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Abstract

Particle and heat transport in fusion devices often exceed the neoclassical pre-

diction. This anomalous transport is thought to be produced by turbulence caused

by microinstabilities such as ion and electron-temperature-gradient (ITG/ETG)

and trapped-electron-mode (TEM) instabilities, the latter ones known for being

strongly influenced by collisions. Additionally, in stellarators, the neoclassical

transport can be important in the core, and therefore investigation of the effects

of collisions is an important field of study. Prior to this thesis, however, no

gyrokinetic simulations retaining collisions had been performed in stellarator

geometry.

In this work, collisional effects were added to EUTERPE, a previously collision-

less gyrokinetic code which utilizes the δf method. To simulate the collisions, a

pitch-angle scattering operator was employed, and its implementation was carried

out following the methods proposed in [1, 2]. To test this implementation, the

evolution of the distribution function in a homogeneous plasma was first simulated,

where Legendre polynomials constitute eigenfunctions of the collision operator.

Also, the solution of the Spitzer problem was reproduced for a cylinder and a

tokamak. Both these tests showed that collisions were correctly implemented and

that the code is suited for more complex simulations.

As a next step, the code was used to calculate the neoclassical radial particle

flux by neglecting any turbulent fluctuations in the distribution function and the

electric field. Particle fluxes in the neoclassical analytical regimes were simulated

for tokamak and stellarator (LHD1) configurations. In addition to the comparison

with analytical fluxes, a successful benchmark with the DKES code was presented

for the tokamak case, which further validates the code for neoclassical simulations.

1Large Helical Device; a stellarator from the National Institute for Fusion Science (NIFS)

located in Toki, Japan.



In the final part of the work, the effects of collisions were investigated for slab

and toroidal ITGs and TEMs in a tokamak configuration. The results show that

collisions reduce the growth rate of slab ITGs in cylinder geometry, whereas they

do not affect ITGs in a tokamak, which are mainly curvature-driven. However it

is important to note that the pitch-angle scattering operator does not conserve

momentum, which is most critical in the parallel direction. Therefore, the damping

found in a cylinder could be the consequence of this missing feature and not a

physical result [3]. Nonetheless, the results are useful to determine whether the

instability is mainly being driven by a slab or toroidal ITG mode.

EUTERPE also has the feature of including kinetic electrons, which made

simulations of TEMs with collisions possible. The combination of collisions and

kinetic electrons made the numerical calculations extremely time-consuming, since

the time step had to be small enough to resolve the fast electron motion.

In contrast to the ITG results, it was observed that collisions are extremely

important for TEMs in a tokamak, and in some special cases, depending on

whether they were mainly driven by density or temperature gradients, collisions

could even suppress the mode (in agreement with [4, 5]).

In the case of stellarators it was found that ITGs are highly dependent on

the device configuration. For LHD it was shown that collisions slightly reduce

the growth rate of the instability, but for Wendelstein 7-X2 they do not affect

it and the growth rate showed a similar trend with collisionality to that of the

tokamak case. Collisions also tend to make the ballooning structure of the modes

less pronounced.

2An optimized stellarator currently being built in the Institute for Plasma Physics (IPP)

located in Greifswald, Germany.
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numerical (red, blue) results (Ē‖ = 10−2 and ν = 10−6 Ω∗). . . . . 62

4.1 Time evolution of the normalized radial particle flux in the Pfirsch-
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Chapter 1

Introduction

This thesis addresses the implementation of collisions in a previously collisionless

gyrokinetic code called EUTERPE, and investigates the effect of such collisions

on plasma transport and instabilities. In this chapter, some basic concepts about

fusion and plasma physics will be introduced as well as the motivation for this

work.

1.1 Fusion

In atoms, protons and neutrons are bound together to form the nucleus. This

bonding force is called the strong nuclear force, which is one of the fundamental

interactive forces in nature. The energy of the bound system (nucleus) is always

lower than the energy of its constituents individually (protons and neutrons).

This is called the mass defect ∆m. The binding energy can then be calculated by

Einstein’s famous equation relating energy to mass: E = ∆mc2.

This nuclear energy can be obtained by two processes:

• Fission, which transforms a high mass nucleus into new lighter nuclei. These

heavy elements are from iron 56Fe to the right in Fig. 1.1. Fission will not

be further addressed since it is outside the scope of this work.

• Fusion, which binds light nuclei to form a new heavier nucleus. In Fig. 1.1

these elements corresponds to the ones on the left side of iron.

1
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Figure 1.1: Binding energy per nucleon. Fusion processes occur to the left

side of iron (56Fe). Fission processes, to the right. Data from [6].

The nuclear binding force, is a short-range force, unlike the Coulomb force,

which, at greater distances between the particles dominates the interactions. In

order to have fusion, then, it is necessary to overcome the repulsion by the Coulomb

force. This condition alone requires extremely high temperatures (∼ 500 keV)

which would have made fusion in a laboratory practically impossible. Fortunately,

it can still be achieved at temperatures below the Coulomb barrier due to quantum

tunneling, which allows the nuclei to have a higher probability to undergo fusion

reactions at lower temperatures. Also, since the temperature is the average kinetic

energy, there will be always particles in the tail of the distribution function that

can be in the range of the temperatures needed for fusion.

In nature, fusion occurs naturally in all of the stars in the universe. For stars

similar to the Sun, the proton-proton cycle, which transform hydrogen to helium,

is the dominant reaction occurring in the core. This kind of fusion, however,

occurs very slowly and is therefore unfeasible on Earth. The best candidate for

producing energy in a fusion reactor, is the deuterium-tritium (DT) reaction,

D + T→ 4He + n + 17.6 MeV (1.1)

2



1.2 Plasma and magnetic confinement

where D is a deuteron (nucleus of deuterium) which contains one proton and

one neutron, T is a triton (nucleus of tritium) containing one proton and two

neutrons, 4He is an α-particle (nucleus of Helium) consisting of two protons and

two neutrons, and n is a neutron. Its large cross-section at low energies and the

abundance of deuterium in water make this choice the most promising for fusion

power.

To achieve the density and temperatures needed for ignition (Lawson criterion

[7]), it is necessary to confine a thermalized state of deuterons and tritons, as well

as electrons. This state of high temperature gas is called plasma.

1.2 Plasma and magnetic confinement

Plasma is a high temperature gas which is composed of positively charged ions,

and electrons which exhibit collective behavior. One of its properties is that it

is quasi-neutral, i.e. local charge concentrations are shielded from the system or

device scale length. This happens because electrons surround ions and screen the

ion charge. The length scale of this screening is called the Debye length and it

measures the range of an electric potential in a plasma. Outside the screening

zone, the density of positive charges is approximately equal to the density of

negative charges.

If the charges are slightly separated (small density perturbation) this causes a

restoring electric field to appear. Particles react to this field by oscillating with a

frequency called the plasma frequency, which is much higher for electrons than

for the ions, due to the mass difference.

When a magnetic field is applied, the Lorentz force makes the charged particles

in a plasma describe circular and helical orbits around the magnetic field lines.

This property leads to the confinement of these particles by the magnetic field

and minimizes the contact of the plasma with the device chamber walls. This

is necessary since the plasma temperature is far too high for any material to

withstand for an extended amount of time. Additionally, if material from the

walls leaks into the plasma, this quickly cools down by emission of Bremsstrahlung

(deceleration radiation), which is unfavorable, since high temperatures are required

for fusion.

3



1. INTRODUCTION

Some early confinement systems consisted of linear magnetic mirror devices.

The problem with such systems is that the losses at the ends were too large to

attain the required confinement time. A better approach is a toroidal chamber.

A purely toroidal magnetic field, however, is not a good solution, since the non-

uniformity and curvature of the magnetic field produces a drift of the charged

particles that leads to a charge separation and a related electric field, which

finally makes the particles drift radially outwards. To counteract this effect, the

magnetic field lines are twisted, so that the charge separation is prevented. The

twist of the magnetic field lines is achieved by adding a poloidal component to

the toroidal magnetic field.

Two different concepts of toroidal chambers were conceived in the 1950’s: the

tokamak and the stellarator. They differ mainly by the methods they use to twist

the magnetic field.

Tokamak

The tokamak device was first theoretically developed by Tamm and Sakharov,

in the Soviet Union, in 1952. The name comes from the Russian toroidal’naya

kamera s magnitnymi katushkami, which means toroidal chamber with magnetic

coils. It works by producing a toroidal magnetic field with external planar coils.

The poloidal contribution to the magnetic field is mainly done by the plasma

itself, which carries an electric current, produced externally by induction. The

toroidal and the poloidal components combined give the magnetic field its twisted

shape. Having a current through the plasma helps by contributing to the heating,

but it has a main drawback: due to the limited time that the transformer can

generate the plasma current, the tokamak can only be operated in a pulsed mode,

i.e. not continuously. The plasma current can also induce disruptions, which

are short-timed, violent current break-downs, that are detrimental to the device.

They can produce mechanical stress and localized heat loads that can damage the

machine. A schematic view of the tokamak can be seen in Fig. 1.2.

4



1.2 Plasma and magnetic confinement

Figure 1.2: Tokamak device diagram. The central solenoid provides

the plasma current. The toroidal field coils (red) provide the toroidal

component of the magnetic field and the vertical field coils (green) are

used to further control the position and shape of the plasma.1

Stellarator

Around the same time (1951), in Princeton USA, Lyman Spitzer developed the

stellarator concept. The magnetic field in this device is produced mainly by the

coils; the plasma current is absent (in the absence of plasma pressure) since now

the poloidal field component is given also externally. The advantage of this is

that there are no disruptions and since the current can be controlled from outside,

steady-state (continuous) operation is possible. To achieve this, the shape of

the coils must be complex, which causes problems from an engineering point

of view. There is no axial symmetry anymore, as in the tokamak, and physics

in a stellarator thus becomes fully three dimensional (3D), which poses a great

challenge for theoretical calculations, and numerical codes. The short confinement

time in early stellarator experiments, made the tokamak more popular, however,

due to the problems (mainly disruptions and current drive) the tokamak poses,

the stellarator concept has become again a subject of high interest.

Stellarators were first constructed [8] as a set of planar coils with additional

1 c© Max-Planck-Institut für Plasmaphysik.
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1. INTRODUCTION

helical coils (see Fig. 1.3 (left)). In recent years, they have been built using a set

of modular planar and non-planar coils (see Fig. 1.3 (right)), which has proven to

be a better way of construction.

Figure 1.3: Stellarator devices diagrams: left, with planar (red) and helical

(green) coils and right is stellarator with a set of modular non-planar coils.2

1.3 Collisional transport

Successful confinement and ignition conditions depend on the density, temperature

and confinement time of the plasma. These parameters are limited by different

transport processes. Among these processes is the scattering by Coulomb collisions

between particles. Collisions induce diffusion which, in the case of charged particles

gyrating around a field line, has a step-size of the order of the gyroradius, also

called the Larmor radius. This type of diffusion is known as classical diffusion.

However, in toroidal devices like tokamaks and stellarators, there are not only

freely circulating particles but trapped particles as well, which oscillate between

local maxima of the magnetic field instead of going around the torus. The trapped

orbits that they describe (called banana orbits in a tokamak) have a step size

much larger than the Larmor radius, thus, when suffering collisions, diffusion

has a greater step-size than classical diffusion. This kind of transport is called

neoclassical transport [9].

2 c© Max-Planck-Institut für Plasmaphysik.

6



1.3 Collisional transport

Different neoclassical transport regimes can be found depending on the col-

lisionality. In a tokamak, the following can be observed (see Fig. 1.4): The

Pfirsch-Schlüter regime, the plateau regime and the banana regime.

1/nregim
e

Ban
an

a
re

gi
m

e

Plateau
regime

Pfirs
ch-Schlüter

regim
e

G

Classical Transport

n

Figure 1.4: Neoclassical particle flux vs. collision frequency. Both axes are

displayed in logarithmic scale.

In the Pfirsch-Schlüter regime, the collision frequency is much higher than

the bounce frequency of the trapped particles, therefore, trapped and circulating

particles cannot complete their orbits and become virtually indistinguishable. In

this collisional regime, the diffusion is enhanced, in comparison to the classical

diffusion, by a geometrical factor due to the magnetic configuration. In the plateau

regime, the collisionality is low enough to allow circulating particle orbits to exist

but trapped particle orbits are destroyed by collisions. It is important to note that

a completely collision-independent plateau regime can only exist in theory, since

the transition between regimes is smooth. In the banana regime, the collision

frequency is much smaller than the bounce frequency. In this low-collisionality

regime, trapped particles dominate the transport and they are able to complete a

banana orbit, therefore enhancing the diffusion.

In a stellarator, this is different, since for low collisionalities, the transport that

predominates comes from the helically trapped particles, which describe orbits with

a very large radial width that can even reach the chamber walls. Bordering to the

7



1. INTRODUCTION

plateau regime is therefore a region with transport that is inversely proportional

to the collision frequency (1/ν regime), hence the transport in stellarators is

enhanced at lower collisionalities. In modern stellarators, this can be reduced

by optimization, as it is the case with Wendelstein 7-X [10], currently under

construction in IPP, Greifswald (see Fig. 1.3 (right)).

1.4 Anomalous transport and microinstabilities

Although neoclassical theory explains several phenomena, particle and heat trans-

port measured in existing tokamaks still exceeds the neoclassical prediction. This

difference is called anomalous transport. Its cause is ascribed to plasma turbulence

[11] and, in turn, this is caused by microinstabilities, i.e. instabilities whose perpen-

dicular wavelengths are of the order of the Larmor radius and whose frequencies

are much smaller than the gyrofrequency. They are driven by the free sources

of energy provided by the non-uniformity of the density and temperature of the

plasma.

There are many different types of instabilities [12], but the ones that this

work focuses on are the drift instabilities. They can be classified as the following:

collisionless and collisional or dissipative instabilities, and instabilities where the

trapping of the ions and electrons is essential. The most important microinstability

is the ion-temperature-gradient (ITG) mode. It is a universal instability since

there will always be a temperature gradient present in fusion devices. The ITG

mode can be separated into a slab branch [13] and toroidal (curvature-driven) [14]

branch. The main electron instability is the trapped-electron-mode (TEM) [15].

1.5 Contribution of this thesis

In classical stellarators, neoclassical effects dominate the transport in the core. In

the edge, however, turbulence occurs [16] and can lead to anomalous transport.

It is important, then, to have a mathematical tool available to treat neoclassical

effects as well as microinstabilities, which can also be affected by collisions.

One of the numerical tools currently under development at IPP, is a gyrokinetic

code called EUTERPE. It is a particle-in-cell (PIC [17]) code originally developed

8
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in CRPP, Lausanne [18, 19]. It is the only global gyrokinetic code for computing

instabilities in fully 3D magnetic configurations. This code allowed the study

of ITG instabilities in quasisymmetric configurations such as QAS3 and HSX

[20]. The development of the code was later taken over by IPP, where it was

amended to make possible simulations using large Fourier filters [21], which was

necessary for geometries such as W7-X. Also, finite pressure effects were included

which change the drive of the ITG mode in W7-X [22]. Nonlinear effects were

added and benchmarked [23], which allow the observation of zonal flow evolution

[24]. Multiple species, electromagnetic effects and kinetic electrons were also

implemented, the latter providing the possibility to simulate TEMs.

This work is concerned with the addition of collisions into EUTERPE, which

was originally a collisionless code. The code was adapted to perform basic

neoclassical calculations (e.g. radial particle flux) and collisional linear simulations

of ITGs and TEMs for tokamaks and stellarators (LHD and W7-X configurations).

1.6 Outline

This work is organized as follows: Chapter 2 provides a theory background of

gyrokinetics, collisions and neoclassical theory, as well as the theoretical consider-

ations for the collision implementation and numerical schemes. In Chapter 3, the

initial tests to check the collision implementation are addressed and discussed.

They comprise the recovery of the eigenfunctions of the pitch-angle scattering

collision operator (Legendre polynomials) and the determination of the current

posed by the Spitzer problem. Chapter 4 examines the neoclassical calculations

that were performed with the collision implementation. First, analytical calcula-

tions for the neoclassical radial particle fluxes are given, and subsequently, the

results and benchmarking are shown and discussed for the tokamak as well as

for the stellarator cases. Chapter 5 addresses the problem of microinstabilities.

The first part of this chapter introduces the models used for the slab and toroidal

ITG modes and the TEMs. The second part deals with the results and discusses

the effects of collisions on these modes for the different configurations. Finally,

Chapter 6 summarizes the findings of this work and provides an outlook.

9



10



Chapter 2

Theoretical framework

2.1 Coordinate systems

To study magnetic equilibria in tokamaks and stellarators it is important to work

in a coordinate system that suits the toroidal geometry and shape of the magnetic

field. In equilibrium, the magnetic field satisfies the following equations:

∇ ·B = 0 , (2.1)

∇×B = µ0 j , (2.2)

j×B = ∇p , (2.3)

where B is the magnetic field, j is the current density and p is the plasma pressure.

For a tokamak configuration, we have axisymmetry. In that case, if we choose a

system of cylindrical coordinates (R,ϕ, z) (see Fig. 2.1) all the quantities we are

interested in, will not depend on ϕ. This is not the case for stellarator geometry,

which is not axisymmetric. Hence, it is more convenient to define a different

set of coordinates; so-called magnetic coordinates. The magnetic field is then

represented as (see, e.g. [25]):

B = ∇ψ ×∇θ +∇ϕ×∇χ , (2.4)

where θ is a poloidal angle and ϕ is a toroidal angle as shown in Fig. 2.1. The

magnetic flux that passes through a poloidal cross-section (ϕ = constant) between

11



2. THEORETICAL FRAMEWORK

the magnetic axis and some surface ψ = constant is 2πψ, therefore ψ is also called

the flux surface label. In the same manner, 2πχ is the magnetic flux that passes

through a surface of θ = constant, between the magnetic axis and a given flux

surface ψ.

A coordinate s is defined to label the different flux surfaces:

s =
ψ

ψedge

, (2.5)

and goes from 0 (magnetic axis) to 1 (the last flux surface at the edge labeled

ψedge).

z

ϕ

s

r

θ

R
0

B

B
ϕ

B
θ

Figure 2.1: Magnetic coordinates

A property of this magnetic coordinate system is that χ is only a function of the

flux-surface ψ. Next, we define a quantity that measures the number of poloidal

turns a field line makes per toroidal turn:

ι =
dθ

dϕ
=

B ·∇θ

B ·∇ϕ
= lim

n→∞

θn
2πn

. (2.6)

where n is the number of toroidal turns and θn is the increase of the poloidal

angle in each toroidal turn. The quantity ι is called the rotational transform.

For historical reasons, tokamak researchers use q = 1/ι which is called the safety

factor, whereas stellarator scientists prefer ι. Using the coordinate χ we can

rewrite the rotational transform as

ι(ψ) =
dχ

dψ
. (2.7)
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With this definition of ι, the relationship between θ and ϕ can be written as

θ − ιϕ = constant . (2.8)

The advantage of this coordinate system is that the magnetic field lines are

straight lines in the (θ, ϕ) plane.

Additionally, there is a quantity that we will widely use in this work, which is

the aspect ratio A = R0/a. It is simply the ratio between the major radius R0 and

the minor radius a (see Fig. 2.1), and is often employed because it defines some of

the properties of the devices. The inverse aspect ratio is denoted by ε = a/R0.

2.2 Drift-kinetic and gyrokinetic model

To study particle and wave interactions it is necessary to employ a kinetic

approach. In order to do so, a probability distribution function (PDF) is defined

fs(z(t), t), where z = (r(t),v(t)) denotes the phase-space coordinates. This PDF

is six-dimensional and gives the number of particles of species s in the phase space

volume d6z at a time t. The collisionless kinetic equation can be written as

∂fs
∂t

+
∂

∂z
· (żfs) = 0 . (2.9)

Because of Liouville’s theorem, the phase-space volume is conserved in time.

Therefore, we can rewrite the equation as

∂fs
∂t

+ ż · ∂fs
∂z

= 0 . (2.10)

It is useful to note that this equation is invariant under transformations fs(z)→
fs(w(z)). For plasmas, the equation of motion that describes the evolution of the

distribution function for each species, is called the Vlasov equation:

∂fs
∂t

+ v ·∇fs +
qs
ms

(E + v ×B) · ∂fs
∂v

= 0 . (2.11)

where qs and ms are the species charge and mass respectively. This equation is

closed by the set of Maxwell equations, which provide the electric and magnetic

field from the distribution function fs. To be able to simplify it, we must first

separate the different time and length scales involved.
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2. THEORETICAL FRAMEWORK

In fusion plasmas, the gyroradius is much smaller than the length scale of

the magnetic field variation ρ� LB, therefore we can represent the motion of a

particle as a guiding-center (GC) motion plus a fast gyration motion, as shown in

Fig. 2.2.

