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Simple expressions allowing estimation of the turbulent density perturbation from the reflectometry phase root mean 

square (r.m.s.) measurements and accounting for the turbulence correlation length are given. The numerical procedure 

for precise turbulence radial profile reconstruction for different turbulence wave number spectra and both O-mode and 

X-mode reflectometry is proposed. It is validated using a full-wave 1D modeling of an ordinary (O) mode reflectometry 

in the case of arbitrary density fluctuation profiles.  

 

 

1. Introduction. 

Drift wave turbulence is known to be important in the energy and particles losses from hot tokamak 

plasmas. The reflectometry signal being extremely sensitive to the density fluctuations carries out 

the information on the turbulence properties. A considerable interest remains in the interpretation of 

the reflectometry data to obtain this information. The long scale density fluctuations dominant in 

the drift turbulence spectrum influence mostly the phase of the scattered wave, collected by the 

receiving antenna. The fluctuating part of the probing wave’s phase       , where   and 

   are the full random phase and the statistically averaged phase associated with the mean 

plasma density profile correspondingly, is thought to contain information on the density 

fluctuation’s radial profile 2 1/2n  . In order to get out this information the reflectometry phase 

root mean square (r.m.s.)  

2 2( )          ,     (1) 

is usually investigated under assumption that the cut-off vicinity contributes mainly into the 

fluctuating part of the signal’s phase, so that the phase r.m.s. is proportional to the density 

fluctuations 2 1/2n   in the cut-off layer ( 2 2 1/ 2

сutoff
n    � ). This simple interpretation 

of the experimental data however faces with huge difficulties as the reflectometry wave suffers 

from the poorly localized forward scattering all over its path from the probing antenna to the cut-off 

and back. In such a case the problem of the density fluctuations radial profile reconstruction from 
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the phase r.m.s. measurements occurs, as it will be shown below, non local and requiring an 

additional hypothesis on the density fluctuations radial wave number spectrum.   

In this paper in the frame of 1D slab plasma model we propose a numerical procedure of the density 

fluctuations radial profile reconstruction from the experimental data provided by fixed frequency or 

frequency hopping reflectometers. This method is applicable for both O- and X-mode 

reflectometers. For simplicity, the procedure is validated using a full-wave 1D modeling of an 

ordinary (O) mode reflectometry assuming either Gaussian or exponential turbulence radial 

wavenumber spectrum, providing reasonable approximation of experimental data both at long and 

small scales [1-3]. The remainder of this paper is organized as follows: In the Section 2 the 

theoretical background with the analytical expressions for both the fluctuating part of the phase of 

the reflectometry signal and the phase r.m.s. for the ordinary (O) and extraordinary (X) probing 

wave in a case of the non-uniform density fluctuations radial profile are presented. To evaluate the 

statistical averaging in the phase r.m.s. we consider the Gaussian and the exponential spectrum of 

the turbulence. Then, in the Section 3 we propose, basing on the results of Section 2, the numerical 

procedure of the reconstruction of the radial profile of the turbulent density perturbations from the 

experimental data. We finish with conclusions in the Section 4.      

 

2. Theoretical background. 

In the present paper we develop the procedure of the density fluctuations radial profile 

reconstruction from the fluctuating part of the reflectometry phase collected by the probing wave on 

its path from the antenna to the cut-off and back. For the sake of simplicity we consider 1D plasma 

slab model and assume no possibility of multi-reflections of the probing wave from the plasma 

boundary, metallic walls and the cut-off that is reasonable for the case of large fusion devices. We 

assume also that only one cut-off point exists in plasma that implies in the case of O-mode 

limitation on the turbulence density perturbation / /c c cn n l x � ,  where 2 2/ (4 )c en m e  is the 

critical density expressed in Gaussian units which we use in this paper and cx  is the distance 

between the antenna and the cut-off. Assuming large turbulence correlation length c al l� , where 

 1/32 2/a cl c x   is the Airy wavelength, we justify omitting of backscattering far from the cut-off. 

Under above assumptions the phase of the reflected wave can be calculated explicitly using the 

geometrical optics (WKB) approach [4]. It is represented as a sum of two terms  

   
0

2 ( )
2

cx

jk x dx
     and 

2

2
0

( )

( )

cx
j

c j

h dxn x

c n k x

        (2) 

determined by the unperturbed  or averaged density profile (   ) and density fluctuations ( ) 

correspondingly. 
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where the radial wave number ( )jk x  and the element jh  for an ordinary ( j o ) and an 

extraordinary ( j e ) wave according to [5] are given correspondingly by  
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 (3) 

where  1 224 /pe ee n m   and /ce eeH m c   are the electron plasma and cyclotron frequencies 

correspondingly. 

