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Abstract

Higher order singular value decomposition (HOSVD) is explored as a tool for analyzing and

compressing gyrokinetic data. An efficient numerical implementation of an HOSVD algorithm

is described. HOSVD is used to analyze the full six-dimensional (three spatial, two velocity

space, and time dimensions) gyrocenter distribution function from gyrokinetic simulations of

ion temperature gradient, electron temperature gradient, and trapped electron mode driven

turbulence. The HOSVD eigenvalues for the velocity space coordinates decay very rapidly,

indicating that only a few structures in velocity space can capture the most important dynamics.

In almost all of the cases studied, HOSVD extracts parallel velocity space structures which are

very similar to orthogonal polynomials. HOSVD is also used to compress gyrokinetic datasets,

an application in which it is shown to significantly outperform the more commonly used singular

value decomposition. It is shown that the effectiveness of the HOSVD compression improves as

the dimensionality of the dataset increases.



I. INTRODUCTION

The purpose of this paper is to explore higher order singular value decomposition [1]-[4]

(HOSVD) as a tool for analyzing and compressing gyrokinetic data. HOSVD is a high-dimensional

variant of singular value decomposition (SVD) [5]. SVD is a powerful and commonly used matrix

decomposition which, among other applications, constitutes the basis of the proper orthogonal de-

composition techniques which have been used to analyze turbulent dynamics. These techniques

have been widely applied to hydrodynamic turbulence for several decades [6] and more recently to

a variety of applications in fusion research including analysis of impurity transport [7], compression

of magnetohydrodynamic simulation data [8], filtering of particle noise in particle-in-cell calcula-

tions [9], and analysis of the excitation of damped eigenmodes in gyrokinetic simulations [10, 11].

HOSVD has been used in a much more limited fashion than SVD, particularly with regard

to analysis of turbulent systems. Nonetheless it has found several applications in a variety of fields

(for specific examples see Refs. [4] and [3] and references therein). Recently HOSVD has also been

used to compress aerodynamic databases [12]. In the present study, HOSVD is applied for the first

time to analysis of gyrokinetic turbulence data.

The gyrokinetic model is the most comprehensive model for describing microturbulence in

fusion and astrophysical plasmas [13]. One important application, which is the topic of the present

work, is the turbulent transport of heat in fusion devices. The gyrokinetic model describes the time

evolution of the distribution of particle gyro-centers in three spatial and two velocity dimensions.

The high-dimensional nature of the HOSVD makes it a promising tool for analyzing gyrokinetic

data. In contrast with a tensor decomposition, a matrix decomposition, like a matrix, is inherently

two dimensional. The matrix decomposition, SVD, can be applied to higher dimensional datasets

by matricizing the data (unstacking it to two dimensions), as has been done, e.g., in Refs. [7, 10, 11].

While this is effective and appropriate for many applications, it would be useful to have the ability to

treat each dimension independently when analyzing higher-dimensional datasets - i.e., to analyze a

tensor using a tensor decomposition rather than a matrix decomposition. Here we explore the use of

the tensor decomposition HOSVD to analyze and compress the full six-dimensional (three spatial
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dimensions, two velocity dimensions and time) gyrokinetic distribution function from nonlinear

gyrokinetic simulations produced by the GENE code [14].

Gyrokinetic simulations produce a very large amount of information, but only a small fraction

of this is typically analyzed, or even output to a file. An extreme example of this is when only a

zero-dimensional set of diffusivities is taken from the six-dimensional dataset. Often, data output

is limited to a few moments of the distribution function (consisting of the three spatial dimensions

and time). Relatively little has been done to characterize velocity space dynamics (for exceptions

see Refs. [10]-[11],[15]-[17]), in part because of the high-dimensional, memory-intensive nature of

the task. Thus, a technique that can compress large datasets and facilitate their analysis could be

very valuable. In this paper, HOSVD is used to construct tensor decompositions of such data sets

in an attempt to characterize the full distribution function and gain insight into the turbulence it

describes. Another very practical application is in data compression, i.e., capturing the important

features of the turbulence with a reduced amount of memory usage.

One persistent theme in this work is comparison of HOSVD with the more commonly used

SVD. Three measures of merit are used in this regard: the degree of computer resources that are

necessary to apply the decomposition (or alternatively, the limit on the size of a dataset which

can be realistically analyzed); the effectiveness of the decomposition in compressing the data set

of interest; and the utility of the decomposition in providing insight and facilitating a physical

understanding of the dataset. It is found that SVD is superior with regard to the first criterion

(although this is possibly due only to the exhaustive optimization of SVD routines motivated by its

widespread use), HOSVD is superior for the second criterion, and with regard to the third criterion,

both techniques have certain advantages depending on the application. These measures of merit

will be discussed throughout this paper and summarized in the conclusion.

This paper will proceed as follows: in Sec. II, the mathematics of the HOSVD will be

outlined. We will discuss in what sense HOSVD is a natural extension of SVD, define notation and

naming conventions, and explain the procedure for constructing an HOSVD. In Sec. III, numerical

optimization and implementation of an efficient, scalable HOSVD routine is discussed. In Sec. IV
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we introduce the data sets that are used. The HOSVD of the full distribution function dataset is

used to analyze and understand the underlying structures for each dimension of the turbulence.

Sec. V presents a description of a series of truncated HOSVDs which have been constructed from

the full gyrokinetic distribution function and numerical performance, compression and truncation

are discussed. Comparisons in this regard are also made with SVD. In Sec. VI the major results

are summarized.

II. Mathematics of HOSVD

In this section we will briefly review the mathematical foundations of both SVD and HOSVD.

As mentioned above, the HOSVD is a higher-dimensional variant of the SVD. In this section we

merely draw some analogies between the two; there exists a much more fundamental and rigorous

connection between the two decompositions which is described in Ref. [3].

The SVD decomposition of a matrix M ∈ C
n1×n2 is

M = USV †, (1)

where U ∈ C
n1×min(n1,n2) and V ∈ C

min(n1,n2)×n2 are unitary matrices and S ∈ C
min(n1,n2)×min(n1,n2)

is a positive definite diagonal matrix (the superscript † denotes a conjugate transpose). The columns

of U are called left singular vectors, the columns of V are called right singular vectors, and the

non-zero elements of S are called singular values. The singular values are positive and ordered in

terms of magnitude.