V?

r

a

R

B

Guiding center

ê
2

ê
1

Figure 2.2: Gyrating positive ion in a magnetic field.

Then we can write the position as

x = R + ρ , (2.12)

ρ =
v⊥
Ωi

(cosα ê1 + sinα ê2) , (2.13)

where (ê1, ê2) is a pair of unit vectors which are orthogonal and lie in the

plane perpendicular to B, Ωi = qiB/mi is the ion cyclotron frequency, v⊥ is the

magnitude of the velocity perpendicular to B, and α is the gyroangle.

For fields that satisfy ω/Ωi � 1 and k⊥ρi � 1 where ω is the characteristic

frequency of the fluctuation and k⊥ is their wave number perpendicular to the

magnetic field B, it is then possible to average over the gyroangle α. In the

resulting model, the guiding-center motions appear and the problem is reduced

from a 6D system to a 5D system, in which the distribution function is now

described in terms of the guiding center coordinates fs(R, v‖, µ). The equation

describing the evolution of fs is known as the drift kinetic equation (DKE):

dfs
dt

=
∂fs
∂t

+ Ṙ · ∂fs
∂R

+ v̇‖
∂fs
∂v‖

= 0 , (2.14)
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2.2 Drift-kinetic and gyrokinetic model

where the characteristics are the guiding-center trajectories [26, 27]:

Ṙ = v‖b̂ +
1

B∗

(
µB + v2

‖

Ωi

b̂×∇B +
v2
‖

Ωi

(∇×B)⊥ − E× b̂

)
, (2.15)

v̇‖ = −µ
(

b̂ +
v‖

B∗Ωi

(∇×B)⊥

)
· ∇B

− qi
mi

(
b̂ +

v‖
B∗Ωi

[
b̂×∇B + (∇×B)⊥

])
· E , (2.16)

µ̇ = 0 . (2.17)

Here we have defined the magnetic moment per unit mass as µ
def
= v2

⊥/(2B), the

unit vector in the direction of the magnetic field b̂
def
= B/B and the phase space

Jacobian as B∗ = B + (m/q) v‖∇× b̂. The terms in Eq. (2.15) are the parallel

motion, the ∇B and curvature drifts, the finite β part of the curvature drift

and the E × B drift. The terms on the right-hand side of Eq. (2.16) are: the

acceleration due to the mirror force, contributions from the finite β effects (terms

with (∇×B)⊥), the acceleration of free streaming particles due to the electric

field and the fourth term which ensures conservation of energy. From Eq. (2.17)

it follows that µ is a constant of motion. The DKE is useful to solve problems in

transport theory when Coulomb collisions and toroidal magnetic geometries are

present (neoclassical transport).

On the other hand, we also want to study microinstabilities and turbulence,

which are adequately described by the interaction between the plasma particles and

fluctuations with characteristic frequencies much smaller than the ion cyclotron

frequency ω/Ωi � 1, and characteristic wavelengths of the order of the Larmor

radius k⊥ρ ∼ O(1). An example of such fluctuations are ITGs, which arise due

to a gradient in the temperature. To represent these interactions, we need the

Larmor radius to be taken into account. The equation that follows from this

new approximation is called gyrokinetic equation. The modern derivation [28]

is done via the phase-space Lagrangian variation method and Lie perturbation

theory to obtain an energy-conserving set of gyrokinetic Vlasov-Poisson equations

in general geometry. The smallness parameters used in gyrokinetic ordering are

the following:
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2. THEORETICAL FRAMEWORK

ω

Ωi

∼
k‖
k⊥
∼ eφ

Te
∼ ρ

Ln
∼ ρ

LT
∼ O(εg)� 1 , (2.18)

where φ is the electrostatic potential, Ln = n/ |∇n| and LT = T/ |∇T | are the

density and temperature characteristic lengths. An additional small parameter is

used: ρ/LB ∼ O(εB), with LB = B/ |∇B| being the scale length of the magnetic

variation.

The drift kinetic equation is used in cases where we have large scale pertur-

bations, i.e. the scale of the Larmor radius is of no concern, such as neoclassical

calculations, whereas the gyrokinetic equation is used in problems where the small

scale effects (FLR effects) are of interest, such as the study of microinstabilities.

The gyrokinetic equation is similar in form to the drift-kinetic equation. The

main difference is that now we treat particles as charged rings with a finite orbit

radius. Also, the gyrocenters are affected by the gyroaveraged fields, defined as,

e.g.

〈E〉 = −∇〈φ〉 ≈ − 1

2π

2π∫
0

∇x φ |x=R+ρ dα . (2.19)

This procedure allows us to still take into account the finite Larmor radius (FLR)

effects. The gyrokinetic equation is still the same as Eqs. (2.14)-(2.17) but now

the trajectories are affected by the gyroaveraged electric field; thus, it is necessary

to replace the electric field by the gyroaveraged electric field E → 〈E〉 in the

trajectory Eqs. (2.15) and (2.16). The particle density is given by

ns = n̄s +
ms

qs
∇ ·
(n0s

B2
∇⊥φ

)
, (2.20)

where the gyroaveraged density is determined as

n̄s =

∫
fs(R, v‖, v⊥) δ(R + ρ− x) dR dv . (2.21)

Together with quasineutrality: ∑
s

qsns = 0 , (2.22)

this gives an equation for the electrostatic potential. Due to the small mass of the

electrons (in comparison to the ions), it is numerically expensive to follow them,

therefore the approximation of adiabatic electrons is often used
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ne =
n0eφ

Te
. (2.23)

2.3 Short description of numerics in EUTERPE

In the following section, a short summary of the numerical features of EUTERPE

is given. Since the main interest of this work is to include collisions in the code,

we will review in detail only the parts of the numerics that are relevant for the

collision implementation. For an in-depth description of the methods used by

EUTERPE, beyond the scope of this thesis, we refer to the citations provided.

EUTERPE [20, 22] is a global code that uses the PIC method with a 3D

grid for the potentials to solve the set of gyrokinetic equations. The equilibrium

magnetic geometry is provided by the magnetohydrodynamic code VMEC [29].

It has the possibility of using different kinetic species such as electrons, ions,

fast ions or impurities. It allows for electromagnetic perturbations and includes

nonlinear terms. The code uses two systems of coordinates, one of them is a (s,

θ∗, ϕ) system of coordinates, called PEST (Princeton Equilibrium, Stability and

Transport) coordinates [30] for the representation of the fields and the other one

is cylindrical coordinates (R, ϕ, z) for the particles. PEST coordinates use the

cylindrical angle as the toroidal angle, therefore, both coordinate systems share

the same toroidal angle ϕ. Here, θ∗ is the straight-field-line poloidal coordinate.

To go from one system to the other, a mapping is performed (see appendix of

[20]).

The code utilizes the extraction of a phase factor, which improves the numerics

by allowing high wave number modes to be simulated with a coarse grid. It

consists of extracting a wave from the potential such that

φ = φ̃ eiS , (2.24)

S = M0θ
∗ +N0ϕ , (2.25)

where φ̃ is the amplitude of the wave, S is the phase factor and M0 and N0 are

the poloidal and toroidal wave number respectively. The phase factor is also
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extracted from the distribution function, analogously. This makes it possible to

perform linear simulations for large values of M0 and N0. During a run, only some

specified wave numbers are extracted from the transformed potential (Fourier

filter) in the poloidal and toroidal directions in order to reduce the noise. The

Poisson equation is solved by using a finite element discretization for the extracted

potential φ̃. In EUTERPE, B-splines have been chosen as the finite elements.

The solution of the field equations is found by using parallel iterative methods

for sparse matrices (PETSc library [31, 32, 33]). EUTERPE is parallelized by

domain decomposition in ϕ. It also allows domain cloning which scales almost

linearly with the particle number [34].

EUTERPE uses the following quantities for the normalization: the flux-

surface where the quantities are normalized s0, the mass of the ions mi, the

torus volume V , the number of ions in torus volume Nph,i, the temperature of

electrons on the chosen flux-surface Te0 = Te(s0) and the magnetic field at the

axis B∗ = B(s = 0, ϕ = 0). Then,

r∗ =

√
mikBTe0
eB∗

, Ω∗ =
eB∗
mi

, v∗ =

√
kBTe0
mi

, (2.26)

nav =
Nph,i

V
, φ∗ =

kBTe0
|e|

, E∗ =
kBTe0
|e|r∗

, (2.27)

f∗ =
nav

v3
∗
, j∗ = |e|navv∗ , (2.28)

where r∗ is used for lengths, Ω∗ for frequencies (and its inverse for time), v∗ for

velocities, nav for densities, φ∗ for the electric potential, E∗ for the electric field,

f∗ for the distribution functions and j∗ for the currents. We define the normalized

quantities Ā = A/A∗ as barred quantities.

2.4 δf method and two-weight scheme

The PIC method is used in EUTERPE to numerically solve the gyrokinetic

equation. It has the advantage that it is straightforward to parallelize but the

drawback is that its error due to particle noise, scales only as ∼ O(1/
√
N), where

N is the particle number. In order to reduce this noise inherent to the particle
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discretization, EUTERPE uses the δf method [35] in which, for each species, the

distribution function is separated into a time-independent background equilibrium

and a time-dependent perturbation:

f = f0 + δf . (2.29)

The advantage over the full-f method is that the markers are only employed to

simulate the perturbation, instead of the complete distribution function, making

the code more efficient by avoiding the use of markers to represent the Maxwellian.

If δf � f0, the noise is reduced by orders of magnitude compared to the full-f

method.

The discretization of δf is performed by

δf =
N∑
j=1

wj(t) δ
3(R−Rj) δ(v‖ − v‖j) δ(µ− µj)/JB , (2.30)

where wj(t) is the weight of each marker j, and JB is the phase space Jacobian,

which is B∗.

The collisionless δf method will now be introduced. Next, collisions will

be added and we will discuss the importance of using a two-weight scheme for

collisional δf simulations.

2.4.1 δf method without collisions

We define the equilibrium distribution function as a local Maxwellian:

f0 =
n0(s)

(2π)3/2v3
th,i(s)

exp

{
−1

2

v2
‖ + v2

⊥

v2
th,i(s)

}
, (2.31)

where the density and the temperature (therefore, the thermal velocity) depend

only on the flux-surface label s. Here, we introduce the thermal velocity, which is

defined as vth,s =
√

2Ts/ms for any species s.

We take the drift kinetic equation (2.14) and, using the δf separation of the

distribution function, obtain:

dδf

dt
= −df0

dt
= −ż

∂f0

∂z
. (2.32)
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To calculate the relevant quantities such as density, momentum and energy,

one needs to take the moments of the distribution function, which can be regarded

as expectation values. The Monte Carlo discretization can be performed by using

N markers with a marker distribution function g(z, t). The expectation value is

replaced by a mean value as follows [36]

E[A] =

∫
A(z)

f(z)

g(z)
g(z) dz ≈ 1

N

N∑
j=1

wj A(zj) , (2.33)

where A is an arbitrary function and the weight is now a function of the particle

and marker distribution wj = f(zj)/g(zj). By using the method of characteristics

[37] and noting that dg/dt = 0, the weight evolution can be written as

dwj
dt

= − 1

gj
żj ·

∂f0

∂zj
. (2.34)

In this equation the marker distribution function gj appears in the denominator.

Without collisions this is not a problem at all, since g does not evolve in time

and, thus, g(zj(t)) = g(zj(0)). With collisions, however, the weight evolution of

the Monte Carlo markers cannot be easily obtained, since dg/dt 6= 0. It is then

necessary to use a generalized collisional δf scheme, known as the two-weight

scheme [38, 39].

2.4.2 Collisional δf method

If we now take the drift kinetic equation (2.14), add a collision operator on the

right hand side, and an arbitrary source term S, we can use the definition in

Eq. (2.29) and obtain:

d

dt
(f0 + δf) = C(f0, f0) + C(f0, δf) + C(δf, f0) + C(δf, δf)︸ ︷︷ ︸

nonlinear

+S . (2.35)

In the following derivations, we will neglect the nonlinear term. This means that

we restrict our model to a linearized collision operator.

Defining the operator D/Dt for an arbitrary function fA by

DfA

Dt
def
=

dfA

dt
− C(fA, f0) , (2.36)
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we obtain our final equation to be solved:

Dδf

Dt
= C(f0, f0) + C(f0, δf) + S− S1 , (2.37)

where

S1
def
=

df0

dt
. (2.38)

The term C(f0, δf) on the right hand side is the back reaction term from the

collision operator and ensures that momentum and energy are conserved. This

term is complicated, since, for the most used collision operators, the δf term

appears inside integrals which cannot be solved analytically. Instead, this part of

the operator is usually simplified by using a model [40].

Eq. (2.37) is a second order equation and, therefore the method of character-

istics is no longer applicable. What we do instead is not to define the weight

in terms of the local δf and g, but rather treat it as an additional dimension of

phase space, i.e. we postulate an equation for the marker distribution function in

an extended phase space in which we include two new dimensions represented by

the weights w1 and w2:

DF

Dt
+

∂

∂w1

(A1F ) +
∂

∂w2

(A2F ) = 0 , (2.39)

where F (x,v, w1, w2, t) is the phase space distribution function in the extended

phase space. We define the following moments of F :

g(x,v)
def
=

∫
F dw1dw2 , (2.40a)

u(x,v)
def
=

∫
w1F dw1dw2 , (2.40b)

h(x,v)
def
=

∫
w2F dw1dw2 . (2.40c)

The distribution function of the markers in the non-extended phase space is still

represented by g. To solve Eq. (2.39) we take the Kolmogorov forward differential

equation [41, 42, 43] (which is equivalent to the Fokker-Planck equation) and

obtain an expression in the covariant form for higher dimensions [42, 44] (see

especially [41], but note that there the Stratonovich interpretation is used):

∂

∂t
f(x1, . . . , xi, . . . , t) = −1

J

∂

∂xi
[
µi Jf

]
+

1

2 J

∂2

∂xi∂xj
[
(DDT )ij Jf

]
. (2.41)
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It can be shown that the distribution function f corresponds to the following

stochastic processes (interpreted as an Ito stochastic differential equation), written

also in covariant form:

dxi = µidt+DijdW j , (2.42)

where J is the Jacobian, µi are the drift coefficients, Dij is a diffusion matrix and

W denotes an n-dimensional Wiener process (standard Brownian motion). If we

then use Eq. (2.41) to identify the terms on Eq. (2.39) we obtain the following

stochastic trajectories:

dR

dt
= Ṙ , (2.43a)

dv

dt
= v̇ + µ(v) + D(v) · dW

dt
, (2.43b)

dw1

dt
= A1 , (2.43c)

dw2

dt
= A2 . (2.43d)

By taking the moments of Eq. (2.39) we obtain the following set of equations:

Dg

Dt
= 0 , (2.44)

Du

Dt
−

∫
A1F dw1dw2 = 0 , (2.45)

Dh

Dt
−

∫
A2F dw1dw2 = 0 . (2.46)

To obtain these equations the distribution F in the new phase space must be

continuous and continuously differentiable and the integral
∫
Fdw1dw2 must be

bounded, which means that F → 0 converges sufficiently fast at infinity. Given

that F fulfills these properties, as a next step we compare Eq. (2.45) with Eq. (2.37)

and identify u with δf . This gives a restriction for A1 as follows∫
A1F dw1dw2 = C(f0, f0) + C(f0, δf) + S− S1 . (2.47)

We choose an Ansatz for A1:
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2.4 δf method and two-weight scheme

A1
def
= [C(f0, f0) + C(f0, δf) + S− S1]

w2

h
. (2.48)

Accordingly, the weight evolution equation for w1, Eq. (2.43c) takes the following

form:
dw1

dt
= [C(f0, f0) + C(f0, δf) + S− S1]

w2

h
. (2.49)

For A2 we take the following Ansatz (with a yet to be determined S2):

A2
def
= −[C(h, f0)− S2]

w2

h
, (2.50)

which results in the following equation for h:

Dh

Dt
= S2 − C(h, f0) ⇒ dh

dt
= S2 . (2.51)

Choosing S2 = S1 = df0/dt gives dh/dt = df0/dt which is solved by h = f0.

Accordingly, the coupled evolution equations for the weights are:

dw1

dt
=

[
C(f0, δf) + C(f0, f0) + S− ż

∂f0

∂z

]
w2

f0

, (2.52)

dw2

dt
= −

[
C(f0, f0)− ż

∂f0

∂z

]
w2

f0

. (2.53)

This scheme is the same as proposed by [45] which is also equivalent to the method

proposed in [39]. The derivation given here follows [46].

In the linear case, we separate the trajectories ż into an unperturbed part ż0

and a perturbed part ż1. The linearization process makes the quantities u = δf

and h (see Eqs. (2.45) and (2.46)) evolve only along the unperturbed trajectories,

i.e. the operator D/Dt defined in Eq. (2.36), reduces to:

DfA

Dt
def
=

d0fA

dt
− C(fA, f0) , (2.54)

where d0/dt denotes the evolution along the unperturbed trajectories. If we

additionally choose S = d0f0/dt, we are left with the following linearized equations

for the evolution of the weights:

23
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dw1

dt
=

[
C(f0, δf) + C(f0, f0)− ż1∂f0

∂z

]
w2

f0

, (2.55)

dw2

dt
= −

[
C(f0, f0)− ż0∂f0

∂z

]
w2

f0

. (2.56)

We can see that when a local Maxwellian is used as the equilibrium function, the

term C(f0, f0) vanishes and we have that ż0 · ∂f0/∂z = 0. Then we recover the

original one-weight scheme, since the second weight does not evolve.

2.4.3 Initial conditions

We now have to specify the initial conditions for w1 and w2 at t0. Since we are

using a marker discretization we can assume

F (z, w1, w2) =
∑
j

δ(z− zj)δ(w1 − w1,j)δ(w2 − w2,j)J
−1(z) . (2.57)

Inserting this into Eqs. (2.40) and taking into account u = δf and h = f0, this

gives:

g =
∑
j

δ(z− zj)J
−1(z) , (2.58a)

δf =
∑
j

w1,jδ(z− zj)J
−1(z) , (2.58b)

f0 =
∑
j

w2,jδ(z− zj)J
−1(z) , (2.58c)

where j is the index over the markers. It is possible then to obtain the quantities g

(marker density), δf and f0, by evaluating the sums over certain regions in phase

space (binning). Accordingly, it is also possible to obtain velocity moments of δf

such as the particle number and current density (charge-/current-assignment). It

is important to note that the evaluation of f0 by Eq. (2.58c) can be used as an

intrinsic quality measure for the correctness and statistical convergence of the

numerical scheme.
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2.5 Collision operator

Integrating these relations over a small volume Vj centered around zj gives

out:

g(zj)Vj = 1 ⇒ Vj =
1

g(zj)
, (2.59a)

δf(zj)Vj = w1,j ⇒ w1,j =
δf(zj)

g(zj)
, (2.59b)

f0(zj)Vj = w2,j ⇒ w2,j =
f0(zj)

g(zj)
. (2.59c)

Since the initial values for g, δf and f0 are known we get

w1,j(t0) =
δf(zj, t0)

g(zj, t0)
, (2.60)

w2,j(t0) =
f0(zj, t0)

g(zj, t0)
. (2.61)

The two-weight scheme has the problem that its statistical error increases with

time, so-called weight spreading. To avoid this issue, it is possible to formulate

the collisionless and collisional schemes as a control-variate problem, and improve

the scheme by employing an enhanced control-variate approach [46], in which the

noise behaves like the δf scheme for early times and is bounded for later times by

the noise of the full-f scheme.

2.5 Collision operator

To include collisions in the simulations we first need to find an adequate repre-

sentation which is simple and also easily testable. So far, we have assumed a

general collision operator Cab(fa, fb0), but have not made any physical assumption

about its form. As a starting point, we will introduce the Fokker-Planck operator

which is the collision operator appropriate for the Coulomb interaction. From this

operator, we will only use a simplified version called the pitch-angle-scattering

operator, which only alters the direction of the velocity but not its modulus.

