e.g., for large velocities, these distributions can even become nega-
tive. For instance, a special case of the family (25) is the shifted Maxwellian
distribution, obtained for

p(x) = constant.

(As mentioned above, the exact value of the constant is unessential.) Indeed,
for p = constant, equation (25) becomes

f(~v) =
1

(πv2th)3/2
e−v

2/v2th

[
1 + 2~vD · ~v/v2th

]
≈ 1

(πv2th)3/2
e
− (~v−~vD)2

v2
th , (27)

which is the first-order expansion of a shifted Maxwellian distribution in the
limit vD � vth.

The Spitzer-Härm distribution function considered before is included in the
family (25) provided that we can find a function p(x) satisfying

cpxp(x) = qg(x),

where g(x) is the function given in the paper by Spitzer and Härm, [7]. That
amounts to an integral equation for p(x), a solution of which is readily found
on noting that the consistency of the Spitzer-Härm distribution requires

~vD =

∫
~vfSH(~v)d3v,

at least approximately. The integral at the right-hand side is further simplified
by choosing a reference frame with ~vD directed along the third axis; then, the
x- and y-components of the integral vanish as they should, and, from the z-
component together with vD,z = vD, one has the identity

1 =
q√
π

∫ +∞

−∞
x2e−x

2
(∫ +∞

0

e−w
g
(√
x2 + w

)
√
x2 + w

dw
)
dx.

Since g(x) ∼ xα with α > 1 for x → 0, the inner integral is well defined, and
this shows that p(x) = qg(x)/x gives cp = 1 and is the required function to
reproduce the Spitzer-Härm distribution from (25).

The shifted Maxwellian and the Spitzer-Härm distribution are just two ex-
amples of deformation of a Maxwellian equilibrium described by (25). It is
worth noting that, as far as the parameter ~vD is kept constant, all elements of
the family (25) carry the same current density. Different choices of the function
p(x) correspond to different shapes of the deformation, that can be more pro-
nounced on the bulk than on the tails of the distribution function depending on
the choice of p.

Let us first compute the generic scattering signal corresponding to an elec-
tron distribution function of the form (25). This requires the reduced distribu-

16



tion (8), which, in this case, reads,

h(vk) =
1√
πvth

e−v
2
k/v

2
th

+ cp
vD/vth

(πv2th)3/2

∫ +∞

−∞
dvx

∫ +∞

−∞
dvye

−v2/v2th v

vth
p(v/vth) cosαv.

The velocity pitch-angle cosine is dealt with as in section 4, and the second term
becomes

vDvk
v2th

cos γ
1

(πv2th)3/2

∫ +∞

−∞
dvx

∫ +∞

−∞
dvye

−v2/v2thp(v/vth),

which can be be simplified using cylindrical coordinates with the result that

h(vk) =
1√
πvth

e−v
2
k/v

2
th

[
1 + cp

( vD
vth

cos γ
) vk
vth

p̂(vk/vth)
]
, (28)

where we have introduced the even function,

p̂(x) =

∫ +∞

0

e−wp(
√
x2 + w)dw. (29)

With h̃(vk/vth) = vthh(vk), the scattering signal (10) amounts to,

Nsc,ω(ωs) = neH
1

kvth
h̃
( ∆ω

kvth

)
, (30)

H being defined in section 3, and

h̃(x) =
1√
π
e−x

2
[
1 + cpxDxp̂(x)

]
, xD = (vD/vth) cos γ. (31)

Multiplication by the width ∆ωs of spectral channels gives the number of col-
lected photoelectrons in each channel, namely,

Nsc(ωs) = neH
∆ωs
kvth

h̃
( ∆ω

kvth

)
. (32)

Since p̂ is even, the second term in h̃ is odd and we can readily compute the
total number of scattering photoelectrons,

Nsc,tot = neH
1

kvth

∫
h̃
( ∆ω

kvth

)
dωs = neH

∫
h̃(x)dx = neH,

which is related to the electron density, cf. equation (11).
The signal (32) is directly proportional to the function h̃, which, on the other

hand, depends on the particular choice of the shape function p. Figure 8 shows
the scattering signal Nsc−Nsc,Max normalized to Nsc,tot∆ωs/(kvth) according to
equation (32), for three choices of the function p(x) and for xD = 0.02; Nsc,Max

is the signal corresponding to the Maxwellian distribution. One can see how the
shape of the deformation can be modeled by changing the function p(x). Specif-
ically, the blue curve corresponds to the shifted Maxwellian distribution realized
by setting p(x) = 1: in this case, the maximum of the deformation is attained
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Figure 8: Normalized difference between the signal Nsc, equation (32), and the
corresponding Maxwellian equilibrium for three different choices of the func-
tion p(x) and for xD = 0.02, ε = 10−3. The intermediate case (blue curve)
corresponds to a shifted Maxwellian distribution.