The construction of the SVD of a matrix M is straightforward. The left singular vectors are

the normalized eigenvectors of the correlation matrix MM †, and the right singular vectors are the

normalized eigenvectors of the correlation matrix M †M . The square roots of the first min(n1, n2)

eigenvalues (all positive) of either correlation matrix are the singular values.

An alternative notation for the SVD is,

Mij =

min(n1,n2)
∑

l=1

slu
(l)
i v

(l)
j , (2)

where u
(l)
i (v

(l)
j ) are the left (right) singular vectors (the subscript labels the elements in each vector,

and the superscript labels the vector number), and the sl are the singular values. This notation

4



facilitates understanding of important properties of the SVD and will also be used in describing the

HOSVD. This notation reveals the SVD to be a superposition of matrices defined by outer products

between the left and right singular vectors. Since the singular vectors are normalized, all amplitude

information is contained in the singular values, i.e., the matrices in the series are weighted according

to the amplitude of their corresponding singular values. One important property of the SVD is

‘optimality’: a truncated decomposition, M
(r)
ij =

r<min(n1,n2)
∑

l=1

slu
(l)
i v

(l)
j , (a decomposition keeping a

reduced number r < min(n1, n2) of outer products in the series) is guaranteed to reproduce the

original matrix better than any other decomposition of the same rank r. Formally this is described

as

ǫ(r) = ‖M −M
(r)
SV D‖

2
F ≤ ‖M −M (r)‖2F ∀ M (r) ∈ C

n1×n2 , (3)

where M (r) denotes an arbitrary rank-r matrix, and ‖A‖2F =
∑

i,j

A2
ij denotes the square of the

Frobenius norm (note that we use the squared norm in order to give more meaning to the norm;

squared physical quantities are often associated with energy-like quantities). The magnitude (as

defined by the square of the Frobenius norm) of a matrix is equal to the sum of its singular values

squared. Also, it can be shown that the truncation error is equal to the sum of the squares of the

singular values corresponding to all truncated modes: ǫ(r) =

min(n1,n2)
∑

l=r+1

s2l .

Having briefly reviewed the SVD, let us now transition to tensor decompositions. Consider

a three dimensional tensor, M ∈ C
n1×n2×n3 (in the discussion that follows, three dimensions will

be used for simplicity of notation; it is a straightforward exercise to extend these results to higher

dimensions). An appealing extension of the SVD decomposition to higher order tensors is to

decompose an N-dimensional tensor as a series of outer products between N vectors with each term

in the series weighted by a singular value,

Mijk =

min(n1,n2,n3)
∑

l=1

slu
(l)
i v

(l)
j w

(l)
k . (4)

Such a decomposition, in general, does not exist. If one uses a generalized notion of a singular

value, replacing a series of singular values with a tensor Sm1m2m3 , a feasible decomposition can be
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defined. The HOSVD is based on a decomposition of this form:

Mijk =

n1
∑

m1=1

n2
∑

m2=1

n3
∑

m3=1

Sm1m2m3u
(m1)
i v

(m2)
j w

(m3)
k (5)

In this expression, the data tensor, Mijk, is reproduced as a superposition of tensors - outer products

between sets of modes defined independently for each coordinate. In this work the modes, um1
i (vm2

j

. . .) will be identified with the name of the corresponding coordinate (e.g., radial modes or x-

modes). The tensor Sm1m2m3 is called the core tensor.

The modes, um1
i , in an HOSVD are calculated in a way that is similar to the procedure for

calculating singular vectors of an SVD. Correlation matrices can be defined for each coordinate:

C(1)
pq =

n2
∑

j=1

n3
∑

k=1

M∗
pjkMqjk, (6)

for coordinate one, and,

C(2)
pq =

n1
∑

i=1

n3
∑

k=1

M∗
ipkMiqk, (7)

for coordinate two, and so forth (the asterisk denotes the complex conjugate). The eigenvectors of

these correlation matrices are chosen to be the coordinate modes:

n1
∑

q=1

C(1)
pq u(m1)

q = σ2
m1

u(m1)
p , (8)

n2
∑

q=1

C(2)
pq v(m2)

q = σ2
m2

v(m2)
p , (9)

and so on. Note that the correlation matrices are Hermitian by construction and so the eigenvectors

are orthogonal. For SVD the eigenvalues of the correlation matrices are directly related to the

singular values. In contrast, the eigenvalues of the HOSVD correlation matrices, σ2
m1

, are not

directly related to the core tensor Sijk (however, they do provide an error bound as will be described

below). Rather, the orthogonality of the coordinate modes can be exploited to solve for the core

tensor:

Sm1m2m3 =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

Mijku
∗(m1)
i v

∗(m2)
j w

∗(m3)
k . (10)

This operator is often called the Tucker operator [4] and will be called by that name in this

paper. This defines a method for determining the elements of the core tensor and thus producing

a decomposition of the form of Eq. 5.
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Multiple truncation ranks are necessary to define a truncated HOSVD,

M
(r1r2r3)
ijk =

r1
∑

m1=1

r2
∑

m2=1

r3
∑

m3=1

Sm1m2m3u
(m1)
i v

(m2)
j w

(m3)
k , (11)

where r1(r2...) are the truncation ranks and correspond to the number of 1(2...)-modes retained in

the decomposition. In analogy to SVD, the magnitude of the data tensor is equal to the sum of

the squares of the elements of the core tensor:

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

M2
ijk =

n1
∑

m1=1

n2
∑

m2=1

n3
∑

m3=1

S2
m1m2m3

. Also,

the truncation error is equal to the sum of the squares of the mn > rn elements of the core tensor,

ǫ
(r1r2r3)
HOSV D = ‖Mijk −M

(r1r2r3)
ijk ‖2F =

n1
∑

m1=r1+1

n2
∑

m2=r2+1

n3
∑

m3=r3+1

S2
m1m2m3

. (12)

It can be shown that the eigenvalues of the correlation matrices can be used to determine an

error bound for a given set of truncation ranks:

ǫ
(r1r2r3)
Bound =

n1
∑

m1=r1+1

σ2
m1

+

n2
∑

m2=r2+1

σ2
m2

+

n3
∑

m3=r3+1

σ2
m3

≥ ǫ
(r1r2r3)
HOSV D (13)

This is a very useful property of the HOSVD; the most computationally expensive step in calculating

the decomposition is the calculation of the core tensor (depending on the truncation ranks). This

error bound allows one to determine a sufficient set of truncation ranks for a specified error tolerance

after solving the correlation matrix eigenproblems but before calculating the core tensor.

