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Abstract

A Solovév-like equilibrium solution is extended to plasmas with incom-
pressible flow parallel to the magnetic field. ITER-like configurations are
constructed for Alfvén Mach functions peaked either on or off the magnetic
axis. The linear stability of the equilibrium is also examined by applying a
sufficient condition.
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Since plasma flow is common in astrophysical systems and play a role
in the transition to improved confinement regimes of magnetic confinement
devices there has been an increasing interest to self consistent equilibria with
flow [1]-[13]; they can be employed as starting points for stability and trans-
port studies. In the static regime the most known and widely employed
axisymmetric magnetohydrodynamic (MHD) analytic equilibrium is associ-
ated with the Solovév solution of the Grad-Sfafranov (GS) equation [14].
This solution has inherently a D-shaped separatrix with a couple of x-points
on the high field side and a limited number of free parameters which puts a
restriction on the construction of realistic configurations, particularly ITER-
like ones with a single lower x-point. This drawback was recently eliminated
by an extension of the solution to contain arbitrary number of free parameters
[15, 16]. Consequently, a variety of equilibria were constructed with bound-
ary shaping pertinent to laboratory fusion plasmas including both up-down
symmetric and asymmetric configurations and desirable values of confine-
ment figures of merit. Aim of the present contribution is to extend further
this Solovév solution to plasmas with incompressible flow parallel to the mag-
netic field on the basis of a generalized GS equation [Eq. (1) below]. Then,
ITER-like equilibria are constructed. A stability consideration is also made
by means of a sufficient condition for linear stability [17].

We start from the generalized GS equation for field aligned incompressible
flows,

(1−M2)∆⋆ψ − 1

2
(M2)′|∇ψ|2 + 1

2

(
X2

1−M2

)′

+ µ0R
2P ′

s = 0, (1)

together with the Bernoulli relation for the pressure,

P = Ps(ψ)− ρ
v2

2
. (2)

Here, (z, R, ϕ) are cylindrical coordinates with z corresponding to the axis
of symmetry; the function ψ(R, z) labels the magnetic surfaces; M(ψ) is the
Mach function of the velocity with respect to the Alfvén velocity; ρ(ψ) is the
density and X(ψ) relates to the toroidal magnetic field; for vanishing flow the
surface function Ps(ψ) coincides with the pressure; v is the velocity modulus
which can be expressed in terms of surface functions and R; ∆⋆ = R2∇ ·
(∇/R2); and the prime denotes a derivative with respect to ψ. Since the flow
contribution to the pressure in (2) is always non-negative, the requirement
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P ≥ 0 sets certain limit on the maximum permissible flow. Derivation of
(1) and (2) in the general case of flows non-parallel to the magnetic field is
provided in Ref. [4]. Eq. (1) can be simplified by the transformation

u(ψ) =
∫ ψ

0

[
1−M2(g)

]1/2
dg, (3)

which reduces (1) to

∆⋆u+
1

2

d

du

(
X2

1−M2

)
+ µ0R

2dPs
du

= 0. (4)

Transformation (3) does not affect the magnetic surfaces, it just relabels
them. Note that no quadratic term as |∇u|2 appears anymore in (4) and this
equation becomes identical in form with the usual (static) GS equation. The
surface quantities X2/(1−M2) and Ps(ψ) are free functions for each choice
of which (4) is fully determined and can be solved whence the boundary
condition for u is given. Therefore, any analytic solution to the GS equation
can be smoothly extended to the parallel flow case. For convenience we will
introduce dimensionless quantities by R̃ = R/R0, z̃ = z/R0, ũ = u/(B0R

2
0),

ρ̃ = ρ/ρ0, P̃ = P/(B2
0/µ0); j̃ = j/(B0/(µ0R0)), where j is the current density,

and ṽ = v/vA0, where vA0 = B0/
√
µ0ρ0. The free parameters R0 and B0

are the radial coordinate of the geometric center of the configuration and the
vacuum toroidal magnetic field thereon. Then, Eq. (4) remains identical in
form for the tilted quantities by formally setting µ0 = 1. In the following the
tilde will be dropped on the understanding of non-dimensionality.

