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Chapter 1

Nuclear fusion and magnetic
confinement

1.1 Nuclear fusion and plasma physics

The fusion of light nuclei into heavier nuclei is an extremely powerful energy source, the energy
per elementary process being in the range of several MeV, whereas the energy released in
chemical reactions, like combustion of fossil fuels, is about six orders of magnitude smaller. In
the Sun, a reaction chain leads to the fusion of four hydrogen nuclei into a nucleus of 4

2He,
delivering an energy of 26.7 MeV. On Earth, a commercial exploitation of nuclear fusion for
energy production in a power plant requires a higher reaction rate than for the proton-proton
chains occurring in the Sun. For this reason, it is envisaged to employ the reaction

D + T → 4
2He + n+ 17.6 MeV

in which deuterium and tritium combine to an α-particle and a neutron with an energy of 3.5
and 14.1 MeV respectively. Since the Coulomb barrier between the positively-charged deuterium
and tritium ions opposes the fusion process, the reactants need a sufficient energy in order for
the reaction to take place. The most promising approach to overcome this problem is to heat the
deuterium-tritium mixture to a temperature1 of the order of tens of keV. At these temperatures,
deuterium and tritium are in the plasma state, where the gas is almost completely ionized. As
charged particles react to electric and magnetic fields, a possibility to confine a burning plasma
on Earth (in the Sun, the plasma is held together by gravitational attraction) is to employ
a properly shaped magnetic field. The principles of magnetic confinement, and in particular
of a tokamak reactor, are briefly described in the next section. The optimum temperature
for the plasma of a fusion reactor is determined by the condition that in a burning plasma
the heating through the α-particles generated in the fusion processes2 exceeds the power lost
through transport and radiation, Pα > Ploss with Ploss = Ptransp + Prad. The power density
generated through fusion reactions is the product of the energy of the α particle released in
a single reaction (Eα = 3.5 MeV) times the number of reaction per unit volume and time
RDT = nDnT 〈σ(u)u〉, where u is the relative velocity of the colliding particles and σ is the

1The temperature is here always treated as an energy, i. e. multiplied by the Boltzmann constant kB =
0.86× 10−4 eV/K. An energy of 10 keV thus corresponds to a temperature of more than 100 million Kelvin.

2The neutrons do not interact with the plasma and hence do not heat it. In a reactor, their energy should be
absorbed by the walls of the vessel enclosing the plasma and the resulting heat exploited for the generation of
electricity.

1



cross section for the reaction under consideration. The power lost through radiation (mainly
bremsstrahlung) is proportional to the density squared and to the square root of temperature,
Ploss = cBn

2
e

√
T , where ne is the electron density. A theoretical model giving a quantitative

prediction of the energy losses due to transport is still missing, although much progress has been
achieved in this field particularly in the past two decades. It is therefore customary to write
Ptransp = 3neT/τE , introducing the energy confinement time τE which is determined empirically
on the basis of the results of present experiments. The condition for a burning plasma becomes
then

neτE >
3T

〈σ(u)u〉Eα/4− cB
√
T
≡ f(T ), (1.1)

where the fact that the maximum fusion rate is obtained for nD = nT = ne/2 has been employed.
The function f(T ) on the right-hand side of this inequality, called the Lawson criterion [1], has a
minimum in the region between 20 and 30 keV3. Exploiting the fact that 〈σu〉 in the temperature
range 10-20 keV is approximately a quadratic function of T and neglecting the radiation losses
against the transport losses, the previous inequality can be cast in the form of a threshold
condition for the so-called “fusion triple product”, neTτE > 3× 1021 m−3 s keV, cf. Fig. 1a.

Fig. 1. The fusion triple product as a function of temperature, including the results achieved on different fusion

facilities (a) and the parameter range typical of classical plasmas (b).

In present-day (not ignited) machines, the heat losses must be compensated by supplying
energy from the outside, i. e. by means of external heating. Thus, a useful figure to characterize
the performance of a fusion reactor is the ratio between the power produced by fusion reactions
and the injected auxiliary power,

Q ≡ Pα

Paux
, (1.2)

which is called the fusion gain factor. An ignited plasma, in which no external heating is
required, corresponds to the limit Q → ∞. The main physics goal of the ITER machine [3],
presently under construction, is to demonstrate that nuclear fusion can be exploited as an
energy source by reaching a gain factor Q = 10.

The densities and temperatures resulting from the Lawson criterion determine not only
the values envisaged for a fusion reactor but also define the theoretical framework needed for

3It has to be noted, however, that τE itself is a function of temperature. It turns out that the the optimum
temperature for ignition is likely to be somewhat lower[2].
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a proper description of a burning plasma. As a matter of fact, plasmas occurring both in
laboratory and in nature are often classified with reference to these two quantities. An example
is shown in Fig. 1b. Over a wide range of values, including those typical of nuclear fusion,
ionized gases represent a non-relativistic, classical, weakly-coupled system. This means that
(a) the mean kinetic energy of the electrons is much smaller than their rest energy4, (b) the
temperature of the plasma is much larger than its Fermi energy (or in other words, the average
distance between particles is much larger than their de Broglie length) and (c) the potential
energy associated to the Coulomb interaction is much smaller than the mean kinetic energy.
Such plasmas are called ideal and their theoretical treatment is based on the equations of
classical physics.

1.2 Magnetic confinement

The confinement of a hot plasma can be achieved by means of an appropriately shaped magnetic
field. The reason is clearly that the plasma is composed by charged particles, that are accelerated
by the Lorentz force5 mv̇ = Zev ×B/c. This force acts only in the direction perpendicular to
the magnetic field. If B is homogeneous, the motion of a charged particle due to the Lorentz
force is the superposition of a free streaming with constant velocity in the direction parallel
to the magnetic field and a circular motion in the plane perpendicular to it, characterized by
the gyrofrequency (or cyclotron frequency) Ω = ZeB/mc and by the gyroradius (or Larmor
radius) ρ = v⊥/Ω. A magnetic field thus offers a direct way to confine charged particles. To
avoid end losses, one can imagine to bend the magnetic field lines to a ring (torus). This simple
design, with a set of planar coils arranged in a ring generating a purely toroidal magnetic field
(Fig. 2a), is unfortunately not sufficient to ensure confinement.

Plasma
current

Fig. 2. (a) Schematic diagram showing the magnetic field created by a system of coils arrayed in the toroidal

direction and the resulting particle motion leading to the expulsion of the plasma. (b) A tokamak: a toroidal cur-

rent induced in the plasma generates a poloidal field. The field lines become helical and make plasma confinement

possible.

Since in a toroidal configuration the magnetic field is non-uniform, particle drifts in the
vertical direction arise, which are in opposite direction for ions and electrons, as explained in
Chapt. 3. The electric field resulting from charge separation leads eventually to the expulsion

4A relativistic description is sometimes needed in order to properly account for suprathermal electrons, in
particular those developing in heating processes and runaway events.

5Unless explicitly stated, c.g.s. units are used in this work. The electron charge is −e, i. e. Z = −1.
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of the plasma in the direction E × B perpendicular to both the vertical electric field and the
toroidal magnetic field. To avoid this problem, two main solutions have been proposed since
the early days of magnetic-confinement fusion. The first concept is based on the generation an
additional (“poloidal”) magnetic field component through a current flowing toroidally in the
plasma. This current is generated by a toroidal electric field induced by a change of magnetic
flux through the torus, the plasma acting as the secondary winding of a transformer. The
superposition of the poloidal field with the toroidal field generated by the coils gives rise to
helical field lines (Fig. 2b), describing nested toroidal surfaces called magnetic surfaces or flux
surfaces. This configuration can be shown to compensate for the vertical drifts mentioned
above, so that the plasma particles are to a good approximation forced to remain on the
magnetic surfaces. This ensures a good radial confinement of the hot plasma, that can be kept
in the desired shape and at a suitable distance from the material walls of the vessel. Such a
confinement device is called a tokamak (Russian acronym for “toroidal chamber and magnetic
coils”). The best performances of a magnetically-confined plasma (with a fusion gain Q just
below unity) have been obtained employing this approach, that has been chosen also for the
ITER reactor mentioned above. This concept, however, has the obvious disadvantage that it
is intrinsically non-stationary, since a time-varying magnetic flux in the transformer cannot be
provided for an indefinite time6. Moreover, the current flowing in the plasma is a source of free
energy for possible instabilities that can endanger the confinement. The alternative concept,
i. e. the so-called stellarator, in which the additional magnetic field needed for confinement is
provided directly by non-planar coils, is free from these limitations. However, it turns out that
the quality of the confinement in a stellarator is less good than in a tokamak of comparable
size.

1.3 Contribution of this thesis

The problems encountered in the effort of increasing the performance of a reactor define the
major current research fields in the physics of fusion plasmas. First, the achievable parameters
like pressure and current are limited by large-scale instabilities, that must be avoided or at
least controlled in order to operate the machine. A second area of intense activity is the
explanation of the observed energy confinement time, i. e. of the physical mechanisms (mainly
related to turbulence developing as a consequence of small-scale instabilities) responsible for
the transport of particles and heat in a tokamak. Third, heating schemes to bring the plasma
to the required temperature must be devised. This involves the study of electromagnetic waves
excited by external antennas that deliver their energy to the plasma as a consequence of resonant
processes, and the investigation of heating by injection of high-energy ions, releasing their energy
through collisions with the plasma particles. A fourth important area, particularly in view of
the construction of the first prototype of a fusion reactor, is the interaction of the burning
plasma with the surrounding material walls.

The work presented here can be roughly inserted in the frame of the first big area described
above. Specifically, recent progresses in the theoretical understanding of the so-called tearing
instability in a tokamak are discussed. This is a large-scale instability arising in regions of

6In a tokamak, the plasma current is actually not entirely induced by the transformer. An additional current,
roughly proportional to the pressure gradient, is provided for instance by the so-called bootstrap effect explained
in Sec. 3.1. Moreover, a further part of the current can be driven by external means, like the injection of
fast particles or electromagnetic waves, cf. next section and Sec. 5.1. The maximization of the non-inductive
current fraction (“advanced scenarios”) with the goal of approaching steady-state conditions is one of the most
challenging research areas for tokamak operations.
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the plasma prone to magnetic reconnection and causing the appearance of magnetic islands, as
depicted in Fig. 3 (for a close-up view of a magnetic island see Fig. 2 of the next chapter). In
the reconnected region, the magnetic field acquires a radial component, with a correspondent
degradation of the radial confinement of energy and particles with respect to the case with
nested flux surfaces described in the previous section. The consequent pressure loss is also
shown in Fig. 3. A fully-developed tearing instability in ITER is predicted to have a significant
impact on the target Q = 10 [4]. Moreover, the loss of confinement can also lead to a quench of
the plasma current and to the disruption of the plasma discharge, with possible damage of the
reactor [5, 6]. Finally, tearing modes can lead to the expulsion of fast ions, like those generated
in fusion reactions or through plasma heating [7][8][9], with consequent reduction of the energy
content of the plasma and erosion of the surrounding material walls. For these reasons, the
conditions under which magnetic islands develop and how they can be actively controlled or
avoided are intensively investigated. This will be the subject of the next chapters, as outlined in
the remainder of this section with particular reference to the journal articles, listed in Appendix
C, that constitute the body of this thesis.

Fig. 3. Vertical (poloidal) cross section of a tokamak plasma in the presence of a magnetic island at a radial

position r = rs (left) and the corresponding pressure profile, showing the loss in the core due to degraded radial

confinement (pressure flattening inside the island, right).

The basic theory of the tearing mode is described in Chapt. 2 employing a simplified planar
geometry and a single-fluid approach to describe the plasma behaviour. Although some of the
conditions for the applicability of this model can be violated under realistic circumstances, it
provides nevertheless the simplest framework to understand several fundamental features of
the reconnection process (a discussion of this approach and of its extensions within a linear
approximation is presented in Appendix A).

In a toroidal configuration, additional currents flowing in the region where reconnection
takes place affect significantly the dynamics of a magnetic island, as explained in Chapt. 3.
In particular, experimental results and theoretical modelling show that the main drive for the
tearing mode in present and future tokamaks originates from the perturbation of the pressure-
gradient-driven bootstrap current due to the flattening of the pressure inside the island (see
again Fig. 3). The generation mechanism of the bootstrap current relies critically on the de-
tails of the particle orbits. The first set of original results presented in this thesis (Sec. 3.2)
concerns the calculation of the bootstrap drive for the case of a magnetic island whose size
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is of comparable to the orbit width of the plasma ions, as is typically the case in the early
phase of tearing modes. These “small” islands are observed to be more stable against tearing,
so that the initial perturbation must often exceed a given threshold to become unstable. In
this phase, the approximation of small orbit width (with respect to the island width) usually
employed in analytic theories becomes invalid and a numerical approach to solve the relevant
(drift) kinetic equation becomes necessary. Refs. [10, 11] report on kinetic simulations of the ion
component of the bootstrap current, for which finite-orbit effects are larger (electrons having
a much smaller orbit width). It is shown that the assumption of vanishing bootstrap current
is not justified inside a small island. This is explained in terms of an overlap between particle
orbits and the radial extension of the magnetic island, which leads to an “averaged” response
of those particles that drift partly inside and partly outside it. These finite-orbit effects are
found to compete with the reduction of the bootstrap drive due to finite transport across the
island in increasing the stability of the plasma against tearing, and they are even stronger [11]
in the case of (almost) flat core density, which is predicted to occur in ITER. Moreover, the
reduction of the bootstrap drive resulting from orbit overlap yields a possible explanation [10]
for the observed scaling of the plasma pressure at mode onset with the normalized Larmor ra-
dius found experimentally. The numerical approach employed to obtain these results has been
extended to the case of rotating islands by including an analytic model for the electrostatic
potential connected with the time-dependent magnetic perturbation. More refined simulations
determining the total bootstrap current (including the electrons in a successive simulation step)
in small rotating islands, presented in Ref. [12], have confirmed the enhanced stability against
the bootstrap drive for islands rotating in the so-called electron diamagnetic direction, which
is likely to be the rotation direction of small islands. In this case, the reduction of the drive is
seen to involve the entire bootstrap current and not just the ion component.

A particularly interesting issue connected with the rotation of magnetic islands with respect
to the surrounding plasma is the ion polarization current generated by the time-dependent
electric field seen by the particles (Sec. 3.3). Due to its strong increase at small island widths
predicted by the analytic theory, the contribution of the polarization current has been invoked
as an alternative explanation for the increased stability of small islands (although its effect
– whether stabilizing or destabilizing – is not known with certainty). Three aspects of this
problem have been addressed in Ref. [13]. First of all, the transition to the enhanced “high-
collisionality” regime of the polarization current is found to take place at unrealistically high
collision frequencies. Moreover, finite-orbit effects like those described for the bootstrap drive
are found to reduce the value of the polarization current at small islands with respect to analytic
theory. Finally, for small (but still realistic) rotation frequencies the polarization current is
found to be superseded by a contribution related to a resonance between the island rotation
and the precession of part of the particle population around the torus, this contribution to the
island dynamics being of different sign with respect to the polarization current. These resonance
effects have been investigated in detail in Ref. [14] and an analytic explanation of the numerical
results has been given in Ref. [15]. All the effects described above point towards a reduction of
the role of the polarization current for the dynamics of the tearing mode. More generally, the
results presented in Chapt. 3 demonstrate that a theory of magnetic islands in a tokamak must
be based on a kinetic modelling, and that toroidicity effects need to be included.

These results were among the reasons for adopting an approach based on a (gyro) kinetic
description of the plasma in tokamak geometry also to address another important topic for the
theory of magnetic islands, namely the mutual interaction between small and large-scale insta-
bilities. This involves a fairly complex physics, since both small and large structures contribute
to the transport level (the resulting profiles back-reacting on the further growth of the insta-

6



bilities) and since energy can be transferred among different scales through nonlinear coupling.
Refs. [16, 17] explore the influence of a prescribed island on microturbulence. The simulations
reported in Refs. [16] show the first numerical evidence of the nonlinear excitation in toroidal ge-
ometry of linearly stable large-scale electrostatic modes of the same size as the island and of the
action of the related E×B sheared flows in “ripping apart” the turbulent eddies, thus strongly
reducing the transport across the island (except for the region around the so-called X-points).
In other words, the transport in the island region is found to be spatially inhomogeneous and
previous modelling based on the assumption of constant transport coefficients should be revised.
Employing a more refined model for the dynamics of the electrons, as reported in Refs. [17],
has evidenced that the large-scale modes can appear as time-dependent “vortex modes”, whose
contribution to radial transport can compete with the transport due to the streaming along the
field lines. Because of the sophistication of such a kinetic approach, a closure of the loop to
include the feedback of small-scale modes on the evolution of the tearing mode (which involves
much longer time scales than those typical of turbulence) is still computationally prohibitive,
and our results can be seen as a first step towards this goal, complementing other studies that
retain the feedback of small on large scales but simplify the description of turbulence and/or
geometry. Nevertheless, first results showing the contribution of electromagnetic turbulence
to the growth of a magnetic island have been obtained under conditions typical of a mid-size
tokamak through the numerical solution of the gyrofluid equations [17]. These findings are
discussed in Chapt. 4.