One drawback of the HOSVD is that there is no analogue to the SVD optimality theorem;

one must perform the calculation in order to see if it has good properties in terms of compression

or extracting important features. However, the error bound in Eq. 13 gives an indication why the

HOSVD can be useful for these purposes; if the magnitudes of the eigenvalues of the correlations

matrices decrease rapidly then the truncation error is ensured to be correspondingly small.

III. Numerical Optimization and Implementation

Two challenges are presented in producing a numerical implementation of the HOSVD al-

gorithm. First, due to its high-dimensional nature, the important operations in the HOSVD are

tensor operations. Unfortunately, nearly all optimized numerical libraries cater to matrix opera-

tions rather than tensor operations. Second, the datasets of interest are very large, so memory
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constraints quickly become an issue. The solution to the first problem is to ‘matricize’ the tensors

and tensor operations, and the solution to the second problem is to parallelize the algorithm. These

efforts will be described below.

Recall from the previous section that there are three steps in calculating an HOSVD:

1). Calculation of the correlation matrices. For a D-dimensional tensor with n = n1 = ...,

this requires O(nD+1) operations.

2). Calculation of the eigenvectors and eigenvalues of the correlation matrices. Since each

correlation matrix is only n × n (compared to the entire nD tensor) this is a very inexpensive

calculation; if the problem as a whole is tractable then this step is trivial.

3). Extraction of the core tensor. For the entire decomposition this scales as O(n2D) (for

every value of the core tensor (nD), one must cycle through every element of the data-tensor as seen

in Eq. 5). As such, optimization of this step is critical to producing an efficient implementation of

the HOSVD algorithm.

The optimization strategy that has been used here is to formally map the data-tensor onto

a 2-D matrix and then convert the tensor version of the Tucker operator into a matrix operator.

At this point, standard optimized numerical libraries can be exploited to efficiently calculate the

core tensor. The important steps are outlined in Refs. [4],[19]. First the data-matrix must be

matricized - mapped from a D-dimensional tensor onto a 2-dimensional matrix (see Sec. 3.4 in

Ref. [19] for a formal description of this intuitive but notationally awkward procedure). Then the

Tucker operator must be converted into a matrix operator. For a 6-D tensor (like those analyzed

in this study) the tensor version of the Tucker operation is,

Sm1m2m3m4m5m6 =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

n4
∑

l=1

n5
∑

m=1

n6
∑

n=1

Mijklmnu
∗(m1)
i v

∗(m2)
j w

∗(m3)
k x

∗(m4)
l y∗(m5)

m z∗(m6)
n . (14)

The matricized version of this operation is,

S(6→2) = (U ⊗ V ⊗W )M (6→2)(Z ⊗ Y ⊗X)T . (15)

In this equation the notation S(6→2) is used to denote the remapping of a 6-D tensor to a 2-D

matrix, and U, V (etc.) are the matrices containing the coordinate modes. The symbol ⊗ denotes
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the Kronecker product,

A⊗B =







a11B · · · a1n2B
...

. . .
...

an11B · · · an1n2B






. (16)

In this construction, the first three coordinates of Mijklmn are mapped to the rows of the

matrix (so that U , V , and W are on the left side of the matrix multiplication) and the other three

coordinates are mapped to the columns (so that Z, Y , and X are on the right side of the matrix

multiplication). Note that the tensor version of the operation requires O(n12) operations, whereas

the matrix version requires only O(n9) operations, (two matrix multiplications of n3×n3 matrices).

For D dimensions this corresponds to a reduction from O(n2D) operations for the tensor version

to O(n3D/2) operations for the matrix version. Thus the matrix version of the operation is not

only suitable for optimized numerical linear algebra libraries, but also requires significantly fewer

operations. For a small test problem, matricizing the HOSVD operator reduced computation time

by a factor of ∼ 300.

As with the matricized HOSVD, the full SVD of a D-dimensional tensor also requiresO(n3D/2)

operations. Even so, trials indicate that a serial version of the HOSVD code used in this analysis is

significantly slower than the LAPACK [21] SVD routine CGESVD. The HOSVD routine took ∼ 34

seconds to perform a full HOSVD on a 13 MB, 5-dimensional, test dataset, and the SVD routine

took ∼ 12 seconds. The LAPACK SVD routine has been extensively optimized and, in many cases,

tuned specifically for a machine. In light of this fact, it is plausible that if an HOSVD routine

were optimized to the same level, it may be competitive with SVD with regard to this performance

measure.

In order to deal with large datasets, parallelization is also necessary. The PBLAS [22] matrix

multiplication routine, PCGEMM, was used for the matrix multiplications in the matricized Tucker

operator. A parallel routine for calculating the correlation matrices was written from scratch using

MPI. Parallel scaling tests indicate that the code scales as expected with problem size; for a 6-

dimensional test tensor (with equal length of n in each dimension), calculation of the full core

tensor scales as n9, and calculation of the correlation matrices scales as n7. The calculation of the
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correlation matrices is comparatively slow - depending on truncation ranks, it often takes more

time than the calculation of the core tensor. Efforts to optimize this step would be worthwhile if

computer resources are limited.