Afterwards, the implementation in EUTERPE will be discussed.
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2. THEORETICAL FRAMEWORK

2.5.1 Fokker-Planck operator

Following the calculations in [47] we write down the collision operator. As a

starting point, we take the general Fokker-Planck collision operator for two

arbitrary species a and b:

Cab(fa, fb) =
∂

∂vk

[
Aabk fa +

∂

∂vl

(
Dab
kl fa

)]
, (2.62)

where

Aabk ≡ −
〈∆vk〉ab

∆t
, Dab

kl ≡ −
〈∆vk∆vl〉ab

2∆t
, (2.63)

represent the advection and diffusion terms, respectively. Here, the angular

brackets 〈...〉 represent the expectation value of the quantity and ∆v is the change

in velocity as a result of a collision during a time interval ∆t. If we now consider

collisions between a species a and a Maxwellian background (species b), then it is

useful to employ the Rosenbluth potentials [44, 48]:

ϕb(v) ≡ −1

4π

∫
fb(v

′)

|v − v′|
d3v′ , (2.64)

ψb(v) ≡ −1

8π

∫
|v − v′| fb(v′) d3v′ . (2.65)

It is important not to confuse the notation of these potentials with the magnetic

coordinates. The Rosenbluth potentials will exclusively be used in this section.

Taking these potentials into account, Aabk and Dab
kl are given by

Aabk =

(
1 +

ma

mb

)
Lab

∂ϕb
∂vk

, Dab
kl = −Lab ∂

2ψb
∂vk∂vl

, (2.66)

where Lab ≡ (qaqb/(maε0))2 ln Λ. Here, qa, qb, ma and mb are the charges and

masses of the species a and b respectively, and ln Λ is the Coulomb logarithm.

The latter arises from a cut-off introduced in the integral of Coulomb collisions,

since particles with impact parameters larger than the Debye sphere radius do

not play a role in the collisions due to Debye shielding. With this, the collision

operator becomes:

Cab(fa, fb) = Lab
∂

∂vk

[(
1 +

ma

mb

)
∂ϕb
∂vk

fa −
∂

∂vl

(
∂2ψb
∂vk∂vl

fa

)]
. (2.67)
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2.5 Collision operator

Since we take the species b to be Maxwellian, the distribution function is isotropic

and the Rosenbluth potentials only depend on |v|. Therefore:

∂ϕb
∂vk

=
∂v

∂vk

∂ϕb
∂v

=
vk
v

∂ϕb
∂v

=
vk
v
ϕ′b , (2.68)

∂2ψb
∂vk∂vl

=
∂

∂vk

(
vk
v

∂ψb
∂v

)
= Wklψ

′
b +

vkvl
v2

ψ′′b . (2.69)

The primed quantities denote the derivative with respect to v, and Wkl is

defined as

Wkl ≡
v2δkl − vkvl

v3
. (2.70)

Then,

Aabk =

(
1 +

ma

mb

)
Lab

vk
v
ϕ′b , Dab

kl = −Lab
(
Wklψ

′
b +

vkvl
v2

ψ′′b

)
. (2.71)

To write the collision operator we use the following relations:

ϕ′b(v) =
mbnb
4πTb

G(xb) , (2.72)

ψ′b(v) = − nb
8π

[φ(xb)−G(xb)] , (2.73)

ψ′′b (v) = − nb
4πvth,b

G(xb)

xb
, (2.74)

Aabk = −
(

1 +
ma

mb

)
∂Dab

kl

∂vl
, (2.75)

where xb ≡ v/vth,b and vth,b is the thermal velocity of species b. φ(x) is the error

function defined as

φ(x) =
2√
π

x∫
0

e−y
2

dy , (2.76)

and G(x) is the Chandrasekhar function defined as

G(x) =
φ(x)− xφ′(x)

2x2
. (2.77)
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Finally, taking these definitions and Eqs. (2.62, 2.71, 2.75) we obtain an expression

for the collision operator in terms of the Rosenbluth potentials as follows

Cab(fa, fb0) = Lab
∂

∂vk

[
ma

mb

vk
v
ϕ′bfa −

(
Wklψ

′
b +

vkvl
v2

ψ′′b

) ∂fa
∂vl

]
. (2.78)

We separate the operator into two parts: an angular part and a part which only

modifies the magnitude of the velocity. In order to do so, we rewrite the middle

term as

∂

∂vk

(
Wkl

∂fa
∂vl

)
=

∂

∂v
·
[

1

v

∂fa
∂v
− v

v3

(
v · ∂fa

∂v

)]
. (2.79)

If we use the definitions of the gradient and divergence in spherical coordinates,

we obtain

∂

∂vk

(
Wkl

∂fa
∂vl

)
=

1

v2

∂

∂v

(
v
∂fa
∂v

)
+

1

v3 sin θ

∂

∂θ

(
sin θ

∂fa
∂θ

)
+

+
1

v3 sin2 θ

∂2fa
∂ϕ2

− 1

v2

∂

∂v

(
v
∂fa
∂v

)
=

1

v3 sin θ

∂

∂θ

(
sin θ

∂fa
∂θ

)
+

1

v3 sin2 θ

∂2fa
∂ϕ2

.

Defining the Lorentz operator as

L(f) ≡ 1

2

[
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2

]
, (2.80)

we get

∂

∂vk

(
Wkl

∂fa
∂vl

)
=

2

v3
L(fa) . (2.81)

By using this relation and the vector identity

∇v · [v f(v)] =
1

v2

∂ (v3f(v))

∂v
, (2.82)

we can write the collision operator as

Cab(fa, fb0) = −2Lab

v3
ψ′bL(fa) +

Lab

v2

∂

∂v

[
v3

(
ma

mb

ϕ′b
v
fa −

ψ′′b
v

∂fa
∂v

)]
. (2.83)
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2.5 Collision operator

Here, the collision operator has two distinct parts: the first term on the right hand

side of the equation is the part of the operator which only changes the direction of

the velocity of the incoming particles, while the second term affects the magnitude,

thus changing the energy of the particles. For the collision implementation in

EUTERPE, only the first part of the collision operator in Eq. (2.83) is considered,

which is called the pitch-angle scattering operator or Lorentz collision operator.

2.5.2 Pitch-angle scattering

We define the pitch-angle λ as the angle of the velocity vector with the magnetic

field

cosλ =
v‖
v
. (2.84)

To simplify the collision operator, we will take only its angular part and write it

as

Cab(fa, fb0) = ν(v)L(fa) , (2.85)

where ν(v) is the deflection frequency between species a and a Maxwellian back-

ground of species b. It is important to note that this new collision operator is not

momentum conserving.

At this stage, the operator still contains the gyroangle ϕ. In the transition to

drift-kinetics or gyrokinetics, the operator is gyroaveraged. Then the term with

the ϕ derivative disappears but, as a consequence, one gets an additional real

space diffusion term which appears when using a gyrocenter coordinate system

instead of using a particle phase space coordinate system. This is further explained

in references [40] and [49], where a gyrocenter collision operator is derived using

the Fokker-Planck method, which includes the diffusion of the gyrocenter. This

additional diffusion term is usually neglected, since it describes classical diffusion,

which is very small compared to its neoclassical or turbulent counterparts.

The gyro-averaged pitch-angle scattering operator can thus be written as:

L =
1

2

∂

∂ξ

(
1− ξ2

) ∂
∂ξ

, (2.86)
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with ξ = cosλ.

Different numerical approaches exist to model collision operators by Monte

Carlo methods ([1], [50], [51]). The main goal of each of these numerical methods

is to recover the advection and diffusion coefficients statistically as shown in

Eq. (2.63). A problem that arises when modeling the pitch-angle as a random

number, is that its domain is limited to λ ∈ [0, π]. When a randomly assigned

angle falls out of the domain it needs to either be discarded or recalculated, which

can completely change the statistics. To avoid that problem, Takizuka et al. [1]

propose the solution of simulating the diffusion process on a spherical shell (in

velocity space), therefore, avoiding the boundary problem. The set of spherical

coordinates, however, now needs two random numbers to simulate the azimuthal

and inclination angles.

The numerical method used to model the collisions in this work is described

in [2], which is an improvement of the procedure proposed by Takizuka et al. To

further explain this method, let us take two coordinate systems. The first one,

(x,y, z) has the z-axis parallel to the magnetic field B. The second one, (x′,y′, z′)

has the z′-axis parallel to the incoming velocity vin of a particle. Both systems

share the same x-axis and the angle between z and z′ is the pitch-angle λin of the

incoming particle before the collision as shown in Fig. 2.3.

Defining ξin = cosλin and
√

1− ξ2
in = sinλin , the coordinate systems are

related by the pitch-angle as follows

x′ = x , (2.87)

y′ = ξin y +
√

1− ξ2
in z , (2.88)

z′ = −
√

1− ξ2
in y + ξin z , (2.89)

which is a rotation about the x-axis. After one time step, the velocity has changed

its angle with respect to the incoming velocity due to a collision. This variation

of the angle is denoted by ∆θ. The magnitude of the velocity, however, remains

the same as shown in Fig. 2.4.

Using spherical coordinates, the outcoming velocity can be written in this
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2.5 Collision operator

Figure 2.3: Incoming velocity vin of a particle in two coordinates systems:

A non-primed system in which z is parallel to B and a primed system in

which z′ is parallel to vin.

system as

vout,x′ = |vin| sin ∆θ cosϕ , (2.90)

vout,y′ = |vin| sin ∆θ sinϕ , (2.91)

vout,z′ = |vin| cos ∆θ . (2.92)

To know the outcoming pitch-angle of the particle, we need to be in the (x,y, z)

frame. Using Eqs. (2.87)-(2.89), the outcoming velocity is then:

vout = vout,x′x
′ + vout,y′y

′ + vout,z′z
′ (2.93)

= vout,x′x + vout,y′

(
ξin y +

√
1− ξ2

in z

)
+

+ vout,z′

(
−
√

1− ξ2
in y + ξin z

)
(2.94)

= vout,x′x +

(
vout,y′ξin − vout,z′

√
1− ξ2

in

)
y +

+

(
vout,z′ξin + vout,y′

√
1− ξ2

in

)
z . (2.95)
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2. THEORETICAL FRAMEWORK

Figure 2.4: Outcoming velocity vout of a particle with respect to the

incoming velocity vin.

By using the z component of the outcoming velocity and Eqs. (2.90)-(2.92) we

can find the outcoming pitch-angle λout or ξout = cosλout:

vout,z = |vout| ξout = vout,z′ξin + vout,y′

√
1− ξ2

in (2.96)

= |vin| cos ∆θξin + |vin| sin ∆θ sinϕ
√

1− ξ2
in . (2.97)

Since the velocity does not change in magnitude after a collision, we have |vin| =
|vout|. Therefore,

ξout = sin ∆θ sinϕ
√

1− ξ2
in + ξin cos ∆θ , (2.98)

where ϕ is a random number taken from a uniform distribution between 0 and

2π, and ∆θ = R
√

2ν(v)∆t, where R is a random number from a Gaussian

distribution with expectation value 0 and variance 1. It is computationally less

expensive not to generate Gaussian distributed random numbers but instead use

a uniform distribution with the same expectation value and variance, i.e. we take

a random number r from a uniform distribution which goes from 0 to 1 and define

R = 2
√

3(r − 0.5).
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2.5 Collision operator

To check that this implementation is consistent, we take the Lorentz operator

and rewrite it in Fokker-Planck form as follows

νL(f) =
ν

2

∂

∂ξ

(
1− ξ2

) ∂f
∂ξ

(2.99)

= −νξ ∂f
∂ξ

+
ν

2

(
1− ξ2

) ∂2f

∂ξ2
. (2.100)

We can immediately relate the quantities with the advection and diffusion terms

(Eq. (2.63)). If our scheme is consistent, then it must fulfill the following

〈∆ξ〉
∆t

= −νξ , (2.101)

〈∆ξ2〉
2∆t

=
ν

2

(
1− ξ2

)
. (2.102)

In order to confirm this claim, we define ∆ξ = ξout−ξin and take the expectation

values:

〈∆ξ〉 = 〈sin ∆θ〉 〈sinϕ〉
√

1− ξ2
in + ξin 〈cos ∆θ − 1〉 , (2.103)〈

∆ξ2
〉

=
〈
sin2 ∆θ

〉 〈
sin2 ϕ

〉 (
1− ξ2

in

)
+ ξ2

in

〈
(cos ∆θ − 1)2〉+ (2.104)

+2 〈sin ∆θ〉 〈sinϕ〉 〈cos ∆θ − 1〉 ξin

√
1− ξ2

in .

But 〈sinϕ〉 = 0 and
〈
sin2 ϕ

〉
= 1/2 since ϕ is uniformly distributed. Given that

individual collisions do not modify the trajectories significantly, i.e. ∆θ � 1 is

assumed, we can perform a Taylor expansion:

sin ∆θ ≈ ∆θ , (2.105)

sin2 ∆θ ≈ (∆θ)2 , (2.106)

cos ∆θ − 1 ≈ −(∆θ)2

2
. (2.107)

Remembering the definition of ∆θ and that 〈|∆θ|2〉 = 1, we obtain
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〈∆ξ〉 ≈ −ξin

〈
(∆θ)2

2

〉
= −νξin∆t , (2.108)

〈
∆ξ2

〉
=

〈
(∆θ)2〉 1

2

(
1− ξ2

in

)
= ν

(
1− ξ2

in

)
∆t , (2.109)

which are consistent with Eqs. (2.101) and (2.102). Given an incoming parallel

velocity v‖,in and an incoming perpendicular velocity v⊥,in, the method to obtain

the new quantities after a time step, then, consists in calculating ξ and the velocity

magnitude by:

vin =
√
v2
‖,in + v2

⊥,in , (2.110)

ξin =
v‖,in
vin

, (2.111)

and using this to get the outcoming velocities v‖,out and v⊥,out:

ξout = sin ∆θ sinϕ
√

1− ξ2
in + ξin cos ∆θ , (2.112)

v‖,out = vin ξout , (2.113)

v⊥,out =
√
v2

in − v2
‖,out . (2.114)

2.5.3 Implementation in EUTERPE

For the preliminary tests, the study of ITGs and TEMs and as well as for the

neoclassical benchmarking, we used a collision frequency independent of the

particle velocity as well as the plasma parameters

ν = constant . (2.115)

The constant is given externally through the input files, therefore, it is not

calculated self-consistently from the temperature or the density. During one time

step, position and velocities are pushed by a Runge-Kutta method, as if there

were no collisions. After the collisionless push, the particles are pushed using

the scheme described in Eqs. (2.110)-(2.114). The angles ϕ and ∆θ are assigned

random values by a random number generator function that ensures they are

independent of each other. Also implemented, but not used, is a more refined
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collision frequency which is consistent with the density and temperature profiles

initially provided. It represents a particle scattering model between incoming

particles of the species a against a background composed of species b. It follows

from using Eq. (2.73) in the first term of Eq. (2.83):

νab(v) =
ν̂ab
x3
a

[φ(xb)−G(xb)] , (2.116)

with

ν̂ab =
nbe

2
ae

2
b ln Λ

4πε20m
2
av

3
th,a

, (2.117)

and

xa ≡
v

vth,a

, (2.118)

where ln Λ is the Coulomb logarithm. For an electron-ion collision, the Coulomb

logarithm is given by the following expression [52] for fusion-relevant temperatures:

ln Λ = 32.2− 1.15 log10 (ne) + 2.3 log10 (Te) . (2.119)

The temperature is given in eV and the density in m−3 [53]. Next, using Eqs. (2.76)

and (2.77) we can write:

G(x) =
φ(x)

2x2
− ex

2

√
πx

, (2.120)

where we have used:

φ′(x) =
2√
π
e−x

2

. (2.121)

Then the collision frequency can be rewritten as:

νab(v) =
ν̂ab
x3
a

[
φ(xb)

(
1− 1

2x2
b

)
+ (
√
πxb)

−1e−x
2
b

]
, (2.122)

which is the expression implemented in EUTERPE for the collision frequency

that depends on the velocity and plasma parameters.

The collision frequency for each species is:
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νa ≡
∑
b

νab(v) . (2.123)

In the code we have used a rational approximation for the error function (0 ≤ x < ∞)

[54]:

φ(x) = 1−
(
a1t+ a2t

2 + a3t
3 + a4t

4 + a5t
5
)
e−x

2

+ ε(x) , (2.124)

t =
1

1 + px
,

|ε(x)| ≤ 1.5× 10−7 ,

p = 0.32759 , a1 = 0.25482 ,

a2 = −0.28449 , a3 = 1.42141 ,

a4 = −1.45315 , a5 = 1.06140 .

We have only used the the pitch-angle scattering operator. This is a limited

model since it does not conserve momentum. Momentum conservation can be

implemented using an additional step in which the marker weights are changed

by a correction term which results from a simplified model for the momentum

conserving part in the collision operator [3, 55, 56]. This item, however, is beyond

the scope of this work.

Typical collision frequencies

Table 2.1 shows estimated typical values of the magnitude of the collisionality

for different devices. These numbers are given for plasmas in the core and are

only approximations, using similar temperatures for the electrons and the ions.

At the edge of the devices, the collision frequency can increase by one or two

orders of magnitude. In EUTERPE, the collision frequency is normalized to the

ion cyclotron collision frequency, which is Ωi ∼ 108-109 s−1 for magnetic fields of

order B ∼ 1-10 T.
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2.5 Collision operator

Table 2.1: Estimated values of the collision frequencies for different de-

vices.1

device ne, ni in m−3 Te, Ti in eV νei in s−1 νii in s−1

JET 1019 103 104 102

MAST, AUG 1020 103 105 103

WEGA 1017 1 106 104

W7-X, LHD 1020 103 105 103

TJ-II 1019 103 104 102

ITER 1020 104 103 102

Complete Fokker-Planck operator

In the future, and as a next step it would be advisable to incorporate the whole

Fokker-Planck collision operator including energy diffusion, into EUTERPE.

In the following, we describe briefly how this could be implemented. A good

approach is to follow the method proposed in reference [40]. In its simplest form,

i.e. without momentum nor energy conservation, the Fokker-Planck collision

operator is derived for the EUTERPE velocity coordinate system (v‖, v⊥).

We take the equation for the collision operator in terms of the Rosenbluth

potentials (Eq. (2.78)) and obtain:

Cab(fa, fb0) =
∂

∂v‖

[
v‖Ffa

]
+

1

v⊥

∂

∂v⊥

[(
v2
⊥F +G+ 2

v2
⊥
v2
H

)
fa

]
+

+
2

v⊥

∂2

∂v⊥∂v‖

[
v2
⊥v‖
v2

Hfa

]
+

∂2

∂v2
‖

[(
G+

v2
‖

v2
H

)
fa

]
+

+
∂2

(∂v⊥)2

[(
G+

v2
⊥
v2
H

)
fa

]
+

1

v2
⊥

∂2

∂ϕ2
[Gfa] ,

(2.125)

where

1obtained from [57, 58, 59, 60, 61, 62] and personal communications with P. Drewelow and

J. Garćıa.
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F =
Labnb
4πv3

th,b

(
1 +

ma

mb

)
2
G(xb)

xb
, (2.126)

G =
Labnb
4πvth,b

1

2xb
[φ(xb)−G(xb)] , (2.127)

H =
Labnb
4πvth,b

1

2xb
[3G(xb)− φ(xb)] . (2.128)

These relations are equivalent to the ones in [40]. This expression is still,

however, not in the form which is needed to be able to solve it with the Kolmogorov

forward differential equation. To avoid this problem, we can choose v2
⊥ instead of

v⊥, and then the equation becomes:

Cab(fa, fb0) =
∂

∂v‖

[
v‖Ffa

]
+

∂

∂v2
⊥

[(
2v2
⊥F − 4G− 2

v2
⊥
v2
H

)
fa

]
+

+
∂2

∂v2
⊥∂v‖

[
4
v2
⊥v‖
v2

Hfa

]
+

∂2

∂v2
‖

[(
G+

v2
‖

v2
H

)
fa

]
+

+
∂2

(∂v2
⊥)2

[(
4v2
⊥G+ 4

v4
⊥
v2
H

)
fa

]
+

1

v2
⊥

∂2

∂ϕ2
[Gfa] ,

(2.129)

which has the standard Fokker-Planck form from the reference [40]. The ϕ

dependence goes away after gyroaveraging. Here, as well as in the pitch-angle

scattering operator, the space diffusion resulting from the gyroaveraging process,

is neglected.

2.6 Neoclassical formalism

Collisions play an important role in magnetized plasmas, especially by affecting

its transport properties. Neoclassical theory [9, 63] studies the transport processes

of hot, magnetically confined plasmas, which undergo Coulomb collisions in the

presence of curvature and gradient drifts. By solving the Fokker-Planck equation,

it is possible to calculate the transport coefficients, which linearly relate the flux of

particles and energy to the thermodynamic forces (pressure gradient, temperature

gradient and electric field). It is in our interest to study these properties, since
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for stellarators, in the long-mean-free-path (LMFP) regime, neoclassical transport

is dominant [64].

