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An overview is given of physics differences between stellarators and tokamaks, includ-

ing magnetohydrodynamic equilibrium, stability, fast-ion physics, plasma rotation, neo-

classical and turbulent transport, and edge physics. Regarding microinstabilities, it is

shown that the ordinary, collisionless trapped-electron mode is stable in large parts of

parameter space in stellarators that have been designed so that the parallel adiabatic

invariant decreases with radius. Also, the first global, electromagnetic, gyrokinetic sta-

bility calculations done for Wendelstein 7-X suggest that kinetic ballooning modes are

more stable than in a typical tokamak.
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1 Introduction

It has been said that, in the early days when fusion research was classified, much of

the work was duplicated in various laboratories across the world, so that, for instance,

the tokamak, the mirror machine and the Grad-Shafranov equation were invented or

discovered independently in several places. But there was one exception: only Lyman

Spitzer in Princeton was ingenious enough to think of the stellarator [1]. It has occupied

an important position in the fusion programme for six decades now, but has spent

much of that time in the shadow of its toroidal cousin, the tokamak. Perhaps for this

reason, the physical properties of stellarators are less well known than they deserve to

be. Historically, many key concepts in magnetic confinement physics originated from

stellarators [2], and great strides have been taken in their development in recent years,

making the stellarator a very serious candidate for a fusion reactor. In this paper

we present an overview of similarities and differences between stellarator and tokamak

plasmas, emphasising conceptual and recent theoretical developments. No attempt is

made to review the considerable body of experimental results that can be found in the

literature. Most of the material can be found in other publications, but some of it is

new, in particular in the section on microinstabilities.

2 Magnetic field

As Spitzer realised [3] and Mercier proved mathematically [4], there are three ways of

producing a rotational transform of a toroidal magnetic field. From an expansion of

Maxwell’s equations in the vicinity of the magnetic axis, the average number of poloidal

turns of a field line in one toroidal revolution can be expressed as an integral along the

length l once around the magnetic axis [4, 5],

ι =
1

q
=

1

2π

∫ L

0

[

µ0J

2B0
− (cosh η − 1)d′ − τ

]

dl

cosh η
−N. (1)

Here J is the current density on the magnetic axis, N is an integer of topological origin,

eη = r2/r1 the elongation of the flux surfaces, d(l) their tilting angle with respect to

the curvature vector κ = db/dl, where b = B/B is the unit vector along the magnetic

field B, and τ(l) = (dκ/dl) · (b×κ)/κ2 denotes its torsion, see Fig. 1. The three ways

of twisting the magnetic field are thus

2



• driving a toroidal current;

• elongating the flux surfaces and making them rotate poloidally as one moves

around the torus;

• making the magnetic axis non-planar, so that τ 6= 0.

Tokamaks and reversed field pinches use the first method, LHD uses the second one,

TJ-II and Wendelstein 7-X the last two, and NCSX all three. The last method alone

was used by the first stellarators built in Princeton, which had circular cross section

and the magnetic axis bent into the form of a figure eight.
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Figure 1: Flux-surface geometry in the vicinity of the magnetic axis of LHD. The

rotational transform is generated by the poloidal rotation of the flux-surface cross section

as one moves around the torus.

The first method is simplest in the sense that it allows the device to be axisymmetric,

making it easier to build, but suffers from the disadvantage of being non-steady-state or

requiring non-inductive current drive. A further advantage of axisymmetry is that the

existence of flux surfaces is guaranteed, whereas care is needed to avoid large magnetic

islands and stochastic regions in non-axisymmetric magnetic fields.
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3 Macroscopic equilibrium and stability

Avoiding a toroidal plasma current brings great advantages for plasma stability. Indeed,

magnetohydrodynamic (MHD) stability plays a far less prominent role in stellarators

than in tokamaks, where the toroidal current causes kink modes, sawteeth, and re-

sistive and neoclassical tearing modes that all limit the plasma performance. These

instabilities are usually absent in stellarators for the simple reason that there is no, or

very little, net toroidal plasma current.

There is, of course, a non-zero poloidal plasma current present to satisfy force

balance, J × B = ∇p, and just like in a tokamak, the requirement ∇ · J = 0 implies

the existence of a Pfirsch-Schlüter current parallel to the magnetic field, since the

perpendicular current J⊥ = (B×∇p)/B2 is generally not divergence-free. In addition,

at low collisionality a bootstrap current arises for reasons similar to those in a tokamak,

although the details are different because the particle orbits are not the same. The total

toroidal current arising in this way is however usually substantially smaller than the

typical (Ohmic) current in a tokamak. Of course, it is quite possible to drive a more

substantial current by using a transformer, and then tearing modes can be destabilised

[6].

In principle neoclassical tearing modes can also exist in a stellarator, since these

do not depend on a destabilising Ohmic current profile for their existence but rather

on a non-zero bootstrap current. In tokamaks, the latter is reduced when a magnetic

island forms and the pressure profile is flattened within it, and this negative current

perturbation causes the island to grow further. In stellarators, however, the (global)

magnetic shear usually has the opposite sign from that in tokamaks, so that, if an island

should form and flatten the pressure profile, the resulting reduction in the bootstrap

current makes the island shrink rather than grow. Neoclassical tearing modes are then

nonlinearly stable unless the bootstrap current is negative [7]. (The bootstrap current

is taken to be positive if it increases the rotational transform.) In fact, finite plasma

pressure often has the tendency to “heal” magnetic islands in stellarators [8, 9, 10].

Stellarators do not experience plasma-terminating disruptions when, for instance, a

stability limit is approached. The only exception seems to be situations where a trans-

former is used to induce so much toroidal current that tearing modes are destabilised

[11]. After 120,000 plasma discharges, LHD has still not experienced a single current
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disruption [12].