IV. Analysis of Gyrokinetic Data

A. Description of gyrokinetic dataset

In this work we analyze gyrokinetic data describing the nonlinear turbulence produced by

a variety of plasma microinstabilities thought to be important transport mechanisms in fusion

plasmas. The gyrokinetic model describes the time evolution of the distribution of particle gyro-

centers in three spatial and two velocity dimensions. In many applications, distribution functions

for multiple particle species (i.e., electrons and ions) are evolved self-consistently. In this study,

we use toroidal s − α geometry and employ the flux tube assumption [23], resolving an extended

domain in the direction following an equilibrium magnetic field line, and a much more limited

domain in the directions perpendicular to the magnetic field. The perpendicular coordinates are

the radial x coordinate and the mostly-poloidal (sometimes called binormal) y coordinate. In this

work, these perpendicular coordinates will often be expressed in terms of the corresponding Fourier

representation, kx and ky. The parallel coordinate (called here the z-coordinate) is parameterized

by the poloidal angle, and covers one poloidal circuit. A periodic boundary condition cannot, in

general, be applied because of the distortion of the simulation domain due to a radially sheared

magnetic field. As such, the parallel boundary condition connects the parallel boundaries of different

kx modes at the same ky [23]. The velocity space is also parameterized in relation to the magnetic

field with v|| being the velocity parallel to the field, and µ being the magnetic moment (proportional

to the perpendicular velocity squared). In the gyrokinetic description, the third velocity coordinate

is removed from the equations by averaging over the angle of gyro-motion. This distribution

function evolves in time as described by the coupled gyrokinetic-Maxwell equations (see, e.g., [13]).

The GENE code [14] is used for all gyrokinetic simulations in this study. When using the flux

tube assumption, the GENE code employs a Fourier representation in the x and y coordinates so
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q ŝ ǫ = r/R ni/ne Ti/Te R/LTi R/LTe R/Ln β ν

ITG 1.4 0.8 0.18 1.0 1.0 6.9 n/a 2.2 0.0 0.0

ITG-coll 1.4 0.8 0.18 1.0 1.0 6.9 n/a 2.2 0.0 5.0× 10−3

ITG-KE 1.4 0.8 0.18 1.0 1.0 6.9 6.9 2.2 1.0× 10−4 0.0

ETG 1.4 0.35 0.18 1.0 1.0 n/a 6.9 2.2 0.0 0.0

TEM 1.4 0.8 0.16 1.0 1.0/3.0 0.0 6.0 3.0 1.0× 10−3 0.0

Table 1: Physical parameters used in the GENE simulations. The parameters are safety factor q,
magnetic shear ŝ, inverse aspect ratio r/R, ion (electron) density ni(e), ion (electron) temperature
Ti(e), ion (electron) temperature gradient scale length R/LTi(e)

, density gradient scale length R/Ln,
plasma β, and collision frequency ν. In all cases fourth order hyperdiffusion is applied in the z and
v|| coordinates.

that the full functional dependence of the distribution function is, gkx,ky(z, v||, µ, t). The numerical

representation of this distribution function is a six-dimensional tensor. In a tensor context, the

gyrokinetic distribution function will be denoted as G.

A variety of simulations were performed with the GENE code, representing turbulence driven

by different instabilities: ion temperature gradient (ITG) driven turbulence using the cyclone base

case parameters [24], electron temperature gradient (ETG) driven turbulence [14, 25], and trapped

electron mode (TEM) [26, 27] turbulence using parameters similar to those in Refs. [26, 28]. The

physical parameters for these simulations are shown in table 1, and the numerical parameters

for both the original simulations and the HOSVD analyses are shown in table 2. For the ITG

case several variations have been examined – 1) the standard case using the adiabatic electron

approximation (wherein only the ion distribution function is evolved) and no collision operator,

2) the identical case using a linearized Landau-Boltzmann collision operator, and 3) a case with

kinetic electrons described by a self-consistently-evolved electron distribution function. The ETG

simulation uses the adiabatic ion approximation and thus evolves only the electron distribution

function. The TEM simulation necessarily evolves both an ion and an electron distribution function.

In all cases, fourth order hyperdiffusion is applied in the z and v|| coordinates. This hyperdiffusion

eliminates small scale numerical effects [29] and also acts as an energy sink in the absence of a

collision operator. We focus largely on the standard ITG case and use the other simulations to gain

a sense of the type and extent of the variation observed for a broader class of turbulence scenarios.
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Lx Ly Nkx Nky Nz Nv|| Nµ Species NtHOSV D ∆tHOSV D Size(GB)

ITG 125.6 125.6 64 16 16 32 8 i 240 100 8.1

ITG-coll 125.6 125.6 64 16 16 32 8 i 230 100 7.7

ITG-KE 125.6 104.7 128 24 16 32 8 i,e 220 400 22.5

ETG 114.3 125.6 64 16 16 32 8 e 280 200 11.7

TEM 94.2 78.5 128 24 16 40 8 i,e 250 400 31.5

Table 2: Numerical parameters used in the GENE simulations and the HOSVD analysis. The
parameters are box size in the x/y directions, Lx/y, number of kx/y modes, Nkx/y , number of grid
points in the v||/z/µ coordinate, Nz/v||/µ, particle species (electron or ion), number of time steps

used in the HOSVD analysis, NtHOSV D , factor determining frequency of time step data output (e.g.
the distribution function was output at every 100 time steps for the ITG simulation), ∆tHOSV D,
and size of the data set in gigabytes.

B. Mode structures and eigenvalue spectra

This subsection presents information from coordinate modes and eigenvalues in order to illus-

trate the utility of the HOSVD in providing insight into the full gyrokinetic distribution function.

We focus here on the standard ITG simulation and discuss the other types of turbulence in the next

subsection. In this section HOSVD is applied to a dataset in which the perpendicular coordinates

are represented in direct space (x,y) rather than wavenumber space (kx, ky). This is done in order

to extract modes in the perpendicular directions that are more easily interpreted. This direct space

data set is only used to look at the mode structures; all other results (e.g., compression rates, etc.)

use the data in its original Fourier representation. The eigenvalue spectra for both cases are very

similar, indicating that the form (direct space or Fourier space) of the data set has little impact on

such results.