In this work, we studied radial particle transport as a method to test the colli-

sion implementation and used EUTERPE to perform simulations of neoclassical

transport. Even though longer computing times are required to reach the same

steady-state results as mono-energetic codes2, a Monte Carlo code has the advan-

tage of providing the possibility of including energy scattering and the electric

field, which is not necessarily constant on a flux surface, as is invariably assumed

in other codes. This field could be important for impurity transport. In the

following sections, some basic concepts about trapped particles and neoclassical

transport will be introduced, which is based on the more detailed discussions in

Ref. [47, 65, 66].

2.6.1 Particle orbits

Classical diffusion arises when particles with finite gyroradius collide with each

other and change their circular orbits, therefore performing a random walk with

a length scale of the order of the Larmor radius. If we add an inhomogeneous,

curved magnetic field, a part of the particle population can get trapped due to the

magnetic mirror effect. Such particles are called trapped particles and particles

which are not reflected are called circulating particles (or passing particles). In

neoclassical diffusion, as opposed to classical diffusion, the dominant effect comes

from these trapped particles, which have a diffusion step length of the order of the

trapped orbit width, which is larger than the Larmor radius, hence enhancing the

transport compared to classical diffusion. In a tokamak, for example, a curved

magnetic field B is present, which is inversely proportional to the major radius

R0. Therefore, there are trapped particles on the outboard side of the torus,

or the Low Field Side (LFS). These trapped particles describe so-called banana

orbits (see Fig. 2.5(left)). In stellarators, due to a more complex magnetic field

geometry, there are helically trapped particles which bounce between local field

maxima, in the rippled magnetic field. These helically trapped particles can

dominate the neoclassical transport by drifting radially to even leave the toroidal

2A brief explanation of the mono-energetic assumptions is described in section 4.2.2.
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Figure 2.5: Poloidal projection of orbits. Left: Two different banana orbits

that intersect in a point P on a flux-surface ψ. Right: a positively charged

passing particle and its shifted trajectory due to drifts.

chamber. Collisionality affects the transport by preventing circulating and/or

trapped particles from finishing their orbits and by detrapping particles.

2.6.2 Characteristic parameters

In tokamaks, the width of the trapped orbits is called the banana width and can

be estimated as

∆ban =
ρθ√
ε

=
ρ

ι
√
ε
, (2.130)

where ρθ ≡ mv/ (qBθ) is the poloidal Larmor radius. The rotational transform ι

and ε are usually lower than one, and therefore the diffusion step size is longer than

ρ, thus enhancing the transport. Passing particles, on the other hand, describe

complete circulating orbits, but these are displaced from the flux surfaces as shown

in Fig. 2.5 (right) due to the gradient and curvature drifts.

Let us consider a particle moving on a flux surface. We define its pitch-angle-

like variable λ = v2
⊥B0/ (v2B) where B0 = 〈B2〉1/2. This quantity should not to

be confused with the previously defined pitch angle λ. Here, the angular brackets
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2.6 Neoclassical formalism

〈...〉 denote a flux-surface average, which is defined as the volume between two

neighboring flux surfaces ψ and ψ + dψ,

〈A〉 ≡
∫
A(ψ, θ, ϕ) dV∫

dV
=

∮
A(ψ, θ, ϕ) dS

|∇ψ|∮
dS
|∇ψ|

. (2.131)

where dS is the surface element defined as dS =
√
g |∇ψ| dθ dϕ and g is the

Jacobian. It is important not to confuse the flux-surface average notation with the

gyroaverage. They will be explicitly stated when mentioned, to avoid confusion.

If the energy and magnetic moment are conserved, then we obtain the following

condition: if 0 ≤ λ ≤ B0/Bmin for when a particle is passing, otherwise it is

trapped. Here, Bmin is the minimum value of the magnetic field on the flux-surface

(usually located on the outboard side of the surface for a tokamak). Consequently,

passing particles have small pitch-angles and circulate freely in the poloidal and

toroidal direction following a magnetic field line. If we follow a field line until

it closes poloidally, its length is 2πR0/ι. Therefore, we can define the poloidal

transit time and frequency as:

τtr =
2πR0

ιv‖
=

2π

ωtr

, ωtr =
ιv‖
R0

. (2.132)

The displacement of the GC of circulating particles from a flux surface is due

to the gradient and curvature drift. If we take the curvature drift at a point in

which the pitch angle λ = 0, then v‖ = v, v⊥ = 0 and the drift velocity can be

written as vD = mv2/ (qR0Bϕ). The displacement of the particle can, therefore,

be expressed as

∆pass ≈
vD
ωtr

= ρθε . (2.133)

Using Eq. (2.130) we see that ∆ban = ∆pass/
√
ε. This means that the displace-

ment from the flux surface is bigger for trapped particles than for passing particles.

It is also possible to calculate the bounce time, which is defined as the time it

takes for the particle to travel between two reflections:

τb ≈ 2π
∆ban

vD
=

2π

ωtr

√
ε

=
2π

ωb

, (2.134)

where ωb is the bounce frequency.
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2.6.3 Neoclassical transport equations

In this section expressions for the neoclassical transport are derived, with emphasis

on the radial particle flux, which has been implemented in EUTERPE. The

calculations follow the steps performed in [47, 55]. We begin by considering a

single species plasma in static magnetic field B. The drift kinetic equation for a

distribution function f(R, µ,E, t) in terms of the energy E is:

∂f

∂t
+
(
v‖b̂ + vd

)
· ∂f
∂R

+ µ̇ · ∂f
∂µ

+ Ė · ∂f
∂E

= C(f) . (2.135)

For neoclassical phenomena, processes are generally slow, therefore we can

assume that the electric and magnetic fields are time-independent, and neglect

∂f/∂t. Consequently, the energy is conserved:

E =
mv2
‖

2
+mµB + Zqφ , (2.136)

Ė = 0 . (2.137)

The magnetic moment (per unit mass) is also a conserved quantity, thus

µ̇ = 0.

We use the ordering defined by the small parameter δ = ρ/R0,

vD

v‖
∼ δ (2.138)

to perform an expansion of the distribution function in an equilibrium and

perturbed part:

f = f0 + f1 . (2.139)

The zeroth order equation is

v‖∇‖f0 = C(f0) . (2.140)

The solution to this equation is a Maxwellian dependent on the flux surface

variable ψ:
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f0 = Fm(ψ) = N(ψ)

(
m

2πT (ψ)

)3/2

exp

{
−mv

2/2 + qφ

T (ψ)

}
. (2.141)

This also implies that the electrostatic potential is approximately constant on

each flux-surface φ ≈ φ0(ψ).

The DKE equation to the first order is written as:

v‖∇‖f1 + vd · ∇f0 = C(f1) . (2.142)

We want to rewrite the second term on the LHS of the above equation. The

cross-field drift can be expressed as

vd ·∇ψ = v‖(b×∇ψ) ·∇
(v‖

Ω

)
, (2.143)

where Ω ≡ ZeB/m is the cyclotron frequency and the gradient is taken at a

constant energy and µ. Thus, we obtain the following expression for vd · ∇f0,

vd · ∇Fm =
[
v‖∇

(v‖
Ω

)
× b

]
· ∇ψ ∂Fm

∂ψ
= Iv‖∇‖

(v‖
Ω

) ∂Fm
∂ψ

, (2.144)

where we have used I = RBϕ and

B×∇ψ

B2
=

I

B
b−R ϕ̂ , (2.145)

where ϕ̂ = R∇ϕ is the unit vector in the toroidal direction. We define

∂Fm
∂ψ

= −κFm , (2.146)

where

κ = −
[

1

n

∂n

∂ψ
+

(
v2

v2
th

− 3

2

)
1

T

∂T

∂ψ

]
. (2.147)

In the following we will sometimes write κn = − 1
n
∂n
∂ψ

, κT = − 1
T
∂T
∂ψ

as a measure

of the inverse of density and temperature scale lengths, respectively. The first

order equation (Eq. (2.142)) now becomes:
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v‖∇‖f1 − C(f1) = Iκv‖Fm∇‖
(v‖

Ω

)
. (2.148)

From this equation we will later (in Chapter 4) proceed to solve the drift

kinetic equation for each collisionality regime (Pfirsch-Schlüter, banana, etc.).

Once f1 is found, it is possible to take moments and obtain the neoclassical fluxes:

Γ = 〈Γ ·∇ψ〉 =

〈∫
d3v vD ·∇ψ f1

〉
, (2.149)

Q = 〈Q ·∇ψ〉 =

〈∫
d3v

1

2
mv2 vD ·∇ψ f1

〉
, (2.150)

jb =

〈∫
d3v

v‖
h
f1

〉
, (2.151)

where Γ is the radial particle flux, Q is the energy flux and jb is the bootstrap

current [67].

2.6.4 General considerations for EUTERPE

EUTERPE is a code designed to study gyrokinetic instabilities and turbulence.

To adapt it to perform neoclassical calculations, several important considerations

must be taken into account. First, the self consistent electric fields obtained from

solving the gyrokinetic field equation, must be suppressed. A consequence of this

is that the density is just the one specified by the profiles, also the electric field

(if present) is given externally.

An essential consideration is that the ordering of the DKE (2.14) in the

neoclassical picture is different from the gyrokinetic ordering. In neoclassics, as

remarked in Eq. (2.138), the drift velocity vD (i.e. the ∇B and curvature drifts)

is assumed to be of higher order than the parallel velocity, thus the linearized

trajectory equations (without external electric fields) are:

Ṙ = v‖b̂ , (2.152)

v̇‖ = −µ
(

b̂ +
v‖

B∗Ωi

(∇×B)⊥

)
· ∇B , (2.153)

µ̇ = 0 , (2.154)
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and the evolution of δf is:

dδf

dt
= − 1

B∗

(
µB + v2

‖

Ωi

b̂×∇B +
v2
‖

Ωi

(∇×B)⊥

)
· ∂f0

∂R
. (2.155)

The main difference with the full gyrokinetic equation is that the drift velocity

does not appear in the zeroth-order trajectory (Eq. (2.152)) and the driving source

term in Eq. (2.155) does not contain the gyroaveraged electric field 〈E〉, but the

curvature and gradient of the magnetic field. From Eq. (2.152) we see that the

neoclassical ordering prevents the particles from leaving the flux-surface in lowest

order.

These considerations will be used for all the neoclassical numerical calculations

with EUTERPE. If other terms are introduced (e.g. an external electric field) they

will be explicitly specified in the corresponding section.

2.7 Stellarator geometries used

In the following chapters, results of the collision implementation will be shown. In

them, different magnetic configurations are employed. Stellarator geometries are

of special interest, due to their complex 3D nature, hence we will briefly describe

the types of stellarator devices that will be encountered. Specific details of the

magnetic geometries used for the simulations will be given for each configuration.

2.7.1 Large Helical Device (LHD)

The Large Helical Device (LHD) is a heliotron-type superconducting stellarator,

located at the National Institute for Fusion Science in Toki, Japan, which has

been in operation since 1998. It possesses two continuous superconducting helical

coils and three pairs of superconducting poloidal coils. The periodicity of the

magnetic field geometry is ten. The major and minor radii of the machine are

3.9 m and 0.6 m, respectively. Its main objective is to investigate steady-state

and high-beta plasmas. In Fig. 2.6 the magnetic flux surface of LHD at s = 0.5

is shown. In Fig. 2.7 different cross sections from half a field period of LHD are

depicted.
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Figure 2.6: Magnetic flux surface of LHD at s = 0.5. The color indicates

the magnitude of the magnetic field. Red color is used for higher values

and blue for lower values.3

Figure 2.7: Three cross sections of the flux surfaces over a half field period

of LHD. From left to right: ϕ = 0, ϕ = 2π/40, ϕ = 2π/20.3

2.7.2 Wendelstein 7-X (W7-X)

The Wendelstein 7-X (W7-X) stellarator is the latest step in the line of Wendelstein

stellarators (W7-A, W7-AS) at the Max-Planck-Institut für Plasmaphysik. It

is currently under construction in Greifswald, Germany. It has a modular coil

system which is helium-cooled and superconducting. The number of coils is

divided into fifty non-planar coils (five different types) and twenty planar coils.

The configuration has five field periods and the magnetic field strength will reach

up to 3 T. Its major and minor radii are 5.5 m and 0.53 m respectively.

In Fig. 2.8 the magnetic flux surface of W7-X at s = 0.5 is shown. In Fig. 2.9

different cross sections from half a field period of W7-X are depicted.

The configuration is the result of an optimization procedure which included

the following criteria:

3courtesy of R. Kleiber
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• small Shafranov shift,

• MHD stability,

• small neoclassical transport, especially in the 1/ν regime,

• small bootstrap current,

• good α-particle confinement.

In the results section of the following chapters we will discuss the collision

implementation and its effect on neoclassical transport and microinstabilities for

the different geometries: cylinder, tokamak and stellarators.

Figure 2.8: Magnetic flux surface of W7-X at s = 0.5. The color indicates

the magnitude of the magnetic field. Red color is used for higher values

and blue for lower values.4

Figure 2.9: Three cross sections of the flux surfaces over a half field period

of W7-X. From left to right ϕ = 0, ϕ = 2π/20, ϕ = 2π/10.4

4courtesy of R. Kleiber
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Chapter 3

Collision implementation tests

Once the collisions were implemented, the logical next step was to test whether

the implementation was correct, and if we could recover the physics correctly as

well as to estimate the numerical limits of the collisional simulations. Two main

tests were performed, which are described in the following sections.

3.1 Legendre polynomials

We want to test collisions added to EUTERPE by using the pitch angle scattering

operator. Let us remember from the previous chapter, that the operator only

involves the pitch angle, since the magnitude of the electron velocity v is conserved.

This makes the operator automatically energy conserving. In this section, we

mainly follow the procedure in [2].

A simple initial test was to set the evolution of the guiding center positions

equal to zero and let the velocity evolve only according to collisions:

∂f

∂t
= ν L(f) , (3.1)

where L(f) is the pitch-angle scattering operator described in Eq. (2.86). As

can be noted, this collision operator is equal to the angular part of the Laplace

operator, whose eigenfunctions are the Legendre polynomials Pl(ξ) defined by:

Pl(ξ) =
1

2ll!

dl

dξl
(
ξ2 − 1

)l
, (3.2)
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since

∂

∂ξ

[(
1− ξ2

) ∂Pl(ξ)
∂ξ

]
= −l(l + 1)Pl(ξ) . (3.3)

Let us now consider a distribution function in pitch angle space and decompose

it over the Legendre polynomials:

f(ξ, t) = cl(t)Pl(ξ) , (3.4)

where cl(t) is the part of the distribution function that carries the time dependence.

Substituting f(ξ, t) in Eq. (3.1) gives

cl(t) = cl(t = 0) e−l(l+1)ν t/2 . (3.5)

Setting cl(t = 0) = 1, we obtain an expression for the time-dependent distribution

function:

f(ξ, t) = e−l(l+1)ν t/2 Pl(ξ) . (3.6)

In the δf method, we separate the distribution function in a local Maxwellian and

perturbation part, f = f0 + δf . Since the equilibrium part is time-independent

and isotropic L(f0) = 0, f0 plays no role in the evolution equation. Hence, we

only have to deal with the time-dependent part δf .

When the initial loading is such that δf is the eigenmode of the operator, then

it evolves as

l = 1 δf(ξ, t) = e−ν(v) t ξ , (3.7)

l = 2 δf(ξ, t) =
1

2
e−3ν(v) t

(
3ξ2 − 1

)
. (3.8)

In Eq. (2.55), it can be seen that if f0 is a Maxwellian then C(f0, f0) = 0. Also,

we are not considering the back reaction term C(f0, δf), and we chose to consider

only collisions as the source term for the evolution of the distribution function,

i.e. ż1 = 0. Assuming these conditions makes dwj/dt = 0, where j is the marker

index. In other words, the weights do not evolve in time. According to Eqs. (2.60)

and (2.61), the initial perturbation is:
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l = 1 wj(t = 0) =
δf(ξj, t = 0)

g(ξj, t = 0)
= Vj ξj , (3.9)

l = 2 wj(t = 0) =
δf(ξj, t = 0)

g(ξj, t = 0)
= Vj

1

2

(
3 ξ2

j − 1
)
. (3.10)

We tested this case in EUTERPE by changing the initialization of the weights

according to Eqs. (3.9) and (3.10) and switching off the evolution of the real

space trajectories and the parallel velocity, leaving only the time evolution of the

distribution function as in Eq. (3.1). This means that the parallel and perpendicular

velocity are only pushed according to Eqs. (2.112-2.114). We measured the δf

evolution by binning the weights into ξ bins. Fig. 3.1 (top) shows the initially

loaded δf as the first Legendre polynomial and its evolution with a time step

∆t = 0.1 Ω−1
∗ . We can see that as times advances, δf drops, in agreement with

the exponential decay behavior described in Eq. (3.7). If we now load the initial

δf as the second Legendre polynomial, shown in Fig. 3.1 (bottom) we see that the

numerical results are also in good agreement with the theoretical prediction done

in Eq. (3.8). We also used different time steps of the same order of magnitude

with no important changes in the results, which means that the time step chosen

is adequate to resolve the collisional effects on δf . It is relevant to note that this

scheme is of first order, therefore, when combined with previously implemented

higher order methods used for collisionless particle pushing, such as Runge-Kutta

(4th order), the numerical errors will be given by the collisional pushing scheme.
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Figure 3.1: Analytical (lines) and numerical (bars) time evolution of δf

initially loaded as the first Legendre polynomial (top) and second Legendre

polynomial (bottom). The time step was taken as ∆t = 0.1 Ω−1
∗ .
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3.2 Spitzer problem

3.2.1 Formulation

We now consider a single species plasma with collisions and an external electric

field in a tokamak. To model the collisions we again use the pitch angle scattering

operator.

We use the same approximations as we did for the neoclassical theory in the

previous chapter, but now take the electric field into account. We follow the

derivation from [47].

The zeroth order equation (Eq. (2.140)) remains the same, therefore the solution

for f0 is a Maxwellian. The first order drift kinetic equation (Eq. (2.142)) in the

neoclassical approximation with the added parallel electric field becomes:

v‖∇‖f1 + vd · ∇f0 +
eE‖
m

∂f0

∂v‖
= C(f1) , (3.11)

where E‖ is considered to be of order δ. Currently, we are only interested in the

parallel transport, hence for simplicity we have chosen κn,T = −∂ ln (n, T )/∂ψ = 0,

i.e. we use flat density and temperature profiles. Using this, the first order equation

becomes:

v‖∇‖f1 −
eE‖
m

∂f0

∂v‖
= C(f1) , (3.12)

which is often referred to as the Spitzer problem [68]. Knowing that f0 is a

Maxwellian, one obtains

v‖∇‖f1 −
ev‖E‖
kBT

f0 = C(f1) . (3.13)

We use the Lorentz operator in the following form:

L =
2hv‖
v2

∂

∂λ
λv‖

∂

∂λ
, (3.14)

with

h ≡ B0

B
, λ =

v2
⊥B0

v2B
and v‖ = v(1− λ/h)1/2 . (3.15)

Here the magnetic field normalization has been defined as B0 ≡ 〈B2〉1/2, see

Eq. (2.131).
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We now perform a subsidiary expansion on f1 in the smallness of the collision

frequency. For the low collisionality regime (banana regime) we have that

ν∗ = νeff/ωb � 1, where νeff = ν/ε. Applying this subsidiary expansion, one can

define:

f
(1)
1

f
(0)
1

∼ νeff

ωb
. (3.16)

We neglect the higher order terms

v‖∇‖f (0)
1 + v‖∇‖f (1)

1 −
ev‖E‖
kBT

f0 = C(f
(0)
1 ) + C(f

(1)
1 )︸ ︷︷ ︸

higher order

, (3.17)

and by this new ordering, we obtain

v‖∇‖f (0)
1 = 0 , (3.18)

v‖∇‖f (1)
1 −

ev‖E‖
kBT

f0 = C
(
f

(0)
1

)
. (3.19)

To find f
(0)
1 we multiply Eq. (3.19) by B/v‖ and take the flux-surface average.