The issue of an active control of tearing modes in a tokamak reactor is finally addressed in
Chapt. 5. The most promising strategy developed so far for the control of large scale instabilities
is the localized injection of electromagnetic waves resonating with the cyclotron motion of the
electrons. In this frequency range, the propagation and absorption of a wave beam can be
described through asymptotic techniques. Paraxial beam tracing is an elegant method for the
solution of the wave equation in the short-wavelength limit including diffraction effects, which
are otherwise neglected in applications based on standard geometric optics. The underlying
physics and its numerical implementation in one of the codes that are routinely employed
for the calculation of plasma heating and current drive in tokamaks is presented in Ref. [18].
An antenna for active mode control/stabilization in ITER is being developed. Theory-based
criteria on the amount of driven current and its localization required to achieve tearing-mode
suppression have been developed. A recent account of the predictions of the system performance
is presented in Ref. [19], where it is shown that the ITER antenna should not only achieve full
tearing-mode suppression but also help control other large-scale instabilities and allow a synergy
with the other antennas which will be installed for electron heating.

A summary of the thesis is given in Chapt. 6.
Although a constant effort is made to put each result in an appropriate context, it is stressed

that this thesis does not have the goal of presenting a comprehensive review of the present
knowledge on the stability of a tearing mode in a tokamak. It is rather intended to give the
reader the necessary background to understand the contribution of the author to this research
field, together with a summary of the main results.
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Chapter 2

The tearing mode

2.1 Magnetohydrodynamics and magnetic reconnection

Magnetic reconnection is the process by which magnetic-field lines embedded in a plasma break
and rearrange in a new (topologically different) configuration. An example is shown in Fig. 1,
where two field lines are “pushed” towards each other. During the reconnection process they
loose their original identity so that finally a new magnetic configuration emerges. This appar-
ently simple process is responsible for some of the most spectacular observations which can be
made in the Solar system. The occurrence of reconnection in both tokamak and astrophysical
plasmas is discussed at the end of this section. Here, we first present the basic theoretical
framework allowing a joint treatment of the dynamics of both the plasma and the magnetic
field.

Fig. 1. Diagram showing the reconnection of two magnetic-field lines pointing in opposite directions and the

consequent change of the field topology.

A plasma can be considered as a gas of charged particles reacting to electromagnetic fields.
The simplest description of a magnetized plasma is the magnetohydrodynamic theory (MHD),
according to which the motion of the plasma fluid is determined by the balance of pressure
gradient and Lorentz force,

ρ

(
∂

∂t
+ u · ∇

)
u = −∇p+

J×B
c

. (2.1)

8



Here, ρ is the mass density and u the fluid velocity. The last term, that would be absent in
a gas of neutral particles, introduces a coupling with the electromagnetic fields. In this term,
Ampère’s law is employed to determine J as a function of B:

J =
c

4π
∇×B, (2.2)

implying that the current is solenoidal and ∇ · J = 0 expresses quasi-neutrality (for non-
relativistic fluid velocities, ∂ρ/∂t in the current continuity equation and the displacement cur-
rent in Ampère’s law can be neglected). The magnetic field itself is the solution of the induction
equation,

∂B
∂t

= −c∇×E. (2.3)

A fundamental point for the description of magnetic reconnection is the equation used to de-
termine the electric field E appearing in Eq. (2.3). As a first approximation, the inertia of the
electrons and their friction with the ions can be neglected. The electric field is then determined
by the so-called Ohm’s law of ideal MHD,

E +
u×B
c

= 0, (2.4)

which can be interpreted as a statement that in a system co-moving with a fluid element (in
which the magnetic field vanishes) every electric field is compensated by the fast motion of the
electrons1. The MHD theory obtained from substituting Eq. (2.4) into Eq. (2.3) is called ideal
MHD, as in this model a current can flow without the need for an electric field to generate
it. In this context, an important point to be stressed is that no electric field parallel to the
magnetic field can exist in ideal MHD. One of the most impressive consequences of this model
is the so-called frozen-in flux. As it was shown by Alfvén [23], Eqs. (2.3,2.4) imply that in
a perfectly conducting fluid, magnetic field lines move with the medium (and vice versa), as
if they were material lines frozen into it. This theorem helps explain the behaviour of the
plasma under the action of the Lorentz force. Employing Eqs.(2.2,B.7) we can write J×B/c =
[(B · ∇)B− (∇B) ·B]/4π. Taking e. g. a small magnetic perturbation, perpendicular to B and
periodic along B (as to ensure ∇ ·B = 0), and linearizing, it is easy to see that the magnetic
field oscillates as a violin string under the effect of tension, due to the first term, sometimes
called “magnetic tension force”. The “inertia” of the magnetic field line is provided by the
fluid mass oscillating with it according to Alfvén’s theorem. Similarly, a magnetic perturbation
parallel to B and periodic in the direction perpendicular to B leads to a compression of the
magnetic field (and of the fluid moving with it) described by the second term in the Lorentz
force. This implies that whichever mechanism leads to tearing and magnetic reconnection, it
has to act against a tension trying to “straighten” the bent magnetic field.

Actually, Alfvén’s theorem also implies that the annihilation of magnetic field lines is for-
bidden, since it would imply the annihilation of the plasma associated with them. In other
words, no magnetic reconnection can take place in the framework of ideal MHD. However,

1A more rigorous justification [20, 21] of Eq. (2.4) relies on the analysis of the various terms of the electron
momentum balance [22]

mene

(
∂

∂t
+ ue · ∇

)
ue = −∇pe − ene

(
E +

v ×B

c

)
−meneνei (ue − ui) . (2.5)

For fluid velocities of the order of the thermal velocity, under the assumptions mentioned above, together with
that of a strongly magnetized plasma (small gyroradius), Eq.(2.4) is recovered. The validity of these assumptions
is discussed below.
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magnetic-flux conservation can be violated, i. e. field lines are allowed to shift with respect
to the plasma, if the assumption leading to Eq. (2.4), i. e. that the electrons are free to move
along the field lines to instantaneously short out every electric field in that direction, is relaxed.
This is the case if we consider, for instance, the collisions of the electrons with the ions, i. e. if
we retain the last term in Eq. (2.5). This leads to a non-zero resistivity η = 4πνei/ω

2
pe, where

ω2
pe = 4πnee

2/me is the electron plasma frequency. Ohm’s law acquires the form

E +
u×B
c

= ηJ, (2.6)

showing that a parallel electric field can now arise. Using Eq. (2.2) it is easy to show that the
induction law ∂B/∂t = −c∇ × E then becomes (η is supposed to be constant for the sake of
simplicity)

∂B
∂t

= ∇× (u×B) +
c2η

4π
∇2B. (2.7)

A diffusive term, absent in the ideal limit η → 0, appears in Eq.(2.7) and describes the “defrost-
ing” of the magnetic field, i. e. it allows for a relative motion of the magnetic field with respect
to the plasma. Different time scales are associated with the two terms on the right-hand side
of this equation. For a fusion plasma with Te = 1 keV and ne = 1014 cm−3 one obtains (for a
scale length of the order of L = 50 cm) a resistive time τR for the diffusion of the magnetic field

τR ≡
(
c2η

4πL2

)−1

' 6.4 s, (2.8)

whereas the typical ideal-MHD time (Alfvén time) can be estimated as

τA ≡
(
vA

L

)−1

' 1.1 · 10−7 s, (2.9)

where in the Alfvén velocity2 vA ≡ B/
√

4πρ a field B = 2 T (2 · 104 gauss) has been taken
and the mass density ρ = nimi has been calculated assuming a hydrogen plasma. The ratio
S ≡ τR/τA is called the magnetic Reynolds number or Lundquist number. In many applications,
S � 1 (for the parameters under consideration, S ' 5.6 · 107), and the use of ideal MHD is in
general well justified.

There are however situations for which the first term on the right-hand side of Eq. (2.7)
vanishes, and the finite resistivity of the plasma, no matter how small, becomes important. An
example which is particularly instructive for the results presented in this work is a spatially
periodic small displacement ξ ∝ exp(ik·x) (with u = ∂ξ/∂t) of the plasma from its equilibrium.
In the frame of ideal MHD, i. e. neglecting the diffusive term, linearizing Eq. (2.7) yields for
the corresponding magnetic perturbation B̃ = ∇× (ξ×B0). Using Eq.(B.9) it is easy to show
that a component of B̃ perpendicular to B0 is forbidden where k · B0 = 0. This situation is
illustrated on the left side of Fig. 2. If the resistive term in Eq.(2.7) is taken into account, such
a component is admitted and the topology of the magnetic field lines is modified around the
“resonant” surface k ·B0 = 0. Magnetic surfaces are disrupted and reconnected forming a chain
of “magnetic islands” (Fig. 2, right side).

2The Alfvén velocity is the typical speed associated to the fluid motion under the action of the Lorentz
force, as can be readily estimated from Eq. (2.1), which using Eq. (2.2) to express the current density gives
ρu2/L ∼ B2/4πL.

10



x = 0 x = 0

Fig. 2. Effect of a periodic plasma displacement in ideal and resistive MHD. The condition k ·B0 = 0 is supposed

to be satisfied at x = 0.

The perturbation associated with the formation of magnetic islands is called the tearing
mode. From an energetic point of view, it can be shown by taking the scalar product of
Eq. (2.7) with B/4π that magnetic reconnection leads to dissipation of magnetic-field energy
B2/8π through a term ηJ2 (absent in ideal MHD) and is therefore energetically favorable.
However, since the tearing configuration requires bending of the field lines, i. e. to work against
the field-line tension, a source of free energy must be available. If this is the case, the tearing
mode becomes unstable.

As a final remark, it is important to stress that violation of the frozen-flux theorem does
not necessarily imply that a finite resistivity must be assumed. Other terms in Eq. (2.5) can
also lead to a breakdown of the ideal MHD law E + u × B/c = 0 and hence to magnetic
reconnection. These terms can be more important than resistivity if the collision frequency is
low, as is the case in a high-temperature plasma. Generally speaking, the physical mechanism
determining the width of the “reconnection layer” where E‖ does not vanish has a significant
impact on the time and space scales involved in the reconnection process. In particular, at low
collisionalities the response of the plasma is dominated by the electrons alone and the width
of the reconnection layer falls below the ion gyroradius, making a separate treatment of ions
and electrons mandatory. This instructive analysis is presented in Appendix A, in a linear
approximation, for the planar sheet-pinch model discussed in Sec. 2.2. In the remainder of
this chapter, for the purpose of illustrating the basic features of magnetic reconnection we will
stick to the single-fluid MHD model outlined above. The consequences of different collisionality
regimes for the tearing mode in a tokamak are briefly addressed at the end of Sec. 2.3.

To conclude this section, we present some examples of magnetic reconnection, taken from
the two main research areas of plasma physics, namely astrophysics and nuclear fusion.

2.1.1 Reconnection in astrophysics

Magnetic reconnection is involved in several processed observed in stellar and interplanetary
plasmas, playing a crucial role solar flares, in the magnetotail and the magnetosphere-solar wind
interface [24, 25, 26]. The reconnection event is forced by the flow of the plasma as depicted in
Figs. 1 and 3. Opposite field lines are crushed so closely together and the region between them
becomes so narrow that the current density increases to a point where the resistive term on
the right-hand side of Eq. (2.6) is no longer negligible, even for high Lundquist number S � 1.
Once reconnection has occurred, the magnetic pressure and the tension of the new field lines
cause the field to unfold and the plasma to accelerate out of the ends of the current layer. In
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the process, the magnetic energy is lowered and the kinetic energy of the plasma increases, and
can be visible in the form of particle acceleration or radiation.

The reference model to estimate the reconnection rate under these conditions is due to Sweet
[27] and Parker [28, 29]. They recognized that the reconnection rate is determined not only by
the strength of the non-ideal term in the diffusion equation for the magnetic field lines, but also
by the rate at which the plasma conveyed into the layer can leave it at its ends, cf. Fig. 3a.

Fig. 3. Sweet-Parker (a) and Petschek (b) reconnection models. The parameter δ in the left figure corresponds

to the tearing-layer width denoted by ∆ in the text. The plasma is advected into the reconnection layer in the

vertical direction and leaves it in the horizontal direction.

From Eqs. (2.7,2.16) the annihilated flux per unit length ψ at a singular layer of width ∆
can be estimated as

∂ψ

∂t
= −c

2η

4π
B

∆
.

The velocity of the ejection of the plasma from the singular layer is determined by the increase of
magnetic energy in the layer and is hence of the order of the Alfvén speed vA. The reconnection
velocity vR, defined through the equation ∂ψ/∂t = −vRB, can be related to the outflow velocity
under the hypothesis of incompressibility as vR/∆ = vA/L, where L is the length of the layer.
Equating both expressions for ∂ψ/∂t we can determine the reconnection velocity as

v2
R =

c2η

4π
vA

L
⇒ vR = vA/

√
S ⇒ ∆ = L/

√
S.

Substituting in these formulas the values typical e. g. of solar flares, it is found that the
reconnection rate predicted by this model is too slow by several orders of magnitude. Petschek
[30] showed that a much larger reconnection rate is achieved if it is supposed that the merging
of the filed lines occurs in smaller regions of the reconnection layer characterized by a length
L′ � L (Fig. 3b). The remaining length of the layer is occupied by slow shocks that accelerate
the plasma up to vA almost instantaneously [31]. As a result, the reconnection rate is given
by the previous formulas but with L replaced L′ and is hence much higher3. According to the
recent developments of astrophysical reconnection studies, two-fluid (Hall) effects and turbulent
enhancement of the plasma resistivity are the most likely candidates to explain the observed
energy release times in space plasmas.

3Petschek’s model is highly controversial. For an account of the status of the discussion see for instance
Ref. [26].
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2.1.2 Reconnection in a tokamak

The tokamak configuration implies periodicity of every physical quantity with respect to the
poloidal angle θ and the toroidal angle ϕ. For a magnetic perturbation varying as exp[i(mθ −
nϕ)], the condition k ·B0 = 0 becomes

m

r
Bp −

n

R
Bt = 0 (2.10)

(Bp and Bt are the poloidal and toroidal components of B0, respectively) since ∇θ = 1/r
and ∇ϕ = 1/R. The safety factor q(r), describing the number of toroidal turns necessary to
complete a poloidal turn of the torus while following a field line, can be written approximately as
q = rBt/RBp and varies in a typical discharge between q <∼ 1 in the centre and q >∼ 3 at the edge
of the plasma. This implies that the previous resonance condition can be writtenm/n−q(r) = 0,
i. e. the mode can occur on “rational” surfaces. In particular, since long-wavelength modes are
more likely unstable with respect to tearing (see also Sec. 2.2.1), magnetic islands can arise on
rational surfaces with low mode numbers (m,n).

In a tokamak, the observed mode numbers are typically (1, 1), (3, 2) and (2, 1). The devel-
opment of a magnetic island on the surface corresponding to q(r) = 1 exhibits some peculiar
features, as reconnection is in this case usually forced by an internal kink of the plasma column,
pushing the hot plasma core inside the q = 1 surface as illustrated in Fig. 4.

Fig. 4. Schematic evolution of the sawtooth instability. The plasma inside q = 1 (a) is shifted by a kink and

forces reconnection (b), the resulting magnetic island grows (c) and eventually expels the initial hotter core taking

its place (d).

According to the model proposed by Kadomtsev [32], after the reconnection event, a fast
heat transfer from inside to outside the q = 1 surface occurs, the temperature profile inside this
surface flattens and the current profile becomes uniform. This removes the cause of the kink and
temperature and current start to peak again. The temporal trace of the temperature (with a
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slow rise and a sudden drop) gives this process the name of sawtooth instability. Like for the case
of astrophysical plasmas, experimental observations usually report a much faster reconnection
rate than predicted by the Kadomtsev model and two-fluid effects are often indicated as a
possible explanation of this fact [33].