The following paragraphs will discuss mode structures for each of the six dimensions. An

indication of the importance of each mode structure is given by its corresponding eigenvalue (recall

Eqs. 8,9), since these eigenvalues of the correlation matrices define an error bound for a truncated

HOSVD (as described in Eq. 13). The spectra of eigenvalues for all six coordinates are shown in

Fig. 1. The eigenvalues for the velocity space coordinates fall off very steeply. One can then infer
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that only a few structures in velocity space are important in the dynamics, and that the higher order

structures can be dropped in a truncation without losing important velocity space information. In

contrast, the eigenvalue spectra for the other coordinates drop of very gradually after a sharp initial

decrease. This indicates broadband fluctuations in these coordinates. In spite of the slow decay of

the spatial eigenvalues, there is typically a difference of one or two orders of magnitude between

the first and last eigenvalues. For most purposes, gyrokinetic simulations are constructed to ensure

convergence in transport levels (associated with low order moments of the distribution function).

In contrast, the ‘energy’ quantity associated with the HOSVD analysis is a numerical sum over the

six-dimensional distribution function which is not relatable to the transport quantities in a simple

way. Further decay of the eigenvalue spectrum would be ensured by increasing the resolution of

the corresponding gyrokinetic simulation.

For ITG turbulence with adiabatic electrons, zonal flows [30] (characterized, in part, as

ky = 0 fluctuations) are known to attain very high intensity. Thus it is unsurprising that the n = 1

binormal (y) mode structure represents this feature of the turbulence - it is a near constant function

of y as seen in Fig. 2 (note that this represents not only zonal flows but also any other ky = 0.0

fluctuation). A series of other y-modes are also shown in Fig. 2, where it is seen that the modes

exhibit largely harmonic structures. Fig. 3 shows the Fourier spectra for the entire set of y-modes.

It is instructive to compare the mode structures in Fig. 2 with their Fourier spectra in Fig. 3. For

instance, two scales are plainly visible for the n = 10 y-mode as seen in Fig. 2. Fig. 3 verifies this by

showing strong Fourier components at kyρi = 0.25, kyρi = 0.05− 0.1. Modes two through five have

strong kyρi = 0.2, and kyρi = 0.15 components. Both of these examples suggest that there is some

nonlinear phenomenon that couples certain scales. It is interesting to note that the growth rate

peaks at kyρi = 0.3, but the nonlinear spectrum peaks at kyρi = 0.2. This observation of coupled

scales could lend insight into this nonlinear downshift in the spectrum. For n > 10 the Fourier

spectra are strongly peaked about single wavenumbers; each increasing increment in mode number

n is associated with an increase of one ∆kyρs = 0.05. This indicates that a Fourier representation

is well-suited for those scales.
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Figure 1: Spectra of eigenvalues of the coordinate correlation matrices. The steep drop-off of the
eigenvalues corresponding to the velocity space coordinates indicates that the important velocity
structures can be captured with only a few mode structures.
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Figure 2: Selected HOSVD mode structures for the y coordinate.
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Figure 3: Fourier spectra of the HOSVD y-modes. At low ky some modes represent multiple scales.
At higher ky the modes largely correspond to single Fourier modes (note that δkyρs = 0.05).

The radial mode structures exhibit certain features in common with the binormal mode

structures; the low n modes exhibit some coupling between different scales while the higher n

modes are strongly peaked about single wavenumbers. A selection of radial mode structures is

shown in Fig. 4 and the Fourier spectra are shown in Fig. 5.

Because the mode structures in the perpendicular coordinates are largely harmonic for higher

mode numbers (as shown in Figs 2-5), the corresponding eigenvalue spectra (shown in Fig. 1) would

be very similar to Fourier kx or ky spectra for the squared Frobenius norm. Such spectra would

in turn find some degree of correspondence with energy spectra, although the latter would entail

integrals over phase space and additional terms defined by the gyrokinetic free energy quantity [15].

A series of parallel mode structures is shown in Fig. 6. Again it is seen that the mode

structures develop finer scale structure as n increases. Also, striking regularity is exhibited in their

structure - they alternate between even and odd parity and add one additional peak with each

increasing increment of n - a feature that is similar to many types of orthogonal polynomials. In

spite of the lack of periodicity (for even numbers) in these modes, Fourier spectra (constructed

by taking a fast Fourier transform) are plotted in Fig. 7 in order to demonstrate their regularly
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Figure 4: Selected HOSVD mode structures for the radial (x) coordinate.
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Figure 5: Fourier spectra of the HOSVD x-modes. At low kx some modes represent multiple scales.
At higher kx the modes largely correspond to single Fourier modes (note that δkxρs = 0.05).

decreasing scales.

The v||-modes also have a strong similarity to orthogonal polynomials; in this case they

appear to be very similar to Hermite polynomials (including the Gaussian weight function) as seen

in Fig. 8. This is verified for n < 5 in Fig. 9 where the Fourier spectra (A) and Hermite spectra

(B) are plotted. It is seen that the Hermite spectra are sharply peaked at single values for n < 5.

In certain applications Hermite polynomials have been widely used in plasma kinetic theory and

simulation [17],[31]-[36]. The present analysis indicates that this representation is quite efficient

for capturing the most important v|| structures. It is also interesting to note that the fine scale

structure exhibited in the v||-modes is associated with collisional dissipation (or artifical dissipation

in the case of v|| hyperdiffusivities), since a collision operator involves second derivatives in velocity

space. This is related to the results described in Ref. [10] where it is shown that both energy drive

and dissipation peak at the same scales (low kx, ky) due to the excitation of damped eigenmodes

which exhibit fine scale structure in v||.

The µ-modes are shown in Fig. 10. These mode structures exhibit peaks at successively

higher values, a property shared with certain special functions.
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Figure 6: Selected HOSVD mode structures for the parallel (z) coordinate.
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Figure 7: Fourier spectra of the HOSVD z-modes.

The n = 1 t-mode corresponds to the zonal flows (n = 1 y-mode), which are very low

frequency fluctuations. This structure, along with several other t-modes, is shown in Fig. 11. The

corresponding frequency spectra are shown in Fig. 12 where it is seen that the modes exhibit

broadband spectra.