The term with the parallel gradient vanishes and we are left with:〈
−
eB E‖
kBT

f0

〉
=

〈
B

v‖
C(f

(0)
1 )

〉
. (3.20)

Remembering that C(f
(0)
1 ) = νL(f

(0)
1 ) then we have

2B0

v2

∂

∂λ
λ〈v‖〉

∂

∂λ
f

(0)
1 = − e

νkBT
f0〈E‖B〉 , (3.21)

∂

∂λ
λ〈v‖〉

∂

∂λ
f

(0)
1 = −v

2

2

e

νkBT︸ ︷︷ ︸
S

f0

〈
E‖
h

〉
. (3.22)

Eq. (3.22) can be solved by integrating twice over λ. The function f
(0)
1 vanishes

in the trapped domain, so we only need to solve f
(0)
1 in the passing domain,

0 ≤ λ ≤ λc. Here we have defined λc = B0/Bmax as the trapped-passing boundary

and Bmax(ψ) is the maximum magnetic field strength on the flux surface ψ. The

solution for f
(0)
1 is then
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3.2 Spitzer problem

f
(0)
1 = H(λc − λ)V‖S f0

〈
E‖
h

〉
, (3.23)

where

V‖ =
v2

2

λc∫
λ

dλ′

〈v‖(λ′)〉
=
σv

2

λc∫
λ

dλ′〈√
1− λ′/h

〉 . (3.24)

Here we have defined σ = v‖/
∣∣v‖∣∣. H is the Heaviside step function.

Since f
(0)
1 is now known, we can calculate the parallel Spitzer current:

j‖ = e

∫
v‖f

(0)
1 d3v = e

〈
E‖
h

〉∫
Sv‖HV‖f0 d

3v . (3.25)

If we use the volume element as

d3v =
∑
σ=±1

πv3B

B0v‖
dv dλ , (3.26)

then the current becomes

j‖ = e

〈
E‖
h

〉
π

h

∑
σ

∫
SHV‖f0v

3 dv dλ (3.27)

= e

〈
E‖
h

〉
π

h

∞∫
0

Sv4f0 dv

λc∫
0

dλ

λc∫
λ

dλ′

〈
√

1− λ′/h〉
. (3.28)

If we assume that ν = constant, i.e. independent of the velocity, then

j‖ = eS

〈
E‖
h

〉
π

h

3

8π
n v2

th

λc∫
0

λdλ

〈
√

1− λ/h〉
. (3.29)

Defining the effective fraction of trapped particles [69] ft as

ft = 1− 3

4

λc∫
0

λdλ

〈
√

1− λ/h〉
= 1− fc , (3.30)

where fc is the fraction of circulating particles, and replacing S, the parallel

current can be written as
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3. COLLISION IMPLEMENTATION TESTS

j‖ =
e2n

νm
(1− ft)

〈
E‖
h

〉
1

h
. (3.31)

Taking the flux-surface average and assuming E‖ is constant, we obtain

〈j‖〉 =
e2nE‖
νm

(1− ft)
〈

1

h

〉2

. (3.32)

If the aspect ratio is large, then ε→ 0. Consequently, and from the definition of h

in Eq. (3.15), we have that h ≈ 1 +O(ε). Then 〈1/h〉 ≈ 1 and the final expression

for the parallel current in the banana regime is:

〈j‖〉 =
e2nE‖
νm

(1− ft) . (3.33)

In the Pfirsch-Schlüter regime, the current can be again calculated resulting

in

〈j‖〉 =
e2nE‖
νm

. (3.34)

Due to the high collisionality, trapped particles play no role in this case, which is

equivalent to the case in which the geometry is a cylinder.

3.2.2 Velocity dependence

We make the collision frequency dependent on the velocity ν → ν̃/v3, where ν̃

represents the quantity ν̂ab v
3
th, where ν̂ab is given in Eq. (2.117). Replacing this

in the calculation of the current, we get that the first integral in Eq. (3.28) is no

longer
∞∫
0

v4f0 dv = 3
8π
nv2

th, but
∞∫
0

v7f0 dv = 3
π3/2nv

5
th. Then the parallel current

becomes

〈
j‖
〉

=
8v3

th√
π

e2nE‖
ν̃m

(1− ft)
〈

1

h

〉2

. (3.35)

In the Pfirsch-Schlüter regime it becomes

〈
j‖
〉

=
8v3

th√
π

e2nE‖
ν̃m

. (3.36)
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3.2 Spitzer problem

3.2.3 Time dependence

We now calculate the time-dependent parallel current in cylindrical geometry.

To solve the time-dependent Spitzer problem for a cylinder, then we need

to find the time-dependent Spitzer function fs, which now solves the following

equation:

∂fs
∂t

+
eE‖
m

∂f0

∂v‖
= C(fs) , (3.37)

which is equivalent to

∂fs
∂t
− νL(fs) =

ev‖E‖
kBT

f0 . (3.38)

If we assume that the Spitzer function is proportional to the parallel velocity

fs = v‖g(R), then L(fs) = −fs and

∂fs
∂t

+ νfs =
ev‖E‖
kBT

f0 . (3.39)

The solution to the full equation is then, with zero initial conditions

fs =
ev‖E‖
νkBT

f0 [1− exp (−νt)] . (3.40)

We use this solution to obtain the current (in the cylindrical case):

〈j‖〉 =
e2nE‖
νm

[1− exp (−νt)] . (3.41)

3.2.4 Implementation in EUTERPE

To comply with Eqs. (2.152-2.154), we load the particles in one flux surface and

suppress the radial spatial drifts. We take only one flux surface because it is

numerically less expensive, since it takes a great number of particles to reduce

the statistical noise. For the diagnostic quantities it is then important to keep

in mind that instead of using the average over the whole volume to determine

the density, the flux-surface integral should be used. In our case E‖ is fixed and

externally given.
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3. COLLISION IMPLEMENTATION TESTS

The equations of motion, together with the equation for δf are:

dR

dt
= v‖b̂ , (3.42a)

dv‖
dt

= −µb̂ · ∇B with trapped particles , (3.42b)

dv‖
dt

= 0 without trapped particles , (3.42c)

dδf

dt
= −f0

ev‖E‖
T

. (3.42d)

The current in Eq. (3.34) is expressed in normalized quantities as the following:

〈
j̄‖
〉

=
n̄

ν̄
Ē‖ . (3.43)

In this case the normalized density is always n̄ = 1. Then, for the Pfirsch-Schlüter

regime we get:

〈
j̄‖
〉

=
Ē‖
ν̄
. (3.44)

For the banana regime we need to know the effective fraction of trapped particles.

This is given by expanding Eq. (3.30) for a small inverse aspect ratio ε and circular

flux surfaces:

ft(r) ≈ 1.469

√
r

R

(
1− 0.325

r

R

)
, (3.45)

but r = a
√
s, therefore,

ft(s) ≈ 1.469
√
ε 4
√
s
(
1− 0.325ε

√
s
)
. (3.46)

Then the current is:

〈
j̄‖
〉

=
Ē‖
ν̄

(1− ft(s)) . (3.47)

For the velocity dependent collision frequency in the Pfirsch-Schlüter regime, we

perform the normalization and take into account that the normalized thermal

velocity in EUTERPE is v∗ =
√
T/m = vth/

√
2, then
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3.2 Spitzer problem

〈
j̄‖
〉

=
16
√

2√
π

v3
∗Ē‖
ν̃

, (3.48)

where here, ν̃ is a constant quantity given from the input file.

3.2.5 Results

In this section we use two different geometries for the simulations: a cylinder and

a tokamak. The cylinder configuration had a radius of a = 0.4 m and the tokamak

geometry had an aspect ratio of A = 5 with a major radius of R0 = 8 m.

As a first test, the parallel current in a cylinder is calculated; a scan for different

normalized external electric fields Ē =0.01-0.04 is performed. The collisionality

is chosen to be ν = 10−2 Ω∗. The number of particles used is N = 105 and the

time step is ∆t = 0.5. The results are shown in Fig. 3.2 for different collision

frequencies. Solid lines represent the analytical values calculated from Eq. (3.44)

and the symbols show the numerical results.

The next test consisted in adding the velocity dependence to the collision

frequency in the code and comparing the numerical results (in the Pfirsch-Schlüter

regime) with the analytical saturation value of the current expressed in Eq. (3.48).

For this we considered a tokamak configuration and took the following parameter

values: Ē = 10−2, ν = 10−2 Ω∗, ∆t = 10 and N = 105. Fig. 3.3 shows the

numerical results for the current evolution for the case when a constant frequency

was used (red) and the case with velocity-dependent frequency (green). Since the

current saturates much faster for the case with constant ν than for the case with

velocity dependent ν, time has been multiplied by ten in the case of constant ν, for

the sake of comparison. Also, the analytical saturated current values are shown

in solid lines. The saturated current value for the case of a constant frequency is

shown in magenta and the case with a velocity-dependent frequency in blue. We

can see that the simulations (points) are in good agreement with the analytical

currents (solid lines) and that the saturation current changes, as predicted by the

theory, when a velocity-dependent collision frequency is used.

Finally, we test the effects of trapped particles on the current. For this purpose,

we considered a tokamak configuration in the banana regime. To ensure that the
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Figure 3.2: Collision frequency and electric field dependence of the Spitzer

current in a cylinder. The collisionalities correspond to the Pfirsch-Schlüter

regime. Solid lines show the analytical values and the symbols show the

numerical results.
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particles are deep in this regime, we chose a collisionality of ν = 1× 10−6 Ω∗. We

set the value of the normalized external electric field to Ē = 10−2, used the time

step ∆t = 50 and the number of particles was N = 5× 104. In Fig. 3.4 we observe

the flux-surface averaged parallel current evolution for the case without trapped

particles (red) and the case with trapped particles (blue). In green, the analytical

time-dependent current obtained from Eq. (3.41) is shown, where trapped particles

are neglected. In magenta, we can observe the analytical saturation value for the

current in the case with trapped particles, which is taken from Eq. (3.47).

We observe that when trapped particles are taken into account, the flux-surface

averaged current decreases. This is due to the fact that, in a tokamak, for the

low-collisionality banana regime, trapped particles dominate the transport and

they do not carry any current.

From these results it is possible to conclude that the numerical implementation

and results of the collisional effects are in good agreement with the theoretical

predictions for the simple collision operator that was implemented.

It is important to remark that the collision operator νL uses a generic expression

for the collision frequency. The currently implemented scheme solves the Lorentz

operator numerically with the value of the collision frequency fixed from the input.

The physical interpretation of the collision frequency varies depending on the case

assumptions.

For example, in the case of neoclassical calculations in a tokamak, the process

simulated was ion-ion collisions. Self collisions should not cause particle transport

if momentum is conserved in an axisymmetric system. If momentum conservation

is not implemented, however, a radial particle flux appears. We decided to

simulate this radial particle flux because it is the simplest numerical case. The

analytical fluxes were also calculated consistently with these assumptions (self

collisions with no momentum conservation) in order to be able to compare the

numerical and analytical results. If one would like to relate the ion particle

flux resulting from these assumptions, to the electron particle flux caused by

electron-ion collisions, which is the usual physical flux that is measured, one

obtains (e.g. for the Pfirsch-Schlüter regime):
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Γi
Γe
∼
√
mi

me

. (3.49)

In the case of neoclassical calculations in a stellarator, we simulated ion-ion col-

lisions without momentum conservation. Since stellarators are not axisymmetric,

fluxes due to self collisions will always be present, with or without momentum con-

servation. We also compared the numerical results with the analytical calculations

taking these assumptions into account.

In the case of microinstabilities calculations, we assumed the following: for

ITGs (whether in tokamak or stellarator configurations) we simulated ion-ion

collisions. For TEMs, electron-ion collisions were used.
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Chapter 4

Neoclassical transport in

EUTERPE

With the successful implementation of collisions in EUTERPE, it is now possible

to perform neoclassical calculations. In the cases studied, we were only interested

in the radial particle fluxes for the different collisional regimes. We calculate

them, following the procedures in [55]. Since the main quantity investigated was

the radial particle flux, we first derive analytical expressions for the flux in the

different collisionality regimes. Then, the results obtained with EUTERPE are

presented and compared with the analytical expressions.

4.1 Analytical fluxes in neoclassical regimes

4.1.1 Banana regime

In this regime, the collisionality is not high enough to interrupt the trapped orbits

and f1 can be expanded

f1 = f
(0)
1 + f

(1)
1 + . . . , (4.1)

in the way already discussed in Sec. 3.2.1. We then obtain the zeroth order

equation,

∇‖f (0)
1 = IκFm∇‖

(v‖
Ω

)
. (4.2)
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By integrating, we find that

f
(0)
1 =

IκFm
Ωc

(
hv‖ + f̂1

)
, (4.3)

where f̂1 is such that

∂f̂1

∂θ
= 0 , (4.4)

and we have used Ω = Ωc/h, where Ωc ≡ ZeB0/m. In first order, the expansion

gives

v‖∇‖f (1)
1 = C(f

(0)
1 ) . (4.5)

Now we use the same procedure that we used for the Spitzer problem: if f(ψ, θ)

is any periodic function in θ, then,

〈B ·∇f(ψ, θ)〉 = 0 . (4.6)

Using this flux-surface average property in Eq. (4.5) and also L(v‖) = −v‖ we

arrive at the following expression:

f̂1 = −H(λc − λ)V‖ . (4.7)

Remembering that λc is the trapped-passing boundary defined in the previous

chapter before Eq. (3.23) and V‖ was defined in Eq. (3.24), then the complete

solution is:

f
(0)
1 =

IκFm
Ωc

(
hv‖ −HV‖

)
. (4.8)

Since f1 is now known in lowest order, it is possible to calculate the radial particle

flux:

Γ =

〈∫
f1 vd · ∇ψ d3v

〉
(4.9)

= −
〈
I

Ω

∫
v2
‖∇‖f1 d

3v

〉
. (4.10)
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We recall that f1 = f
(0)
1 + f

(1)
1 + . . ., but the contribution of f

(0)
1 is zero, so we

take the next order and use Eq. (4.5) to finally obtain an expression for the flux

as a function of f
(0)
1 :

Γ = −
〈
Ih

Ωc

∫
v‖C(f

(0)
1 ) d3v

〉
. (4.11)

Using that C(v‖) = −νv‖ together with Eq. (4.8) we obtain

Γ =
I2

Ω2
c

(〈
h2

∫
v2
‖ ν κFm d

3v

〉
−
〈
h

∫
v‖ ν κFmHV‖ d

3v

〉)
. (4.12)

We define the following average operation in velocity space using the notation in

[47],

{F (v)} ≡
∫
F (v)

mv2
‖

nT
Fm d

3v =
8

3
√
π

∞∫
0

F (x) e−x
2

x4 dx , (4.13)

where x2 = mv2/(2T ) = v2/v2
th and the effective fraction of trapped particles is

given by Eqs. (3.30) and (3.45). Using these definitions, and the assumption that

ν is independent of the velocity, the terms on the right-hand side of Eq. (4.12)

are:

〈
h2

∫
v2
‖ κFm d

3v

〉
=

〈
h2
〉
· nT
m
{κ(v)} , (4.14)〈

h

∫
v‖ κFmHV‖ d

3v

〉
=

nT

m
fc {κ(v)} . (4.15)

From the definition of κ(v) in Eq. (2.147) we have

{κ(v)} = −
[

1

n

∂n

∂ψ
+

1

T

∂T

∂ψ

]
= κn + κT . (4.16)

Then the radial particle flux is

Γ =
I2ν

Ω2
c

nv2
th

2
(κn + κT )

(〈
h2
〉
− fc

)
. (4.17)

Since h ≈ 1 + ε cos θ for high aspect ratio devices with circular cross section, then

we get 〈h2〉 ' 1 + O(ε2).
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We now notice that the thermal Larmor radius is ρth = vth/Ωc and that

κn = − 1
n
∂n
∂r
/|∇ψ| = κ̃n/|∇ψ|, κT = − 1

T
∂T
∂r
/|∇ψ| = κ̃T/|∇ψ|. If we also make use

of the identity:

I2

|∇ψ|2
≈ q2

ε2
, (4.18)

and

〈Γ · ∇r〉 ' 〈Γ · ∇ψ〉
|∇ψ|

, (4.19)

then the radial particle flux in the banana regime is

Γbanana = 〈Γ · ∇r〉 ' ν ft n

2

(ρth q
ε

)2

(κ̃n + κ̃T ) . (4.20)

4.1.2 Pfirsch-Schlüter regime

In the Pfirsch-Schlüter regime [70] the high collisionality prevents the particles

from completing their orbits.

We take Eq. (2.148) and perform another subsidiary expansion of f1 now taking

into account the high collisionality,

f1 = f
(−1)
1 + f

(0)
1 + f

(1)
1 + . . . , (4.21)

this time using the following smallness parameter:

f
(0)
1

f
(−1)
1

∼ ωb

ν
. (4.22)

It is important to note that since the collision operator is of the order of the

collisionality (∼ O(ν)), a f
(−1)
1 term is necessary in the expansion of f1. The

lowest order equation, then becomes

C(f
(−1)
1 ) = 0 , (4.23)

which means f
(−1)
1 = f

(−1)
1 (E, r, θ) does not depend on λ. The zeroth order

equation is

68



4.1 Analytical fluxes in neoclassical regimes

v‖∇‖f (−1)
1 − C(f

(0)
1 ) = 0 , (4.24)

which is solved by using the properties of the Lorentz operator:

f
(0)
1 = −

v‖
ν
∇‖f (−1)

1 . (4.25)

The first order equation is

v‖∇‖f (0)
1 − C(f

(1)
1 ) = Iκv‖Fm∇‖

(v‖
Ω

)
. (4.26)

Dividing by v‖, integrating over λ and using that v‖ = v
√

1− λ/h we realize that

the second term on the left-hand side gives zero. We use the fact that ∇‖f = 0

implies that f = K(ψ), where K(ψ) is an arbitrary function that depends only on

ψ. Then we obtain

h∫
0

f
(0)
1 dλ− IκFmh

Ωc

h∫
0

v‖ dλ = K(ψ) . (4.27)

Using Eq. (4.25) and remembering that f
(−1)
1 does not depend on λ, we arrive at

the following expression:

h
v

ν
∇‖f (−1)

1 +
IvκFmh

2

Ωc

= −3

2
K(ψ) . (4.28)

We multiply by ν/(h2 v) and take the flux-surface average to find the constant of

integration

K(ψ) = −2

3

IvκFm
Ωc

1

〈h−2〉
. (4.29)

Then the first order equation (4.26) is

∇‖f (−1)
1 =

IκFmν

Ωc

(
1

h 〈h−2〉
− h
)
. (4.30)

As before, with the banana-regime calculation, we need this result in order to

calculate the radial particle flux. In the subsidiary expansion of f1, the term f
(0)
1

does not contribute to the flux, and f
(1)
1 is of higher order. Therefore, the only

relevant term is f
(−1)
1 . By using Eqs. (4.10) and (4.16) we obtain
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〈Γ · ∇ψ〉 = −
〈
I2 ν h

Ω2
c

(
1

h 〈h−2〉
− h
)∫

v2
‖ κFm d

3v

〉
(4.31)

=
I2 ν

Ω2
c

nv2
th

2
(κn + κT )

(
〈h2〉 − 1

〈h−2〉

)
. (4.32)

The approximation of h ≈ 1 + ε cos θ gives

〈
h2
〉
− 1

〈h−2〉
≈ 2 ε2 , (4.33)

and finally we arrive at

ΓPS = 〈Γ · ∇r〉 ' νρ2
thq

2n(κ̃n + κ̃T ) . (4.34)

4.1.3 Plateau regime

For frequencies ωt ε
3/2 � ν � ωt, we have an intermediate transport regime,

which is almost independent of collisions, thus named plateau regime, referring

to its flat shape in a Γ vs. ν graph. Here, the circulating particles with collision

frequency similar to the transit frequency experience resonance. The solution

to the kinetic equation when assuming ε � 1 will not depend on the collision

frequency, so the radial particle flux in this regime is [47]:

Γplateau = 〈Γ ·∇r〉 '
√
π

4

ρ2
th vth q n

R0

(κ̃n +
3

2
κ̃T ) . (4.35)

Experimentally and numerically, the plateau regime is not so distinguishable

from the other regimes since the transition from banana regime to plateau (or

from 1/ν to plateau in the stellarator case) occurs gradually due to the population

of resonant particles increasing or decreasing with collisionality.