In stellarators, the plasma density is not limited by the “Greenwald” limit [13]

but is instead determined by radiation losses from the plasma core. It is therefore a

“soft” limit and depends on the concentration and transport of impurities. Because

the Greenwald limit is absent, stellarators often operate at higher density than do

tokamaks. The record is held by LHD, where densities ne = 1021 m−3 are reached

in so-called super-dense core plasmas. The question why stellarators do not have a

Greenwald limit cannot be answered without understanding its origin in tokamaks. A

recent explanation by Gates and Delgado-Aparicio [14] suggests that the limit is due

to the destabilisation of magnetic islands (in the outer regions rather than the core)

by radiation losses: at high enough density these cannot be overcome by local Ohmic

heating, and this leads to further island growth. As the authors themselves note, this

mechanism would not operate in stellarators.

The pressure limit is also approached in a different way from that in tokamaks.

The limit set by pressure-driven MHD modes is surprisingly “soft”; for instance, LHD

routinely operates far above the ideal-MHD ballooning limit. It is not entirely clear

why this is possible, but it appears that finite-Larmor-radius effects are playing a

stabilising role. Moreover, a significant fraction of the plasma pressure can be produced

by suprathermal ions from neutral-beam injection, which has a stabilising effect on

ballooning modes [15]. By shaping the plasma appropriately, it is possible to raise the

ideal ballooning limit significantly. In W7-X the volume-averaged normalised pressure

limit is about 〈β〉 = 5%. Because the stability limit is so high and soft, the equilibrium

pressure limit is more important than in the tokamak. The Shafranov shift limits the

pressure in a classical stellarator to about

βmax ∼ ι2

2A
,

where A denotes the aspect ratio. By optimising the magnetic field geometry so as to

reduce the Pfirsch-Schlüter current, it is possible to reduce the Shafranov shift signifi-

cantly, and this has been done successfully in the designs of W7-AS [11] and W7-X. An-

other equilibrium effect limiting the achievable pressure is the tendency of the magnetic

field to become stochastic in the edge region at high beta. Figure 2 shows calculations

of this effect in W7-X using the PIES code, which solves the force balance equation
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J × B = ∇p without assuming nested flux surfaces [16]. As the volume-averaged nor-

malised pressure 〈β〉 increases from 1% to 5%, the confinement region, i.e., the volume

inside the largest closed flux surface, shrinks from 31.7 m3 to 19.3 m3.
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Figure 2: Poincaré sections of two equilibria in W7-X with different normalised pres-

sures. The pressure profiles are in both cases of the form p = p0(1 − s)(1 − s4), with

s the normalised toroidal flux coordinate. The Shafranov shift and a stochastisation of

the edge region are clearly seen in the 〈β〉 = 5% equilbrium.

Fast-ion-driven modes, such as toroidal Alfvén eigenmodes (TAEs), have been ob-

served in most stellarators. Such modes arise in the gaps of the continuous Alfvén

spectrum that form when a plasma cylinder is bent into a torus. In stellarators, the

breaking of axisymmetry gives rise to additional gaps and discrete modes lying therein.

There are therefore more types of Alfvén eigenmodes in stellarators than in tokamaks,

e.g., helicity- and mirror-induced Alfvén eigenmodes, there are more wave-particle res-

onances, and thus more scope for instability [17]. For instance, while in a circular

tokamak with large aspect ratio the main TAE resonances are v‖ = vA and v‖ = vA/3,

where vA is the Alfven speed, it is possible to have resonances with v‖ > vA in stellarator
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geometry. On the other hand, the alpha-particle pressure in a reactor is proportional

to the slowing-down time,

pα ∼ τs ∼ T 3/2
e /ne,

which is expected to be smaller in stellarators than in tokamaks, thanks to the ability

of the former to operate above the Greenwald limit. The fast-particle drive for Alfvénic

modes can thus be smaller in the stellarator, if an operating point with high density

can be chosen. Note that at constant thermal pressure, p ∼ neTe or fusion power

Pfus ∼ n2
eT

2
i , the alpha-particle pressure scales as pα ∼ n

−5/2
e , so increasing the plasma

density by a factor of 2.5 leads to ten times lower alpha-particle pressure.

3.1 More mathematical issues

45 years ago, Grad [18] pointed out that general scalar-pressure MHD equilibria are

likely to be very complicated when the plasma is not axisymmetric. Unless awkward

conditions are satisfied, the pressure gradient must vanish on every rational surface, and

flux surfaces will not exist throughout the plasma in general. Toroidal magnetic fields

without a continuous symmetry are composed of a fractal mix of chaotic field lines,

magnetic islands and intact flux surfaces. It has been argued that the only nontrivial

solutions to the equation J×B = ∇p in chaotic regions contain an uncountable infinity

of discontinuities in both ∇p and J, and on these grounds fundamental criticism can

be raised against codes that attempt to solve this equation numerically [19].

There appear to be three ways out of this dilemma. The most common one is the

method chosen by the VMEC code [20], which insists on the existence of nested flux

surfaces and computes the equilibrium by minimising the MHD energy subject to the

mathematical constraints that follow. In general, there will then be an infinite Pfirsch-

Schlüter current density on most rational surfaces, diverging as 1/x with the distance

x from the surface. (Alternatively, the pressure gradient could vanish on all rational

surfaces). In practice, however, the numerical resolution is usually sufficiently limited

that most of these singularities are not noticeable.

The second way is to allow magnetic surfaces to break up and form islands and

stochastic regions, but to ignore the infinity of singularities that these imply, e.g.,

by letting them be washed out by finite spatial resolution. Physically, this might be

justified by arguing that the MHD equilibrium condition J × B = ∇p is modified by
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kinetic effects (leading to finite viscosity and flow) on small scales.

Finally, one can insist on solving orthodox force balance, J × B = ∇p, implying

B · ∇p = 0, so that the pressure vanishes exactly in chaotic regions. Dewar, Hudson

and co-workers have shown that it is possible to make the problem tractable by taking

the pressure profile to be “stepped”. That is, the pressure is prescribed to be piecewise

constant and to change discontinuously at a finite number of irrational flux surfaces,

between which the field is assumed to be in a Taylor-relaxed state. The mathematical

problem of finding such an equilibrium can be formulated as a variational principle

suitable for numerical solution, see Ref. [21] and papers cited therein.