Note that all the results presented so far in this section have only used the coordinate modes

and eigenvalues. This can be done without extracting any portion of the core tensor. As described

in Sec. II, the core tensor assigns a weight to each tensor (outer product between different combina-

tions of coordinate modes) in the decomposition. The elements of the core tensor can be ordered by

magnitude. This is plotted in Fig. 13 for the 5000 largest elements of the core tensor. The largest

element of the core tensor is S111211. This defines a weight for the outer product between the n = 2

v||-mode and the n = 1 modes for all the other coordinates. These mode structures are plotted

together in Fig. 14 for easy reference. Since the n = 1 y-mode is part of this outer product, this

reproduces some aspect of the zonal flow. The next four largest combinations also include the first

y-mode. The largest combination which doesn’t include the n = 1 y-mode is weighted by S221113

- i.e., n = 2 for x and y-modes, n = 1 for z, v||, and µ-modes, and n = 3 for the time coordinate.

These are plotted together in Fig. 15 for easy reference.
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Figure 8: Selected HOSVD mode structures for the v|| coordinate. The fine scale structures that
develop as n increases are associated with the collisional dissipation.

Figure 9: Fourier (A) and Hermite (B) spectra of the HOSVD v||-modes.
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Figure 10: Selected HOSVD mode structures for the µ coordinate.
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Figure 11: Selected HOSVD mode structures for the time coordinate.

Figure 12: Frequency spectra of the time modes.
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C. Discussion of utility of HOSVD analysis

The figures discussed in the previous subsection demonstrate some of the useful features of

HOSVD. Note that various coordinates are characterized by widely different types of structures.

The perpendicular directions x and y exhibit largely harmonic structures, the parallel z and v||-

modes are more akin to orthogonal polynomials, and the time structures fluctuate randomly. The

HOSVD is able to extract these widely different behaviors in a single analysis. The HOSVD takes

very little data to represent the mode structures and a large amount of data to explain how they

combine to reproduce the tensor. While this is not always advantageous, it is easy and appealing

to be able to visualize the structures that make up the entire data set at a glance. This would

be useful, for instance, if one were exploring different possible coordinate bases in the process of

designing or refining a code.

While Hermite representations have been used in a variety of applications in plasma kinetic

theory [31]-[36], their use has not been widespread in gyrokinetic treatments. The current analysis

would indicate that representing v|| with Hermite polynomials could offer significant advantages.

Since the HOSVD v||-modes are similar to Hermite polynomials and the corresponding v|| eigenvalue

spectrum drops off steeply, a simulation could plausibly capture with a few Hermite polynomials

what would otherwise require tens of gridpoints using a finite difference scheme. Furthermore, one

could envision implementing large-eddy techniques to filter higher order polynomials, as has been

demonstrated recently in the perpendicular wavenumbers in gyrokinetic simulations [37]. Such

a scenario would utilize two favorable properties of a polynomial representation - the efficient

representation of velocity space structures (as described in this work) along with the property that

spectral representations are more amenable to large-eddy techniques.

D. Comments on HOSVD analysis of additional turbulence scenarios

In this subsection we compare and contrast the additional turbulent datasets described in

tables 2 and 3 with the ITG dataset described in the preceding subsections. The TEM and ITG-KE

simulations use a kinetic treatment of both the electrons and ions and an HOSVD is constructed

for each of these distribution functions independently. One distinguishing feature of the ITG
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Figure 13: Spectrum of the largest 5000 squared elements of the core tensor

Figure 14: Plots of the coordinate mode structures associated with the largest value of the core
tensor.
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Figure 15: Plots of the coordinate mode structures corresponding to the largest value of the core
tensor (the fifth largest value - denoted by Max5 in the title) not associated with zonal modes
(n = 1 y-mode).
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eigenvalue spectra (shown in Fig. 1) is the sharp decay of the velocity space eigenvalues. This

feature is reproduced in all cases examined, indicating that this behavior persists in a wide range of

parameter regimes. In almost all cases the µ-modes are quite similar to those shown in Fig. 10, the

exception being the collisional case wherein more structure is observed in the higher mode numbers.

The v||-modes produced from the ETG distribution function and the ion distribution functions for

the TEM and ITG-KE case are also very similar to the Hermite-like modes shown in Fig. 8 for the

ITG case. In contrast, the electron distribution functions for the TEM and ITG-KE cases produce

more distinctive modes that cannot be easily related to the Hermite spectrum. Nonetheless, even

in these cases, there is a steep decrease in the v|| eigenvalue spectrum.

With regard to the other coordinate modes, some features appear in all cases observed, while

others are distinctive to a certain type of turbulence. The z-modes are very similar in all cases.

The t-modes for the ETG and TEM cases are very different from those in the ITG cases; they

are more harmonic in nature, indicating that the wave characteristics of the turbulence may be

largely retained in the nonlinear state. In addition the modes in the perpendicular directions are

distinctive in each case. For the ETG case the modes peak strongly about individual Fourier modes

for low n (also low kx and ky), but spread over many Fourier modes as n increases. Additionally, the

n = 1 kx-mode is peaked almost exclusively at kx = 0 as one would expect when streamers [14, 25]

are dominant. In the TEM case the kx and ky-modes peak at single Fourier numbers nearly

throughout the entire mode spectrum. These insights likely reflect the different nonlinear saturation

mechanisms in each type of turbulence.

V. COMPRESSION OF GYROKINETIC DATA

A. Compression and truncation errors for gyrokinetic dataset

In this section performance results and compression rates are presented for a series of trun-

cated HOSVDs with successively smaller error tolerances. Since a truncated HOSVD is character-

ized by multiple truncation ranks, there is a high degree of flexibility in selecting these ranks. The

scheme used in this analysis takes an error tolerance as an input. After the coordinate-eigenvalues

are calculated, a routine cycles through all possible truncation ranks that satisfy this error toler-
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Figure 16: Plot of the computation time necessary to solve for the truncated core tensor (blue
diamonds) plotted against truncation error. The computation time for the construction of the
correlation matrices (independent of truncation) is also shown for reference (green triangles).

ance (as calculated using the error bound defined in Eq. 13), and selects the truncation ranks that

correspond to the smallest possible inverse compression ratio, δHOSV D (defined below in Eq. 17).