On the other rational surfaces mentioned above, (3, 2) and (2, 1), reconnection is rather a
“spontaneous” event, triggered by another instability at the edge or in the centre of the plasma
(as the sawtooth crash described above [34, 35]). Also tearing modes with no clear trigger have
been observed. The growth of (3, 2) or (2, 1) tearing modes leads to the confinement degradation
mentioned at the end of Sec. 1.3. They are the subject of this thesis. The results presented
in the following chapters do not focus on the initial reconnection trigger, but rather on the
different contributions to the dynamics of a tearing mode once it has been excited.

2.2 Linear MHD theory

A simple planar configuration, called the sheet pinch, is particularly relevant for the study of
the tearing mode. The equilibrium magnetic field B0 has a strong homogeneous component B0z

in the z direction and a smaller y component B0y(x), varying in the x direction and changing
sign across the position x = 0. The z direction is supposed to represent a symmetry direction of
the system, so that no physical quantity depends on z. This form of the magnetic field implies
by Ampère’s law a current J0z(x) = (c/4π)∂B0y/∂x. For this reason, this configuration is also
called a “current slab”. A typical current profile and the corresponding magnetic field profile
are shown in Fig. 5.

The projection of the magnetic field onto the xy plane reflects the situation described in
Sec. 2.1 (Fig. 2). A periodic displacement in the y direction (k = kyŷ) satisfies then the
condition k · B0 = 0 at x = 0, since B0y(x = 0) = 0. We want to investigate under which
conditions the sheet pinch is unstable against the tearing mode.

-4 -2 0 2 4
-1

-0.5

0

0.5

1

x/a

[a
.u

.]

Fig. 5. Sketch of the equilibrium magnetic field B0y(x) ∝ tanh(x/a) as a function of x/a and of the corresponding

current density J0z(x) ∝ ∂B0y/∂x in a sheet pinch.

The velocity field u and the magnetic field B are conveniently written in terms of the
electrostatic potential φ and of the vector potential Az (the y component of the vector potential
A0y = xB0 representing the homogeneous guiding field B0ẑ),

u = c
ẑ×∇φ
B

B = ∇Az × ẑ.
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Taking the z component of the curl of Eq. (2.1) one obtains

ρ

(
∂

∂t
+ u · ∇

)
∇2
⊥φ =

(
B0

c

)2

∇‖Jz (2.11)

(∇‖ = (B/B) · ∇ being the parallel gradient operator and ∇2
⊥ = ∇2 − ∇2

‖), whereas from
Eq. (2.7)

∂Az

∂t
= −c∇‖φ− cηJz. (2.12)

In both equations,
Jz = − c

4π
∇2
⊥Az, (2.13)

see Eq. (2.2).
The problem is solved by means of a boundary-layer approach. Following the seminal paper

by Furth et al. [36], we distinguish two regions in the plasmas. In a narrow (in the sense
specified below) layer around x = 0, non-ideal effects are important and E‖ can be non-zero.
The width ∆ of this layer is determined as a result of the analysis. The outer domain is defined
as the region where ideal MHD is supposed to hold. The solutions obtained in the two regions
must be matched at their boundary. We address first the outer region, where non-ideal effects
are negligible.

2.2.1 The outer layer

In a linear analysis, the unknown quantities φ and Az are written as the sum of a zero-order
term (denoted by a subscript 0) and a perturbed part (denoted by a tilde). We investigate the
response of the plasma to a perturbation Ãz(x, y, t) = Ãz(x) exp[ikyy−γt], a similar expression
holding for φ̃. Here, we will suppose that the equilibrium fluid velocity u0 vanishes. Corre-
spondingly, φ0 = 0. Turning to Eq.(2.11), it is noted that the response time 1/γ characterizing
the variation of φ̃ on the left-hand side is much slower (since it involves the resistive time scale4)
than the Alfvén time characterizing the ideal response to the bending of the field lines described
by the right-hand side. Eq. (2.11) reduces then to the linearized form of ∇‖Jz = 0, namely

B0y
∂J̃z

∂y
+ B̃x

∂J0z

∂x
= 0. (2.14)

Eq. (2.14) relates the wavelength of the current perturbation to the gradient of the equilibrium
current. A stronger bending of the field lines is possible in the presence of a stronger peaking
of the current profile. Employing Eq.(2.13) with ∇2

⊥ = ∂2/∂x2− k2
y we can recast the previous

equation in the form

B0y

(
∂2

∂x2
− k2

y

)
Ãz −

∂2B0y

∂x2
Ãz = 0.

Assuming B0y(x) ∝ tanh(x/a) (see Fig. 5), the previous equation can be integrated on both
sides of the layer |x| < ∆ → 0 with the boundary condition Az(x) → 0 for |x| → ∞. The result
is

Ãz(x) = Ce−ky |x|
[
1 +

1
kya

tanh
∣∣∣∣xa
∣∣∣∣
]
. (2.15)

4The calculation of the growth rate requires the analysis of the inner layer and is presented in the next section.
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Taking the limit for x → 0 of this solutions shows that, although Ãz is continuous across the
inner layer, its derivative is not. This discontinuity can be easily understood. Within the layer,
Ẽz 6= 0 generates a current perturbation. This current produces a discontinuity in B̃y which
can be estimated by integrating the z component of Ampère’s equation to give

B̃y

∣∣∣∆
−∆

=
4π
c

∆ J̃z(x = 0). (2.16)

The same discontinuity holds for the derivative of the vector potential, since B̃y = −∂Ãz/∂x.
As shown in the next section, a crucial role in the stability of the tearing mode is played by the
parameter ∆′ defined as the jump in the logarithmic derivative of Ãz across the layer:

∆′ = lim
∆→0

[
1

Ãz(0)
∂Ãz

∂x

]∆

−∆

. (2.17)

In particular, we will see that the sign of ∆′ determines the stability of the mode, positive sign
corresponding to instability. Explicit evaluation of ∆′ using Eq. (2.15) yields

a∆′ = 2

(
1
aky

− aky

)
.

As expected, the tearing mode is found to be unstable for long wavelengths (small ky) or steep
current profiles (small a). Fig. 6 shows the perturbed vector potential Ãz corresponding to a
stable (kya = 2) or unstable (kya = 1/2) situation.
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Fig. 6. Perturbed vector potential in a stable (blue) and unstable (red) tearing mode.

Finally, it is observed that Eq. (2.16) can be written also as

∆′Ãz(0) = −4π
c

∆ J̃z(x = 0). (2.18)

Since the left-hand side is entirely determined by the solution in the outer region, the total
current flowing in the central layer (proportional to ∆ J̃z(x = 0)) is also independent of the
detailed processes occurring there. This means that an increase of the linear layer width implies
a decrease of the current density J̃z(x = 0).

2.2.2 The inner layer

The extension ∆ of the central layer for a given magnetic equilibrium is determined by how
quick the electrons can respond to the electric field induced by the growing tearing mode. In the
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MHD model considered here, collisions are supposed frequent enough to hinder the electrons
accelerated by the electric field from diffusing along the field lines. There is consequently a
periodic variation of the electron density in the y direction and an electrostatic potential arises,
which at a distance ∆ from x = 0 leads to a complete short-circuit of the induced field and hence
to Ẽ‖ = 0 [37]. For lower collision frequencies, the mechanism responsible for the violation of the
ideal MHD constraint Ẽ‖ = 0 can be different, as mentioned above and explained in Appendix
A. To evaluate the time scales related to the reconnection process, the first step is to determine
the length an electron needs to travel along the field lines to move by a wavelength in the
y direction. For ∆ � a (which will be shown below to be the case) we can approximate
B0y(x) ' B′

0yx = B0x/Ls where the shear length Ls = B0/B
′
0y has been introduced. To the

lowest order, the parallel-gradient operator is then ∇‖ ' (x/Ls)∂/∂y. Substituting ∂/∂y ∼ ky

an expression for the parallel wave vector is obtained,

k‖ = kyx/Ls. (2.19)

In other words, for a given wavelength, the connection length along a field line decreases as we
move away from the singular layer x = 0.

In the narrow region around x = 0 one can take ∂2/∂x2 � k2
y. Eqs. (2.11,2.12) become

ρ
d
dt
∂2φ̃

∂x2
=
B2

0

c2
∇‖J̃z

∂Ãz

∂t
= −c∇‖φ̃− cηJ̃z

Linearizing, eliminating φ̃ from the previous equations (estimating ∇2
⊥φ̃ ≈ −φ̃/x2) and using

Ampère’s law (2.13) for J̃z we obtain

γÃz =

(
k2

yx
4

γτ2
A

+
L2

s

τR

)
∂2Ãz

∂x2
,

with the definitions of resistive and Alfvénic time as in Eqs. (2.8,2.9) with L → Ls. The
integration of this equation across the central layer can be simplified by observing that, as it
was shown in the analysis of the outer region, ∂Ãz/∂x is discontinuous across x = 0 but Ãz is
continuous and can be approximated by its central value (constant-ψ approximation [36])

∂Ã‖
∂x

∣∣∣∣∣
∆

−∆

=
γτR
L2

s

Ãz(0)
∫ ∆

−∆

dx

1 +
(
τRk2

y/γτ
2
AL

2
s

)
x4
. (2.20)

Matching this equation to the external solution implies that the jump in the first derivative
of Ãz on the left-hand side equals ∆′Ãz(0), see Eq. (2.17). The width ∆ of the inner layer is
determined as the region in which the function on the right-hand side significantly contributes
to the integral, i. e. ∆4 ≈ γτ2

AL
2
s/τRk

2
y. Physically, ∆ corresponds to the distance from x = 0 at

which the parallel electrostatic field (proportional to k‖) becomes strong enough to compensate
the inductive field, restoring Ẽ‖ = 0.

Extending the integral in Eq.(2.20) from −∞ to +∞ introduces just a small error and allows
us to write (omitting the factor

√
π/2 arising from integration) the growth rate as

γ5/4 =
∆′L2

s

τR

(
τRk

2
y

τ2
AL

2
s

)1/4

⇒ γ =
(
∆′)4/5

k2/5
y L6/5

s τ
−2/5
A τ

−3/5
R , (2.21)
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i. e., the growth of the tearing mode occurs at a rate which is intermediate between the fast
Alfvénic scale and the slow resistive scale. This expression shows that the sign of the stability
parameter ∆′ calculated in the outer region, Eq.(2.17), determines the sign of the growth rate,
i. e. the stability of the mode. The mode grows if the magnetic perturbation B̃y in the inner
layer correctly matches the magnetic perturbation in the outer region [38]. It is easy to check
that this is the case if ∆′ > 0, as the sign of B̃y in the outer region is related to that of ∂Ãz/∂x,
cf. Fig. 6.

2.3 Nonlinear theory

The linear theory is valid as long as the magnetic-field perturbations within the region of particle
acceleration are small, i. e. if the width W of the magnetic island is much smaller than the linear
layer width. When W >∼ ∆, the electron orbits are strongly altered by the magnetic topology
in the reconnected region, the electrons within the separatrix being constrained to move along
the island. Since the magnetic-island geometry plays a fundamental role in this context, we
introduce here the basic notation which will be used in the remainder of this work.

ξ Ω const.

-π

π

0 r

rs

W

Fig. 7. Sketch of a magnetic island showing the coordinates Ω and ξ.

With reference to Fig. 7, the angular coordinate along the island is denoted by ξ, so that in
one wavelength the X-points are located at ξ = ∓π and the O-point at ξ = 0. Anticipating the
usage of the next chapters, we write ξ = mθ − nϕ (cf. Sec. 2.1.2), while the x coordinate used
above is intended as the distance r−rs from the radial location rs at which the magnetic island
develops. The label Ω of the perturbed magnetic surfaces is easily found by adding the vector
potential Az = −B0x

2/2Ls of the equilibrium field B0y ≈ xB′
0y with the island perturbation

Ãz = ψ̃ cos ξ. Normalizing to −ψ̃ (assumed again to be constant in the island region [36]):

Ω =
B0

2ψ̃Ls

x2 − cos ξ. (2.22)

Since in the xy plane B ∝ ∇Ω× ẑ, by construction we have

b · ∇Ω = k‖
∂

∂ξ

∣∣∣∣
Ω

Ω = 0, (2.23)
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with k‖ defined in Eq.(2.19). From Eq.(2.22) follows immediately the full width of the magnetic

island W = 4
√
ψ̃Ls/B0.

The nonlinear theory of the tearing mode was developed first by Rutherford [38] for the
collisional case and extended to lower collisionalities by Drake and Lee [39]. The main result
is that the exponential growth of the linear theory is replaced by an algebraic growth. Here
we sketch the derivation given by Rutherford, which has been widely used in the subsequent
literature to extend his results to different contributions to the current perturbation, as discussed
in Chapts. 3 and 5.

As in the nonlinear regime the electrons are forced to move along the island field lines, it is
assumed that the perturbed current is a flux-surface quantity, i. e. Jz = Jz(Ω), cf. Eq.(2.23). In
other words, the inertia term, right-hand side of Eq.(2.11), is neglected altogether, as discussed
in Ref. [38]. This suggests to act on Eq. (2.12) with the flux-surface average operator

〈. . .〉Ω =
∮ dξ

2π
. . .√

Ω + cos ξ
(2.24)

that annihilates the parallel gradient operator, cf. Eqs. (2.19,2.22,2.23). The result is

1
c

∂ψ̃

∂t
〈cos ξ〉Ω = −ηJ‖〈1〉Ω. (2.25)

The contribution of the current perturbation to the dynamics of the mode can be linked to the
tearing-mode parameter ∆′ as in Eqs.(2.16-2.18). Multiplying Ampère’s law (2.13) by cos ξ and
integrating across the tearing layer taking into account Eq. (2.22) yields

∮ dξ
2π

∫ r+
s

r−s

dr
d2ψ̃

dr2
cos2 ξ = −4π

c
2
W

4
√

2

∫ ∞

−1
dΩ
∮ dξ

2π
J‖ cos ξ

√
Ω + cos ξ

,

where the factor 2 on the right-hand side accounts for both sides of the layer and the integration
over Ω is extended to ∞ assuming that this implies a small error as in the linear calculation.
The integral on the left-hand side yields ψ̃∆′/2, cf. Eq.(2.17). We can adopt the same procedure
in Eq. (2.25), i. e. multiply it by cos ξ, take the flux-surface average and integrate over Ω with
the result

I1
4π
ηc2

dW
dt

= ∆′,

where I1 =
√

2
∫

dΩ(〈cos ξ〉2Ω/〈1〉Ω) ' 0.82 and the relation between the island width W and the
vector-potential perturbation ψ̃ has been used. This equation is usually written in dimensionless
form as

τR
rs

dW
dt

= ∆′rs (2.26)

(with respect to Eq. (2.8), the numerical factor I1 has been included in the definition of the
resistive time). The Rutherford equation (2.26) shows that in the non-linear regime of the
tearing mode in a sheet pinch, the exponential growth of the linear phase is replaced by an
algebraic growth, as anticipated.

As a final remark, it is noted that the result dW/dt ∝ ∆′ remains valid also for the nonlinear
evolution of the tearing mode in the so-called semi-collisional regime [39], which is more realistic
in the case of present and future tokamak experiments. In a toroidal device, however, other
contributions to the current perturbation in the island region significantly change the picture
outlined above. This subject is discussed in the remaining chapters.
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Chapter 3

The tearing mode in a tokamak:
neoclassical effects

3.1 Neoclassical currents

As shown in the previous chapter, the evolution of a tearing mode depends crucially on the
current distribution in the region prone to tearing. In the theory presented so far, the current
perturbation associated with the tearing mode is driven by the electric field induced by the
growth of the magnetic field of the island. However, additional (non inductive) contributions to
the current could be present in the system. In a tokamak, a decisive role for the island dynamics
is played by the perturbation of those currents resulting from so-called neoclassical processes
[40, 41, 42]. These are a peculiarity of a toroidal configuration and arise as a consequence of
the particular orbits of the particles in the toroidal field and their scattering due to Coulomb
collisions1.