well within the thermal bulk of the equilibrium distribution, ∆ω ≤ ∆ωth = kvth.
The green curve corresponds to p(x) = x2, which has an asymptotic behavior
for x → 0 similar to that of the Spitzer-Härm distribution: in this case, the
maximum of the deformation is attained at about one thermal speed; higher
powers p(x) = xn, n > 2, would shift the deformation further on the tails of the
equilibrium distribution. At last, the red curve corresponds to a mathematical
model, which is shown just as an example without implying any specific physi-
cal meaning, namely, p(x) = (ε+ x2)−1/2, with ε = 10−3: this choice shifts the
deformation very much on the bulk of the distribution.

The current density carried by the electrons is, equation (13),

jz =
e

H
neH

1

kvth

∫
∆ω

k
h̃
( ∆ω

kvth

)
dωs = enevth

∫
xh̃(x)dx.

The remaining integral can be computed using the normalization condition (26),∫
xh̃(x)dx = xD

cp√
π

∫
x2e−x

2

p̂(x)dx = xD = (vD/vth) cos γ,

hence,
jz = enevD cos γ, (33)

as expected: the electric current density does not depend on the particular
choice of the shape function p; all the elements of the family of distributions
(25) carry the same current density.

An estimate of the relative error associated to the current density jz can
also be computed analytically. One regards the integral (13) as an infinite sum
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of Poissonian variables, hence, the variance of the current density is the integral
of the variance of the integrand in (13) plus the background. That is,

σ2 =
e2

H2

∫ (∆ω

k

)2(
Nsc,ω + 2Nb,ω

)
dωs. (34)

The integral involving the scattering signal amounts to∫ (∆ω

k

)2
Nsc,ωdωs = neHv

2
th

∫
x2h̃(x)dx,

and, recalling that p̂(x) is even,∫
x2h̃(x)dx =

1

2
+ cpxD

1√
π

∫
x3p̂(x)e−x

2

dx =
1

2
.

As for the background light, we use the model put forward in section 5, which
relates the background level to the total number of scattering photoelectrons,

Nb,ω = µb
Nsc,tot

2∆ωth
= µb

neH

2∆ωth
.

Despite this is not consistent with the above treatment of the scattering sig-
nal, for which the whole spectrum is taken into account, let us integrate the
background signal over a spectral band of half-length ξ∆ωth,∫ (∆ω

k

)2
Nb,ωdωs = µb

neHv
2
th

2∆ωth
kvth

∫ +ξ

−ξ
x2dx =

1

3
ξ3µbneHv

2
th,

where the definition ∆ωth = kvth has been used. The combination of the fore-
going results gives the variance

σ2 =
e2nev

2
th

H

[1

2
+

2

3
ξ3µb

]
,

which, in particular, is independent of the choice of the function p, provided that
ξ is chosen independently of p; we shall see, however, that it can be convenient
to adapt the band-width ξ to the shape p of the deformation.

We can now write an analytical estimate of the relative error for the mea-
surement of the electric current density when the electron distribution is ap-
proximated by one of the elements of the family (25); that reads,

∆jz
jz

=
vth

vD cos γ

[1 + 4ξ3µb/3

2Nsc,tot

]1/2
. (35)

Again, this is independent of the particular choice of the element of the family
(25), unless the band-width ξ is adapted to the shape of the deformation. One
can also note that, ∆jz/jz is inversely proportional to the strength vD/vth of
the deformation, as well as to cos γ.

The foregoing analytical result, although appealing, should be applied with
some care. Firstly, in order to get nice analytical expressions, we have taken
into account the scattering signal over the whole spectrum, while, in reality,
the diagnostics is sensitive to a limited spectral band only. Moreover, using a
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Figure 9: Relative error of the simulated current density measurement according
to equation (24), for the three cases of figure 8. The analytical estimate (35) is
also shown (black curve). Here, the band width ξ of the diagnostics is the same
for all cases.

continuous integration, rather than a discrete sum over channels does not allow
us to estimate the discretization error.

In figure 9, the relative error for the current density is displayed for the three
cases of figure 8, holding the band width constant at the value ξ = 2, for all
the three cases. The error is computed using the discretized form (24), with the
parameters of the reference ASDEX Upgrade setup discussed in section 6, and
for a single laser pulse. The corresponding discretization errors are 3.26% for the
bulk-shifted deformation model (red curve), 5.14% for the shifted Maxwellian
model (blue curve), and 11.18% for the quadratic deformation model (green
curve). The analytical estimate, equation (35), is also shown for reference (black
curve). One can see that, with the band width ξ being kept constant, the
relative error depends only weakly on the shape function p(x), as expected
from the analytical estimate. The weak dependence, which is not described
by the analytical theory, appears to be related to the discretization error: the
smaller that is, the closer the result is to the analytical prediction. Indeed,
the current density obtained from the simulated measurement, equation (23),
underestimates the exact value, thus leading to a larger relative error with
respect to the analytical estimate.