The reflected wave phase mean square is then given in a form:  

     4
2

4 2
0 0

( ) ( ) ( ) ( )

( ) ( )

c cx x
j j

j j c

h x h x n x n x
dx dx

c k x k x n

  
      
      (4) 

where ...   means the statistical averaging. This expression was studied in detail in papers [5, 6] 

devoted to investigation of radial correlation reflectometry nonlinear regime. The density 

fluctuations were supposed to be statistically inhomogeneous, however the turbulence 

inhomogeneity scale L  much greater than the turbulence correlation length cl  was assumed 

satisfying the natural inequality cl L� . Under this assumption the density fluctuation correlation 

function is given by the following expression    2
0( ) ( ) , ,n x n x n x x K x x x x               

where  

       , , exp ( ) ,
2c

d
K x x x x l x x K x x i x x

  






              

  1 ,
2c

d
l K x x

 







    ,  0, 1K x x       (5) 

2
0n  represents the turbulent density perturbation level;  ,K x x    is the spectrum of the density 

fluctuations and  stands for their radial wave number.  As it was shown [5, 6], under assumption 

of a weak turbulence statistical inhomogenuity the reflected wave phase mean square can be 

represented in the form 

       
2

2 2
2 2

0

cx

c j c
c

d l n x S
c n

             (6) 

where new notations have been introduced: cx x   , 2 2 2
0j jn h n   and  S   is the scattering 

efficiency characterising relative contribution of different regions of probing wave trajectory to the 

reflected wave phase r.m.s.. Far from the cut-off, at c cx x l � , we may put 0cl   in (5) and 

considering the density fluctuation correlator in (4) as a delta-function 

(    , ,K x x x x x x       � ) obtain the scattering efficiency given by simple expression: 
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It grows towards the cut off thus underlining its contribution into the phase r.m.s., however the 

efficiency singularity in the cut off predicted by (7) and provided by vanishing probing wave 

number is not physical. The efficiency growth saturates at distances from the cut off comparable to 

the turbulence correlation length which was put to zero when deriving (7). In the nearest cut-off 

vicinity, at | |c cx x l    the density profile can be approximated by linear dependence that permits 

us to represent  S   in a form 

         0,
2

j
c

L
S d K x J    





 �     (8)

where 
12 2 2/ /
c

j j
x

L c k dx


   characterizes the local inhomogeneity of refractive index squared 

and  0J   is the Bessel function of the first kind. The later expression is not singular in the cut 

off. For the linear background density profile equation (7) is a strict mathematical asymptotic of 

(8) at  � l
c
. The expression (8) for the scattering efficiency can be simplified in two important [1-

3] particular cases of the Gaussian and the exponential spectrum of the fluctuations. Begin with 

consideration of the first one   2 2
0exp /K      

 , where the spectrum width is related to the 

correlation length introduced by (5) 1
02cl   . In this case the scattering efficiency (8) in the 

cut-off vicinity is given by the following expression: 

     
2 2 2 2

0 0 0
0exp

2 8 8
jL

S I
     

   
       

   
,    (9) 

where  0 ...I  is the modified Bessel function of the first kind. Using (9) and (6) it is also possible to 

derive an explicit expression for the reflectometry probing phase r.m.s. for the linear background 

density profile and statistically homogeneous fluctuations [7]:  
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In this case we can find the level of the density fluctuations as a function of the probing wave 

frequency  : 
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Proceeding, we consider the exponential spectrum of the fluctuations   0exp | |K        for 

which the spectrum width is related to the correlation length as 1
0cl   . In this case the integral 

(8) can be evaluated explicitly providing 

      
2 2

0

jL
S 

  



.      (12) 

whereas the phase r.m.s. (6) for the linear density profile and statistically homogeneous turbulence 

results in expression 

    
22

2
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.   (13)  

The level of the density fluctuations for the exponential spectrum of the density fluctuations can be 

represented as a function of the probing wave frequency   in a form: 
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In the case of arbitrary turbulence spectrum, as it was shown in [6], the relation between the phase 

r.m.s. and the density perturbation r.m.s. is given by expression 

22
2

2 2
ln

c

j j
j c

cc x

n L
L l

lc n

 
  
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   

 

 which looks similar to (10) and (13) and differs only by a factor  determined by specific form of 

the turbulence spectrum. Expressions (10), (11) and (13), (14) generalize relations between the 

phase perturbation and the coherent fluctuation amplitude derived in [8] to the case of statistically 

homogeneous turbulent density fluctuations. In the general case of arbitrary both the background 

density profile and the density fluctuations radial profile, the expressions (11) and (14) provide the 

fluctuations level estimated by ignoring the non-local contributions to the reflectometry phase all 

over the plasma far from the cut off. Nevertheless, if the effects of non-locality are not excessively 

strong, we can use (11) and (14) as the zero order approximation for the numerical procedure being 

described in the forthcoming section.    