By making the Solovév-like linearizing ansatz Ps = P1u and X2/(1 −
M2) = X2

0+2X1u, the resulting form of Eq. (4) admits the following solution
which consists the basis of the present study:

u = uh + up, (5)

uh = c1 + c2
R2

2
+ c3

(
z2 +

R2

2
−R2 lnR

)
+ c4

(
z2R2

2
− R4

8

)

+c5

(
z4 + 3z2R2 − 15R4

8
− 6z2R2 lnR +

3

2
R4 lnR

)

+c6

(
z4R2

2
− 3z2R4

4
+
R6

16

)
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+c7

(
z6 +

15z4R2

2
− 255z2R4

8
+

25R6

8
− 15z4R2 lnR

+
45

2
z2R4 lnR− 15

8
R6 lnR

)
+d1z + d2

zR2

2
+ d3

(
z3 +

3zR2

2
− 3zR2 lnR

)
+ d4

(
z3R2

2
− 3zR4

8

)

+d5

(
z5 + 5z3R2 − 75zR4

8
− 10z3R2 lnR +

15

2
zR4 lnR

)
, (6)

up =
P1

8
R4 − X1

2
z2. (7)

Here, uh is the solution of the homogeneous equation and up is a particular
solution of the inhomogeneous equation. uh consists of a symmetric in z part
in connection with the coefficients ci and an asymmetric in z part in con-
nection with the coefficients dj. The construction of this solution is based
on an iterative algorithm which is explained in Sec. 2 of Ref. [16]. This
algorithm permits arbitrary number of symmetric and asymmetric terms in
the homogeneous solution and therefore arbitrary number of free parameters
which can be specified in connection with desirable boundary shaping and
confinement figures of merit. For dj = 0 the equilibrium is up-down symmet-
ric while an ITER-like equilibrium requires non symmetric terms. Here we
have chosen seven symmetric and five asymmetric terms and therefore there
are 14 free parameters including P1 and X1. Note that X0 = 1 because of
the adopted normalization. It is emphasized that (5)-(7) hold for arbitrary
Mach functions and densities.

By exploiting the free parameters we have constructed ITER-like config-
urations with the following characteristics: major radius R0 = 6.2m, minor
radius a = 2m, elongation κ = 1.33, triangularity δ = 0.33, safety factor on
axis in the interval 1 ≤ qa ≤ 2 and average toroidal beta βt ≈ 0.01. The
parametric values were fixed, similar to Ref. [15], by solving numerically the
set of equations (8)-(14), (17) and (18) to follow. First, without prescribing
completely the boundary curve we impose u to vanish at four characteris-
tic fixed points of the boundary, i.e. the inner point , (Rin, z = 0), the
outer point, (Rout, z = 0), the higher point, (Ru, zu), and the (lower) x-point,
(Rx, zx):

u(Rin, 0) = u(Rout, 0) = u(Ru, zu) = u(Rx, zx) = 0. (8)
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At the higher point and the x-point should hold the relations

∂u

∂R
(Ru, zu) = 0, (9)

∂u

∂R
(Rx, zx) =

∂u

∂z
(Rx, zx) = 0. (10)

Also, we require that the configuration is up-down symmetric near the plane
z = 0:

∂u

∂z
(Rin, 0) =

∂u

∂z
(Rout, 0) = 0. (11)

Furthermore, it can be shown that the curvature of the bounding curve at
the inner, outer and higher points should satisfy the relations [15]

∂2u

∂z2
(Rin, 0) = −N1

∂u

∂R
(Rin, 0), (12)

∂2u

∂z2
(Rout, 0) = −N2

∂u

∂R
(Rout, 0), (13)

∂2u

∂R2
(Ru, zu) = −N3

∂u

∂z
(Ru, zu), (14)

where

N1 =
(1− α)2

ϵκ2
,

N2 = −(1 + α)2

ϵκ2
,

N3 = −κ
ϵ
cosα2,

α = arcsin δ.

Derivation of (12)-(14) is based on the relation du = (∂u/∂R)dR+(∂u/∂z)dz
from which on the poloidal cross-section of a magnetic surface can be written
as

∂u

∂z
= − dR

dz

∣∣∣∣∣
u

∂u

∂R
. (15)

Partial derivation of (15) with respect to z, on account of
dR(z = 0)/dz|u = 0, leads for z = 0 to

∂2u

∂z2
= − d2R

dz2

∣∣∣∣∣
u

∂u

∂R
. (16)
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The term d2R/dz2|u in (16) can be calculated by employing for the upper,
D-shaped part of the boundary the parametric equations

R = 1 + ϵ cos (τ + α sin τ)

z = ϵκ sin τ,

where τ is a parameter covering the range 0 ≤ τ ≤ π, ϵ = a/R is the inverse
aspect ratio, κ is the elongation and sinα = δ is the triangularity. Applica-
tion of (16) for Rin and Rout furnishes relations (12) and (13). Relation (14)
for the upper point can be derived in a similar way.

In addition to the above boundary shaping equations we employ for the
safety factor on axis and the toroidal beta the relations:

qa =
X

R
√
1−M2

(
∂2u

∂R2

∂2u

∂z2

)−1/2
∣∣∣∣∣∣
R=Ra,z=za

, (17)

where (Ra, za) is the position of the magnetic axis, and

βt =

∫
V P dτ

B2
0/(2µ0)

. (18)

Regarding the flow, we adopted the following alternative choices of M2:

M2 = M2
a

(
u

ua

)n
(19)

M2 = Cun(ua − u)m (20)

where

C =M2
a

[
mua
m+ n

]−m [ nua
m+ n

]−n
.