The neoclassical effects on the island evolution are the subject of the present chapter. Before
turning to the island-specific aspects, we give a short overview of the contributions that are
particular relevant for our investigations. First of all, the strength of a magnetic field generated
by a toroidal coil system (cf. Fig. 2a of Chapt. 1) varies with the distance R from the axis of
the tokamak as 1/R, as can be immediately verified taking the flux of Ampère’s law through
a circle of radius R. For this reason, a high-field side (at smaller R) and a low-field side (at
larger R) of the plasma can be distinguished. Particles following the helical field lines of a
tokamak (cf. Fig. 2b of Chapt. 1) move from the low to the high-field side, thus experiencing a
magnetic-mirror force F‖ = −µ∇‖B, where the magnetic moment µ = mv2

⊥/2B is an adiabatic
invariant of the system. From conservation of energy and magnetic moment it is immediate to
show that for particles with a parallel-to-perpendicular velocity ratio on the low-field side

v‖
v⊥

<∼

√
2r
R

(3.1)

(where r is the minor radius of the plasma) the mirror force is so strong that they do not reach
the high-field side, being trapped in the outer part of the torus. Particles which can complete
a poloidal orbit following the field lines are called passing. Due to the finite magnetic-drift

1The collisional transport in toroidal geometry is called neoclassical to distinguish it from its counterpart in
a homogeneous field (called classical transport).
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velocity mentioned in Chapt. 1, which can approximately be written as

vD =

(
mv2

⊥
2

+mv2
‖

)
B×∇B
ZeB3

, (3.2)

the particles do not stick to the field lines (or to the magnetic surfaces) but slightly drift with
respect to them. The typical orbit of a trapped particle is sketched in Fig. 1. When projected
onto a poloidal plane it exhibits a characteristic banana shape2.

Fig. 1. Schematic representation of the orbit of a trapped particle in a tokamak, showing its gyromotion (1),

the effect of the mirror force (2) and the typical banana shape of its poloidal projection (3), together with its

precession in the toroidal direction. If there are more (or faster) particles on the inner orbit than on the outer

orbit (see point ®), a banana current is generated, which provides the “seed” for the bootstrap current [Courtesy

EFDA-JET].

The presence of a population of trapped particles has several significant consequences, some
of which are relevant for the dynamics of the tearing mode. In particular, the trapped particles
are the seed of a part of the toroidal current, that adds to the Ohmic current produced by
the transformer. The generation of this current, called the bootstrap current [43], is illustrated
again in Fig. 1, where the orbits of two trapped particles drifting through the same point
(denoted as ®) with opposite sign of the parallel velocity are shown. In the presence of a
density (temperature) gradient directed towards the centre of the plasma, there will be more
(faster) particles on the inner orbit than on the outer orbit. The difference between the flows
related to the inner and outer orbits gives the so-called banana current [44] at the point under
consideration. This banana flow is transferred by collisions to the passing particles, which carry
the largest part of the (bootstrap) current. This picture is true for both electrons and ions
considered independently from each other. Due to the collisional friction with the much heavier
ions, the electrons are dragged in the ion direction. The total current is of course given by the
algebraic sum of the two flows and can be approximated as

jbs = 1.46
√

r

R0

c

Bp

dp
dr
. (3.3)

2Details on particle orbits in a toroidal device are reported in many textbooks and by Wesson [2]. Notice
that, for thermal particles, vd is a factor of the order ρ/R smaller than the thermal velocity. The E×B velocity
defined below, Eq. (3.4), is supposed in this chapter to be of the same order as vd.
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Assuming that the pressure profile flattens inside the island as a consequence of the fast stream-
ing of the particles along the perturbed field lines implies that the bootstrap current vanishes
inside the island. In a tokamak, where the safety factor q is usually increasing from the centre
to the edge, cf. Sec. 2.1.2, this bootstrap-current perturbation leads to a growth of the island
and is believed to be the main drive for the tearing mode in present and future tokamaks (see
Sec. 3.2). Due to the neoclassical origin of the drive, the mode is termed neoclassical tearing
mode (NTM).

A second effect connected with the presence of trapped particles discussed in this chapter
is the modification of their orbit in the presence of a time dependent radial electric field Er. If
the particles are confined by a magnetic field, the effect of an electric field on their motion is a
drift

vE = c
E×B
B2

, (3.4)

perpendicular to both E and B, as already noted in Chapt. 1. Notice that this drift, unlike the
drift due to the magnetic-field inhomogeneity, Eq. (3.2), is independent of the mass and of the
charge of the particles. Writing the velocity vp of a trapped ion in the poloidal direction as the
sum of the relevant projections of vD, vE and v‖b yields

vp = −vD cos θ − cEr

B
+
Bp

B
v‖,

where θ is the poloidal angle as in Sec. 2.1.2. Averaging over one bounce period and applying
the constraint 〈vp〉bounce = 0 for trapped particles gives

〈v‖〉bounce =
B

Bp
〈vD cos θ〉bounce + c

Er

Bp
. (3.5)

The first term is the toroidal precession due to the magnetic field inhomogeneity3, while the
second term describes the precession related to the radial electric field, which is of interest here.
Conservation of the canonical angular momentum in toroidal direction Pϕ = (Ze/c)RAϕ+mv‖R
due to axisymmetry (with RAϕ = −R0

∫
drBp(r); the contribution of the toroidal electric field

induced by the transformer is not considered here) gives after differentiation

vr =
dr
dt

=
mc

ZeBp

d
dt

[(
1 +

r

R0
cos θ

)
v‖

]
,

with R = R0 + r cos θ. Neglecting the term r/R0 � 1

〈vr〉bounce =
mc

ZeBp

d
dt
〈v‖〉bounce, (3.6)

where 〈v‖〉bounce is given by Eq.(3.5), we obtain the neoclassical radial polarization drift [45]. In
the presence of a magnetic island, a time-varying (nearly) radial electric field is associated with
the rotation of the mode with respect to the surrounding plasma and can lead to a (nearly) radial
polarization current (mostly due to the ions, which are much heavier than the electrons). The
role of the resulting parallel electron current, which flows to ensure quasi-neutrality, ∇ · J = 0,
is highly debated [46]. Some aspects of this problem are discussed in Sec. 3.3.

We conclude this section by noting that the most natural framework to treat effects related
to the different motion of the particles depending on their velocity is kinetic theory. In this

3More rigorously, this precessional motion should include a term due to the radial variation of the safety
factor, i. e. to magnetic shear.
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case, the information about the phase-space behaviour of each particle species α is contained
in the distribution function fα, that satisfies the kinetic (Boltzmann) equation

∂fα

∂t
+ v · ∂fα

∂r
+
Zαe

mα

(
E +

v ×B
c

)
· ∂fα

∂v
= C (fα) , (3.7)

where the term on the right-hand side is the collision operator that describes the rearrangement
of the particle velocities due to binary Coulomb interaction. The fields E and B appearing
in Eq. (3.7) are to be determined from Maxwell’s equations, where the charge and current
densities are determined as moments of the distribution function. Different approaches have
been developed to solve the Boltzmann-Maxwell set of equations in a magnetized plasmas,
depending on the geometry of the problem and on the space and time scales under consideration.
Some of them are briefly described and applied in this and in the following chapters. However,
a detailed discussion of the methods employed for the analytic derivation and the numerical
solution of the corresponding equations is outside the scope of this thesis.

3.2 Contribution of the bootstrap current

The contribution of the non-inductive currents to the nonlinear dynamics of the tearing mode
can be incorporated into the theory presented in the previous chapter by simply operating the
substitution Jz → Jz −Jn.i.

z on the right-hand side of Eq.(2.12). For an easier comparison with
a typical tokamak scenario, where the safety profile increases monotonically with radius, it is
convenient to reverse the sign of the vector potential Az with respect to Sec. 2.3. Eq. (2.25) is
then extended to

1
c

∂ψ̃

∂t
〈cos ξ〉Ω = η

(
J‖〈1〉Ω − 〈Jn.i.

‖ 〉Ω
)
. (3.8)

Following the same procedure as for the derivation of Eq.(2.26) we obtain with Ls = R0qsLq/rs
(where 1/Lq = (1/q)dq/dr) the equation

τR
rs

dW
dt

= ∆′rs −
4π
c

8
√

2rs
W

Lq

Bp

∫ ∞

−1
dΩ
〈cos ξ〉Ω
〈1〉Ω

〈Jn.i.
‖ 〉Ω, (3.9)

where the coordinates Ω and ξ have been defined in Sec. 2.3. This equation is the starting point
for the extension of Rutherford’s nonlinear theory to include a generic non-inductive current
perturbation.

In this section, we consider the impact of the bootstrap-current perturbation on the dy-
namics of the tearing mode, first calculated in Refs. [47, 48] under the assumption of complete
pressure flattening inside the island. The corresponding current perturbation can be written as
[49]

〈jbs〉Ω = 1.46
√

r

R0

c

Bp

dp
dr
〈1〉Ω (3.10)

inside the island (−1 ≤ Ω ≤ 1) and

〈jbs〉Ω = 1.46
√

r

R0

c

Bp

dp
dr

[
− π

√
2

4
√

(Ω + 1)/2E (2/(Ω + 1))
+ 〈1〉Ω

]
(3.11)

outside the island (Ω > 1), E(k) being the complete elliptic integral of the second kind. Sub-
stituting Eqs. (3.10,3.11) into Eq. (3.9), on account of the fact that

∫∞
−1 dΩ〈cos ξ〉Ω = 0, yields

τR
rs

dW
dt

= ∆′rs + 6.34
4π
c

Lqjbs

Bp

rs
W
. (3.12)
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In present and future tokamaks the current profile is in general classically stable against tearing,
i. e. ∆′ < 0. The mode is rather driven by the hole in the bootstrap current due to the pressure
flattening inside the island, as it was recognized first in TFTR discharges [50].

Eq.(3.12) describes correctly the neoclassical drive only if the pressure flattening inside the
island is complete, so that the bootstrap current vanishes altogether inside the island. There are
several physical effects, however, that can cause a residual bootstrap current to survive inside
the island and hence reduce the island drive. First of all, the degree of flattening of, say, the
temperature profile is governed under steady state conditions by the equation

χ‖∇2
‖T + χ⊥∇2

⊥T = 0, (3.13)

where χ‖ and χ⊥ are the parallel and perpendicular heat conductivities, respectively. A simi-
lar equation governs the degree of density flattening, with the heat conductivities substituted
by the corresponding particle diffusivities D‖ and D⊥. Since the particles flow much faster
along the field lines than they drift across them, as a first approximation one can take the limit
χ‖/χ⊥ →∞, neglect the second term of Eq.(3.13) and conclude that T is a flux-surface function
(i. e. a function of Ω). Flattening inside the island comes from symmetry reasons, supposing
that no sources are present. This is the limit assumed in the derivation of Eqs.(3.10,3.11). A con-
dition for the validity of this approximation can be obtained from Eq.(3.13) recalling Eq.(2.19)
and estimating ∇2

⊥ ∼ 1/x2. This yields a critical width4 Wc ∼ (χ⊥/χ‖)1/4(Lsrs/m)1/2, below
which the parallel transport is not effective enough in ensuring flattening against a finite per-
pendicular transport [49]. For islands below this critical width, the bootstrap drive turns out
to be proportional to W rather than to 1/W as in Eq.(3.12) and thus tends to zero for W → 0.
For negative values of ∆′, this implies that the tearing mode is destabilized only if there is
some physical effect that forces the island width above the critical value. For realistic tokamak
parameters, the ratio χ⊥/χ‖ is in the range 10−8–10−10 and the critical width is of the order of
a centimetre. This is compatible with the threshold behaviour observed in several experiments
[51, 52, 53].

The competition between perpendicular and parallel transport, however, is not the only
candidate to explain the increased stability of small islands. The fast streaming along the field
lines of the islands responsible for the flattening of density and temperature profiles does not
affect directly the trapped particles. A flattening in the trapped-particle population establishes
because of collisions, that force the distribution function to relax to an isotropic Maxwellian.
The time scale related to scattering from the trapped to the passing domain is r/νR0, where ν is
the collision frequency5. On the other hand, as we have seen before, transport across the island
separatrix acts to maintain a gradient and this mechanism is much more efficient for trapped
than for passing particles. Estimating the transport time scale across the island as W 2/2D⊥,
we see that the two mechanism compete if W ∼

√
2D⊥rs/νR0 and a trapped-particle gradient

survives for islands below this value [54]. A more complete kinetic modelling confirms this
estimate [55]. For realistic values of the parameters6, this threshold value is again of the order
of a centimetre.

There is a further subtlety associated with the orbit of trapped particles in the vicinity of
a magnetic island. The width wb of a banana orbit is often comparable to the initial island

4Here and in the following, m denotes the poloidal mode number, as in Eq. (2.10).
5The collision frequency is defined as the inverse of the time required for a 90◦ scattering in velocity space.

The crossing of the boundary between the trapped and the passing domain just requires scattering across the
trapping condition, Eq. (3.1).

6In present tokamaks, the transport is dominated by turbulent diffusion, as discussed in Chapt. 4, with
diffusion coefficients of the order of (a few) m2/s. The electron collision frequency depends on density and
temperature, but for a first estimate can be assumed to be of the order of tens of kHz.
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size observed in the experiments. This means that there are particles drifting partly inside and
partly outside the island, so that one can expect that the unbalance between the contribution
from particles drifting in opposite direction at the origin of the bootstrap current (see Sec. 3.1)
is at least partly preserved inside the island. An analytic estimate of this effect is made difficult
by the fact that in the frame of standard neoclassical theory the ratio between wb and the
radial inhomogeneity length L of the system is supposed to be small. This allows an expansion
of the distribution function in powers of wb/L � 1. The relevant equation is the drift kinetic
equation, which can be derived from the Boltzmann equation (3.7) [56, 57] averaging away
the fast (compared to the scales of interest) gyromotion and considering the drift velocities
discussed in Sec. 3.1,

∂fα

∂t
+
(
v‖αb̂ + vdα + vE

)
· ∂fα

∂r
− Zαe

mα

vdα · ∇Φ
v

∂fα

∂v
= C(fα) (3.14)

(Φ is the electrostatic potential associated with the electric field E). A numerical solution of the
drift kinetic equation for the ions7 in the presence of an island has been achieved employing the
Hamiltonian code HAGIS [58] augmented by a pitch-angle scattering operator which includes
a procedure to ensure momentum conservation [59]. Fig. 2 shows the ion component of the
bootstrap current inside a magnetic island as a function wb/W .
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Fig. 2. Ion bootstrap current in the centre of a magnetic island (normalized to its unperturbed value when the island

is absent) as a function of the ratio between banana width and island width (the left part of the plot corresponds

to large islands, the right part to small islands). Squares correspond to simulations with flat equilibrium density.

The fitting curves in the region of small islands are shown to guide the eye.

In the case of a big island the bootstrap current drops to zero, consistenlty with the usual
picture of the neoclassical drive. If the island is small (island width of the order of or below
the thermal ion banana width) the reconnected region hardly affects the ion motion and hence
the ion bootstrap current, which stays at the same value inside and outside the island [10].
Thus we see that islands below the ion banana width exhibit an increased stability against the
neoclassical drive, which is even stronger (see again Fig. 2 and Ref. [11]) if the density gradient
is flat and the bootstrap current is caused mainly by the temperature gradient (rather flat
density profiles are expected in ITER).

7Finite-banana-width effects are much less significant for electrons, since the banana width, like the gyroradius,
scales with the square root of the mass.
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These finite-orbit effects yield a possible explanation for the scaling of the plasma pressure
(normalized to the pressure of the poloidal magnetic field) with the poloidal gyroradius (i. e., the
gyroradius calculated with the poloidal field, normalized to the major radius of the machine R0)
which has been observed for islands whose widths remained nearly constant after the onset [60].
Taking into account the stabilization due to finite-orbit effects in the Rutherford equation by
means of a factor obtained from a fit of the simulations and expressing the normalized pressure
as a function of the other parameters for nearly stable islands (dW/dt ' 0), a linear scaling of
the pressure with the poloidal gyroradius is found [10], in agreement with experiment findings
[61].

The results discussed before have been obtained for the case of a static island. However,
a magnetic island is in general rotating with respect to the surrounding plasma under the
torque [62] provided by the the out-of-phase currents (i. e. the components of the current
proportional to sin ξ), which do not contribute to island growth, governed by the cos ξ harmonics,
see Eq.(3.9)8. The electrostatic potential connected to this rotation can be easily calculated in
the ideal MHD limit E‖ = 0 (which in the nonlinear theory is violated only in a narrow layer
around the separatrix), as shown in Sec. 3.3, Eq.(3.15). The investigation of finite-banana-width
effects on the bootstrap current in small islands can be extended to the case of rotating islands
simply by including this potential and the corresponding electric field in Eq.(3.14) (these terms
were set to zero in the case of a static island). The resulting E×B velocity forces the plasma
inside the island to co-rotate with the island to satisfy Alfvén’s frozen-in law. The potential Φ
has therefore a different sign depending on the direction of the island rotation. It is found that
in a region extending for about a banana width around the separatrix (i. e. comparable to the
island width for wb ≈ W ) the ion density exhibits a tendency to respond adiabatically [64] to
the potential (ñ/n = −ZeΦ/Ti), as shown in Fig. 3.
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Fig. 3. Density perturbation (n − n0)/n0 (red symbols), in an island rotating at the ion diamagnetic frequency

(left) and at the electron diamagnetic frequency (right). Also shown is the normalized potential −eΦ/Ti (solid

black lines). The island width is normalized to the thermal ion banana width. A density perturbation which is

negative on the inner side and positive on the outer side of the island (left) corresponds to density flattening, the

opposite situation (right) to steepening.