 

3. Numerical modelling of O-mode reflectometry.  

In this paper we analyze numerically the case of O-mode reflectometry and the Gaussian spectrum 

of the fluctuations 2 2
0( ) expK       . To develop the semi-analytical procedure of the density 
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fluctuations radial profile reconstruction we solve the Helmholtz equation by using a 4th order 

Numerov scheme [9]. We assume the plasma density consisting of two pieces: the unperturbed 

regular part ( )n x  and the random part ( )n x  given by a sum of harmonic fluctuations  

 20( )
2

k

m

k

m N
iim x

mq
m N

n
n x n e e 

 







     (15) 

where the wave numbers are defined by m   , random phases m , and amplitude distributed in 

accordance with the input turbulence spectrum. The value of the wave number resolution   thus 

defines also the wavelength of the longest mode that is present in the simulation. The simulated 

scattered wave phase r.m.s. 2   is obtained from the variance of   in a significant number 

( 50000N  ) of independent random density perturbation samples.  

The described simulation procedure was first benchmarked against the case of linear density profile 

and statistically homogeneous turbulence characterized by Gaussian wavenumber spectrum for 

which both the level 2
0n and correlation length 1

02cl    are not dependent on coordinate. In 

this case, according to analytical theory, the scattered wave phase r.m.s. 2   should be given 

by expression (10). However with our choice of the simulation setup 2   appears to be 

substantially dependent on  , as it is seen in figure 1. This dependence is explained by much 

stronger sensitivity of reflected wave phase fluctuations to long wavelength density fluctuations 

[10] leading also to non ideal localization of the fluctuation reflectometry signal by the cut off 

position. Nevertheless, we observe that 2   is within 10% of its final (at 0  ) value, if the 

condition 1L   holds. Already in 1D modeling, to say nothing about the 2D case, this criterion 

can be demanding in terms of computing resources, given the plasma dimension is large and the 

vacuum wave length is small. It should be underlined that at 0   the simulated value of 

2  is found to be in excellent agreement with the analytical result (10) demonstrating its 

potential for estimation of turbulent density perturbation based on the reflected wave phase r.m.s.. 

After this short introduction of the numerical scheme and the way of the phase r.m.s. calculation 

used for treatment of the problem we proceed with consideration of the procedure of the density 

fluctuations radial profile reconstruction from the experimental data for realistic density profile. 

 

4. Reconstruction of the radial profile of the fluctuations. 

In this section based on theoretical relations (6) – (9) we develop the semi-analytical procedure of 

the density fluctuations radial profile reconstruction from the measured phase r.m.s. 2
exp   

dependence on the probing frequency. At the first step, we use equation (11), derived for the 

homogeneous fluctuations radial profile, to estimate the absolute value of the density fluctuations at 
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the cut-off of the probing wave at each frequency   from the corresponding phase r.m.s. 

  2
exp cx   . Then, we use the obtained estimation 2

0 ( )cn x   to calculate a set of phase 

r.m.s. 2
0  . Thus, we substitute 2

0 ( )n x   determined by (11) with  oL x  being the local 

gradient length at the actual cut-off position into equation (6) with the kernel having been defined in 

the whole x- coordinate space according equations (7) and (9) to recalculate 2  . Naturally, as 

we neglect the non-locality of the phase perturbations formation entirely, when estimating the 

density fluctuation 2
0 ( )n x   profile, the calculated phase perturbation profile  2

0 cx   

doesn’t coincide with the measured one. However the error can be used to correct the density 

perturbation value using the iterative procedure based upon the least-square fit procedure, a key 

element of which is a hypothesis of a weak non-locality due to the small angle scattering (the main 

contribution to the phase perturbations comes from the cut-off vicinity). We make the difference of 

 2
0 cx   to 2

exp    as a subject to minimization that affords to precise 2
0 ( )cn x   for the 

fixed ( )cx  .  

We illustrate the procedure for the unperturbed density profile and the radial profile of the density 

fluctuations 2
0 ( )n x   shown in figure 2, which experiences sharp growth when approaching 

plasma edge. For the sake of simplicity we neglect the effect of the turbulence inhomogeneity on 

the spectrum of the fluctuations. Then, we consider a set of 2
exp   numerically calculated for 

different   using full-wave Helmholtz equation for O-mode reflectometry and shown in figure 3 by 

circles, as the experimental data. At the first step of the reconstruction procedure described above 

we get an estimation 2
0 ( )cn x   for this phase r.m.s. profile using the “local” expression (11). 