Mathematical subtleties specific to non-axisymmetric plasmas also arise in the the-

ory of ballooning modes [22]. The ballooning equation predicts different stability prop-

erties for different field lines on the same flux surface in a stellarator, and it is not

straightforward to construct global modes, since the solutions to the ray equations gen-

erally are chaotic. There are parallels to the semi-classical theory of quantum systems

with chaos [23].

4 Neoclassical transport

The advantages of stellarators discussed above – steady state, high density, absence of

current-driven instabilities and disruptions – come not only at the price of complicated

geometry. As Gibson and Taylor observed [24], there are generally unconfined particle

orbits regardless of the magnetic field strength. This is not only problematic for the

confinement of alpha particles, whose orbits are practically collisionless, but can also

lead to prohibitively high neoclassical transport of the thermal particle species.

4.1 Typical collisionality regimes

There are several different collisionality regimes for the neoclassical transport in stel-

larators, and in contrast to the situation in tokamaks the electrons and ions are often in

different regimes. These have been reviewed in great detail elsewhere [25, 26, 27, 28, 29],

and it has been established that the neoclassical heat flux is very significant in the

plasma core of most experiments. At low collisionality, the electrons are usually in the
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1/ν-regime, where the diffusivity is inversely proportional to the collision frequency ν,

De ∼
ǫ
3/2
eff v

2
d

νe
, (2)

and thus scales as

De ∝
ǫ
3/2
eff T

7/2
e

neB2R2
.

Here ǫeff is a geometric quantity characterising the confinement qualities of trapped

particle orbits, vd their drift velocity, Te the electron temperature and R the major ra-

dius of the device. Because of the strong Te scaling, the neoclassical losses are expected

to dominate at high electron temperature, and this is indeed observed to be the case.

In W7-AS, the transport followed neoclassical predictions in roughly half the plasma

volume if the temperature was high enough (>∼1 keV) and was attributed to turbulence

in the outer regions of the plasma [11].

The scaling (2) has a simple origin. In a classical stellarator, the particles responsible

for the transport are trapped in local magnetic wells of depth δB/B ∼ ǫh, the helical

magnetic ripple, and drift radially at the velocity vd. Collisions scatter the particles

in and out of the well on the time scale of the inverse effective collision frequency,

∆t ∼ 1/νeff ∼ ǫh/ν. They therefore undergo a random walk with step size ∆r = vd∆t,

and the diffusion coefficient (2) results from multiplying the estimate ∆r2/∆t by the

fraction of locally trapped particles ǫ
1/2
h (taking ǫeff ∼ ǫh). In stellarators that have been

optimised for low neoclassical transport, the trapped particles have reduced radial drift

velocities, and the parameter ǫeff in Eq. (2) is substantially smaller than the fraction

of trapped particles, see Fig. 3.

If the collisionality is so low that the step size ∆r becomes comparable to the radial

scale length, the transport is no longer radially local [30]. This is a qualitative difference

to the tokamak, where the neoclassical random-walk step size is always limited from

above by the banana width, so that, as long as the latter is thinner than the gradient

length scale, the transport is always local in nature.

The diffusion coefficient (2) is much larger for the ions than for the electrons and

would therefore violate ambipolarity. An inward-pointing radial electric field therefore

arises and serves to confine the ions and reduce their transport to the electron level

(whilst increasing the electron transport somewhat). The way this happens is that

the electric field gives rise to a poloidal E × B drift that prevents the locally trapped
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Figure 3: Neoclassical confinement quality parameter ǫeff vs minor radius in various

stellarators: TJ-II, LHD (R0 = 3.60 m configuration), W7-X (standard configuration),

NCSX and HSX.
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ion orbits from drifting all the way to the wall. Instead, the radial excursion of the

bounce-averaged ion orbits becomes of order ∆r ∼ vd/ΩE , where ΩE ∼ Er/rB is the

frequency of the poloidal drift. In the absence of collisions, these orbits are thus confined

(if ∆r < r), but will undergo a random walk with the step size ∆r when collisions

are present and scatter the particles in and out of the local trapping regions. The

effective collision frequency for such scattering depends quadratically on the distance

∆ξ (in terms of pitch angle) to the trapping boundary in velocity space, νeff ∼ ν/∆ξ2.

Multiplying νeff∆r2 by the fraction of participating particles (∼ ∆ξ) gives the diffusion

coefficient estimate

Di ∼
ν

∆ξ

(

vd
ΩE

)2

,

which diverges as ∆ξ → 0, indicating that the most important role is played by particles

close to the trapping boundary. The width of this boundary layer is limited from below

by the requirement νeff <∼ΩE , which implies ∆ξ>∼ (ν/ΩE)1/2 and results in the diffusion

coefficient

Di ∼
ν1/2v2

d

Ω
3/2
E

in what is, accordingly, called the
√
ν-regime.

When a shallowly trapped ion orbit is convected poloidally by the E×B drift into a

region of lower magnetic mirror ratio, it will undergo collisionless detrapping, and when

it is convected back into the region with higher mirror ratio, it will again ultimately

become trapped. The collisional scattering of ions with such orbits results in a random

walk with a diffusion coefficient proportional to the collision frequency, so that the
√
ν-regime metamorphoses into a ν-regime at low collisionality.

This situation, with a negative radial electric field, the electrons in the 1/ν-regime

(2) and the ions in the
√
ν-regime (or ν-regime) is typical but does not always apply.