The cpu time necessary to calculate the truncated core tensor is plotted against the truncation er-

ror in Fig. 16 along with the time to calculate the correlation matrices (independent of truncation

ranks). The matrix multiplication (Eq. 15), which is the most expensive step in calculating the

core tensor, uses the highly optimized PCGEMM routine. As such, it is faster than the calculation

of the correlation matrices for larger error tolerances (e.g., error above ∼ 0.002 in Fig. 16) even

though it entails more operations. Approximately 10.5 cpu hours (589 seconds on 64 processors)

were necessary in order to calculate a truncated HOSVD within the 0.1% error tolerance. This

use of computer resources is very manageable and much bigger problems would also be tractable.

On the other hand it is expected that the data from many large gyrokinetic simulations (which

include things electromagnetic effects, electron gyro-scale instabilities, etc.) could not be analyzed

with an HOSVD with a reasonable allocation of computer resources. In cases like this, analysis

and compression of individual time steps in the simulation could be useful and manageable.

The error for this series of truncated HOSVDs is plotted against the inverse compression

ratio in Fig. 17. The inverse compression ratio is,

δ
(rkxrky rzrv||rµrt)

HOSV D =
rkxnkx + rkynky + rznz + rv||nv|| + rµnµ + rtnt + rkxrkyrzrv||rµrt

nkxnkynznv||nµnt
, (17)
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Figure 17: Plot of the truncation error versus inverse compression ratio for a series of truncated
HOSVDs. The truncation ranks are noted for the (kx, ky, z, v||, µ, t) coordinates respectively (out
of a total of (64,16,16,32,8,240)).

and the (normalized) truncation error is,

ǫ
(rkxrky rzrv||rµrt) =

‖G − G
rkxrky rzrv||rµrt‖2F
‖G‖2F

, (18)

where ‖ · ‖2F denotes the square of the Frobenius norm. Fig. 17 shows that if one defines an error

tolerance of, e.g., 10% (1%), then the dataset can be compressed to∼ 4% (∼ 15%) of its original size.

Decompositions like the SVD perform particularly well at extracting complex coherent structures

that are not well described by the standard toolkit of special functions [20]. In light of this, it is

noteworthy that these compression rates can be achieved even for a dataset like the one considered

here - a data set seemingly without dominant coherent structures. The truncation ranks are also

noted in Fig. 17 for the kx, ky, z, v||, µ, t coordinates, respectively (for reference, the full rank values

are (64, 16, 16, 32, 8, 240)). Nearly all of the truncation is in the velocity space coordinates. This is

consistent with the steep drop-off in the spectra of v|| and µ eigenvalues shown in Fig. 1. This is

another indication that a basis of some sort of orthogonal polynomials could be used to advantage

in a code; for example, it may take a few dozen grid points for a finite difference method to resolve

the same features that can be captured by only a few orthogonal polynomials.

B. Compression and truncation errors: comparison with SVD

One purpose for which HOSVD is particularly valuable is in data compression. The mathe-

matical reasons why this is often expected to be the case will be discussed, and then computational

results in this regard will be presented. For the purposes of this discussion, consider a D-dimensional
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tensor, A(D), with an equal number of elements, n, in each coordinate, and HOSVD truncation

ranks, r (also equal in each coordinate). The number of data elements it takes to store this trun-

cated decomposition is Drn + rD (rn for each set of modes and rD for the core tensor), and the

size of the original dataset is nD. Thus the inverse compression ratio for this truncation is,

δ
(r)
HOSV D =

Drn+ rD

nD
≈

rD

nD
. (19)

In order to perform an SVD on the same data set, the D-dimensional data tensor must be matricized.

Assume that D is an even number and the tensor is matricized in such a way that the dimensions

are split evenly between the columns and rows of the matrix: A(D) → A(nD/2×nD/2). Now define

a truncation rank, rSV D = rD, for the SVD so that the truncated SVD keeps the same number of

terms (D-dimensional tensors) in the series as the truncated HOSVD. This truncated SVD requires

rSV D(1+2nD/2) = rD(1+2nD/2) data elements. The compression ratio for this SVD truncation is

δ
(rSV D=rD)
SV D =

rD(1 + 2nD/2)

nD
≈

2rD

nD/2
. (20)

Note that the majority of the SVD data elements are in the singular vectors and very few data

elements (singular values) are necessary to define how the vectors combine in the decomposition.

In contrast, the reverse is true for HOSVD; the core tensor (which defines how the modes combine)

requires the vast majority of the storage and the modes themselves require relatively few data

elements.

A comparison of Eqs. 19 and 20 indicates that the HOSVD truncation requires only a small

fraction,

δ
(r)
HOSV D

δ
(rSV D=rD)
SV D

=
1

2
n−D/2, (21)

of the memory required to store the SVD truncation, a feature that improves as the size n and

the dimensionality, D, of the dataset increase. However, there is a large caveat in the fact that

when the truncation ranks are equated in this manner (rSV D = rD), the SVD truncation error is

guaranteed to not exceed the HOSVD truncation error (see Eq. 3). The HOSVD stores a given

number of tensors with far fewer data elements than the SVD, but the SVD produces a smaller

truncation error than the HOSVD for the same number of tensors. Which decomposition technique
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wins the compression comparison depends on a balance between these two properties. For the data

set considered here, it is found that the storage advantages of HOSVD trump the optimality of

SVD so that HOSVD achieves a much smaller truncation error for a given compression ratio.

In order to compare compression results for the two decompositions, one can plot truncation

error against inverse compression ratio. Equations 17 and 18 define the inverse compression ratio

and the truncation error for a truncated HOSVD of the full 6-D dataset. The following relations

define the corresponding expressions for a truncated SVD (assuming the coordinates are split evenly

in the matricization procedure).

δ
(r)
SV D =

r(1 + nkxnkynz + nv||nµnt)

nkxnkynznv||nµnt
. (22)

ǫ(r) =
‖G − G(r)‖2F

‖G‖2F
. (23)

Compression rates are tested for a series of datasets with increasing dimensionality - a 3-D

data set [g|(kxρi=0.0,kyρi=0.2)(z = 0, v||, µ, t)] consisting of the gyrokinetic distribution function at

the outboard midplane z = 0 for kxρi = 0.0, and kyρi = 0.2, a 4-D data set which retains the

z coordinate [g|(kxρi=0.0,kyρi=0.2)(z, v||, µ, t)], and a 5-D data set which additionally retains the ky

dependence [g|(kxρi=0.0),ky(z, v||, µ, t)]. The expressions for inverse compression ratio and truncation

error for these reduced-dimensional datasets can be recovered from the expressions in Eqs. 17, 18, 22,

and 23 by dropping the terms corresponding to the reduced dimensions.