4.1.4 Stellarator 1/ν regime

For axisymmetric magnetic fields, the Lagrangian does not depend on the toroidal

angle ϕ, thus the toroidal canonical momentum pϕ is conserved. In stellarators,

due to the complex 3D nature of the field geometry, there is no axisymmetry. So,
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the toroidal canonical momentum is no longer conserved, which causes the radial

excursion of the drift orbits not to be necessarily bounded, as in the axisymmetric

case. Particles trapped in the helical wells are no longer confined and can leave the

plasma. Collisions can then impede the radial motion, so that with lower collision

rates, the particle transport is enhanced. As a consequence, in stellarators it is

possible to observe a regime called the 1/ν regime for low collisionalities, in which

the radial particle flux increases as the collisionality decreases, as opposed to the

tokamak banana regime. The flux is derived semi-analytically in [71]. If we take

Eq. (26) from the mentioned reference, the particle flux across the flux surfaces is

Γ1/ν = −
√

8

9π3/2

v2
thρ

2
th

ν R2
0

ε
3/2
eff

∞∫
0

e−zz5/2

A(z)

n

f0

∂f0

∂r
dz , (4.36)

where z = v2/v2
th, ν is assumed independent of the velocity and A(z) is the

factor that precedes the velocity-independent collision frequency in the Lorentz

scattering operator. For the pitch-angle scattering operator, it is A = 1/2. After

performing the integral, the flux in the 1/ν regime is:

Γ1/ν = 〈Γ ·∇r〉 ' 5

12π

ρ2
th v

2
th n (2εeff)

3/2

ν R2
0

(κ̃n + 2 κ̃T ) , (4.37)

where all the geometry is implicit in the effective ripple εeff . Here, we have not

considered the radial electric field (Er = 0). In the core of most stellarators the

electrons are often in this regime. If we approximate the velocity dependence

of the collision frequency as ν ∝ v−3
th , then the flux scales unfavorably with

temperature as Γ1/ν ∝ T 7/2. Therefore a great amount of research has focused on

the optimization of the geometry with the goal of minimizing the losses in this

regime.

4.2 Results and discussion

Monte Carlo simulations of neoclassical transport can be carried out mono-

energetically as well as with particles having an arbitrary energy (velocity) distri-

bution. The drawback of the latter is that it takes more computing time than
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4. NEOCLASSICAL TRANSPORT IN EUTERPE

standard mono-energetic neoclassical codes. This is due to the presence of just

a few particles carrying most of the energy. To be able to resolve these highly

energetic particle orbits, the time step must be reduced. Moreover, neoclassical

calculations only aim for steady-state results, whereas EUTERPE is an initial

value code that calculates the entire time evolution. To arrive at a steady state,

we need, at least, to run a simulation for a few collision times. We also need

a high number of particles to reduce the statistical noise. These factors turn

the calculation into a very time consuming procedure, since the particle flux is

calculated by letting the simulation run until the saturation is clearly visible, and

then performing an average (in time) from the saturation time until the end of

the run. For example, in the Pfirsch-Schlüter regime (for tokamaks), since the

collisionality is high (for the case below, ν = 3.3× 10−3 Ω∗), it takes less time to

arrive at a steady state, thus, the calculation is not so costly. From Fig. 4.1 (left)

we can see that the saturation time is around t ∼ 3× 104 Ω−1
∗ s, so the average

is taken from this point until the end of the simulation (t = 1× 105 Ω−1
∗ s). The

value of this average is the saturated particle flux.

In the banana regime, however, the collisionality is low. Therefore it takes at

least one to two orders of magnitude more time, in comparison with the highly

collisional regime, to reach saturation (see Fig. 4.1 (right)) with the same time step.

We can see that the saturation point is around t ∼ 8× 105 Ω−1
∗ s, which is almost

two orders of magnitude more than in the Pfirsch-Schlüter case. This becomes an

even greater problem when the calculations are performed in stellarator geometry,

since the lack of axisymmetry adds complexity to the geometry, which requires

higher resolution and, consequently, the simulation time increases even more.

For all the neoclassical simulations, the employed collision frequency was con-

stant and a single species plasma with no electric field was used. All the particles

were loaded in one bin (approximately equivalent to s = 0.5) to improve statistics

and taking advantage of the local nature of the parameters. For simplicity, only a

radial density gradient was considered, i.e. no temperature gradient. Also, to be

consistent with the ordering of the drift-kinetic equation as discussed in section

2.6.4, the radial spatial drifts were suppressed from the trajectory equation, but

retained as driving terms in the evolution of the distribution function. This has

the effect of preventing the particles from leaving the flux-surface. It is relevant
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Figure 4.1: Time evolution of the normalized radial particle flux in the

Pfirsch-Schlüter (left) and banana (right) regime in a tokamak.

to note that the particles in EUTERPE are not mono-energetic, therefore it is

necessary to perform a convolution over the mono-energetic results in order to be

able to make the comparison.

4.2.1 Implementation in EUTERPE

Adapting the gyrokinetic code to perform neoclassic calculations requires some

care. In the neoclassical simulations done here, there is no external (nor self-

consistent) electric field, hence all the electric field associated terms in the DKE

are set to zero.

Next, since the particles are loaded in the r-z coordinates, mapping from one

system of coordinates to the other is necessary. For these simulations we load

all the markers in one bin, which is roughly equivalent to load them on a small

volume between two neighboring flux-surfaces. The loading is done with a uniform

distribution function f . We used 32 bins to represent the s direction and loaded

the particles in the bin corresponding to s0 = 0.51. This number was chosen to

ensure that all the markers fall into one bin. If the number of bins is even, then

at s0 = 0.5 markers are loaded right between two bins, which is not desirable.

Let us recall that the drift velocity vd is not present in the trajectories, since

in the neoclassical ordering it is of higher order. Even though this prevents the

particles from leaving the selected flux-surface from the physical point of view,

there are small numerical errors, e.g. in the field integration, that can force a small

73



4. NEOCLASSICAL TRANSPORT IN EUTERPE

number of particles to leave the defined flux-surface. It is, therefore, important to

choose the time step correctly to be able to resolve trajectories with high velocities,

thus avoiding this error. Fig. 4.2 shows how markers leave the flux-surface in the

LHD stellarator. Initially, the markers are all in one bin. As time goes by, we

can see that markers start to drift away from the middle flux-surface and start

filling other bins, if the time step is not small enough.

Figure 4.2: Time evolution of the marker distribution along the s direction,

when the time step chosen is too large. Here, markers can be seen leaving

the flux-surface in LHD.1

For the diagnostics, the neoclassical flux was implemented in the following

way: The Monte Carlo discretization of integrals over the distribution function is

performed as

∫
Afd3Rd3v =

1

Nm

∑
j

Aj (Vjf0,j + wj) , (4.38)

1courtesy of J. Garćıa
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4.2 Results and discussion

where A is any quantity, Nm is the total number of markers and j is the label for

each marker. Remembering the definition of the neoclassical radial transport in

Eq. (2.149), we write

〈Γ · ∇ψ〉neo =

〈∫
vD ·∇ψ δf d3v

〉
=

∫
∆V

∫
vD ·∇ψ δf d3v d3r∫

∆V

d3r
. (4.39)

Comparing with the Monte Carlo discretization, the discretized form for the radial

particle flux is

Γ =
1
Nm

∑
j (vD ·∇ψ)j wj

Vbin

, (4.40)

where Vbin is the volume of the bin where the particles are loaded. The bin size

(in s) must be small enough to avoid large variations of density and temperature

through it. Another important point to consider is the addition of an external

electric field to the neoclassical calculations. If an electric field were present, then

it would not be possible to neglect the drift velocity without violating energy

conservation. Calculations with electric fields, however, are outside of the scope

of this work, and will not be discussed further.

It is also important to let the simulations run at least two or more collision

times, which is especially time consuming when the collisionality is small, and the

time step cannot be larger than a certain limit imposed by numerical stability.

4.2.2 Benchmark

We wish to compare the results of the Monte Carlo simulation and the neoclassical

formalism. For that purpose, we compare the numerical results of the radial

particle flux against the analytical values for a tokamak and a stellarator. In

order to do so, we need the analytical quantities in their normalized form. The

following parameters are required: the flux-surface where all the particles are

loaded s0, the minor radius a, the major radius R0, the rotational transform value

at the flux-surface ι(s0), κn and κT respectively, and the Larmor radius r∗ as

defined in EUTERPE (see Eqs. (2.26-2.28)). In the case of a stellarator, the minor

75



4. NEOCLASSICAL TRANSPORT IN EUTERPE

radius a is calculated from the average cross section, and the major radius R0 is

calculated from the averaged volume and cross section. The effective ripple εeff is

also needed for the stellarator calculations. This value is obtained with MCView

[72] directly from the equilibrium, using the procedure in [71]. Normalizing the

values in the different regimes described in the previous section, one obtains:

ΓPS =
4ν̄n̄r∗

√
s0

aι2
(κn + κT ) , (4.41)

Γbanana =
2ftν̄n̄r∗

√
s0

aι2ε2
(κn + κT ) , (4.42)

Γ1/ν =
10

3π

(2εeff)
3/2n̄r3

∗
√
s0

aν̄R2
0

(κn + 2κT ) , (4.43)

Γplateau =

√
2πn̄r2

∗
√
s0

aιR0

(
κn +

3

2
κT

)
, (4.44)

where κn = −1/n ∂n/∂s and κT = −1/T ∂T/∂s.

We also compare the simulation results with the results from DKES (Drift

Kinetic Equation Solver) code [73, 74]. DKES is a numerical tool which calculates

the mono-energetic transport coefficients for a plasma based on the Fourier-

Legendre expansion of the linearized drift kinetic equation. By mono-energetic,

DKES assumes that the kinetic energy K = mv2
‖/2+mµB is conserved, therefore it

becomes only a parameter in the kinetic equation. It also assumes that the density,

temperature and electrostatic potential depend only on the local flux-surface ψ.

Once the mono-energetic coefficients are known from DKES, the flux-surface-

averaged fluxes can be calculated by energy convolution and compared with the

fluxes obtained by EUTERPE, as well as with the analytical values. Before the

comparison, it is necessary to introduce the basics of the formalism used by DKES

[75], to be able to calculate the particle flux from the mono-energetic coefficients.

The thermodynamic forces Ai,

A1 =
1

n

dn

dr
− qEr

T
− 3

2

1

T

dT

dr
, (4.45)

A2 =
1

T

dT

dr
, (4.46)

A3 = −qB0 〈E ·B〉
T 〈B2〉

, (4.47)
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drive the flux-surface-averaged fluxes Ii according to the linear relations

Ii = −n
3∑
j=1

LijAj , (4.48)

where the term 〈E ·B〉 describes the effects of the parallel electric field, and

I1 = 〈Γ ·∇r〉 , (4.49)

I2 =

〈
Q

T
·∇r

〉
, (4.50)

I3 =
〈J ·B〉
qB0

, (4.51)

are the radial particle flux, the radial energy flux and the parallel current density

respectively. The difference with Eqs. (2.149 - 2.151) is that the above mentioned

equations are expressed in terms of the radius r instead of the flux surface ψ. The

values for the fluxes, can be obtained by convolving the mono-energetic transport

coefficients Dij with the local Maxwellian distribution function:

Lij =
2√
π

∞∫
0

dK
√
Ke−KDij(K)hihj , (4.52)

where h1 = h3 = 1, h2 = K, K = mv2/2T . Since we are only interested in the

radial particle flux I1 and we assume no temperature gradient (A2 = 0) and no

electric field (A3 = 0), the only coefficient of interest is D11. The analytical form

of these, is given by:

D11,PS =
2

3

ρ2ν

ι2
, (4.53)

D11,ban =
ft

3ε2s

ρ2ν

ι2
, (4.54)

D11,1/ν =
(2εeff)

3/2

9π

ρ2v2

νR2
0

, (4.55)

D11,PL =
π

16

ρ2v

ιR0

. (4.56)
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These coefficients, when convolved under the assumed conditions, give the analyt-

ical fluxes for each regime, which were quoted in the previous section.

DKES returns the coefficients normalized to the value in the plateau regime,

D∗11 = D11/D11 PL, therefore we normalize the analytical coefficients similarly:

D∗11,PS =
32

3π
ν∗ , (4.57)

D∗11,ban =
16

3π

ft
ε2s

ν∗ , (4.58)

D∗11,1/ν =

(
4

3π

)2
(2εeff)

3/2

ν∗
, (4.59)

D∗11,PL = 1 , (4.60)

where the frequency has been normalized to the transit frequency for a particle

with pitch-angle λ = 0 : ν∗ = ν/ωtr(v).

From DKES, we obtain the normalized mono-energetic coefficients D∗11 calcu-

lated numerically in terms of ν∗. It is possible to compare these values straightfor-

ward with the analytical values given above, however, the main interest here is to

compare them with the results obtained by EUTERPE for the different regimes.

The problem is that EUTERPE does not calculate mono-energetic coefficients,

but it gives out the value of the particle flux in terms of νth∗ ≡ νR0/(vthι) instead.

Therefore, we have to transform the data from EUTERPE to be able to compare

then with the results from DKES. Formally, we should numerically convolve the

data (D∗11) but this is not necessary, since there is a simpler method of comparison.

However, it is important to point out that this method only works when no

temperature gradient is present.

As a first step, we write the analytical fluxes calculated from the convolu-

tion of the D11 coefficients, Eqs. (4.41-4.44), normalized to their plateau value

Γ∗ = Γ/ΓPL:
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Γ∗PS =
4√
π
νth∗ , (4.61)

Γ∗ban =
2ft√
πε2eff

νth∗ , (4.62)

Γ∗1/ν =
5

3

(
2εeff

π

)3/2
1

νth∗
, (4.63)

Γ∗PL = 1 . (4.64)

We see here that the density gradients cancel out with the normalization. We want

to compare the results of D11(ν∗) and Γ∗(νth∗), so we have to set ν∗ → 3
√
πνth∗/8

in the normalized mono-energetic coefficients so that

Γ∗PS =
32

3π

(
3
√
π

8
νth∗

)
, (4.65)

Γ∗ban =
16

3π

ft
ε2eff

(
3
√
π

8
νth∗

)
. (4.66)

Comparing these two equations with Eqs. (4.57) and (4.58) we see that by only

changing this factor in the frequency it is now possible to directly compare the

data. This works for both the Pfirsch-Schlüter and the banana regime since they

depend linearly on the collision frequency ν. However, it does not work in the

stellarator case where, for low collisionality, the flux is proportional to the inverse

of the frequency (1/ν regime). We can now apply this method to the numerical

data, multiplying the normalized frequency ν∗ from DKES, by the factor 3
√
π/8

and compare with the numerical results from EUTERPE in a tokamak. This is

shown in Fig. 4.3 along with the analytical values calculated from Eqs. (4.65) and

(4.66).

The plateau value for the particle flux is equal to unity. The parameters used

in the simulation are: total number of particles N = (1−10)×106 and a time step

∆t = 100 for low collisionality. For high collisionality, we used fewer particles

and a shorter time step of N = (1− 3)× 105 and ∆t = 10. For all the tokamak

runs (both high and low collisionality) we used the flux-surface s0 = 0.51, and

the density and temperature profiles were defined by the values of κn = 0.02,
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Figure 4.3: Neoclassical radial particle flux at s = 0.51 for a circular toka-

mak of aspect ratio A = 5 obtained with EUTERPE (red), DKES (green)

and the analytical values (black). The flux is normalized to the analytical

flux in the plateau regime and the collision frequency is normalized to the

transit frequency.

κT = 0.0, respectively. The device used is a circular tokamak of aspect ratio

A = 5 and major radius R = 4 m.

We observe a very good agreement between DKES and EUTERPE for a

tokamak configuration in all the regimes. This prompt us to study the particle

flux in a stellarator configuration.
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4.2.2.1 Stellarator results

A benchmark was also performed for the case of a stellarator with no radial electric

field (Er = 0) as shown in Fig. 4.4. The equilibrium configuration is the magnetic

geometry given by the standard LHD case with R = 3.75 m. The parameters used

were: Total number of particles N = 106, time step ∆t = 5, flux-surface s0 = 0.51,

and the density and temperature profiles are κn = 0.582, κT = 0.0, respectively.

The run-times depend highly on the collisionality and they get more costly as

the collision frequency decreases, or, on the other hand if it is too high. One run

takes 24 CPU-hours on 512 processors for both extremes (low collisionality and

high collisionality). For each point in the plot, the flux was calculated in time,

until it saturated and from the approximate saturation time, a time average was

performed to reduce the noise and obtain a single value. This value was taken as

a data point. Stellarator cases are much more time-costly than the tokamak runs,

since they require a smaller time step to be numerically stable. For the analytical

results in the 1/ν regime, the effective ripple value used for this flux-surface was

εeff = 0.11152. It can be seen that EUTERPE is in good agreement with the

analytical theory [76].
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Figure 4.4: Neoclassical radial particle flux at s = 0.51 for the LHD

stellarator with the standard magnetic configuration for R = 3.75 m with

no radial electric field Er = 0. Results shown for EUTERPE (blue) and

the analytical values (black).
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Chapter 5

Microinstabilities

In the next sections we will discuss ion-temperature-gradient instabilities (ITG)

and trapped-electron-mode (TEM) instabilities, the latter known for being strongly

influenced by collisions. In the results we will show the effects of collisions on

these instabilities in cylinder, tokamak and stellarator geometry.

5.1 Gyrokinetic model for slab ITGs

Following the calculations done in V. Kornilov’s thesis [21], we take the gyrokinetic

equation and apply it for cylinder geometry. The distribution function is separated

into an equilibrium and a perturbed part, f = f0 + f1, so that

∂f1

∂t
+ Ṙ · ∂f1

∂R
+ v̇‖

∂f1

∂v‖
= −〈E〉 ×B

B2
· ∂f0

∂R
− q

m
〈E〉 · b ∂f0

∂v‖
, (5.1)

where we have used the definition for the gyroaveraged field in (2.19). For the

cylinder geometry, we choose Cartesian coordinates as shown in Fig. 5.1 left. The

axes have been named r, θ and ϕ. Note that in this case, ϕ is a variable that

measures a distance and has the dimension of length. This is done in order to look

at a straight part of a plasma that is embedded in a toroidal geometry (Fig. 5.1,

right). We also define the magnetic field as having only one component in the ϕ

direction: B = B ϕ̂.

As before, we assume that the equilibrium distribution f0 is a local Maxwellian

as in (2.31), so that
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Figure 5.1: Coordinate system for slab ITGs.

f0 =
n0(r)

π3/2v3
th(r)

e−(v2‖+v2⊥)/v2th , (5.2)

where now the density and temperature depend only on r. On the left-hand side,

only the zeroth order terms of Ṙ and v̇‖ are present:

Ṙ = v‖b̂ , v̇‖ = 0 . (5.3)

Hence, the gyrokinetic equation becomes

∂f1

∂t
+ v‖

∂f1

∂ϕ
= − 1

B

∂ 〈φ〉
∂θ

∂f0

∂r
+

q

m

∂ 〈φ〉
∂ϕ

∂f0

∂v‖
. (5.4)

The derivatives of the equilibrium distribution function can be calculated:

∂f0

∂r
=

n′

n

(
1− 3

2
ηi +

v2
‖ + v2

⊥

v2
th

ηi

)
f0 , (5.5)

∂f0

∂v‖
= −2

v‖
v2

th

f0 , (5.6)

where ηi ≡ d(lnT )/d(lnn) is the ratio between the scale lengths of density and

ion temperature gradients. The prime here denotes the derivative with respect to

r. Using a plane wave decomposition for the electric potential:

φ(x, t) = φ̃(k, ω) eik·x , (5.7)

and the definition of the gyroaverage in Eq. (2.19), the gyroaveraged potential, in

this case, can be written as
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5.1 Gyrokinetic model for slab ITGs

〈φ〉 (R, t) =

∫
dk J0 (k⊥ρi) φ̃(k, ω) ei(−ωt+k‖ϕ+krr+kθθ) , (5.8)

where Jn is the Bessel function of the first kind. We have also used the following

identity:

J0(z) =
1

π

π∫
0

eiz cosα dα . (5.9)

We note that it is this Bessel function that accounts for the FLR effects in the

evolution equation for the perturbed part of the distribution function, f1.

We apply a Fourier transform to Eq. (5.4) and replace the values given in

Eqs. (5.5) and (5.6). For convenience, we drop the tilde on the Fourier-transform

quantities and the equation becomes:

f1 =
1

ω − v‖k‖

[
kθ
B

n′

n

(
1− 3

2
ηi +

v2
‖ + v2

⊥

v2
th

ηi

)
+ 2

q

m
k‖
v‖
v2

th

]
J0 (k⊥ρi)φf0 .