The ambipolarity equation (electron flux = ion flux) determining the radial electric

field is highly nonlinear and generally has three roots for the electric field. The “ion

root” corresponds to the scenario just described, one root is always unstable, and the

“electron root”, with Er > 0, is typically realised when the electrons are subject to

strong and localised heating. Finally, it should be mentioned that there are also other

collisionality regimes, and that the different regimes are not always well separated from

each other. In practice, therefore, it is usually necessary to calculate the neoclassical
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transport numerically [29]. Figure 4 shows the typical result of a such calculation, with

the different regimes indicated by straight lines.
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Figure 4: The so-called “mono-energetic” diffusion coefficient (see Ref. [29] for details)

vs collisionality, ν∗ = νR/ιv, where ν is the mono-energetic pitch-angle-scattering fre-

quency, R the major radius and v the speed of the particles, in the standard configuration

of W7-X (bold) and a tokamak (dashed) with similar aspect ratio (r/R = 0.255/5.527)

and an elongation of 1.5. The asymptotic regimes are indicated by dotted straight lines.

In the order of increasing collisionality: the
√
ν-regime, the 1/ν-regime, the plateau

regime and the Pfirsch-Schlüter regime. At very low collisionality (below the range

shown) the transport again becomes proportional to ν. The diffusivity has been nor-

malised to the plateau value in a circular tokamak, and the radial electric field has been

chosen as Er/vB = 3 · 10−5, where B is the magnetic field strength.

4.2 Plasma rotation

All of this is very different from axisymmetric devices, where the neoclassical transport

is usually small and intrinsically ambipolar in lowest order. The physics of plasma rota-

tion is therefore qualitatively different in tokamaks and stellarators. An axisymmetric

plasma is essentially free to rotate as it pleases. The angular momentum is a conserved

quantity, just like mass and energy, and can only change because it is transported radi-

ally. The rotation profile is determined by this transport and by the sources (NBI) and
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sinks (friction against neutral atoms) of angular momentum, and the relaxation toward

a steady-state rotation profile occurs on the confinement time scale. The toroidal ro-

tation velocity frequently reaches a considerable fraction of the ion thermal speed, vT i,

even in the absence of deliberate momentum sources.

In stellarators, however, it follows immediately from the drift-kinetic equation that

such fast rotation is generally impossible [31]. In fact, this conclusion is reached al-

ready in zeroth order of the gyroradius expansion and is therefore independent of any

turbulent fluctuations, regardless of their nature, as long as they are small. Moreover,

plasma rotation turns out to be impeded even in quasisymmetric stellarators [32, 33].

Proceeding to the next order in ρ∗ = ρi/L, where ρi is the ion gyroradius and L

the macroscopic length, one may ask what governs plasma rotation comparable to the

diamagnetic velocity V ∼ ρ∗vT i. Again, the situation is very different in stellarators and

in tokamaks. In stellarators, the rotation is set by he requirement that the transport

should be ambipolar. Because the turbulent transport is automatically ambipolar in

the gyrokinetic approximation [34], regardless of the magnetic geometry and of whether

the transport is electrostatic or electromagnetic, it is the neoclassical transport that

determines the radial electric field on length scales exceeding the gyroradius [35]. Zonal

flows are still possible, but have qualitatively different characteristics from those in

tokamaks [36, 37]. In tokamaks, the neoclassical transport is automatically ambipolar,

so one must proceed yet one order higher in the ρ∗-expansion, where the rotation is

set by neoclassical and turbulent momentum transport. An exception occurs if the

axisymmetry is broken by error fields. The neoclassical transport then becomes non-

ambipolar and sets the rotation – a phenomenon somewhat misleadingly referred to as

neoclassical toroidal viscosity.

4.3 Quasisymmetric and quasi-isodynamic stellarators

Nearly all the differences between stellarators and tokamaks concerning neoclassical

transport disappear in one important limit, namely, when the stellarator is exactly

quasi-axisymmetric [38] or quasi-helically symmetric [39, 40]. There are a number of

equivalent mathematical definitions of these concepts, e.g.,

• B(ψ, θ, ϕ) = |B| should be expressible as a function of ψ and a single helicity

angle, mθ − nϕ, where m and n are integers, and (θ, ϕ) are Boozer or Hamada
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angles;

• [(B ×∇ψ) · ∇B]/(B · ∇B) should depend only on ψ;

• B · ∇B should be a function only of ψ and B;

• B should be a periodic function of the arc length on each flux surface, B(ψ, l +

L(ψ)) = B(ψ, l).

Each of these statements is equivalent to all the others if the rotational transform is

irrational and the flow is small, V ∼ ρ∗vT i, and they all then imply that the usual drift

kinetic equation is isomorphic to that in a tokamak [41]. The neoclassical transport

properties are therefore similar to lowest order in ρ∗. Thus, in the exactly quasisymmet-

ric limit, there are no regimes of 1/ν- or
√
ν-transport, and the neoclassical transport is

intrinsically ambipolar. The transport coefficients are numerically different from those

in a tokamak – the bootstrap current can for instance be negative – but they do not

need to be calculated anew; there is a simple recipe for converting them between ax-

isymmetric and quasisymmetric configurations [41, 43]. However, it is not possible to

achieve exact quasisymmetry [42], and a small violation of the symmetry can some-

times lead to greatly enhanced transport. For instance, all stellarator designs have a

clear 1/ν-regime, even those that have been optimised to be quasisymmetric, but the

coefficient in front of this scaling can be made to be much smaller than in a classical

stellarator [29].

Unlike quasi-axisymmetry and quasi-helical symmetry, it is not possible to achieve

quasi-poloidal symmetry to any particularly high degree of approximation, at least

not in the vicinity of the magnetic axis, where the pressure gradient vanishes in the

expression

κ =
µ0∇p
B2

+
∇⊥B

B
,

implying that the magnetic field strength increases in the direction of the curvature

vector κ and therefore cannot be independent of the poloidal angle θ.

Whilst quasisymmetry makes a stellarator as similar as possible to a tokamak, in

some sense, it is not a necessary condition for achieving good neoclassical confinement.