In Fig. 18, compression rates are plotted for the 3-D dataset for SVD (blue asterisks) and

HOSVD (red diamonds). Even for 3 dimensions, HOSVD produces superior compression rates.

Compression rates for the 4 and 5-D data sets are plotted in Figs. 19 and 20. For the four and five

dimensional SVDs, two different schemes have been used to distribute the tensor into a matrix.

First, all the ‘spatial’ coordinates are distributed in the rows of the matrix, and only the time

coordinate varies with the columns (blue asterisks). This is a common technique which produces

separate spatial and time basis vectors (sometimes topos and chronos) as done in Refs. [7],[10],[11].

The second method is to distribute the coordinates more evenly between the columns and the rows
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Figure 18: Comparison of truncation error versus inverse compression ratio for HOSVD (red di-
amonds) and SVD (blue asterisks) for a three-dimensional dataset. HOSVD achieves a smaller
truncation error for a given inverse compression ratio.

Figure 19: Comparison of truncation error versus inverse compression ratio for HOSVD (red dia-
monds) and two applications of SVD for a four-dimensional dataset. The blue asterisks denote SVD
applied to a matrix where the time coordinate is the only coordinate varying along the columns,
and the green plus signs denote SVD applied to a matrix where the coordinates are more evenly
distributed. HOSVD achieves a smaller truncation error for a given inverse compression ratio.
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Figure 20: Comparison of truncation error versus inverse compression ratio for HOSVD (red dia-
monds) and two applications of SVD for a five-dimensional dataset. The blue asterisks denote SVD
applied to a matrix where the time coordinate is the only coordinate varying along the columns,
and the green plus signs denote SVD applied to a matrix where the coordinates are more evenly
distributed. HOSVD achieves a smaller truncation error for a given inverse compression ratio. This
distinction is amplified as the dimensionality increases as can be seen by comparing this figure with
Figs 18 and 19.
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(green plus signs). This makes interpretation of the basis vectors more difficult, but is advantageous

for compression as seen in Figs. 19 and 20. In either case, HOSVD (red diamonds) significantly

out-performs SVD. To illustrate this consider a situation where a truncation is held to an error

tolerance of 0.01. As illustrated in Fig. 20 for the 5-D data set, a truncated HOSVD could compress

the data set to ∼ 12% of its original size whereas the truncated SVDs could only compress it to

∼ 21% (or ∼ 87% for the topos-chronos method). Analysis of this series of increasingly high

dimensional datasets also demonstrates that the advantages of HOSVD with regard to compression

are augmented as the dimensionality increases.

An alternative comparison of SVD and HOSVD is to compare the spectra of SVD singular

values and their HOSVD analogues - the elements of the core tensor. By the theorem shown in

Eq. 3, SVD must perform better in this comparison. Recall that the sum of the squares of the SVD

singular values (elements of the HOSVD core tensor) is equal to the ‘energy’ in the entire dataset,

and the square of each singular value (element of the core tensor) denotes the amount of ‘energy’

in each tensor in the series. There are a total of 1920 singular values and ∼ 15 million elements

in the core tensor. It is observed that the first ten or so elements of the core tensor are smaller

but comparable to the SVD singular values. For numbers beyond a few dozen, the HOSVD is

quite inefficient when measuring by this standard. This drawback is compensated by the favorable

scaling of the compression ratio as described in Eq. 21.

VI. SUMMARY AND CONCLUSIONS

This paper has explored the use of the tensor decomposition, HOSVD, as a technique for

analyzing and compressing gyrokinetc data produced with the GENE code. As a tensor decom-

position, HOSVD has the capability of treating each coordinate in a high-dimensional data set

independently for an arbitrarily high number of dimensions. Thus it is well-suited for analyzing

the high dimensional gyrokinetic distribution function. We have provided a mathematical descrip-

tion of HOSVD and drawn some analogies with the matrix decomposition, SVD. A description of

the numerical implementation and optimization of an HOSVD routine was described; the major

features of this effort were 1) parallelization of the routine, and 2) manipulation of the algorithm
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into a form compatible with efficient linear algebra libraries.

This routine was used to analyze the entire six-dimensional (three spatial, two velocity, and

time dimensions) distribution function from gyrokinetic simulations of ITG, ETG and TEM driven

turbulence. In all three cases, the spectra of eigenvalues associated with the velocity space coordi-

nates fall off very sharply, indicating that the important features of the turbulence can be captured

by a small number of velocity space structures. In many cases (ITG, ETG, and the ion distribu-

tion function for the TEM and ITG with kinetic electrons cases), the v||-mode structures are very

similar to Hermite polynomials. This may suggest ways in which one could optimize velocity space

discretization in gyrokinetic codes and facilitate reduced gyrokinetic modelling. Additionally this

analysis provides insight into the phenomenon of damped eigenmode excitation, as the higher order

phase space coordinate modes are associated with the damped modes which provide an energy sink

in gyrokinetic systems.

It was also found that HOSVD is powerful tool for data-compression; for example, 90%

(99%) of the data can be captured with a truncated HOSVD which uses only 4% (15%) as much

memory as the total data set. In this role, HOSVD significantly outperforms SVD. With regard

to compression, HOSVD improves as the dimensionality of the dataset increases. This observation

suggests that HOSVD could be applied to even higher dimensional datasets expanded by including

scans in additional parameters (like, e.g., gradient scale lengths, plasma β, etc.).

A persistent theme in this paper is the comparison of HOSVD with the more commonly

used SVD. It is concluded that each technique has distinctive advantages. SVD is more efficient

computationally while HOSVD is more effective at data compression. We have also considered the

utility of these decomposition as analysis tools aimed at providing insight into the high-dimensional

gyrokinetic system. In this regard HOSVD is appealing because of the independent treatment of

each coordinate. Such a treatment allows one to observe independently the important structures

in each dimension and thus gain intuition into a large and complex dataset.
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