(5.10)

On the other hand, by using the definition in Eq. (2.20), we obtain the ion density:

ni = n̄i +
n0eφ

Te0

[
Λ0

(
k2
⊥T

mΩ2
c

)
− 1

]
, (5.11)

where

n̄ =

∫
f1 δ(R− x + ρ)B dαdv‖dµ . (5.12)

We have used the definition Λn(x) ≡ In(x) e−x and the following identity [77]:

∞∫
0

Jn(px) Jn(qx) e−x
2

x dx =
1

2
In

(pq
2

)
e−(p2+q2)/4 , (5.13)

where In is the modified Bessel function of the first kind. By using the adiabaticity

of electrons it is possible to find, after some algebra, the gyrokinetic dispersion

relation:
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(5.14)

2 + Λ0(ζ)

{
− 1 + χnηi

(
χ+ χ2Z(χ)− Z(χ)

2

)
+ χnZ(χ)+

+
1

τ
[1 + χZ(χ)]

}
+ χnηiζZ(χ) [Λ1(ζ)− Λ0(ζ)] = 0 ,

where

χ =
ω

k‖vth

, χn =
ωn
k‖vth

, ωn =
Te0
eB

kθ
n′

n
,

τ = Ti0/Te0 , ζ =

(
k⊥vth√

2Ωc

)2

= (k⊥ρi)
2 ,

and Z(χ) is the plasma dispersion function. Since we are interested in the growth

rate of the instability, we use the dispersion function definition for Im(χ) > 0:

Z(χ) =
1√
π

+∞∫
−∞

e−t
2

t− χ
dt . (5.15)

If k⊥ρth � 1 (i.e. ζ � 1) then we can approximate:

Λ0(ζ) ≈ 1− ζ +
3

4
ζ2 +O(ζ3) , (5.16)

Λ1(ζ) ≈ ζ

2
− ζ2

2
+O(ζ3) . (5.17)

If we evaluate Eq. (5.14) to zeroth order in ζ we obtain

1 + χnηi

(
χ+ χ2Z(χ)− Z(χ)

2

)
+ χnZ(χ) +

1

τ
[1 + χZ(χ)] = 0 , (5.18)

which is exactly the drift-kinetic dispersion relation. The recovery of the drift-

kinetic equation from the gyrokinetic equation by assuming k⊥ρth � 1 is expected,

since when taking this limit, we are neglecting the FLR effects. If we further take

the fluid limit, χ� 1, we can expand Z to second order in χ. Here, we neglect

the Landau damping term. By also considering a flat density profile, we obtain
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1−
k2
‖v

2
th

ω2

(
1− ωT

ω

)
= 0 , (5.19)

where ωT ≡ kθT
′/(eB). To solve this equation, it is necessary to separate the

frequency into a real and an imaginary part ω = ωr + iγ, where γ is the growth

rate of the instability. Making the assumption that k‖vth � ωT one can obtain

an estimate for γ:

γ =

√
3

2

∣∣(k‖vth)2ωT
∣∣1/3 . (5.20)

This shows that the instability depends on the ion temperature gradient. However,

this example is not accurate since the observed maximal instability growth rates

occur for k⊥ ∼ ρi, therefore it becomes essential to solve Eq. (5.14). It is possible

to show that an instability can arise only when either [78]

(5.21)ηi > 2

(
1− 2ζ

Λ1(ζ)− Λ0(ζ)

Λ0(ζ)

)−1

,

or

(5.22)ηi < 0 ,

for any value of ζ. An additional condition for the instability to arise is that

k‖ < k‖ lim, which in the limit for ζ � 1 becomes

(5.23)k ‖ lim =
1

2

(
1− 2

ηi

)1/2 |ωT |
vth

.

If we neglect the FLR effects in (5.21), this equation reduces to ηi > 2.

5.2 Toroidal ITGs

In the case of a toroidal system, drifts are introduced due to the curved geometry of

the magnetic field, as well as trapped particle effects. In the following calculations,

the trapped particle effects will be neglected, v̇‖ = 0. Following the procedure of

[79] we take the ion DKE, but now with the∇B and curvature drifts Ṙ = v‖b̂+vd ,
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(5.24)

∂f1

∂t
+ Ṙ · ∂f1

∂R
+ v̇ ‖

∂f1

∂v ‖
= −E×B

B2
· ∂f0

∂R
− q

m
E · b ∂f0

∂v‖

−
(
v‖
∂f0

∂v‖
+
v⊥
2

∂f0

∂v⊥

)(
b̂×∇B

B2

)
· E ,

with the drift velocity (at low β):

vd =
1

BΩi

(
v2
⊥
2

+ v2
‖

)(
b̂×∇B

)
. (5.25)

We can then again apply a Fourier transform and obtain the following relation:

f1 =

{
−1 +

1

(ω − v‖k‖ − k · vd)

[
ω − T

q

kθ
B

n′

n

(
1− 3

2
ηi +

v2
‖ + v2

⊥

v2
th

ηi

)]}
q

T
φf0 ,

(5.26)

where vd is assumed to be independent of the poloidal angle. Using quasineutrality

with adiabatic electrons, we get

1

τ
+1−

∫
f0

n0

(
ω − k‖v‖ − k · vd

) [ω− T
q

kθ
B

n′

n

(
1− 3

2
ηi+

v2
‖ + v2

⊥

v2
th

ηi

)]
d3v = 0 .

(5.27)

In order to obtain the dispersion relation in the fluid limit, the following

assumptions are made: |k‖vth/ω| � 1 and |k · vd/ω| � 1. Then, for Te0 = Ti0 the

following is obtained [80, 81]:

1 +
ωn
ω
−

[
k2
‖v

2
th

ω2
+
ωd
ω

] [
1− ωn

ω
(1 + ηi)

]
= 0 , (5.28)

where

ωd = − 2Tkθ
qBLB

= 2εnωn , (5.29)

is the drift frequency. Also we have defined LB ≡ |∂ lnB/∂r|−1 and εn = Ln/LB.

If one additionally neglects density gradients, we arrive at
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1−

[
k2
‖v

2
th

ω2
+
ωd
ω

](
1− ωT

ω

)
= 0 , (5.30)

which results in an instability even when k‖ = 0, due to the term ωd which

contains the influence of the magnetic field curvature. In the limit k‖ = 0 and

ωd � ωT the solution is

ω = ±(−ωd ωT )1/2 . (5.31)

From this relation we can see that, for k‖ = 0, an instability appears if LB is

positive. This means that, due to the ∇B drift, the instabilities appear on the

low-field side of the torus (the unfavorable curvature region). On the contrary,

the mode is stable if ωd is larger than zero (favorable curvature region).

If we now solve Eq. (5.28) for k‖ = 0 we obtain the following solution:

ω =
1

2

[
(ωd − ωn)±

√
(ωd − ωn)2 − 4ωd ωn(1 + ηi)

]
. (5.32)

Thus, the threshold for the toroidal ITG instability in this (quite crude) approxi-

mation is

ηi >
(2εn − 1)2

8εn
− 1 . (5.33)

This equation shows that, in a similar manner to the slab ITG instabilities, the

toroidal ITGs have a threshold for the onset of the instability, but in the latter

case, it depends on the ratio between the characteristic length of the density and

the scale length of the magnetic variation. If εn < 1/2, the ITG mode propagates

in the electron diamagnetic direction.

It is important to note that this result has been derived in a very naive

fluid approximation and therefore represents just a very rough estimate of the

instability threshold. The kinetic approach, on the other hand, is quite different

since for the same values of εn the ηi critical value is much higher (see example

in Fig. 2.8 in [79]). The main reason why the fluid treatment given here yields

such a pessimistic result, is the expansion in |k · vd/ω| � 1, which neglects the

possibility of a drift resonance in Eq. (5.27).
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5.3 Trapped electron mode instabilities

This mode is present when the frequency ω of a perturbation is between the

ion bounce frequency and the electron bounce frequency, so the majority of the

electrons are trapped and perform complete banana orbits. As opposed to the

ITG instability, the TEM instability persists even for low values of ηi, where a

pure ITG instability would be absent. TEMs are coupled with the ITG modes,

so there is no pure TEM mode (unless ηi = 0), and we can only speak about

dominant effects. The coupling occurs especially in the region of the onset of the

adiabatic ITG instability. However, if we find instabilities at low values of ηi

with kinetic electrons (where the adiabatic electrons case would give γ = 0) we

can assume that these instabilities are mainly driven by trapped electrons.

We now want to solve the bounce-averaged DKE for electrons following the

procedure of [79, 82]. We start from Eq. (5.24) and similarly to the ITG case,

apply the Fourier transform to obtain

dg1

dt
=
∂g1

∂t
+ Ṙ · ∂g1

∂R
+ v̇‖

∂g1

∂v‖
=

[
ω − T

q

kθ
B

n′

n

(
1− 3

2
ηi +

v2
‖ + v2

⊥

v2
th

ηi

)]
q

T
φf0 ,

(5.34)

where d/dt is the total time derivative along the unperturbed trajectories and

g1 ≡ f1 + qφf0/T . This equation will now be expanded in the order of the small

parameter εb = ω/ωb � 1. We assume ω ∼ ω∗, where

ω∗ =
T

q

kθ
B

n′

n

(
1− 3

2
ηi +

v2
‖ + v2

⊥

v2
th

ηi

)
, (5.35)

and subtract the slow toroidal precessional drift 〈ϕ̇〉 from the fast periodic trapping

motion. To the lowest order in εb, we get(
Ṙ · ∂

∂R
− 〈ϕ̇〉 ∂

∂ϕ

)
g

(0)
1 = 0 , (5.36)

with

〈ϕ̇〉 =
1

τb

τb∫
0

dϕ

dt
dt , (5.37)
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where τb is the bounce time as defined in Eq. (2.134). This means that g
(0)
1 is

constant along the (non-drifting) banana orbits. In first order in εb we get

(
Ṙ · ∂

∂R
− 〈ϕ̇〉 ∂

∂ϕ

)
g

(1)
1 + i (ω −N 〈ϕ̇〉) g(0)

1 =
q

T
φf0 (ω − ω∗) , (5.38)

where we have assumed perturbations with the form exp−i (ω −N 〈ϕ̇〉), where

N is the toroidal wave number. If we average this expression over a banana

trajectory, we obtain the bounce-averaged equation:

(ω −N 〈ϕ̇〉) g(0)
1 = (ω − ω∗) qf0

T
〈φ〉b , (5.39)

with

〈φ〉b =
1

τb

τb∫
0

φ dt . (5.40)

For g1, one obtains

g1 =
(ω − ω∗)

(ω −N 〈ϕ̇〉)
qf0

T
〈φ〉b (5.41)

Next, we approximate 〈φ〉b ' φ and calculate the non-adiabatic density

fluctuation of the trapped electrons n̄b by integrating g1 over the velocity space

and multiplying by the fraction of trapped particles αb , resulting in:

n̄b = αb

∫
d3v g1 , (5.42)

where the fraction of trapped particles is estimated as

αb '
√

1− B

Bmax

. (5.43)

It can be shown [79] that the density fluctuation is

(5.44)
n̄b = −2αbn0

qφ

T

1

ωϕ

{[
ω − ωn

(
1− 3

2
η

)]
(1 + zbZ(zb))

− ωnη
[
ω

ωϕ
(1 + zbZ(zb)) +

1

2

]}
,
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where ωϕ is

ωϕ ≈ ωnεn , (5.45)

and zb = sign(ωϕ)
√
ω/ωϕ, where it is assumed that the electrons that contribute

the most to the instability are deeply trapped.

In the case of a large aspect ratio tokamak, it is possible to find an expression

for the toroidal precession drift as

N 〈ϕ̇〉 = − 1

2Ωi

q

ρi

v2

R
. (5.46)

To obtain the pure TEM mode, we have to make further assumptions such as

neglecting the parallel (k‖ = 0) and perpendicular (k·vD=0) ion drive in Eq. (5.26).

Hence, we obtain that the ion perturbed density is just n̄i = n0 e ωni/(Ti0 ω) φ.

Using this, we arrive at the dispersion relation for TEMs:

(5.47)
0 =

1

τ
+

1

τ

2αb

ωϕe

{[
ω − ωne

(
1− 3

2
ηe

)]
(1 + zbeZ(zbe))

− ωneηe
[
ω

ωϕe
(1 + zbeZ(zbe)) +

1

2

]}
+
ωni
ω

.

In order to get a rough estimate for the growth rate, we assume |ω/ωϕe| � 1,

τ = 1 and expand the plasma dispersion function to the lowest order terms to

obtain

0 = 1 + αb

[
−1 +

ωne − 3ωϕe/2

ω
+

3

2

ωϕeωne(1 + ηe)

ω2

]
− ωne

ω
. (5.48)

For values of ηe � 1, this equation yields a growth rate for the trapped electron

mode instability:

γ '
√

3

2

αb

1− αb

ωϕeωne(1 + ηe) . (5.49)

We note that the growth rate of the TEM instability depends on the fraction of

trapped electrons.
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5.4 Results and discussion

With collisions now implemented in EUTERPE, we want to investigate their

effects on instabilities. First, the overall effects of collisions on ITG instabilities

for different geometries will be shown. Secondly, collisional effects for TEM

instabilities will be presented for a tokamak configuration. Finally, collisional

ITG instabilities results will be illustrated in more detail for two stellarator cases:

the LHD and the W7-X devices.

5.4.1 ITG instabilities with collisions

As a first test case, we vary the collision frequency to observe how it influences

the growth rate of the ITG mode. We study this for different geometries: cylinder,

tokamak and stellarator. The cylinder configuration is a particularly simple case in

which only slab ITG modes can be found. Tokamak geometry, on the other hand,

produces mainly curvature driven modes. The stellarator has a more complex

geometry that produces a mixture of slab and toroidal ITG modes, which we want

to investigate. For all these cases we have assumed a single species plasma and

adiabatic electrons. The temperature profile is defined as:

1

T

dT

ds
= − κT

1− C

[
cosh−2

(
s− s0

∆s

)
− C

]
with C = cosh−2

( s0

∆s

)
, (5.50)

where ∆s is the width of the profile in s. The density profile n−1dn/ds is defined

in the same way, but using the corresponding density parameters. It is important

to note that, although the notation of κn and κT is the same as for the neoclassical

calculations, here it has a different meaning: They now provide a tanh-like profile

for all flux-surfaces, with κn and κT representing the maximum of the logarithmic

gradient at s0 of the density and the temperature, respectively.

The density profile was initially chosen to be flat, κn = 0.0, so that ηi is

infinite throughout the plasma. Also, κT = 3.5 was chosen with a profile width

∆sT = 0.2.

We perform a scan for frequency values, starting from ν = 0 to values near

ν = 1× 10−2 Ω∗. Larger values of ν are unimportant in fusion experiments. For
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reference, typical values of frequency are given in Table 2.1. If we take Ωi ∼ 108 s−1

then the typical collision frequency values in terms of the ion cyclotron frequency

are ν ∼ 10−6–10−2 Ωi.

For the circular tokamak configuration, an aspect ratio A = 5 was used

with minor radius a = 0.8 m. The Fourier filter was characterized by M0 = 70 ,

N0 = −38 , with Fourier filter widths of ∆m = 15 , ∆n = 0. These define the

size of the filter that contains the Fourier spectrum. There is no need for an n

filter width since the tokamak is symmetric in the toroidal direction and different

toroidal modes therefore evolve independently of one another. The grid size is

64 × 32 × 32 in s, θ, ϕ and the particle number is N = 1 × 106. The time step

was chosen as ∆t = 20. An equivalent geometry was used for the analytical

cylinder configuration: this means that the radius of the cylinder is equal to the

minor radius of the tokamak and the length of the cylinder is 2πR, where R is

the major radius of the tokamak. This is done to be able to compare with the

tokamak configuration. Additionally, the cylinder configuration has no rotational

transform.

For the stellarator, the LHD configuration was used, with R = 3.75 m and

β = 1.5 %. In all LHD stellarator cases studied in this section, the following

phase factor and filter values were used: M0 = −37 , N0 = −33 , ∆m = 50 ,

∆n = 4. The grid size was 64× 128× 128 in s, θ, ϕ and the number of particles

was N = 16 × 106. The time step was chosen as ∆t = 5. In general, higher

particle numbers, finer grids and smaller time steps are needed for stellarator

simulations in comparison with tokamak simulations, which make them much

more costly. Also, a longer simulation time is needed to measure a growth rate.

As an example, for these particular results, one tokamak (and cylinder) simulation

with 64 processors took less than one CPU-hour, while the stellarator, in the high-

collisional case, with 128 processors took 24 CPU-hours. It is also important to

note that the stellarator results here cannot be quantitatively compared with the

tokamak and cylindrical cases, since the rotational transform and other quantities

such as phase factors and filter values were different. They are plotted together for

the purpose of qualitative analysis only. It is crucial for the stellarator simulations

to use an appropriate particle reinsertion method (stellarator symmetric) for

particles leaving the computational domain. The method changes the poloidal
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Figure 5.2: Growth rate dependence on collisionality for different geome-

tries. In this case, LHD was chosen as the example of stellarator geometry.

angle from θ to −θ and the toroidal angle from φ to −φ, whereas the tokamak

reinsertion changes only the poloidal angle θ to −θ, but leaves the toroidal angle

unchanged. If this is not done, the stellarator runs break down, because the

particle is reinserted in a place where the magnetic field B is not the same while

µ stays constant, thus, the energy is not conserved.

Fig. 5.2 shows the growth rate γ as a function of the collision frequency ν

for the three different configurations. It is possible to observe that for the slab

ITG modes in cylindrical geometry, the growth rate decreases strongly with

increasing collisionality. This is in agreement with [3], however, it is relevant to

point out that if conservation of parallel momentum were added, the growth rate

should show a different behavior with respect to the collision frequency [83]. As a

consequence, even though the pitch-angle scattering operator does not portray

a realistic physical effect, it allows us to differentiate between a mode that it is

mainly driven by parallel dynamics, from a mode that is essentially toroidal.

In contrast to the slab ITG mode, the curvature driven ITG mode is not

affected significantly by parallel dynamics, thus, collisionality does not modify

the growth rate considerably.
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Figure 5.3: Evolution in time of the electric field energy for ITGs with and

without collisions.

Figure 5.4: Poloidal cuts for the ITG instability at a time=2.2× 104 Ω−1
∗ .

On the left: ν = 0. On the right: ν = 1× 10−2 Ω∗.
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This can be observed for the tokamak geometry in the following figures. In

Fig. 5.3 we have plotted the electric field energy evolution in time. We can see

that the growth rate of the instability (slope) is slightly higher in the collisional

case, but not by a significant amount. It can also be observed that the mode

structure (Fig. 5.4) does not differ considerably in shape; collisions just lead to a

stronger localization of the instability zone at the outer side of the torus. This

confirms the fact that in tokamaks, where toroidal ITG modes are dominant,

collisionality is not so important for the growth rates.

In the LHD case, the ITG growth rate decreases, although not as strongly

as in the cylinder case. This could be mainly because in stellarator devices we

could have a mixture of slab ITG modes and curvature driven modes, so that the

parallel dynamics can also play a role for the instability. A more detailed account

of collisional effects will be given in section 5.4.3.

Next we investigate the effects of collisionality on the onset of the instability,

i.e. on the threshold ηic. The ηi variation is performed by varying the value

of κn in the range of [0 , 4] and leaving the inverse of the temperature length

scale constant, i.e. κT = 3.5. The density and temperature profile widths were

chosen as ∆sn = 0.2 and ∆sT = 0.2 respectively. We use more points near

marginal stability to resolve it better. One consideration to take into account

when measuring growth rates near the marginal point is to let the simulation run

long enough so that the instability is given sufficient time to develop and to have

a noticeable slope. It is difficult to distinguish a slightly unstable mode from a

stable one, since it requires long run times.

The growth rate dependence on ηi is displayed in Figs. 5.5 and 5.6. The dotted

lines and open symbols represent the collisionless case, whereas the solid lines and

filled symbols represent the collisional case, with a collisionality ν = 1× 10−2 Ω∗.

From Fig. 5.5 we take an enlarged area represented in Fig. 5.6, which allows us

to distinguish the critical value of ηi (ηi,c) at which an instability develops for

the different devices and collisionalities. It can be noticed that the instability

threshold value in cylindrical geometry is reduced by collisions. This is due to the

collisional coupling between parallel and perpendicular temperatures [3], allowing

the system to access more degrees of freedom. In the collisionless plasma limit,

there is no coupling, thus the threshold for slab ITG modes is higher. In the
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Figure 5.5: Growth rate dependence on ηi. Collisionless case (dotted lines

and open symbols). Collisional case (solid lines and filled symbols). The

black box indicates the area enlarged and displayed in Fig. 5.6.
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Figure 5.6: Detail of Fig. 5.5
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opposite case, in which the plasma is highly collisional, the threshold drops as a

consequence of the additional degrees of freedom of the system and the parallel

and perpendicular temperatures are now strongly coupled.

In the tokamak case, collisions do not have a significant effect on the threshold

(Fig. 5.6), which is in agreement with theoretical results [3]. Similarly for the

stellarator configuration, collisions do not modify the onset of the instability.

Nevertheless, for sufficiently large values of ηi, a decrease of the growth rate is

observed with increasing ηi (see Fig. 5.5) in both collisionless and collisional cases,

a phenomenon which is not present in the tokamak case.