Mathematically, what is required is that the parallel adiabatic invariant,

J =

∫

mv‖dl,
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should be (approximately) constant on flux surfaces for all trapped orbits, where the

integral is taken along the field between two consecutive bounce points. Differentiation

of J at constant energy and magnetic moment gives the bounce-averaged drift

ψ̇ =
1

Zeτb

∂J

∂α
, (3)

α̇ = − 1

Zeτb

∂J

∂ψ
, (4)

where τb is the bounce time, Ze the charge, the magnetic field has been written as

B = ∇ψ × ∇α, and an overbar denotes the bounce average. Here ψ measures the

toroidal flux and α = θ− ιϕ labels the different field lines on each flux surface. A con-

figuration with vanishing bounce-averaged drift, ∂J/∂α = 0, is called omnigenous [44],

and if the contours of constant magnetic field strength are poloidally, but not toroidally,

closed one speaks of quasi-isodynamic configurations [45, 46]. W7-X is the first stellara-

tor to approach quasi-isodynamicity (close to the axis at high beta) but substantially

more quasi-isodynamic designs have been found in recent years [47], although exact

quasi-isodynamicity is impossible to achieve [48]. Whereas the neoclassical transport

coefficients generally have to be calculated numerically in most stellarators, the exactly

omnigenous or quasi-isodynamic limit is amenable to analytical treatment [49].

The bootstrap current is positive in quasi-axisymmetric stellarators, negative in

quasi-helically symmetric ones, and is close to zero in quasi-isodynamic devices [29, 50,

51]. The latter have the additional property that the Pfirsch-Schlüter current closes

within each period of the configuration [47]. This property follows from the fact that

the streamlines of the current are tangential to the level curves of maximum magnetic

field strength, and therefore close poloidally. Quasi-isodynamic stellarators therefore

have small Shafranov shift.

4.4 Particle transport

When stellarators are optimised for low neoclassical transport the goal is, of course, to

bring it down to a level comparable to (or below) that expected from the turbulence.

Because of the strong temperature scaling in the 1/ν-regime, neoclassical transport

tends to dominate in the centre of the plasma, and sometimes in almost the entire

plasma volume [52]. But even if the magnitude of the neoclassical transport has been
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reduced to an acceptable level, it may nevertheless cause problems concerning particle

confinement.

The neoclassical particle flux of each species a is of the form

〈Γa · ∇r〉 = −na
∑

b

[

Dab
1

(

d lnnb
dr

+
eb
Tb

dφ

dr

)

+Dab
2

d lnTb
dr

]

, (5)

where r is an arbitrary flux-surface label and the sum is taken over all the species b

present in the plasma. The terms with b 6= a are due to the friction along B between

the different species and are in stellarators negligible in comparison with the b = a

term at low collisionality. In contrast to tokamaks, the radial electric field, Er =

−dφ/dr, enters as a thermodynamic force. As already mentioned, Er is determined by

the requirement of ambipolarity and is negative under the usual ion-root conditions.

For heavy impurities, whose charge ea = Ze is large, the electric field thus tends

to cause impurity accumulation. This is a stronger effect than neoclassical impurity

accumulation in tokamaks, which is caused by the friction force between bulk ions and

impurities and leads to an inward flux of the latter at a rate proportional to the density

and temperature gradients of the former [53].

The second potential problem caused by neoclassical particle transport has to do

with the fact that, in all stellarator collisionality regimes, Dab
2 is positive, so that

the temperature gradient in Eq. (5) causes outward particle flux and thus tends to

create a hollow density profile [54]. Such profiles have been observed on LHD and may

necessitate central particle fuelling in a reactor.

It may be possible to solve both these problems by making the magnetic field

approximately quasi-isodynamic, so that the outward thermodiffusion and the radial

electric field are very small [55]. Very good collisionless particle-orbits confinement is

also necessary for confining fast ions. W7-X enjoys good fast-particle confinement only

at high beta and close to the magnetic axis.

5 Microinstabilities and turbulence

5.1 Analytical considerations

Although the neoclassical transport is much larger than in tokamaks, turbulence also

contributes significantly to the transport in stellarators, particularly in cooler parts of
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the plasma, where 1/ν-transport does not occur. The study of stellarator microinsta-

bilities is however still in its infancy, and there is not much in the way of analytical

theory in the literature. In a generic stellarator, one expects broadly the same microin-

stabilities to be present as in a tokamak, but their strength can be different, and the

freedom to design the magnetic field appropriately may make it possible to reduce their

growth rates [56].

To keep the discussion as simple as possible, we restrict our attention to collision-

less instabilities in the electrostatic approximation. (For a general background to the

mathematical apparatus in the tokamak context, see, e.g., Ref. [57]). We adopt the

ballooning representation [22], writing for each perturbation

φ(ψ, θ, ϕ) =
∞
∑

k=−∞

φ̃(ψ, θ − 2πk, ϕ), (6)

which automatically ensures periodicity in θ, whatever the choice of the function φ̃,

and we write

φ̃(ψ, θ, ϕ) = φ̂(ψ, θ, ϕ)eiS(ψ,α), (7)

where φ̂ varies slowly in all directions and S is constant along the magnetic field but

varies rapidly across it. The functions φ̂(ψ, θ, ϕ) and eiS(ψ,α) = eiS(ψ,θ−ιϕ) need not be

periodic in θ but are supposed to be 2π-periodic in ϕ, so that φ(ψ, θ, ϕ) also acquires

this periodicity. The wave vector is k⊥ = kψ∇ψ + kα∇α, where kψ = ∂S/∂ψ and

kα = ∂S/∂α.