Due to the different sign of the potential, the adiabatic response pushes the ion density
profile towards flattening for island rotation in the direction of the ion diamagnetic rotation
or towards steepening for rotation in the electron diamagnetic direction [12]. The bootstrap

8A typical example is given by the currents associated with background pressure gradients and the related
drifts, cf. Ref. [63] and Sec A.2 for the linear case and Sec. 4.1 for a description of the drift wave.
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current profile9 is found to follow the analytic (small-orbit) prediction if the profile perturbations
are included. In other words, the density profile due to the particle response to the electric field
of a small rotating island leads to an additional current, that flows in the same direction as
the unperturbed bootstrap current if the island rotates in the electron diamagnetic direction,
while it has opposite direction in the case of rotation in the ion direction. The direction
of rotation of the island with respect to the plasma is still not known with certainty [46],
although there are good reasons to believe that small islands rotate in the electron diamagnetic
direction [65] and are thus more stable against tearing (reduced bootstrap destabilization) than
in the standard theory, the surviving drive being related mainly to the residual flattening in the
electron temperature profile. (A confirmation of the validity of this statement comes from recent
(gyro)kinetic simulations of small rotating islands, in which Φ is calculated self-consistently from
the particle response to a given island rotation rather than from the analytic solution of the
electron parallel momentum balance, showing that quasi-neutrality forces the electron density
to follow the ion density, which is dominated by the adiabatic response described above [66]).

3.3 Contribution of the polarization current

As mentioned in the previous section, if the island is rotating with respect to the plasma
there must be an electrostatic potential Φ connected to the rotation such that the ideal MHD
condition E‖ = 0 is satisfied and the plasma is forced to move with the perturbed field lines in
the reconnected region. Integration of c∇‖Φ+∂Ã‖/∂t = 0 in toroidal geometry gives a potential
of the form [67, 68]

Φ =
ωRBp

nc
[r − rs − h(Ω)] , (3.15)

where ω is the island rotation frequency, n is the toroidal mode number as in Sec. 2.1.2 and
h(Ω) is an integration “constant” with vanishing parallel derivative, cf. Eq. (2.23). It is usually
determined assuming density flattening inside the island, so that h(Ω) vanishes for −1 ≤ Ω ≤ 1.
A simple expression [67], implemented in the numerical drift kinetic simulations presented in
the previous section and here below, that obeys the boundary condition of vanishing electric
field the former case, decreasing in the latter. This can be easily understood considering a
reference frame in which the island is at rest, see Fig. 4a. The plasma can be thought as being
accelerated in the Laval nozzle formed by the perturbed flux surfaces outside the separatrix.
The ion polarization current flows perpendicularly to the magnetic surfaces and has roughly
a sin ξ dependence on the helical angle. It averages to zero when integrated along the whole
island. The interest of the polarization current for the island dynamics is related to the fact
that it is not divergence free, so that a parallel current (mainly carried by the electrons) must
flow to enforce ∇‖J‖ = −∇⊥ ·J⊥. Integrating this equation with the parallel gradient operator
given by Eq.(2.23) shows immediately that the closure parallel current varies as cos ξ and hence
contributes to the nonlinear island evolution determined by Eq. (3.9). An analytic drift kinetic
calculation assuming density flattening inside the island and wb �W [68] yields

J‖ = −104
(
r

R0

)3/2 ρ3
pLq

W 2L2
n

1
W 2

dh
dΩ

d2h

dΩ2

ω(ω − ω∗pi)
ω2
∗i

[
cos ξ − 〈cos ξ〉Ω

〈1〉Ω

]
Zenevth,i, (3.16)

9The simulations presented in Ref. [12] were performed in two steps, first for the ions (whose scattering against
electrons is negligible) and then for electrons, including the drag due to the ion flow – calculated in the previous
step – as a shift in the background distribution function. This makes possible to reconstruct the total bootstrap
current, cf. Sec. 3.1.

27



where ω∗pi is the diamagnetic ion frequency that includes the contribution from the temperature
gradient. Since h(Ω) ∝ W , J‖ in Eq. (3.16) scales as 1/W 2 and the corresponding term in
Eq. (3.9) scales as 1/W 3. The polarization term thus has potentially a strong impact on the
dynamics of small islands (the neoclassical drive scales with the island width as 1/W ). Whether
this contribution is stabilizing or destabilizing depends on the island rotation frequency ω,
being destabilizing for islands rotating in the electron diamagnetic direction or at frequencies
exceeding ω∗pi in the ion direction (the neglect of the contribution of the steep current gradients
towards the centre of the island, cf. Fig. 4b, led to the opposite conclusion in Ref. [68]).
If stabilizing, the polarization current could provide an additional explanation for the NTM
threshold discussed above, compatible with the linear scaling of the pressure at mode onset
with the normalized poloidal gyroradius.
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Fig. 4. Polarization drift of trapped ions in the island rest frame (a) and typical polarization current profiles

obtained from kinetic simulations in the lower and upper part of the island (b). The dashed vertical lines highlight

the island region.

An interesting feature of the polarization-current contribution expressed by Eq.(3.16) is the
factor (r/R0)3/2, that depends on the collisionality regime. The polarization drift described in
Sec. 3.1 involves the trapped ions. If the detrapping frequency is higher than the island rotation
frequency (ν � (r/R0)ω), however, the drift can be transferred locally, i. e. at a given position
along the island, to the passing particles. In this case, the whole parallel flow (involving trapped
and passing particles), which is of magnitude cEr/Bp, varies along the island. In the opposite
low-collisionality case, the trapped particles orbit the island several times before experiencing
a collision, so that the part of the flow due to the passing particles averages to a constant
value on a flux surface and does not contribute to the polarization drift, Eq. (3.6) [68, 69].
Eq. (3.16) is valid for low collisionalities, ν � (r/R0)ω, whereas the factor (r/R0)3/2 � 1 is
substituted by unity in the high-collisionality regime. To evaluate the role of the polarization
current for the stability of an island in a tokamak, it appears therefore important to understand
where the transition between these two regimes occurs. Numerical calculations [70] performed
with the code HAGIS employing the potential derived above, Eq. (3.15), and flat density and
temperature gradients to suppress radial neoclassical transport, show good agreement with the
analytic prediction of Ref. [71] and demonstrate that the transition occurs for ν ≈ ω, so that
the high-collisionality regime is reached only at even higher frequencies. Assuming the island
rotation frequency to be of the order of the diamagnetic frequency, it follows that in large
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tokamaks with high plasma temperature the high-collisionality regime can hardly be attained.
Besides the collisionality scaling, drift kinetic numerical simulations have uncovered several

new features with respect to the picture of the polarization current described above. First
of all, when the island width becomes comparable or smaller than the ion banana width, the
parallel velocity cEr/Bp exhibits a similar behaviour as the bootstrap current, cf. Sec. 3.2, i. e.
the motion of the trapped particles depends on the variation of the plasma properties (the
electrostatic potential in this case) across the island separatrix. A reduction of the polarization
current is observed for island widths W <∼ 2wb [13]. For islands below the ion banana width,
we are beyond the range of validity of Eq. (3.15) for the island potential and a self-consistent
calculation of Φ is necessary. Recently, it has been stressed that a further possible reason for a
reduction of the polarization current is a finite radial diffusion across the island separatrix that
lowers the local current gradients [72].

Kinetic effects can also change significantly the scaling of the polarization current with the
island rotation frequency, which according to Eq. (3.16) should be proportional to ω2 (and
always destabilizing) in the limit of vanishing density and temperature gradients, i. e. ω∗pi → 0
in Eq. (3.16). For frequencies close to or below k‖vth,i (which can be shown to be a plausible
value for ω under experimental conditions) the perpendicular current exhibits four roots instead
of the expected two coinciding roots at ω = 0, see Fig. 5 [14].
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Fig. 5. The perpendicular ion current as a function of the island rotation frequency ω (normalized to the parallel

streaming frequency k‖vth,i) for flat background density and temperature gradients. The four zeros of J⊥ are

shown, together with the nearly quadratic behaviour at large frequencies (inset).

This behaviour is related to the precession of the trapped particles in the toroidal direction
described by Eq. (3.5). Since the magnetic precession velocity, first term in Eq. (3.5), scales
quadratically with the particle velocity, cf. Eq. (3.2), there are trapped particles whose preces-
sional motion can be in resonance with the island rotation over a quite large frequency range.
In this case, the drift across the perturbed flux surfaces is dominated by the increase or de-
crease of the toroidal precession due to the island field and the consequent density perturbation.
This precessional current, which has been calculated analytically in the usual neoclassical limit
wb � W [15], has a stabilizing effect on the island evolution, except for a frequency band be-
tween zero and approximately the toroidal precession frequency (the exact value depending on
the collision frequency). When ω � k‖vth,i the standard behaviour of the polarization current
(∝ ω2) is recovered and this explains the sign reversal when ω/k‖vth,i is of order unity. A
kinetic treatment that retains the effects of toroidal geometry is thus mandatory to determine
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whether the currents due to the island potential produce a stabilizing or destabilizing contribute
to the island dynamics. The same major conclusion applies in general to all the neoclassical
contributions to the evolution of a magnetic island in a tokamak.
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Chapter 4

The tearing mode in a tokamak:
interaction with turbulence

4.1 Plasma turbulence

The radial transport of heat and particles in today’s tokamak reactors is to a large extent
determined by turbulent processes developing on small scales (typically of the order of the ion
gyroradius) [73, 74]. The experimental characterization of the turbulence and the quantitative
prediction of the associated transport levels is one of the big challenges in present tokamak
research. From a computational point of view, the simulation of turbulence in toroidal plasmas
turns out to be extremely demanding. This is due to the fact that one has to resolve in space
(and in velocity space in the case of a kinetic approach) a complex nonlinear dynamics which is
strongly anisotropic in the direction parallel and perpendicular to the magnetic field and occurs
on different time scales for ions and electrons [75].

Small-scale instabilities (leading to turbulence) and large-scale instabilities (such as the
tearing mode) can interact in several ways, and a complete understanding of the tearing-mode
dynamics requires the study of such an interaction. Recently, this subject has received a grow-
ing interest. Although some aspects of the problem have been known for some decades, the
availability of high-performance computing tools allows now direct numerical simulations for
more and more realistic parameters. Turbulence can affect the growth of a magnetic island
through a modification of the resistivity (and viscosity) of the plasma [76, 77, 78, 79, 80] and
providing “seed islands” that can trigger the mode [81]. Moreover, as the turbulent transport
is one of the fundamental players in determining the density and temperature profiles across
the island, it influences the contribution of the bootstrap [49] and polarization [82] currents
discussed in the previous chapter. On the other hand, a tearing mode affects the dynamics of
the turbulence, first of all because the pressure flattening inside the island reduces the drive
for the small-scale fluctuations, and moreover because the plasma flows developing along the
perturbed magnetic surfaces turn out to regulate the level of the turbulence. In this chapter, we
focus mainly on the latter aspect. Some basic concepts required for a physical understanding of
the turbulence in a magnetized plasma and the possible role of a magnetic island are presented
in this section. Secs. 4.2 is devoted to the presentation of the results of numerical simulations
in toroidal geometry.

The paradigm for the description of small-scale instabilities leading to turbulent transport
in magnetized plasmas is represented by the drift wave, whose origin is explained in Fig. 1.
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Fig. 1. Generation of a drift wave. A periodic density perturbation in the y direction (vertical) in the presence

of a gradient in the x direction (horizontal) leads to an E×B convection of plasma as shown and a consequent

drift of the initial perturbation in the y direction.

In the presence of a periodic density perturbation, the electrons rapidly flow along the
magnetic-field lines generating an electric field, directed from the regions of increased density to
those of decreased density, which balances the parallel pressure gradient. The relation between
the electrostatic potential and the density perturbation is the Boltzmann response ñe/ne =
eφ/Te, as can be seen from the parallel component of Eq. (2.5) equating the first two terms on
the right-hand side. The subsequent E ×B velocity convects plasma alternately from the left
or from the right side. This leads to a drift of the initial density disturbance, from the bottom
to the top in the figure. The frequency of the drift wave can be immediately derived from the
ion continuity equation

∂ni

∂t
= −∇ · (vini)

under the assumption that the parallel phase velocity of the wave is much larger than the
thermal velocity of the ions (“cold” ions) and that the magnetic field is uniform, so that the
E×B velocity is incompressible1. The previous equation reduces for a perturbation of the form
exp[i(kyy − ωt)] to

−iωñe =
c

B

(
iky

Te

e

ñe

ne

)
dne

dx
where quasi-neutrality ñe ' ñi has been imposed and the electrostatic potential in the E ×B
velocity is taken from the Boltzmann response. The wave frequency is hence the electron
diamagnetic frequency ω∗ = kycTe/eBLn, cf. Sec. A.2, with Ln = −(1/n)dn/dx.

This features are captured by the model proposed by Hasegawa and Mima in 1978 [83], who
derived the relevant equation for the electrostatic potential,

d
dt

[
eφ

Te
− ρ2

s∇2
⊥

(
eφ

Te

)]
+ u∗y

∂

∂y

(
eφ

Te

)
= 0

(with u∗y = ω∗/ky), which can be easily obtained from Eqs. (A.1,A.2), neglecting the magnetic
fluctuations (along with collisions and electron inertia) in Eq. (A.3) to derive the Boltzmann
response for the electrons. Writing the total time derivative explicitly, the previous equation
can be cast in the form

∂

∂t

[
eφ

Te
− ρ2

s∇2
⊥

(
eφ

Te

)]
− ρ2

s (uE · ∇)∇2
⊥

(
eφ

Te

)
+ u∗y

∂

∂y

(
eφ

Te

)
= 0. (4.1)

The Hasegawa-Mima equation (4.1) is very similar to the two-dimensional Navier-Stokes equa-
tion for an incompressible fluid. In particular, the nonlinear term is identical for both equation.

1The diamagnetic flux is divergence-free in this model and does not contribute to the oscillation.
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With respect to the Navier-Stokes equation, however, there is an extra term appearing in
Eq. (4.1), namely the first one on the left-hand side which expresses the compressibility due
to the parallel electron motion [83]. This term dominates for perturbations whose wavelength
exceeds the ion sound radius ρs, as can be seen from the dispersion relation following from the
substitution of a plane-wave ansatz in the linearized form of Eq. (4.1):

ω =
ω∗

1 + ρ2
sk

2
⊥
.

This corresponds to the result derived above in the limit ρ2
sk

2
⊥ � 1.

It has to be noticed that according to this model the drift wave is stable, i. e. its amplitude
is neither growing nor damped. This is a consequence of the assumption of adiabatic electrons,
which leads to a perfect overlap of density and potential perturbations. Relaxing the assumption
of perfect adiabaticity (e. g. introducing collisions) it is easy to see that the drift wave can
become unstable. This can be understood referring again to Fig. 1 and supposing that the
E×B velocity is now phased in such a way that it convects plasma from the left “high-density”
side into the region where ñe > 0 and from the right “low-density” side into the region where
ñe < 0, thus reinforcing the initial perturbation and leading to a net transport from left to
right.

In the nonlinear problem, the various Fourier harmonics become coupled and turbulence
arises. In the investigation of tokamak turbulence, a particular role is played by so-called zonal
perturbations with vanishing parallel wavenumber2. The dynamics of the zonal modes is not
captured by the Hasegawa-Mima model, since for k‖ = 0 there is no parallel electric field and
the density perturbation is zero rather than Boltzmann. A way to include this effect in the two-
dimensional model discussed here is to repeat the derivation of Eq. (4.1) writing the potential
as φ = φDW (x, y) + φZF (x) and the density as ñ = ñDW (where the subscripts stand for drift
wave and zonal flows, respectively, and the fact that ñZF = 0 has been used). This leads to the
replacement of Eq. (4.1) with [85](
∂

∂t
+ uEy,ZF

∂

∂y

)
eφDW

Te
−ρ2

s

(
∂

∂t
+ uE,DW · ∇+ uEy,ZF

∂

∂y

)
∇2
⊥

(
eφ

Te

)
+u∗y

∂

∂y

(
eφDW

Te

)
= 0.