5.4.2 Collisional TEM instabilities in a tokamak

As already explained, when fully kinetic electrons are included in the circular

tokamak case, the dynamics of the trapped electrons also come into play, which

provide an additional instability mechanism, even without collisions. When having

kinetic electrons in the simulations it becomes necessary to lower the time step to

be able to resolve the timescales of the electrons. The motion of the electrons is√
mi/me times faster than the ion motion, thus the value of the time step needed

to simulate TEM instabilities is roughly two orders of magnitude smaller than the

one needed for ITG runs. This requirement makes the simulations much more

costly (roughly, about two orders of magnitude more) in terms of CPU-hours.

Fig. 5.7 is similar to Fig. 5.5, but now the aspect ratio considered is A = 3.

For simplicity, we set the electron temperature gradient to zero, i.e. ηe = 0. For

this figure, no collisions were taken into account. The points displayed in red are

the values of the growth rates with kinetic electrons. For the ηi scan, the density

profile was kept the same with κn = 0.875 while varying κT. It is possible to see

that in the region for values below the onset (ηi,c), where no ITG modes were

present before, now we have non-zero growth rates. One can assert that these

modes are purely associated with TEM, whereas when we move to higher values

of ηi we can no longer distinguish between TEM and ITG instabilities. In this

region (ηi ∼ [1− 2] in the figure) one refers to a coupled ITG/TEM instability.

Unlike the ITG case, collisions do affect TEM instabilities considerably. In

these simulations, it is observed that collisions lead to a smaller growth rate. TEMs
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Figure 5.7: Growth rate vs. ηi for a tokamak with aspect ratio A = 3 in the

collisionless case. The simulations with adiabatic electrons are represented

by the blue curve. Simulations with kinetic electrons are depicted in red.

persist depending on whether the value of R/Ln is higher or lower than R/LT i, i.e.

if the instability is driven predominantly by density or temperature gradients [4, 5].

This can be seen in Fig. 5.8, where the same major radius R = 4 m was used and

R/LT i = 3.21 was kept constant. If the density profile gets flatter (R/Ln < 3),

the mode is fully suppressed for higher collisionalities. When R/Ln = 3.75, the

growth rate tends to become constant for higher collisionalities.

This result suggests that even in highly collisional plasmas, TEM effects could

be of relevance.

5.4.3 Collisional ITG instabilities in LHD

The inclusion of collisions in EUTERPE now allows the calculation of effects of

such collisions on ITG modes in stellarators, as already shown briefly in Fig. 5.2.

First, we study these effects in LHD [84]. To investigate the nature of the modes

further, we studied the spatial structure of the electrostatic potential. In Figs. 5.9

and 5.10, the real part of the potential Re(φ) for the collisional and collisionless
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Figure 5.8: TEM instability growth rate as a function of collisionality

for R/LTe = 0, R/LT i = 3.21. Blue circles represent the values for

R/Ln = 3.75. Red diamonds, for R/Ln = 2.57.

cases at the beginning and the middle of a period is shown. Interestingly, it is

found that the mode is not localized at the low field side, as it is in the case

of standard ballooning modes in a tokamak, but they are rather found at the

bottom of the device. Comparing the structure of the potential at the beginning

and middle of a period, shows that, despite the strong helical twist of LHD and

its unfavorable curvature region being helically symmetric, the modes are nearly

axisymmetric and are only slightly modified by the variation of the equilibrium

with the toroidal angle, i.e. , they are independent from the unfavorable curvature.

When collisions are included (ν = 1× 10−2 Ω∗), we find that the structures

once present in the collisionless case, become wider and more irregular. It is

also observed that some of the structures are tilted in comparison with their

collisionless counterparts.
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Figure 5.9: Collisionless ITG mode for LHD. Shown here is the beginning

of a period (ϕ = 0, left) and the middle of a period (ϕ = 2π/20, right).

Dashed lines represent s = 0.1, 0.5, 1.0.

Figure 5.10: Collisional (ν = 1 × 10−2 Ω∗) ITG mode for LHD at the

beginning (left) and the middle (right) of a period.
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Figure 5.11: Fourier components for the electrostatic potential of the ITG

mode (top) and Fourier spectra (bottom) for the ITG mode in the LHD

configuration (shown here with increasing collisionality from left to right:

ν = 0 , ν = 7.0× 10−3 Ω∗ , ν = 1.0× 10−2 Ω∗ ).
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The Fourier components of the electrostatic potential are presented if Fig. 5.11

(above). An additional effect of collisions can be seen in the Fourier spectrum

of the electrostatic potential (see Fig. 5.11, below). Without collisions the mode

exhibits a typical ballooning-like structure and has a strong coupling between the

m components of the perturbation. Interestingly, despite the pronounced helical

structure of LHD, the toroidal (n) sidebands are relatively small. As collisionality

increases, another mode appears. Its growth rate becomes larger with increasing

collisionality. In Fig. 5.11, where the collisionality is ν = 7.0× 10−3 Ω−1
∗ (bottom,

middle), the growth rate of this second mode is almost as large as the growth rate

of the mode obtained with ν = 0. The two modes compete with each other as they

evolve in time and this interplay never achieves a steady state (the time shown

here is t = 1× 105 Ω−1
∗ ), without anyone of them dominating completely. Above

a critical value of the collision frequency, only the second mode remains, which

has a lower m. This fact can be also noticed in the mode structure in Figs. 5.9

and 5.10, where the number of radial structures decreases at high collisionality.

The remaining mode shows a somewhat weaker coupling in m and the ballooning

structure becomes weaker. Also, for different values of κn we found that the

Fourier modes coupling can be larger.

It can be seen from the figure that the modes are well localized in Fourier

space. Nevertheless, a high grid resolution and consequently many Fourier modes

are necessary to prevent the growth of spurious unresolved modes, located at the

edge of the filter, which can otherwise dominate the simulation.

5.4.4 Collisional ITG instabilities in W7-X

Simulations of ITG modes in the stellarator Wendelstein 7-X were also carried

out. For the results shown, the following parameters were used: total number

of particles N = 32× 106, ∆t = 10, the grid size was 64× 128× 128, in s, θ, ϕ.

M0 = 70 , N0 = −62 , the filter widths were ∆m = 40 , ∆n = 20 and the density

and temperature profiles were taken as κn = 0.0, κT = 3.5, respectively. A run

takes 48 CPU-hours with 128 processors, which is longer than in the case of LHD.

It was found that collisionality changes the structure, growth rate and Fourier

modes of the instability, but not by a significant amount. Unlike the LHD case, it
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Figure 5.12: Collisionality dependence of the growth rate of ITG instabili-

ties in different devices (as in Fig. 5.2) now including W7-X.

was not possible to observe a threshold collisionality in which an additional mode

would appear.

First we consider Fig. 5.12: This figure is similar to Fig. 5.2 but now W7-X

was added. It is possible to state that the W7-X growth rate is not considerably

affected by collisions and exhibits a behavior closer to the tokamak, at least for

high collisionalities, i.e. when the growth rate increases slightly.

It is also visible from the different poloidal cuts (Fig. 5.13), that the structures of

the eigenmode do not differ significantly between the collisionless and collisional

cases (ν = 1× 10−2 Ω∗), besides a slightly localizing effect. For both cases (with

and without collisions) it is possible to see that the modes are strongly localized,

and are always in the unfavorable curvature region. This is different to the LHD

case, in which the poloidal cuts (Figs. 5.9 and 5.10) show that the modes are

mainly located at the bottom of the device and are less localized.

Also, in the collisional case, the mode spreading in Fourier space becomes

slightly uneven and endures small changes as it evolves with time, just like in the

LHD case, with the difference that in the W7-X case, the spectrum continuously

fluctuates, even for extremely high collisionalities. From this we can say that the
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Figure 5.13: Three cross sections of W7-X over a half field period. From

left to right ϕ = 0, ϕ = 2π/20, ϕ = 2π/10. Above: without collisions;

below: collisional case with frequency ν = 1× 10−2 Ω∗.
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Figure 5.14: Fourier components for the electrostatic potential of the ITG

mode (top) and Fourier spectra (bottom) for W7-X configuration. Shown

here for ν = 0 (left) and ν = 1.0× 10−2 Ω∗ (right).

spectrum never reaches a steady state with collisions. For both the collisional and

collisionless cases, a strong coupling between m and n can be observed. Comparing

with the LHD spectra, we see that the W7-X spectra are much broader and contain

many more Fourier components. The modes lie in a diagonal since this is the

resonant subset composed by the m and n modes that satisfy ι(s0)m+ n ≈ 0. In

comparison, the LHD spectrum (see Fig. 5.11, bottom) also lies on a resonant line,

but due to the weak coupling in n, is not as spread out as the W7-X spectrum.

From these observations one can conclude that ITG instability behavior

in stellarators is difficult to predict without carrying out simulations for each

particular case, because it depends sensitively on the geometry of each device.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

Coulomb collisions play an important role in the kinetic theory of stellarator

plasmas. They control the neoclassical transport, which is usually dominant at

high temperatures. They affect microinstabilities, particularly TEMs, and thus

the turbulent transport. Nevertheless, prior to this thesis collisions had (to my

knowledge) not been implemented in any three-dimensional gyrokinetic code.

Here, the pitch-angle scattering collision operator was successfully implemented

for all species in the global gyrokinetic code EUTERPE. Following the scheme

proposed in [1] and further improved in [2], a method for simulating the evolution

of the parallel and perpendicular velocities of the particles was developed. This

basically amounts to a diffusion process over a spherical shell in velocity space.

The polar and azimuthal angles are obtained independently, through the imple-

mentation of a random number generator. The collision implementation in a code

that employs the δf method requires the utilization of the two-weight scheme

proposed in [39, 45]. These works differ in their presentation but the resulting

schemes are equivalent. A more transparent method depicting the two-weight

scheme is shown in the first part of [46]. This scheme was used for the simulations

we have made, but reduces, under our assumptions, to the one-weight scheme.

The main issue with the two-weight scheme is that its statistical error increases

with time. As a means to circumvent this problem, the collisionless and collisional

schemes can be formulated as a control-variate problem and be improved by

109



6. CONCLUSIONS AND OUTLOOK

adopting an enhanced control-variate technique [46], in which the noise behaves

like the δf scheme for early times and is bounded for later times by the noise of

the full-f scheme.

The collision implementation was tested in two cases. The first one consisted

in loading the initial δf part of the distribution function as a Legendre polynomial.

Since these are eigenfunctions of the Lorentz operator, the time evolution is known

analytically and can be compared with the numerical results, which showed good

agreement. The second test case was the Spitzer problem for a cylinder and a

tokamak, where the parallel conductivity is reduced by the trapped particles.

First, the current was measured in a cylinder configuration and its dependence on

the external electric field and collision frequency was studied. In a second step,

the parallel current was measured in the Pfirsch-Schlüter regime of a tokamak

configuration, using also a velocity-dependent collision frequency and comparing

it with the case of a constant collision frequency. Finally, the current was

evaluated in the banana regime. In the particular case when trapped particles

were suppressed by eliminating the mirror driving term it was also possible

to compare the numerical results with the time-dependent solution obtained

analytically, which also showed a good agreement.

As a further measure, code diagnostics were adapted to obtain the flux-surface

averaged radial particle flux. The flux was computed for a tokamak configuration

as well as for the LHD stellarator. It was possible to observe the characteristic

analytical regimes in a tokamak configuration: the Pfirsch-Schlüter regime for

high collisionalities, a plateau regime for collision frequencies near the range of the

bounce frequency, and the banana-regime for low collisionalities. In the case of a

stellarator, the banana regime is replaced by the 1/ν regime, which was clearly

observed in the LHD results. The numerical results were not only benchmarked

with the analytical calculations, but in the tokamak case, they were compared

with the fluxes calculated from the mono-energetic coefficients provided by the

DKES code [73, 74]. In order to compare the results from EUTERPE with the

analytical results as well as with the results from DKES, it was necessary to

calculate the weighted energy-average of the mono-energetic coefficients. All

these benchmarks also showed a good agreement. Since DKES has been part of a

110



6.1 Conclusions

combined effort to benchmark mono-energetic coefficients [75], this validates the

neoclassical results obtained with EUTERPE.

Since collisions were implemented, tested and validated it was possible to

perform collisional gyrokinetic simulations as a next step. First, the effects of

collisions on ITGs was investigated. It was observed that collisions do not affect

ITG instabilities in tokamaks, but they strongly influence the growth rate in

cylinder geometry. This is expected, due to the fact that in the cylinder, the

predominant instability mechanism is the one produced by slab ITGs, which are

driven by parallel dynamics, and this is damped by the collision operator that

was implemented. A more accurate operator that conserves parallel momentum

would presumably not damp the slab ITG as much.

In tokamaks, however, the main instabilities are the toroidal ITGs, where

collisions do not noticeably affect the instability growth rate, since parallel ion

motion is not so important.

EUTERPE has the capability of being able to simulate kinetic electrons, and

consequently, the effect of collisions on TEM modes in a tokamak could be studied.

It was observed that TEMs depend strongly on collisions, which can lead to a

much lower growth rate at high collisionality or even a complete stabilization

of the mode, depending on whether it is driven predominantly by density or

temperature gradients.

The effect of collisions on ITGs in two different stellarator configurations was

studied: LHD and W7-X. In LHD, it was possible to see that the instability

growth rate slightly depends on collisions and exhibits a behavior midway between

a tokamak and a cylinder configuration. This is probably due to a mixture of

slab and toroidal ITG modes driving the instability in this geometry. In W7-X,

however, the growth rate appeared to be unaffected by collisions, resembling the

results for the tokamak. This suggests that the effects of collisions on ITGs in

stellarator geometries depend strongly on the specific stellarator configuration.

Nevertheless, it is important to remember that the implemented collision operator

does not conserve momentum, which is especially relevant for parallel dynamics.

In this sense, the decrease of the growth rate clarifies only the driving mechanism

behind the instability, and not whether it is stabilized physically.
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Another observed effect on ITGs in stellarators was that collisions make the

ballooning structure of the Fourier modes weaker. In LHD, collisions can make

two Fourier modes appear, each of which dominates the simulation intermittently.

In W7-X, collisions make the spectrum fluctuate.

While the W7-X spectrum is widely spread out along the resonant line

ι(s0)m+ n ≈ 0, the LHD spectrum is highly localized due to its weak coupling in

n.

6.2 Outlook

With collisions having been implemented, an interesting neoclassical problem that

the EUTERPE code could address is that of impurity transport. Highly charged

impurity ions are predicted in neoclassical theory to accumulate in the center of a

stellarator plasma if the radial electric field points inward, which is usually the

case. Such accumulation is indeed observed experimentally and can lead to the

termination of the discharge.

Conventional neoclassical theory rests on the following assumption for the

perturbed part of the electric potential φ1:

qφ1

kBT
� 1 . (6.1)

However, for high Z impurities, this potential can have a strong poloidal variation

φ1(θ, ϕ), thus, the energy of the particles can vary significantly over one and the

same flux surface, rendering the neoclassical mono-energetic assumption invalid.

EUTERPE, on the other hand, can take into account this φ1 and simulate the full

energy range of the particles without necessarily assuming that the particles are

mono-energetic. It could also be of interest to implement additional neoclassical

diagnostics such as the heat transport and current, as well as the measurement of

the energy scattering.

Another feature that could be developed is the study of the effects of collisions

on TEMs in stellarator configurations. Currently, it has not been possible to

simulate them because, with kinetic electrons, a much smaller ∆t (about two

orders of magnitude) than for the case with adiabatic electrons is required to
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resolve the fast motion of the electrons. This makes the simulations extremely

expensive in terms of computational time, since they need to run long enough to

be able to measure a growth rate. The study of gyrokinetic effects with collisions

for new configurations is a also a topic of interest.

It could also be useful to implement a momentum conserving term in the

collision operator, making the description of collisions more realistic. This would

make it possible to measure ITGs growth rates with greater accuracy since, in

theory, when momentum is conserved in the parallel direction, the growth rates

of slab ITG modes should show a different behavior with collisionality [3]. Also,

momentum correction could allow computations of the bootstrap current for

neoclassical calculations to be carried out.

Finally, the code could be further optimized by the implementation of a higher

order collisional pushing method for the particles. The current method is of first

order whereas the collisionless push is implemented using a Runge-Kutta method

of 4th order.
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Polytechnique Fédérale de Lausanne., 2008.

[3] A. M. Dimits and B. I. Cohen. Collision operators for partially linearized

particle simulation codes. Phys. Rev. E, 49(1):709, 1994.

[4] C. Angioni, A. G. Peeters, F. Jenko, and T. Dannert. Collisionality de-

pendence of density peaking in quasilinear gyrokinetic calculations. Phys.

Plasmas, 12(11):112310, 2005.

[5] J. W. Connor, R. J. Hastie, and P. Helander. Stability of the trapped electron

mode in steep density and temperature gradients. Plasma Phys. Control.

Fusion, 48(6):885, 2006.

[6] A. H. Wapstra and G. Audi. The 1983 atomic mass evaluation: (I). Atomic

mass table. Nucl. Phys. A, 432(1):1, 1985.

[7] J. D. Lawson. Some Criteria for a Power Producing Thermonuclear Reactor.

Proc. Phys. Soc. B, 70(1):6, 1957.

[8] T. H. Stix. Highlights in early stellarator research at Princeton. J. Plasma

Fusion Res. SERIES, 1:3, 1998.

115



REFERENCES

[9] A.A. Galeev and R.Z. Sagdeev. Transport phenomena in a collisionless plasma

in a toroidal magnetic system (collisonless plasma transport phenomena

associated with particle drift in toroidal magnetic system, considering trapped

particles role). Sov. Phys. JETP, 26(1):233, 1968.

[10] G. Grieger, C. D. Beidler, H. Maassberg, E. Harmeyer, F. Herrnegger,

J. Junker, J. Kisslinger, W. Lotz, P. Merkel, J. Nührenberg, F. Rau, J. Sapper,
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magnétiques 3D. PhD thesis, Centre de Recherches en Physique des Plasmas

(CRPP), Association Euratom - Confédération Suisse, École Polytechnique
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time. My fiancé, Omar Jiménez. It was difficult living apart for more than 4

years, but it was worth it. I cannot thank you enough.


	IPP_12_10. Titel.pdf
	IPP_12_10_Text.pdf
	Contents
	List of figures
	Nomenclature
	1 Introduction
	1.1 Fusion
	1.2 Plasma and magnetic confinement
	1.3 Collisional transport
	1.4 Anomalous transport and microinstabilities
	1.5 Contribution of this thesis
	1.6 Outline

	2 Theoretical framework
	2.1 Coordinate systems
	2.2 Drift-kinetic and gyrokinetic model
	2.3 Short description of numerics in EUTERPE
	2.4 Delta f method and two-weight scheme
	2.4.1 Delta f method without collisions
	2.4.2 Collisional delta f method
	2.4.3 Initial conditions

	2.5 Collision operator
	2.5.1 Fokker-Planck operator
	2.5.2 Pitch-angle scattering
	2.5.3 Implementation in EUTERPE

	2.6 Neoclassical formalism
	2.6.1 Particle orbits
	2.6.2 Characteristic parameters
	2.6.3 Neoclassical transport equations
	2.6.4 General considerations for EUTERPE

	2.7 Stellarator geometries used
	2.7.1 Large Helical Device (LHD)
	2.7.2 Wendelstein 7-X (W7-X)


	3 Collision implementation tests
	3.1 Legendre polynomials
	3.2 Spitzer problem
	3.2.1 Formulation
	3.2.2 Velocity dependence
	3.2.3 Time dependence
	3.2.4 Implementation in EUTERPE
	3.2.5 Results


	4 Neoclassical transport in EUTERPE
	4.1 Analytical fluxes in neoclassical regimes
	4.1.1 Banana regime
	4.1.2 Pfirsch-Schlüter regime
	4.1.3 Plateau regime
	4.1.4 Stellarator 1/nu regime

	4.2 Results and discussion
	4.2.1 Implementation in EUTERPE
	4.2.2 Benchmark
	4.2.2.1 Stellarator results



	5 Microinstabilities
	5.1 Gyrokinetic model for slab ITGs
	5.2 Toroidal ITGs
	5.3 Trapped electron mode instabilities
	5.4 Results and discussion
	5.4.1 ITG instabilities with collisions
	5.4.2 Collisional TEM instabilities in a tokamak
	5.4.3 Collisional ITG instabilities in LHD
	5.4.4 Collisional ITG instabilities in W7-X


	6 Conclusions and Outlook
	6.1 Conclusions
	6.2 Outlook

	References
	Declaration
	Curriculum Vitae
	Acknowledgements