The gyrokinetic equation for the nonadiabatic part of the distribution function of

each species, ga = fa1 + (eaφ/Ta)fa0, now becomes

iv‖∇‖ĝa + (ω − ωda)ĝa =
eaφ̂

Ta
J0(k⊥v⊥/Ωa)

(

ω − ωT∗a

)

fa0,

where ωda = k⊥ ·vda denotes the drift frequency and ωT∗a = ω∗a[1 + ηa(x
2 − 3/2)], with

ω∗a = (Takα/naea)dna/dψ, ηa = d lnTa/d lnna and x2 = mav
2/2Ta. The system is

closed by the quasineutrality condition

∑

a

nae
2
a

Ta
φ̂ =

∑

a

ea

∫

ĝaJ0d
3v. (8)

In the usual drift-wave ordering,

k‖vT i ≪ ω ≪ k‖vTe, (9)
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k⊥ρe ≪ k⊥ρi ∼ O(1),

it is straightforward to solve the gyrokinetic equation for ions and trapped electrons,

respectively,

ĝi =
ω − ωT∗i
ω − ωdi

eJ0φ̂

Ti
fi0, (10)

ĝtr
e = −ω − ωT∗e

ω − ωde

eφ̂

Te
fe0, (11)

where an overbar again denotes the bounce average. For circulating electrons the non-

adiabatic response is a factor ω/k‖vTe smaller than ĝtr
e and will be neglected.

The purely curvature-driven ion-temperature-gradient (ITG) mode results from

making these approximations and, additionally, neglecting the non-adiabatic electron

response altogether, i.e., setting ge = 0. The dispersion relation obtained from Eqs. (8)

and (10) is then identical to that in a tokamak with the same local drift frequency ωdi,

and has been treated, e.g., in Ref. [58]. Because of the locality assumption, k‖vT i ≪ ω,

there is no difference between a tokamak and a stellarator with the same local radius

of curvature of the magnetic field. However, the validity of the approximation is more

restricted in stellarators, because the connection length along B between regions with

different physical conditions tends to be shorter. In the tokamak, this length is of order

qR = R/ι whereas in stellarators it is rather the toroidal extent of one period of the

device. One therefore expects ITG modes to be less curvature-driven and more slab-like

– an expectation that is indeed borne out in numerical simulations.

Collisionless trapped-electron modes (TEMs) are obtained by retaining the response

(11), in particular the resonance in the denominator. The simplest description is ob-

tained by treating the trapped-particle fraction as small and neglecting the magnetic

drift frequency by taking ωdi/ω ≪ 1 [59]. Thus, in leading order inserting

ĝi =

(

1 − ωT∗i
ω

)

eJ0φ̂

Ti
fi0,

and ge = 0 in Eq. (8) gives the drift-wave dispersion relation

ω

ω∗e
=

Γ0 + ηi(Γ1 − Γ0)

τ(1 − Γ0) + 1
, (12)

where τ = Te/Ti, Γn = In(b)e
−b, In is a modified Bessel function and b = k2

⊥Ti/(miΩ
2
i ).

The asymptotic forms are [60]

ω ≃ ω∗e, b≪ 1,
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ω

ω∗e
≃ 1 − ηi/2

(1 + τ)
√

2πb
, b≫ 1,

and one finds numerically from Eq. (12) that ω/ω∗e is always positive if 0 < ηi < 1.64,

so that the drift wave then propagates in the electron diamagnetic direction for all wave

numbers. Its stability is determined in the next order of our expansion in the number

of trapped particles, where the denominator in the electron response (11) provides the

possibility of a resonant drive. But this resonance, ω = ωde, only exists if ω∗eωde > 0

(assuming ηi < 1.64), so that the electrons precess in the same direction that drift

waves propagate. For modes with kψ = 0, or in omnigeneous configurations, where

according to Eq. (4)

ωde = kαvde · ∇α =
kα
eτb

∂J

∂ψ
,

this requires

ω∗eωde = −k
2
αTe
e2τb

∂J

∂ψ
> 0.

In maximum-J configurations, i.e., where ∂J/∂ψ < 0, one does thus not expect col-

lisionless TEMs, at least not in their usual guise. (Any instability would have to be

driven by a resonance with the ions or subthermal electrons with v‖ ∼ ω/k‖ ≪ vTe.)

Physically, the requirement ∂J/∂ψ < 0 means that the bounce-averaged curvature is

favourable, which according to Eq. (4) leads to reversal of the precessional drift. In

tokamaks, this requirement is met by trapped particles whose bounce points lie suf-

ficiently far into the inboard side of the torus that the particles spend most of their

time in the good-curvature region. But deeply trapped particles have positive ∂J/∂ψ

in a typical tokamak, reflecting the circumstance that the bad-curvature region coin-

cides with the trapping region. This need not be the case in stellarators, and, indeed,

perfectly quasi-isodynamic stellarators are maximum-J devices. As we have just seen,

the simplest form of the TEM is not present in such configurations, and in Ref. [61]

it is shown from basic energy considerations that any particle species with k‖vTa ≫ ω

and 0 < ηa < 2/3 exerts a stabilising influence on arbitrary electrostatic, collisionless

instabilities. Physically, the point is that, because J is an adiabatic invariant, if an

instability with ωτb ≪ 1 results in the radial movement ∆ψ of a particle, then

∆J =
∂J

∂ψ
∆ψ +

∂J

∂E
∆E = 0,

where E is the kinetic energy and ∂J/∂E > 0. The particle must therefore gain an
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amount of energy equal to

∆E = − ∂J/∂ψ

∂J/∂E
∆ψ,

at the expense of the instability in question. The condition ∂J/∂ψ < 0 thus promotes

stability if dn/dψ < 0.

We are thus led to the conclusion that density-gradient-driven TEMs should be

stable within the usual ordering (9), whose limitations should however not be forgotten.

Since ω ∼ ω∗e ∼ k⊥ρivT i/Ln, where Ln is the length scale of the radial density profile,

we have
ω

k‖vTe
∼ k⊥ρi
k‖Ln

√

me

mi
.

If the density gradient or the parallel wavelength is sufficiently large, this quantity will

not be much smaller than unity and the ordering (9) will be violated.

5.2 Gyrokinetic simulations

Only relatively recently have gyrokinetic codes for stellarator geometry become avail-

able [62, 63, 64, 65, 66], and not enough information has accumulated from these to

say anything definite about the turbulence properties of various configurations. Most

of the codes operate in flux-tube geometry or have only very recently become able

to treat an entire flux surface, and others only solve the linear gyrokinetic equation.