Averaging this equation over the small-scale drift-wave oscillations (this operation is denoted
by a bar) leads to an equation for the zonal potential

∂

∂t
∇2
⊥φZF = −uE,DW · ∇∇2

⊥φDW , (4.2)

showing that the large-scale zonal flows are driven through nonlinear coupling by the small-scale
drift fluctuation via the Reynolds stress forces (the right-hand side of Eq. (4.2) can be easily
transformed into a term proportional to ∇2(uEx,DWuEy,DW )). Using Eq. (4.2) it is possible to
show that the envelope of the drift-wave intensity is unstable against e. g. modulation by a
seed zonal velocity shear [84] and that energy is transferred by this mechanism from small to
large scales.

A similar situation occurs in the presence of a magnetic island, the main difference consisting
in the fact that the perturbed flux surfaces are not characterized by the mode numbers m =

2In a tokamak with nested flux surfaces, a zonal perturbation, constant on magnetic surfaces, is characterized
by the mode numbers m = n = 0, cf. Eq. (2.10). Its importance is related to the fact that the E ×B flows due
to a potential varying only in the radial direction are mainly in the poloidal direction. These zonal flows [84]
can significantly lower the turbulence level, ripping apart the eddies, thus reducing their correlation times and
lengths, and depleting the energy in the turbulent modes.
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n = 0. The extension of the analysis sketched above to the island case has been developed
by McDevitt and Diamond [79]. In a tokamak, we can expect a nonlinear coupling between
turbulent modes with high wavenumbers and modes with low wavenumbers corresponding to a
given magnetic island. Moreover, on can infer that a similar nonlinear coupling occurs not only
for the electrostatic part of the turbulence, but also for its magnetic component, so that “zonal
fields” can be nonlinearly excited like the zonal flows (in the case of an island, long-wavelength
fields that can amplify a seed island).

As mentioned at the beginning, a considerable progress in the field of the interaction between
small and large-scale fluctuations has been achieved recently [82, 86, 87, 88], through fluid
simulations showing the importance of the mutual interaction of small and large scales, including
the nonlinear excitation and amplification of magnetic islands [89, 90]. In this thesis, we focus on
a description that retains both kinetic effects and a tokamak geometry. Under these conditions,
a complete (self-consistent) kinetic description of the problem, resolving both the time scale
typical of the turbulence development and that typical of the island growth, is still not feasible.
Thus, we first present electrostatic (gyro)kinetic simulation that investigate the influence of
the island geometry on the turbulence, discarding island evolution. At the end of the section,
we discuss the first results of electromagnetic (gyro)fluid simulations with self-consistent island
evolution in toroidal geometry.

4.2 Tokamak turbulence in the presence of a magnetic island

Under conditions typical of today’s tokamaks, the mechanism leading to turbulent transport
is slightly different with respect to the model presented in the previous section. One of the
most common small-scale instabilities (sometimes named also microinstabilities) is the so-called
toroidal ion-temperature-gradient (ITG) mode [91]. Fig. 2 describes the instability mechanism.
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Fig. 2. Generation of the ITG instability on the low-field side of a toroidal confinement device (reprinted from

Ref. [92]).

In this case, an initial ion-temperature perturbation leads to a density perturbation because
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of the fact that the magnetic-drift velocity, Eq.(3.2), is proportional to the energy of the particles
and is therefore on average higher where the temperature is higher. As in the case of the drift
wave, the electron response to the density perturbation leads to an electric field directed from
the regions of higher density to those of lower density. The consequent E×B velocity conveys
hot plasma into the hot region and cold plasma into the cold region, thus amplifying the initial
perturbation (actually, this is the case only on the low-field side of the tokamak; on the high-
field side the E × B flows damp the initial temperature perturbation). With respect to the
case of an unstable drift wave described in the previous section, in the case of the ITG mode
the source of free energy for the instability is the temperature gradient rather than the density
gradient. Moreover, the ITG is a reactive instability, in the sense that no dissipation (like the
collisions in the drift-wave case) is required to make the mode unstable, whereas perpendicular
compressibility becomes important.

In order to model this kind of instabilities, advantage can be taken from the fact that the time
scales associated with turbulence are much longer than those connected with the gyromotion
of the particles. An average of the kinetic equation over the gyrophase allows one to reduce the
number of variables in phase space from six to five, as in the case of the drift kinetic modelling
considered in the previous chapter. For a consistent treatment of the microinstabilities, however,
the variation of the electromagnetic disturbances on the scale of the ion gyroradius must be
retained. This approach leads to the gyrokinetic model [93, 94] and its gyrofluid counterpart
[95, 96]. Neglecting collisions, the gyrokinetic equation can be written in the form

∂f

∂t
+

dR
dt

· ∂f
∂R

+
dv‖
dt

∂f

∂v‖
+

dµ
dt
∂f

∂µ
= 0, (4.3)

with the nonlinear characteristics
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· ∇B (4.5)
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[b×∇B − b× (b×∇×B)]

}
· ∇〈φ〉g,

dµ
dt

= 0. (4.6)

In the previous equations, R is the position of the gyrocentre, v‖ its velocity component along
the magnetic field, b the unit vector along the magnetic field B, µ the magnetic moment,
B∗
‖ = B + (m/q)v‖b · ∇ × b and 〈φ〉g the perturbed potential averaged over the gyroperiod,

solution of the gyrokinetic Poisson equation

∇2φ = 4πqi
{
ne −

∫ [
f +

qi
miB

(φ− 〈φ〉g)
∂f

∂µ

]
δ(R + ρ− r)d6Z

}
, (4.7)

where ρ is a vector directed from the gyrocentre to the position of the particle.
In the gyrokinetic studies presented below, the codes ORB5 [97] and GKW [98] have been

employed. They adopt two different approaches for the solution of the gyrokinetic equation.
ORB5 is based on the PIC method, consisting in a discretization of phase space through a
number of numerical particles that follow the nonlinear characteristics. The self-consistent elec-
tromagnetic fields are calculated projecting the charge and current connected to each tracer
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onto a fixed spatial grid (this is called a Lagrangian approach). GKW solves the gyrokinetic
equation on a five-dimensional grid (Eulerian or Vlasov approach) in the flux-tube approxima-
tion [99]. A finite domain of the plasma around a given field line is considered and the deviation
of the distribution function from its equilibrium value is assumed to be small over the region of
interest, whereas its gradients can be comparable to the equilibrium gradients.

Fig. 3. Time evolution of the temperature gradient in the island region for a typical ORB5 simulation.

The implementation of a magnetic island in these codes is correspondingly different. In a PIC
approach, the equations of motion of the particles are modified including the radial magnetic
field produced by a magnetic island of assigned helicity [16]. In GKW, the computational box
is set around the rational surface of interest and a parallel vector potential corresponding to a
mode of desired amplitude is imposed (in the case of a static island, Ampère’s law is not solved)
[54]. In the gyrokinetic results presented below for a m = 3, n = 2 island, only electrostatic
perturbations are considered. The plasma parameters are similar to those of the so-called
Cyclone base case, characterized by ITG turbulence [100].
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figure.

Since in turbulence runs including a static magnetic island the profiles are initialized with
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a finite gradient and as functions of the unperturbed radial coordinate, the first effect seen in
the simulations is the flattening inside the island shown in Fig. 3. In the centre of a sufficiently
big island, the temperature gradient almost vanishes, whereas it initially increases just outside
the island because of the “compression” of the flux surfaces. In this first phase, where the
temperature profile relaxes to the perturbed magnetic geometry due to the island, turbulent
modes are filtered out. When turbulence is switched on, a significant transport sets in, until
the profiles reach a quasi-steady state. The radial heat flux driven by the turbulence is found to
be highly inhomogeneous in the island region. ORB5 and GKW simulations consistently show
that transport across the island region occurs mainly at the X-points (Fig. 4).

Turbulent eddies can also penetrate inside the island through convection in the drift direction
of the instability. This mechanism seems to be more effective than turbulence spreading [101] in
conveying the turbulence towards linearly stable regions inside the island. On the contrary, at
the level of the O-point (ξ = 0) the transport across the separatrix is strongly suppressed. This
behaviour is interpreted in terms of the sheared flows due to long-wavelength modes mentioned
in the previous section. These modes are particularly strong at the island separatrix and inside
and reduce the transport level as known from zonal flows in unperturbed equilibria. This is
confirmed by the local turbulence spectra [17] plotted in Fig. 5.

Fig. 5. Time evolution (in units of minor radius over sound speed) of the energy spectrum outside the island

(left) and at the island separatrix, core side (right). In the latter case, only long-wavelength modes corresponding

to the island helicity are excited.

In particular, the left figure clearly shows the nonlinear coupling between modes with high
toroidal numbers and the harmonic n = 2 corresponding to the magnetic island. The n = 2
mode, initially decaying after the turbulence-free phase (t <∼ 100a/cs, not shown in the figure),
rises again, pumped by high-n modes satisfying a three-wave coupling condition. At the island
separatrix (right figure), the n = 2 clearly dominates the other modes and the transport is
suppressed3. The low-n mode can appear in the form of a vortex mode [103], i. e. as an
electrostatic potential developing in the centre of the island (with periodic sign reversals) with
contour levels coinciding with the island flux surfaces, as shown in Fig. 6. The E × B heat
flux connected to a vortex mode at its peak intensity can largely exceed the flux due to the
parallel motion along the magnetic-field lines of the island [54]. On average, these two fluxes
are found to give a comparable contribution to the total heat transport. From these results a

3Unfortunately, the simulations performed so far do not allow a clear statement on the role of the shear fluxes
associated with small islands as a possible explanation for the improved confinement sometimes observed in the
vicinity of rational surfaces [102].
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new picture of the transport across the rational magnetic surface where a magnetic island is
present emerges, which is more complex than the “standard” paradigm, based on homogeneous
heat conductivities and Fick’s law, on which the calculation of the “transport threshold” for
the neoclassical drive [49, 104] discussed in the previous chapter is based.

Fig. 6. Electrostatic potential (top) and time evolution of the heat fluxes integrated over the simulation volume

(bottom) in the presence of a vortex mode. Dark blue lines represent the ion contribution, light green lines the

electron contribution; solid lines the flux due to E×B convection, dashed lines the fluxes along the perturbed field

lines.

We conclude this chapter quoting the first fully electromagnetic simulations, performed for
realistic tokamak parameters, resolving both the turbulence time scales and the much slower
island growth. The runs have been performed with the code GEMZ, that solves the gyrofluid
equations as formulated in Ref. [105]. These are time dependent equations for six gyrofluid mo-
ment variables (density, parallel velocity, parallel and perpendicular temperatures and parallel
and perpendicular heat fluxes for each species), solved in field-aligned conformal coordinates
[106]. In the simulations, a small island is initialized in a random bath of turbulent density
fluctuations for parameters typical of a mid-size tokamak like ASDEX Upgrade with different
current profiles. As already mentioned, current profiles in present tokamaks are usually stable
against tearing (∆′ < 0) but also a tearing-unstable profile taken from Wesson [2] has been con-
sidered. The bootstrap current is not switched on in the equations, so that no neoclassical drive
is included. On the contrary, the tearing mode is stabilized by toroidicity effects as discussed
in Ref. [107]. In spite of this effect, the island if found to be not only maintained but increased
during the turbulence. In the runs with the tearing-unstable current profile, a more clear and
more coherent island is found, but also for a more realistic current profile the island persists
[17]. Also simulations without any island initialization lead to similar results. The analysis of
the energy-transfer channels has still to be performed. Further investigations are required to
assess the relevance of the interaction between turbulence island for the seeding process and
the island evolution in tokamaks.
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Chapter 5

Active stabilization of tearing modes
by electron cyclotron current drive

5.1 Electron cyclotron waves

To limit the deleterious impact of tearing modes on the performance of a tokamak reactor,
strategies for their active control are being developed. One of the most promising methods is
based on the injection of electromagnetic waves with a frequency in the range of the electron
cyclotron (EC) frequency1. For a proper choice of frequency and polarization, EC waves are
resonantly absorbed in a very localized region, comparable with the radial extension of the
magnetic island. This opens the possibility of controlling the tearing mode through local change
of the magnetic shear (i. e. acting on the ∆′ parameter defined in Chapter 2) or the generation of
a current inside the island to replace the missing bootstrap current (see Chapter 3). The latter
mechanism, which is predicted to dominate the stabilization process under ITER conditions
[108, 109], is discussed in Sec. 5.2 and 5.3.

A brief summary of some properties of the interaction between wave and plasma is presented
in the remainder of this section, to supply the basic information necessary to understand the
strategy for present and future NTM control via EC waves.

5.1.1 The plasma response

The plasma response to the field of a propagating electromagnetic wave can be calculated
by solving the relevant kinetic equation, coupled with Maxwell’s equations, and deriving the
associated dielectric tensor [110, 111, 112, 113]. If the wave frequency is in the range of the
cyclotron frequency of a given particle species, the assumption of scale separation between wave
oscillation and gyration motion adopted in the previous chapters is of course invalid and no
simplification can be obtained at this level. However, the derivation of the dielectric tensor is
made easier by the fact that for realistic wave energies nonlinear effects can be usually neglected
[114]. Moreover, in the calculation of the linear response, the plasma can be treated as locally
homogeneous and collisions can be neglected, as they occur on a much slower time scale.

Here only waves in the range of the EC frequency are discussed. The ions can be assumed
to constitute a constant neutralizing background and do not take part in the dynamics, which

1The cyclotron frequency of electrons can be calculated using the simple formula Ω/2π [GHz]= 28B [T]. For
B = 5.3 T, as foreseen for ITER, the EC frequency is approximately 148 GHz.
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is determined by the linearized Vlasov equation2

df̃
dt

= e

(
Ẽ +

v × B̃
c

)
· ∂f0

∂p

where d/dt denotes the total derivative along the unperturbed (no wave) orbits of the elec-
trons and f0 is the background electron distribution, assumed here to be a relativistic isotropic
Maxwellian f0 = f0(p). The formal solution to this equation can be written for each Fourier
component as

f̂ ei(k·r−ωt) = e

∫ t

−∞
dt ei(k·r

′−ωt′)

(
Ê +

v′ × B̂
c

)
· p

′

p′
∂f0

∂p′
.

To ensure convergence of this integral, Im[ω] > 0 should be assumed. The solution can be gen-
eralized to the case Im[ω] ≤ 0 through analytic continuation following Landau’s prescription for
the integration of the poles, see below. To obtain a treatable expression for f̂ , the (relativistic)
unperturbed trajectories are substituted in r(t) − r(t′) and p(t′). The term proportional to
v′ × B̂ is perpendicular to p′ and does not contribute, so that the result is

f̂ = e

∫ ∞

0
dτ eiΦ(τ) Ê · p′

p′
∂f0

∂p′
,

with τ = t− t′ and

Φ(τ) = (ω − k‖v‖)τ +
k⊥p⊥
meΩe

[
sin
(
φ− Ω

γ
τ

)
− sinφ

]
(φ is the gyrophase at t′ = t and γ = (1 − v2/c2)−1/2 is the relativistic Lorentz factor). The
last step is to use Jacobi-Anger expansion for the exponential of the trigonometric function.
Choosing a Cartesian reference frame such that B0 = B0ẑ and k = (k⊥, 0, k‖), we can cast the
solution for f̂ in the form

f̂ = e

∫ ∞

0
dτ

1
p′
∂f0

∂p′
(5.1)[

+∞∑
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b
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′
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,

where b = k⊥p⊥/meΩe.
The integration of the previous equation with respect to time has now become trivial and

leads to a factor i/(ω − k‖v‖ − nΩe/γ). When the cyclotron resonance condition

ω − k‖v‖ − nΩe/γ = 0 (5.2)

is satisfied, a singularity appears in Eq. (5.1). In practical applications, we are often interested
in the case of moderate absorption, Im[ω] � Re[ω], for which we can use the formula (to be
understood as a prescription when performing the integral over v‖)

1
ω − k‖v‖ − nΩe/γ

= P 1
ω − k‖v‖ − nΩe/γ

− iπδ(ω − k‖v‖ − nΩe/γ)

where P denotes the principal part and the last term represents the contribution of the res-
onances. Due to the expansion in Bessel functions, a wave-particle resonance occurs at all

2The Vlasov equation is the collisionless limit of the kinetic equation (3.7) presented in Sec. 3.1.
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cyclotron harmonics. Physically, harmonics appear because the motion of the particles in the
wave is not purely sinusoidal but rather overlays with the thermal gyration motion.