So far the band width observed by the diagnostics has been held constant,
with the result that the relative error does not vary significantly with the shape
of the distribution function, while the discretization error does depend on it.
Conversely, one can adapt the band width ξ to the electron distribution function
in order to keep the theoretical discretization error constant. In this case, the
analytical estimate (35) suggests a dependence of the relative error on the shape
of the distribution: ξ, and, thus, the error, is smaller for those functions p that
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Figure 10: The same as in figure 9, but with the band width ξ adapted so that,
for each curve, the theoretical discretization error is ≈ 20%.

are shifted on the bulk.
Figure 10 shows the results of the simulated current density measurement,

when the band width ξ of the diagnostics is adapted to the shape of the distri-
bution so that the theoretical discretization error is about 20% for all the three
considered cases. The obtained values of the spectral band-width are ξ = 1.35
(red curve), ξ = 1.49 (blue curve), and ξ = 1.77 (green curve); that corresponds
to 59, 65, and 77 spectral channels, respectively. Those results have been ob-
tained by means of an iterative process that reduces the band width ξ by an
amount ∆ξ corresponding to the width of a spectral channel, starting from a
large initial guess; the iteration is stopped as soon as the discretization error
becomes equal or larger than a given threshold (20% is the case of figure 10).
The final discretization error is not exactly equal to the threshold value: for
the three cases of figure 10 that is 20.7%, 21.36%, and 20.45%, respectively. As
a consequence of the variable band width, a difference between the three cases
is now clearly visible, but still relatively small. The error is smaller for the
bulk-shifted distributions (red and blue curves), that allow us to use a narrower
spectral window, and, thus, to collect less background light. It is worth noting,
however, that, in this case, the relative error due to the statistical fluctuations
and background light is comparable to the discretization error for vD/vth ≥ 0.02.

The analysis of figures 9 and 10 appears to indicate that, for a given value of
the electric current density jz carried by the electrons, the order of magnitude of
the relative error on jz is not sensitive to the shape of the electron distribution
function, although it can be advantageous to adapt the spectral band-width of
the diagnostics to the shape of the expected theoretical electron distribution,
cf. figure 10.
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8. Conclusions. The foregoing analysis provides a rough framework for the
evaluation of the feasibility of the Thomson scattering measurement of the frac-
tion of the plasma electric current density carried by the electrons.

The signal coming from a Spitzer-Härm electron distribution function has
been evaluated for the parameters of the proposed experimental setup [1, 2] and
the results have been used for the feasibility study reported by Tsalas et al. [2].

Particularly, figure (6) shows that, for the reference case, the noise is larger
than the difference of signals with and without current density. This emphasizes
how difficult the measurement of the current density can be.

The whole electric current density measurement has been simulated and the
expected error has been estimated and plotted in figure 7. For a single laser
pulse, with Te = 500eV, Z = 1, and for values of vD/vth larger than 0.03, the
relative error on the electric current density drops below 20%. The error can be
further reduced by making use of laser bursts with multiple pulses, at the price
of reducing the temporal resolution.

Let us recall the limitations of these calculations. The Spitzer-Härm dis-
tribution function does not account for the effects of the confining magnetic
field, i.e. magnetic trapping effects are neglected. The inclusion of the effect of
the inhomogeneous magnetic field requires the numerical solution of the kinetic
equation. Relativistic effects should also be properly addressed by considering
the relativistic equivalent of the Spitzer-Härm distribution function obtained by
Braams and Karney [13]. Moreover, the error estimate (24) does not account
for the propagation of errors through the various devices in the experimental
setup, such as photomultipliers, that may alter the Poisson distribution of the
number of photoelectrons per channel. At last, the Spitzer-Härm distribution
is not justified for the description of non-Ohmic current densities.

In view of all the these limitations, it is natural to question the robustness of
the error estimate obtained from the Spitzer-Härm distribution. The analysis
presented in section 7 addresses precisely this issue on the basis of a family
of model distribution functions, which is general enough to include both the
Spitzer-Härm and the shifted Maxwellian distributions. This analysis suggests
that, the order of magnitude of the relative error can be considered independent
of the details of the distribution function. An improvement of the accuracy of the
measurement is, however, possible if the width of the spectral window observed
by the diagnostics is adapted to the expected theoretical model for the electron
distribution function. This makes a precise theoretical modeling of the electrons
even more important for an optimal analysis of Thomson scattering data.
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