Nearly all the simulations have been made in the electrostatic approximation, most of

them with adiabatic electrons, and none have (to our knowledge) included collisions.

Nevertheless, from those simulations that have been done, some important differences

between stellarators and tokamaks appear to be emerging.

The EUTERPE code [62] has in recent months performed the first global and elec-

tromagnetic, but linear, gyrokinetic simulations of a stellarator, and preliminary results

are shown in Fig. 5. These simulations treat both the ions and the electrons kinetically,

with the correct mass ratio, and the geometry is that of the high-mirror configuration

of Wendelstein 7-X, with constant density, electron temperature Te = 8.2 keV, and an

ion temperature profile given by

ln
Ti(s)

Ti(s0)
= − κT

1 − sech2 s0
w

[

w tanh

(

s− s0
w

)

− (s− s0)sech
2 s0
w

]

where s ∈ [0, 1] is the normalised toroidal flux, κT = 3.5, s0 = 0.5, w = 0.3, and

Ti(s0) = 8.2 keV. The code solves an initial-value problem, and Fig. 5 shows the
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growth rate of the resulting fastest growing linear mode in the system. As in tokamaks,

the growth rate is seen to drop with increasing beta, but unlike the situation in a

typical tokamak this trend continues all the way to 〈β〉 = 5% and is not interrupted

by the growth of kinetic ballooning modes, presumably because the device has been

optimised for good ideal MHD stability and the ideal MHD ballooning threshold is

〈β〉 ≃ 5%. As 〈β〉 increases, the equilibrium changes because of plasma diamagnetism in

the direction of becoming more quasi-isodynamic, which would have a stabilising effect

on microinstability even if the electromagnetic terms were ignored in the gyrokinetic

equation.
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Figure 5: Growth rate of the fastest-growing mode vs 〈β〉 in Wendelstein 7-X, calculated

by the global, electromagnetic, gyrokinetic code EUTERPE. Unlike the typical situation

in a tokamak, there is no sign of rapidly growing kinetic ballooning modes at high 〈β〉.

The GENE and GS2 codes were both originally developed to operate in tokamak

flux-tube geometry, but have later been extended to be able to treat stellarator flux

tubes [64, 66]. GS2 found the linear threshold for ITG modes with adiabatic electrons

in NSCX to be a/LT i ≃ 1−2, where a is the minor radius and LT i the ion temperature

gradient scale length, and electrostatic simulations with kinetic electrons also found
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density-gradient-driven TEMs, in agreement with earlier simulations using the FULL

code [63].

The stellarator version of GENE has now been developed a step further so that

it can make simulations of an entire flux surface (or, more commonly, of one period

thereof) but still makes a local approximation in the radial direction. The Japanese

GKV code has undergone a similar extension [67], which appears necessary since, in

stellarators, different flux tubes (of finite length) on the same flux surface can have

different microinstability properties. The most unstable flux tube in a stellarator is

usually the one that crosses the outboard midplane in one of the up-down symmetric

poloidal cross sections, in W7-X and NCSX in the bean-shaped cross section. From the

full-surface version of GENE, it appears that the flux surface as a whole is somewhat

more stable than the most unstable flux tube: the latter may support a locally growing

mode even though the flux surface as a whole is linearly stable. On the other hand,

from nonlinear simulations of ITG modes with adiabatic electrons it appears that tur-

bulence may still be present in such situations. That is, stellarator-specific “subcritical”

turbulence may be present if the gradients are chosen in the interval where some flux

tubes are locally unstable but the flux surface as a whole is not.

The mode structure of microinstabilities depends on the magnetic-field geometry

and is thus different in tokamaks and stellarators [68, 69, 70]. In both types of de-

vices, the curvature is usually most unfavourable on the outboard side of the device,

and the turbulent fluctuations are observed to peak there, see Fig. 6. However, the

local magnetic shear tends to be much larger in stellarators and serves to localise the

fluctuations; in fluid simulations of W7-X a sudden drop in fluctuation amplitude is

observed where a magnetic field line crosses the “helical edge” [71]. In the context of

a GENE simulation with adiabatic electrons, this effect is further illustrated by Fig. 7,

which shows level curves of root-mean-squared potential fluctuations as functions of the

poloidal and toroidal Boozer angles. These structures are elongated along the magnetic

field, but substantially less so than in a typical tokamak. Instead of extending all the

way around the torus, each one of them is limited to about one period of the device. In

the figure, level curves of |∇α|2 are also shown, and it appears that the turbulence shuns

regions where this quantity is large, i.e., where the flux tubes are strongly compressed

in the direction of ∇α.
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Figure 6: Root-mean-squared electrostatic potential on a W7-X flux surface in GENE

simulations of ITGs with adiabatic electrons in W7-X. The turbulence peaks on the

outboard side, where the magnetic-field curvature is unfavourable, and the fluctuations

extend for about one period along the magnetic field.

Figure 7: The same quantity as in Fig. 6 as function of the toroidal and poloidal Boozer

angles. Also plotted (in black) are level curves of |∇α|2, from which appears that the

turbulence does not penetrate into regions where this quantity is large.
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Most stellarators have negative (or very small) global magnetic shear according to

the tokamak definition, q′ = −ι′/ι2 < 0, which tends to be stabilising for curvature-

driven modes. That this is the case also in stellarators was observed in nonlinear fluid

turbulence simulations by Kleiber and Scott [71]. Antonsen et al. [72] suggested a

physical mechanism based on the poloidal tilting of turbulent eddies induced by the

magnetic shear, and Fig. 8 shows evidence of this phenomenon. As seen in the figure,

the eddies are horizontal at α = 0, which corresponds to the outboard midplane in the

bean-shaped cross section and “fan out” from this region in the manner envisaged by

Antonsen et al. Similar observations have been made in simulations of tokamaks with

negative magnetic shear [73].
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Figure 8: Snapshot of potential fluctuations in GENE simulations with adiabatic elec-

trons of W7-X, as function of the local radial coordinate x = r − r0 and Clebsch-angle

y = α = θ − ιϕ.