This expression for f̂ can be used to express the perturbed current density generated by the
wave as a function of the wave field

Ĵi = −e
∫
vif̂d3p = σijÊj .

This formula defines the conductivity tensor (in Fourier space), which in turn determines the
dielectric tensor εij = δij + (4πi/ω)σij expressing the response of the medium in the wave
equation (5.3). Mathematically, the contribution of the resonances is the appearance of a
Hermitian part of the conductivity tensor and consequently of a anti-Hermitian part of the
dielectric tensor.

5.1.2 Short-wavelength approximation

The propagation of an electromagnetic wave in a homogeneous plasma is described by the
(Fourier transformed) wave equation for a linear medium

k×
(
k× Ê

)
+
ω2

c2
ε · Ê = 0. (5.3)

Writing the first term in dyadic notation as (−k2I+kk) · Ê allows us to put the wave equation
in the form Λ · Ê = 0, where Λ is called the dispersion tensor. The condition for non-trivial
solutions yields the dispersion equation H ≡ det[Λ] = 0, whose roots determine the modes of
propagation, i. e. the waves supported by the system. In the case of weak inhomogeneity, λ� L
(where λ is the wavelength and L is the inhomogeneity scale of the medium), Eq.(5.3) remains
valid to the lowest order in λ/L. The assumption λ/L � 1 is usually well satisfied for waves
in the EC frequency range in a tokamak, so that asymptotic techniques for the solution of the
wave equation can be adopted. The most common method is geometrical optics, or ray tracing
[115, 116]. The dispersion equation H(k, r) = 0 is satisfied along the curves (rays) determined
by the Hamiltonian equations

dr
ds

=
∂H

∂k
,

dk
ds

= −∂H
∂r

, (5.4)

where s is the arclength along the ray. According to this method, the wave front is decomposed
into several rays, each of them traced independently3 through the plasma. It can be shown that
the energy carried by a wave beam propagates in the direction parallel to the rays, i. e. in the
direction of the group velocity, and is absorbed in the region where the resonance condition is
satisfied. Although the solution of Eqs.(5.4) in tokamak geometry usually requires a numerical
approach, the computational effort is significantly reduced with respect to the numerical solution
of the original wave equation. Some fundamental features of the absorption process can be
understood by a closer inspection of the resonance condition (5.2). In the case of perpendicular
propagation (k‖ = 0), Eq. (5.2) can be written (e. g. for the fundamental cyclotron harmonic
n = 1) as Ωe(R) = γω, where in a tokamak Ωe ∝ B0 ∝ 1/R. In the cold-plasma limit, γ = 1,

3Several methods have been developed in order to allow for wave phenomena (diffraction), neglected when the
rays are traced independently from each other, taking advantage from the short-wavelength condition. Here we
mention only two techniques base on a complex-eikonal ansatz, namely the quasi-optical ray tracing [117, 118]
and the paraxial beam tracing [119, 120][121, 122], which have been implemented respectively in the codes GRAY
[123] and TORBEAM [18]. These codes have been thoroughly benchmarked [124, 125] and are used in the analysis
presented in Sec. 5.3.
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all the particles would be resonant at the position Rc where Ωe(Rc) = ω. Since γ ≥ 1, thermal
effects broaden the resonance towards the high-field side (smaller R). If wave with a finite k‖ is
injected, typically orienting the antenna at a finite angle in the toroidal direction, the Doppler
shift leads to a further broadening of the resonance layer (increasing with k‖) and to a shift
towards the low-field side (larger R). An important effect is that in this case the absorption
of the wave is asymmetric with respect to v‖, i. e. electrons travelling in a given direction are
heated preferentially. The resulting asymmetry in the distribution function corresponds to a
finite current driven in the plasma by the EC wave. This current can be used to replace the
missing bootstrap current inside the magnetic island and thus reduce or completely stabilize a
neoclassical tearing mode. Despite of the broadening mentioned above, the optical thickness of
the plasma for waves injected especially with frequencies around the n = 1 and n = 2 harmonics
(in the so-called ordinary and extraordinary mode, respectively) is high, implying very localized
absorption, so that local control of MHD activity (and NTM in particluar) has become one of
the main fields of application of EC waves [126].

5.2 Stabilization criteria

The contribution of the EC-driven current JCD to the dynamics of the island can be calculated
[127] in analogy to the neoclassical contribution discussed in Chapter 3, i. e. including JCD in the
non-inductive current on the right-hand side of Eq.(3.9). The resulting generalized Rutherford
equation can be used to derive a quantitative estimate of the current necessary to compensate
the driving terms. To this aim, we can first neglect the effects that determine the stability of
small islands, which are relatively poorly known, as discussed in the previous chapters. The
Rutherford equation (3.12) can be extended in the form [128]

τR
rs

dW
dt

= rs∆′ + csatfGGJ 6.34
4π
c

Lqjbs

Bp

rs
W
− cstab

32
√
π

2
4π
c

LqjCD

Bp

rswCD

W 2
ηCD, (5.5)

where the ECCD current profile is assumed to have a Gaussian shape JCD = jCD exp[−4(r −
rs)2/w2

CD] and the current-drive efficiency ηCD, defined as [129]

ηCD =
∫∞
−1 dΩ〈1〉−1

Ω 〈cos ξ〉Ω〈JCD〉Ω∫∞
−1 dΩ〈JCD〉Ω

,

weights the component of the driven current with the correct helicity for mode stabilization
(ηCD = 1 if the ECCD profile is a δ-function centred at the O-point of the island). The flux-
surface average operator has been defined in Eq. (2.24). Uncertainties in the size of the drive
and stabilization terms, due for instance to the realistic tokamak geometry, can be included
through the two coefficients of order unity, csat and cstab in Eq.(5.5), that are to be determined
from experimental measurements [130]. The factor fGGJ = 1 − 1.37(q2 − 1)/q2(Lqr

1/2
s )/R3/2

0

represents the reduction of the bootstrap drive due to geodesic-curvature effects [131, 107] (this
contribution also scales as 1/W for sufficiently large island widths). To derive the conditions for
the ECCD current required for tearing-mode stabilization it is useful to introduce the saturated
island width

Wsat = csat
fGGJ

(−∆′)
6.344π
c

Lqjbs

Bp
,

so that the second term on the right-hand side of Eq.(5.5) becomes simply −rs∆′Wsat/W . The
saturated island width is determined by a balance between the stabilizing effect of the equilib-
rium current profile (∆′ < 0) and the neoclassical drive. With this definition, the stationarity
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condition dW/dt = 0 can be formulated as

0 = − W

Wsat
+ 1− 5

cstab

csatfGGJ

ηCDjCD

jbs

wCD

W
. (5.6)

Requiring that no root exists (unconditional stability), i. e. that the discriminant of the previous
equation is negative, leads to the following criterion for island stabilization:

ηCDjCD

jbs

wCD

Wsat
>

1
20
fGGJcsat
cstab

. (5.7)

It is useful to distinguish between the case in which the ECCD profile is narrower or broader than
the typical island width Wmarg at which stabilization occurs. In the former case (wCD < Wmarg)
the current-drive efficiency can be shown to be in the range ηCD

<∼ 0.4 for both continuous
injection and 50%-duty-cycle modulation. Eq. (5.7) becomes then

jCD

jbs

wCD

Wsat
>

1
8
fGGJcsat
cstab

. (5.8)

On the other hand, if wCD > Wmarg modulation becomes important and the current drive
efficiency can be approximated as ηCD ' 0.15W/wCD for modulated injection and ηCD '
W 2/8w2

CD for continuous injection. To express the stabilization condition it is more practical
to exploit the fact that in general Wmarg is much smaller than Wsat, so that the first term on
the right-hand side of Eq. (5.6) can be dropped. The result in case of modulated injection is
that stabilization is achieved if

jCD

jbs
>

4
3
fGGJcsat
cstab

. (5.9)

Since for typical tokamak parameters fGGJ is around 0.7 − 0.8, we see that stabilization is
achieved when the driven current density is larger than the bootstrap current density. In fact,
the criterion

ηNTM ≡ jCD

jbs
> 1.2 (5.10)

has been adopted as a requirement for the ITER ECCD system for NTM stabilization (described
in the next section), since ITER is predicted to be in the regime wCD > Wmarg [132]. For
continuous injection, the previous formula must be replaced by

jCD

jbs
>

8
5
fGGJcsat
cstab

wCD

W
,

i. e. complete stabilization (W → 0) can be achieved only with an infinite ECCD current (no
effects leading to stability of small islands are considered in the above derivation).

More recently, the criterion for NTM stabilization has been revised through a more detailed
analysis, taking into account different models for the stability of small islands, namely the
reduction of the bootstrap drive due to incomplete pressure flattening in the island [49] and
the polarization current [67] already discussed in Chapt. 3. Moreover, the effect of confinement
deterioration on the driving term, which is reduced by an amount proportional to the island
width, has been included [4]. Most importantly, the condition wCD > Wmarg has been relaxed.
If the EC deposition width becomes comparable or falls below the marginal island width, no
advantage derives from further focusing, and better stabilization is achieved by increasing the
total driven current, even at the expenses of the peak current density [133], see the discussion
in Sec. 5.3. For ITER, this leads to the criterion [4, 133]

wCDjCD/jbs
>∼ 5 cm and wCD

<∼ 5 cm. (5.11)
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Indeed, for wCD < Wmarg, Eq. (5.8) should be used instead of Eq. (5.9). Taking typical values
predicted for the saturated island size for ITER (32 cm for the (2, 1) mode) one arrives at a
similar conclusion as in Eq. (5.11).

It is remarked that, although the control and suppression of tearing modes by EC waves has
been demonstrated and is routinely performed in several tokamak experiments [134, 135, 136],
a direct experimental verification of the validity of the stabilization criteria derived above is far
from easy. On the one hand, the detection of magnetic islands close to their marginal width
becomes increasingly challenging, on the other hand the injected power is seldom tuned to be
the minimum required power for mode stabilization. Moreover, the actual value of the EC
current density could deviate from that calculated by beam tracing codes and its experimental
determination is again very demanding.

5.3 Active NTM stabilization in ITER

In the ITER tokamak, the EC launchers devoted to the control of MHD activities (primarily
NTMs) will be located in four access ports in the upper part of the vacuum vessel [137, 138].
From each port, eight beams will be aimed at the plasma from two rows. The total installed
power is planned to be 24 MW. Subtracting the losses along the transmission lines, a maximum
of 20 MW should reach the plasma. Alternatively, this power can be injected from an equatorial
port to heat and drive a part of the plasma current near the centre of the plasma column. At
the time of writing, the system is entering its final design phase.

The first requirement to be fulfilled by the upper launcher (UL) is that the stabilization
criterion ηNTM > 1.2, Eq. (5.10), is satisfied at full injected power, for a selected number of
ITER plasma scenarios which are assumed to be prone to NTMs. Depending on the plasma
parameter, the location of the q = 3/2 and q = 2 surfaces and its intersection with the resonance
layer can shift in space with respect to the antenna position. An optimal design requires that
the mirrors steering the beams onto the corresponding surfaces ensure a sufficient focusing to
generate a high current density. Priority is given to full stabilization of NTMs developing on
the q = 2 surfaces (where NTMs are most deleterious for confinement loss and as disruption
precursors) for Scenario 2, which is designed to achieve the main mission of ITER, namely a
gain factor Q = 10 (see Ref. [3] for a discussion of the scenarios presently considered for ITER).
The spatial arrangements of the UL beams and the plasma for ITER Scenario 2 can be seen in
Fig. 1. For a nominal magnetic field on axis B = 5.3 T and an injected frequency ω/2π = 170
GHz, the cold resonance (for the fundamental cyclotron harmonic n = 1) lies slightly on the
high-field side of the magnetic axis.

The beam steering is planned to occur in the poloidal direction at a fixed optimal toroidal
injection angle. This optimal angle has been found to be around 20◦ [139] and results from
a compromise between a high total driven current (which increases with k‖ and hence with
the toroidal angle, as long as the resonance is met) and a good localization of the absorption
profile, which deteriorates at large angles due to the large Doppler shift, leading to a drop in the
current density even if the total current still increases. The final value of the toroidal angle of
the UL will result from a refined analysis, including a more comprehensive performance criterion
(see end of Sec. 5.2), a more accurate evaluation of the driven current to include momentum
conservation in collisions of fast resonant electrons with the thermal bulk [140, 141], and the
detailed launcher design, yielding the degree of superposition of the beams injected from a given
row [142].
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Fig. 1. Beam paths for injection from the ITER Upper Launcher towards the q = 1.5 surface (left, red contour)

and q = 2 surface (right, violet contour). Also shown is the location of the cold resonance (nearly vertical green

line). The location of beam absorption is highlighted as a thicker region along the beam axis (TORBEAM [18]

runs).

The first result of the performance analysis carried out according to the criteria explained
above was that the original idea of a beam steering operated without moving components
facing the plasma (remote steering [143]) had to be abandoned, although technically attractive,
since a sufficient steering range could be achieved only at the expenses of an unacceptable
loss of beam focusing [132]. On the contrary, an antenna based on the front-steering design
subsequently developed has been shown to satisfy the criterion ηNTM > 1.2 with a large margin
for all the plasma scenarios included in the analysis, bringing the power requirement down to
approximately 2/3 of the 20 MW mentioned before [144]. This means that the constraint on
beam focusing, i. e. on current density, could be relaxed. This flexibility has been exploited to
increase steering range of the antenna, thus allowing a synergy with the equatorial launcher and
extending the range of possible physical applications [19]. In particular, driving EC current in
the vicinity of appropriate flux surfaces can be used to induce localized changes in the plasma
current profile that can be used to control the period of the sawtooth instability (injection
around q = 1 [145]), which is often found to act as a trigger for the NTM instability (cf.
Sec. 2.1.2), or to enter the frequently-interrupted-regime of NTMs, in which the mode does not
grow to its saturated width due to a coupling with a m + 1, n + 1 ideal mode (demonstrated
for current drive around the q = 4/3 surface [146]).

According to this “extended physics” approach, at the actual design stage the tasks of the
UL are split between the two steering mirrors, upper and lower, mounted in each port (one
mirror for each row of four beams). There is thus a maximum of 16 beams reaching the plasma
from the four lower mirrors or from the four upper mirrors. Assuming that each beam line is
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connected to a 1 MW EC-wave generator (gyrotron) and a transmission loss of 5/6 as before,
the maximum power injected from each row is 13.3 MW. The lower mirrors should cover the
outer region of the plasma (the most critical for NTMs), whereas the upper mirrors have an
increases steering range to reach down to the q = 1 surface. The UL performance calculated
for scenario 2 in terms of the figures of merit discussed in the previous section, Eqs.(5.10,5.11),
is shown in Table 1.

q ηNTM wcd [cm] ηNTMwcd [cm]
2 2.8 2.4 6.7
3/2 1.8 3.8 6.8

Table 1. Figures of merit for NTM stabilization employing the ITER Upper Launcher (scenario 2).

For other scenarios, where the resonant surfaces move outwards or inwards with respect to
scenario 2, the figures of merit for NTM stabilization are still satisfied, although with a reduced
margin [19].

The whole discussion reported above is focused on the requirements on the EC system in
order to achieve full NTM stabilization (vanishing island width). In fact, the presence of a
magnetic island implies a confinement deterioration, as already mentioned in Chapt. 1. The
reduction of the energy confinement time τE is usually quantified in terms of the so-called belt
model [147], according to which ∆τE/τE = 4Wr3s/a

4 (the confinement decreases linearly with
the island width and with the third power of the minor radius of the resonant surface), so
that a complete stabilization of the mode looks meaningful. In ITER, however, this is not
necessarily always the best choice to minimize the impact of the tearing modes on the fusion
gain Q, as the injected EC power itself leads to a deterioration of the power balance, i. e. to
a decrease of the fusion gain Q, cf. Eq. (1.2). In this sense, it could be not beneficial to have
the EC waves turned on the whole time. The best strategy will be a trade-off between several
factors: besides the impact of the injected EC power on Q, also the frequency of the trigger
events (and the possibility to influence it) and the time required to stabilize the mode. This in
turn depends critically on the strength of the various stabilizing and destabilizing mechanisms,
on the size of the initial (seed) island and on the delay between mode detection and the start
of the suppression process. Our ability to determine or constrain these parameters through
simulations and dedicated experiments in present tokamaks will be of crucial importance for a
successful planning of the best approach to tearing mode control on ITER.
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Chapter 6

Synopsis

Good confinement of particles and energy in a toroidal fusion reactor is based on the presence
of nested toroidal magnetic surfaces, which to a large degree inhibit the plasma particles from
escaping radially from the hotter and denser core to the edge. This desirable configuration can
be lost at radial positions that are prone to magnetic reconnection, since the radial magnetic
field related to the appearance of a magnetic island allows the particles to stream across the
reconnected region. For this reason, and because of their role as precursors of disruption events,
magnetic islands represent a threat for the confinement of the plasma in a tokamak and even
for its very safety. Understanding under which conditions magnetic islands appear and grow,
and how their evolution can be actively controlled is thus a crucial task to achieve the targeted
performance in a fusion device.