The corresponding distribution is shown by crosses in figure 4. It is worth to mention that this 

estimation of the actual density fluctuation profile shown by solid line there is already rather 

accurate (less than 15% difference).  Based upon this distribution we calculate the phase r.m.s. 

using expression (6) and compare it to the “experimental” one 2
exp   in figure 3, where it is 

shown by crosses. The obtained phase r.m.s. distribution resembles the experimental one, however 

exceeding it in the internal plasma region by up to 25%. To obtain more accurate results, a 

nonlinear least-squares method based on the interior-reflective Newton method described in [11, 

12] is used in which the density fluctuations amplitudes ( )in x  are the unknowns. The non-linear 

data-fitting process is initiated using an input set of density fluctuations amplitude provided by the 

simplified formula (11). An illustration of this iterative method is shown on the Fig. 4 where the 

reconstructed density fluctuations profile corresponding to squares exhibits an improved agreement 
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with the input density fluctuations profile and becomes very close to it. To examine the influence of 

the phase r.m.s. error, caused by not perfect statistical averaging, on the 2
0 ( )n x   reconstruction 

we vary one element of the 'measured' set 2
exp   at the plasma edge where the phase r.m.s. is the 

highest (see figure 5), as well as the probability of giant phase fluctuations caused by single events 

(blobs, filaments etc.), and then, study the effect on the reconstructed fluctuation profile after the 

fitting procedure in figure 6. As it is seen there, the error effect on the fluctuation profile is only 

strong at the cut off of the frequency for which the erroneous phase r.m.s. measurement was taken. 

Figure 6 illustrates the limited spatial range of the density fluctuation profile which is affected by 

the error. Keeping in mind that the probability to find giant single density perturbation decreases in 

the plasma core we may conclude that the density perturbation reconstruction in this region is more 

robust. 

Discussing the limitations which are put on the proposed fluctuation profile reconstruction 

procedure by 2D effects caused by plasma curvature and finite probing beam width we would like 

to mention that as it was shown in [13]. the phase measurements are less sensitive to 2D effects and 

can be described by 1D simulations. A similar conclusion has been obtained by [14] when 

performing turbulence radial wave number spectrum reconstruction from the reflected wave phase 

fluctuations. 

 

5. Conclusions.  

In this paper we propose a simple looking expression for estimation of the turbulent density 

perturbation from the measured reflected wave phase r.m.s. Moreover, we developed the semi-

analytical procedure for the turbulence density perturbation radial profile reconstruction from the 

phase of the wave reflected from the cut-off. Using a 1D full-wave O-mode code we have 

successfully validated analytical expressions which relate the phase fluctuations in fluctuation 

reflectometry to the absolute value of the density fluctuations. If the profile of the fluctuation level 

is inhomogeneous the phase fluctuations can be described accurately by an integral expression. 

With this expression we demonstrated that the reconstruction of the fluctuation level profile can be 

obtained from a set of phase variances measured at different frequencies. Furthermore, the integral 

expression allowed us to study how uncertainty of the fluctuation level at the plasma edge can 

contribute to the error of the fluctuation level measured at the plasma center. We can note also that 

the proposed procedure utilizes the data of the phase perturbations of the reflected wave and is 

based on the WKB approximation valid both for O-mode and X-mode reflectometry. This method 

is complementary to those giving the density fluctuations profile obtained using ultrafast sweep 

frequency reflectometer data running on X- or O-mode [15, 16]. Therefore, as the analytical 
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expressions in section 2 were derived within the WKB approximation we believe that they work 

well in the case of the X-mode fluctuation reflectometry just as for the O-mode fluctuation 

reflectometry which was confirmed by comparison to results of numerical modeling in an 

inhomogeneous turbulence case.   
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Figure 1 

 

Figure 2 
 

Figure 3 

 

Figure 4 

 

Figure 5 
 

Figure 6 

 

Figure 1. The phase variance 2   as a function of L  for 47f GHz , 58L cm , 

0.75 ,cl cm  2
0 / 0.001cn n   . Note that   stands for both the wavenumber resolution and 

the wavenumber of the longest mode that is present in the simulation box. 

 

Figure 2. The background density profile (dashed curve) and the fluctuations level (solid curve);  

cx a . 

 

Figure 3. 2   versus coordinate of the cut-off  (17 different frequencies). Open circles - 

2   full-wave simulation for the profiles shown in figure 2, crosses - 2    obtained using 

expression (10).  

 

Figure 4.  2
0n   versus the coordinate of the cut-off. Solid curve - input fluctuations level, 

crosses - initial guess reconstructed from (10), squares  – calculated from least-squares fitting of the 

2   data. 

 

Figure 5. Error in the 2   data located at the plasma edge. 

 

Figure 6. Effect of the error on the reconstructed 2
0n  . 