In summary, it is too early to say whether gyrokinetic turbulence is more benign

in stellarators than in tokamaks. It appears that stellarators should benefit from their

negative global magnetic shear, their large local shear (which assumes both positive

and negative values, and peaks where the flux-surface is strongly bent), and the fact

that trapping regions do not necessarily overlap with regions of bad curvature. On the
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other hand, they suffer from a larger area-to-volume ratio and from zonal-flow damping

through electron collisions because of non-ambipolar neoclassical transport.

6 Edge and divertor physics

The differences between tokamak and stellarator divertor physics have recently been

reviewed by Feng et al. [74], and will therefore only be outlined briefly here. Only

two stellarators, W7-AS and LHD, have operated with proper divertors, and these

are geometrically very different from each other. LHD has a helical divertor with a

partially stochastic magnetic field, whereas W7-AS used the naturally occurring chain

of magnetic islands beyond the last closed flux surface to divert the escaping plasma to

divertor plates, see Fig. 9. W7-X is also being built with an island divertor based on

this concept, which makes the connection length to the target an order of magnitude

longer than in similarly shaped tokamaks. In the latter, the magnetic field is diverted

by a poloidal field of comparable magnitude to that produced by the plasma current,

Bθ/B ∼ 0.1. In contrast, an island divertor uses a small but resonant radial magnetic

field, Br/B ∼ 10−3, to produce the chain of magnetic islands used for the divertor.

In LHD, the connection length varies widely from field line to field line, but is also

very long for most of the stochastic edge. This circumstance makes the perpendicular

transport much more important than in the tokamak scrape-off-layer. Whereas in

tokamaks most of the heat flux across the scrape-off-layer is carried to the targets by

parallel heat conduction, especially in the electron channel, the perpendicular transport

can in stellarators either be more or less important than the parallel one.

The greater importance of cross-field transport could be beneficial for impurity

retention in the divertor [74]. Coulomb collisions between heavy impurity ions (Z) and

bulk plasma ions (i) lead to two forces on the former: a friction force proportional to the

velocity difference Vi‖−VZ‖, which tends to flush the impurities toward the target, and

a thermal force proportional to the bulk-ion temperature gradient ∇‖Ti, which drives

the impurities toward the hot core plasma. In tokamaks, the latter force tends to be

stronger, but in stellarators numerical modelling suggests that a friction-dominated

regime is accessible in LHD as well as in W7-AS and W7-X [75].

Another obvious difference between the poloidal divertor in a tokamak and the
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Figure 9: The island divertor of W7-AS.

island divertor in a stellarator is that the latter have many more X-points, which, in

contrast to the tokamak, are not axisymmetric but are wound around the torus. Regions

of strong plasma radiation tend to be located in the vicinity of such points, perhaps

because the wider flux-surface separation reduces the cross-field heat flux, and the

larger number of X-points thus help to spread the radiation more evenly over the first

wall. On the other hand, the very fact that stellarators are non-axisymmetric of course

makes the radiation pattern, as well as the divertor heat flux, toroidally non-uniform.

Numerical simulations [76] suggest that about 3/4 of the power in W7-AS could be

radiated away by carbon impurities outside the separatrix, and even higher radiative

fractions were recorded experimentally [11]. This is in stark contrast to tokamaks,

where such strong radiative losses are associated with MARFE formation resulting in

highly localised deposition, and where much of the radiation originates from inside the

separatrix.

The edge magnetic structure in helical devices is determined by the rotational trans-

form in the edge region. Because of the low shear in W7-X, a resonant field of order

δB/B ∼ 10−4 − 10−3 can generate divertor-relevant islands. Any additional perturba-

tion field of the same order, either from error fields or from plasma currents, can modify

the island structure significantly. In addition, the radial location of the resonance on

which the divertor island resides is sensitive to the net toroidal plasma current, and
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thus to the bootstrap current. Thus, error-field compensation and plasma current con-

trol are essential for the island divertor, whereas a divertor with larger shear and a

stronger, richer intrinsic field spectrum like the LHD divertor should be more robust

against variations in the plasma current.

A final difference between tokamak and stellarator divertors is that the geometry

of the plasma flow is more complex in the latter, making it more likely that counter-

streaming plasma flows come close to each other, whereas in the tokamak the flows to

the inner and outer targets are well separated. Because of the momentum exchange

between such counterstreaming flows, the (thermal + kinetic) pressure need not be

constant along the field. This is believed to explain why no high-recycling regime is

observed in LHD or W7-AS. In W7-X, however, the islands are larger and the plasma

flows around them sufficiently well separated that a high-recycling regime is predicted

[74]. In contrast, one does not expect that an increase in size would sufficiently sep-

arate counter-streaming flows in a helical divertor of the LHD type. Because of the

large magnetic shear, multiple island chains exist and overlap to form a stochastic zone.

Overlapping islands with different mode numbers have different poloidal phases, and

counter-streaming flows on neighbouring island chains approach each other radially at

poloidal positions where they are oppositely phased.

7 Conclusions

The stellarator has both advantages and disadvantages compared with the tokamak.

Intrinsic steady state and freedom from disruptions are great advantages, technical

complexity a disadvantage. Macroscopic stability is better than in the tokamak, neo-

classical confinement is worse, whereas turbulence and edge plasma performance are

probably comparable and perhaps better. But above all, stellarator plasma physics is

less well understood, and the number of possible configurations is much larger than for

tokamaks. Boozer has estimated the number of degrees of freedom to be about 4 for

axisymmetric systems and ∼ 50 for non-axisymmetric ones [77]. So far, this freedom

has mainly been used to improve MHD stability and neoclassical confinement. If the

remaining freedom can be exploited to reduce turbulence and optimise edge behaviour,

stellarators would become even more attractive for fusion power production.
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