Here, ua refers to the magnetic axis, the free parameter M2
a corresponds to

the maximum value of M2 and m and n are related to the flow shear. In
particular, (19) is peaked on- while (20) is peaked off-axis in connection with
respective auxiliary heating of tokamaks. Typical value of M2 for (large)
tokamaks are of the order of 10−4 because of the experimental scaling v ∼
10−1vs, where vs = (γP/ρ)1/2 is the sound velocity. An example of the
equilibria constructed is shown in Fig. 1.

We now consider the important issue of the stability of (5)-(7), with
respect to small linear MHD perturbations by applying a sufficient condition
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Figure 1: An ITER-like equilibrium with parallel plasma flow in connection
with solution (5)-(7) with qa = 1.1 and βt = 0.01.

(Ref. [17]). This condition states that a general steady state of a plasma of
constant density and incompressible flow parallel to B is linearly stable to
small three-dimensional perturbations if the flow is sub-Alfvénic (M2 < 1)
and A ≥ 0, where A is given below by (21)-(26). Consequently, we set
ρ = 1. In fact if the density is uniform at equilibrium it remains so at
the perturbed state because of incompressibility [18]. In the u-space for
axisymmetric equilibria, A assumes the form

A = A1 + A2 + A3 + A4, (21)

A1 = − (j×∇u)2 , (22)

A2 = (j×∇u) · (∇u ·∇)B, (23)

A3 = −1

2

dM2

du

(
1−M2

)−1
|∇u|2 ∇u · ∇B2

2
, (24)

A4 = −1

2

dM2

du

(
1−M2

)−3/2
|∇u|4 g, (25)
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g = (1−M2)−1/2

(
dPs

du
− dM2

du

B2

2

)
. (26)

The quantity A1 is a destabilizing contribution (A1 < 0) potentially related

z
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Figure 2: Stability diagram showing the sign of the quantity A for the Mach
function (19) with M2

a = 10−2. In the red colored region (gray shaded)
regions where A ≥ 0 the stability condition is satisfied on the understanding
that the physically relevant part lies within the plasma boundary.

to current driven modes while A2 relates to the variation of the magnetic
field perpendicular to the magnetic surfaces. A3 and A4 are flow terms de-
pending on the magnitude and the shear of the flow (in connection with the
parameters M2

a , n and m for the present study). The quantity A was cal-
culated analytically by Mathematica. It turns out that the condition A ≥ 0
is satisfied only in a small region close to the boundary irrespective of flow.
As an example, the stability diagram showing the sign of A on the poloidal
plane is given in Fig. 2 for the Mach-function (19) and the nearly maximum
permissible value M2

a = 10−2 (in connection with the non-negativeness of
the pressure). The condition is satisfied in the red colored (gray shaded)
region. The diagram is nearly identical with the respective static one, i.e.
|∆A/Aqs| ≤ 10−3, where Aqs are the static values of A and ∆A their differ-
ences from the stationary ones. Also, a similar result holds for the off-axis
Mach function (20). Stability diagrams for the terms A1, A2, A3 and A4 in
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Figure 3: Stability diagrams for the terms A2, A3 and A4 of the stability
quantity A for the Mach function (19) with M2

a = 10−2. In the red colored
(gray shaded) regions these terms are non-negative.

Fig. 3 show that A2 is nearly everywhere stabilizing and of the same order of
magnitude as A1 but not large enough to overcome the destabilizing effect of
A1 (Fig. 4). The flow term A3 is stabilizing over a large part of the plasma
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Figure 4: Profiles of the stability condition terms A2, A3 and A4 on the plane
z = 0 for the Mach function (19) with M2

a = 10−2.

but A4 is destabilizing. Both flow contributions are at least three orders of
magnitude lower than A1. However taking into account the fact that the
condition is sufficient, the above results do not necessarily imply that the
equilibrium is unstable.

In summary, we have extended a Solovév-like equilibrium solution to plas-
mas with parallel incompressible flow. The advantageous characteristic of
this solution is that it can contain an arbitrary number of free parameters
which can be exploited to construct configurations with desirable bound-
ary shaping and confinement figures of merit. In particular, by including in
the solution fourteen free parameters we have derived ITER-like equilibria
with prescribed values of the safety factor on axis and toroidal beta for both
Mach-function profiles, peaked on and off axis. Application of a sufficient
condition for linear stability showed that this condition is satisfied only in a
small region irrespective of flow and flow shear unlike the cases of the non-
linear cat-eyes [12] and counter-rotating-vortices equilibria [13]. This result
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is in favor to the conjecture that the equilibrium nonlinearity may activate
flow stabilization.
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