The stability of the tearing mode is determined by the interplay of disparate phenomena,
taking place on different space and time scales and no theory is presently able to give a complete
description of the evolution of tearing modes in present and future machines. In particular, the
characterization of the stability of a small island, i. e. of the processes leading to its initial
growth or suppression, is still a challenge for both theory and experiment. In this thesis, it
has been shown that while a qualitative description of the tearing mode can be obtained in the
frame of a fluid theory employing a simplified planar geometry, the explanation of the behaviour
observed in a tokamak requires a more sophisticated approach. Thus, the results presented in
Chapt. 3 and 4 are based on a kinetic description, that retains the different response of the
particles to the island perturbation depending on their position in velocity space. Moreover,
the toroidal geometry typical of a tokamak, with its magnetic-field inhomogeneity and the
connected change of the particle orbits with respect to the planar case, has been included in all
our numerical simulations.

A main focus of this thesis has been on the neoclassical contributions to the island dynamics
(bootstrap and polarization current) at island widths comparable with the radial orbit width
of the particles. This situation, encountered under experimental conditions in the early phase
of the tearing instability in a tokamak, is outside the range of validity of the standard analytic
treatment but is accessible to a numerical study. The drive of the mode, due to the drop of the
bootstrap current inside the island, is found to be strongly modified with respect to a simple
extrapolation of the large-island theory. Ions drifting across the island restore part of the missing
current inside it. If the mode rotates, the ion response to the related electrostatic potential
leads to a density perturbation. The consequent current perturbation acts as stabilizing if the
island rotates in the electron diamagnetic direction. This leads to the general conclusion that
small magnetic islands are more stable against the neoclassical drive than assumed neglecting
finite-orbit effects. Such effects also reduce the neoclassical polarization current produced by the
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island rotation and hence its impact on the tearing mode, whether stabilizing or destabilizing.
Moreover, kinetic studies have shown that resonances between the precession of the trapped
particles around the torus and the island rotation can overcome the polarization current, yielding
an opposite contribution to the island evolution. A further key aspect discussed here is the
coupling between small-scale and large-scale fluctuations in the presence of an island under
typical tokamak conditions. The growth of long-wavelength components of the electrostatic
potential (corresponding to the angular extension of the island) through turbulent fluctuations
has been shown to lead to a feedback on transport, reducing in particular the flows across
the separatrix at the O-point level and favouring X-point fluxes. This means that the usual
calculation of diffusion across the island region, based on constant diffusion coefficients, is only
qualitatively valid. Moreover, large-scale electrostatic fluctuations can give a contribute to the
radial transport which is comparable to the radial transport along the perturbed magnetic field.
Finally, these simulations represent a first step towards a simultaneous description of turbulence
and island dynamics in a torus.

Indeed, in the present work a price has been paid for retaining the details of phase-space
behaviour of the particles in a realistic tokamak a geometry. Most of the results concern the
influence of an island with prescribed width and rotation frequency (and associated potential)
on the evolution of the electric currents and fields in its vicinity, but do not close the feedback
loop on the evolution of the island itself. Studies to fill this gap have already been started.
The investigation of the island potential as derived from a numerical solution of the gyorkinetic
Poisson equation is under way, as reported at the end of Sec. 3.2, and first results confirm the
validity of the conclusions on the stability of small island discussed above. The feasibility of
simulations resolving both turbulence and island time scales and the related nonlinear inter-
action between small and large scales has been demonstrated for realistic tokamak turbulence
in gyrofluid simulations, cf. Sec.4.2. With the present progress of the physical understanding,
of the numerical tools and of the computer resources, self-consistent gyrokinetic simulations of
magnetic islands capable to resolve both turbulence and MHD scales involved in the problem
could be within reach in the next few years.

In Chapt. 5 it has been finally shown that much progress has been achieved also in the field
of an active control of magnetic islands. In particular, injection of electron cyclotron waves in
the island region can be used to replace the missing plasma current inside the island and hence
reduce or suppress the tearing mode. A launcher dedicated to the control of MHD instabilities
in general and tearing modes in particular is being developed for ITER. Preliminary results
based on the present design show that the required stabilization criteria can be met.
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Appendix A

Collisionality regimes in the linear
theory of the tearing mode

A deeper insight into the linear dynamics of the tearing mode can be gained by distinguishing
between different collisionality regimes, as this clarifies the role of ions and electrons and the
assumptions underlying the MHD description presented in Sec. 2.2.

The model adopted in this appendix involves three equations for the unknown functions ñ
(perturbed electron density), φ̃ (electrostatic potential) and Ã‖ ' Ãz (perturbed parallel vector
potential):

d
dt

(
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In these equations, n0 is a constant background density used for normalization, c2s = Te/mi is
the square of the sound speed, ρs = cs/Ωi is the sound Larmor radius, 1/Ln = −(1/n0)dn0/dx
is the scale length of the density profile, βe = 4πn0Te/B

2 measures the ratio between kinetic
and magnetic pressure and

ρ2
s∇2

⊥

(
Ã‖

βeρsB

)
= −

J̃‖
en0cs

, (A.4)

which is identical to Eq. (2.13). This three-field model, that allows us to reproduce the phe-
nomenology described by Drake and Lee [37], can be derived from the two-fluid equations [22]
with cold ions (Ti � Te) and isothermal electrons and correspond to the set discussed by Scott et
al. [148], under the additional assumption of slow parallel ion motion, i. e. that sound waves are
negligible (k‖cs � ω). Physically, Eqs. (A.1-A.3) represent electron continuity, quasi-neutrality
and Ohm’s law (parallel momentum balance for electrons) respectively. The first term on the
right-hand side of Eq. (A.1) represents the contribution of the background density gradient to
the density advection (vE ·∇n0) and in the last term the fact that the parallel current is carried
only by the electrons has been taken into account (Eq. (A.4) is used to express J̃‖ in terms of
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Ã‖). The form left-hand side of Eq. (A.2) is due to the fact that in this slab model the only
contribution to −∇⊥ · J̃⊥ is due to the polarization current Jpol = −(min0c

2/B2)d/dt(∇⊥φ),
see Eq. (3.6) for its neoclassical counterpart (which is larger by a factor B2/B2

p). Eq. (A.3)
reproduces the parallel component of Eq.(2.5), with the electric field split into its inductive and
electrostatic components and the contribution of the perturbed magnetic field to the parallel
gradient appearing in the term before last.

A.1 Linear two-fluid analysis and collisionality regimes

The linear dynamics of the tearing mode depends on whether the frequency ωe at which the
electrons drift by one wavelength while streaming along the field lines is faster or slower than the
growth rate γ of the mode [37]. If ωe � γ, the physics is governed by the electrons only, since
they average out during their motion the periodic field Ẽ‖ induced by the growing magnetic
perturbation. If the electron-ion collision frequency νe is much smaller than γ, the only effect
which prevents the electrons from flowing infinitely fast along the field lines is their finite mass
(inertia) and ωe = k‖vth,e. This regime is called collisionless and the condition Ẽ‖ = 0 is reached
at a distance x ≈ ∆ from x = 0 where k‖vth,e starts to exceed γ. If, on the other hand, γ � νe,
the electrons diffuse along the field lines, rather than freely stream along them, with a diffusion
coefficient D = v2

th,e/νe and the width of the layer is determined by ωe = k2
‖v

2
th,e/νe ≈ γ (semi-

collisional regime). At high collisionality, the motion of the electrons is strongly inhibited and
ωe becomes smaller than γ. In this case, charge separation occurs and an electrostatic potential
develops. The tearing-layer width is then the distance from x = 0 at which the electric field
−ik‖φ̃ is strong enough to compensate the induced field −γÃ‖/c. This collisional case, in which
the ion dynamics becomes important, has already been described through the equations of
resistive MHD (to which Eqs. (A.1-A.3) reduce under these conditions, see below) in Sec. 2.2.
To account for the collisionless and semi-collisional regime, we need the more refined model
presented above, which is able to account for electron and ion continuity separately. We start
neglecting the terms proportional to the equilibrium density gradient, which will be considered
in Sec. A.2:
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ñ

n0
− eφ̃

Te

)
− me

mi
νe

J̃‖
en0cs

. (A.7)

Eqs.(A.5-A.7) are the starting point of the linear investigation of the tearing mode presented in
this section, where only the imaginary part of ω (i. e. the growth rate γ) is retained, since the
analysis will show that the currents which develop in the sheet pinch when background density
gradients are neglected only contribute to the growth of the tearing mode and not to its drift.

A.1.1 Collisionless regime

As discussed previously, in the collisionless regime we have γ � νe and the quickness of the
response of the electrons to the induced parallel electric field is just determined by their iner-
tia. Moreover, we have no charge separation and we can neglect the electrostatic potential φ̃
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altogether. Eqs. (A.5-A.7) reduce to

d
dt

(
ñ

n0

)
= ∇‖

(
J̃‖
en0

)

βe
∂

∂t

(
Ã‖

βeρsB0

)
= cs∇‖

(
ñ

n0

)
− me

mi

d
dt

(
J̃‖

en0cs

)
.

In a linear analysis, substituting ∂/∂t→ γ and ∇‖ → ik‖, it is immediate to eliminate ñ from
the previous equations. In the central layer, the derivatives along y are neglected with respect
to those in the x direction, ∇2

⊥ ' ∂2/∂x2. Recalling Eqs. (2.19,A.4), the equation for Ã‖(x) is:

c2

ω2
pe

∂2Ã‖
∂x2

=
Ã‖

1 + (vth,eky/γLs)
2 x2

,

where ω2
pe = 4πn0e

2/me is the electron plasma frequency and the relations meρ
2
s/miβe = c2/ω2

pe

and mic
2
s/me = v2

th,e have been used. The integration of this equation across the central layer
can be simplified by observing that, as shown in the analysis of the outer region (Sec. 2.2.1),
∂Ã‖/∂x is discontinuous across x = 0 but Ã‖ is continuous and can be approximated by its
central value (constant-ψ approximation [36]):

c2

ω2
pe

∂Ã‖
∂x

∣∣∣∣∣
∆

−∆

= Ã‖(0)
∫ ∆

−∆

dx
1 + (vth,eky/γLs)

2 x2
. (A.8)

Matching this equation to the external solution implies that the jump in the first derivative
of Ã‖ on the left-hand side equals ∆′Ã‖(0), see Eq. (2.17). The width ∆ of the inner layer is
determined as the region in which the function on the right-hand side significantly contributes
to the integral, i. e. ∆ ≈ γLs/vth,eky. Physically, ∆ corresponds to the distance from x = 0
at which γ = k‖vth,e, as anticipated above. Extending the integral from −∞ to +∞ introduces
just a small error and allows us to write (omitting the factor π resulting from the integral)

γ =
∆′kyvth,e

Lsk2
0

≡ γcl (A.9)

(where 1/k0 = c/ωpe is the collisionless skin depth). Substituting Eq. (A.9) into the expression
for ∆ yields

∆ =
∆′

k2
0

≡ ∆cl. (A.10)

As shown by Eq.(2.17), ∆′ scales as 1/a. Since typically k0a� 1, the width of the central layer
is much smaller than 1/k0 and hence ∆cl � ρi, since in most fusion plasmas the ion Larmor
radius is larger than the collisionless skin depth.

A.1.2 Semi-collisional regime

If the collision frequency exceeds the growth rate, the electron diffuse along the field lines
rather than freely streaming along them. As in the collisionless case, no electrostatic potential
is generated, but now the collision term in Eq. (A.7) replaces the electron inertia:

d
dt

(
ñ

n0

)
= ∇‖

(
J̃‖
en0

)

βe
∂

∂t

(
Ã‖

βeρsB0

)
= cs∇‖

(
ñ

n0

)
− me

mi
νe

J̃‖
en0cs

.
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After linearizing and eliminating ñ from the previous equations we find that in the semi-
collisional regime Eq. (A.8) is substituted by

c2

ω2
pe

∂Ã‖
∂x

∣∣∣∣∣
∆

−∆

=
γ

νe
Ã‖(0)

∫ ∆

−∆

dx

1 +
(
v2
th,ek

2
y/γνeL2

s

)
x2
, (A.11)

which implies a width of the inner layer ∆ ≈ (γνe)1/2Ls/kyvth,e. Proceeding as in the colli-
sionless case and ignoring again the factor π resulting from the integral on the left-had side,
Eq. (A.11) becomes ∆′/k2

0 = (γνe)∆, so that the growth rate

γsc = ν1/3
e γ

2/3
cl (A.12)

and the layer width

∆sc =
ν

1/2
e Ls

kyvth,e
ν1/6

e γ
1/3
cl =

(
νe

γcl

)2/3

∆cl. (A.13)

immediately follow. Since in the semicollisional regime discussed here it is supposed that the
collision frequency exceeds the growth rate, Eq.(A.13) shows that collisions broaden the region of
particle acceleration (correspondingly reducing the current density within the layer, as explained
in Sec. 2.2.1). From Eq.(A.12) it follows that also the growth rate increases in the semi-collisional
case as compared to the collisionless case.

A.1.3 Collisional regime

If the collisionality is high enough, electrons alone cannot short out Ẽ‖ on a scale faster than
γ and an electrostatic potential arises from charge separation. To describe the electrostatic ion
response, Eqs. (A.5-A.7) are appropriate only if ∆ � ρi, as they hold only for magnetized ions,
for which the basic perpendicular drift is due to polarization, i. e. to a time dependent E×B
velocity. The assumption ∆ � ρi will be verified once ∆ has been calculated. The electron
current is, in this case, due to quasi-neutrality rather than electron continuity and the equations
to be solved are

d
dt

[
ρ2

s∇2
⊥

(
eφ̃

Te

)]
= ∇‖

(
J̃‖
en0

)

βe
∂

∂t

(
Ã‖

βeρsB0

)
= −cs∇‖

(
eφ̃

Te

)
− me

mi
νe

J̃‖
en0cs

.

which are perfectly equivalent to the collisional MHD equations (2.11,2.12) since η = 4πνe/ω
2
pe.

Following the linearization procedure described for the collisionless and semicollisional regimes
and eliminating φ̃ from the previous equations (simplifying ∇2

⊥φ̃ ≈ −φ̃/x2) the dispersion
relation is obtained in the form

c2

ω2
pe

∂Ã‖
∂x

∣∣∣∣∣
∆

−∆

=
γ

νe
Ã‖(0)

∫ ∆

−∆

dx

1 +
(
v2
th,ek

2
y/γνeρ2

sL
2
s

)
x4
, (A.14)

which leads to the estimate for the layer width ∆ ≈ (γνe/ΩiΩe)1/4(Ls/ky)1/2 and (again ne-
glecting a factor

√
π/2 arising from integration) to the growth rate

γ5/4 =
∆′

k2
0

(
ky

Ls

)1/2 (
ν3

eΩeΩi

)1/4
⇒ γc =

(
∆cl

ρi

)2/5

γ
2/5
cl ν3/5

e . (A.15)

52



The layer width can now be written

∆c =
(
νe

γcl

)2/5

ρ
2/5
i ∆3/5

cl . (A.16)

The previous results for γc and ∆c of course coincide with the expressions obtained in Sec. 2.2.2.
This analysis shows that both γ and ∆ increase monotonically with the collision frequency

νe. In particular, ∆ ranges from a value well below the ion Larmor radius (collisionless regime)
to a level ∆ � ρi in the collisional regime, the condition ∆ ≈ ρi denoting the transition between
the semi-collisional and the collisional regime. Eqs. (A.9,A.12,A.15) clearly show that the sign
of the stability parameter ∆′ calculated in the outer region, Eq. (2.17), determines the sign of
the growth rate, i. e. the stability of the mode.

A.2 Drift tearing modes

In the presence of a background density gradient, the term proportional to L−1
n must be retained

on the right-hand side of both Eqs. (A.1) and (A.3). These terms change qualitatively the
dynamics of the tearing instability, since they introduce a rotation of the mode which was
absent in the picture presented in the previous section. This rotation is associated with a
fundamental plasma oscillation called the drift wave (or, if also the vector potential is involved,
the drift Alfvén wave), cf. Sec 4.1. For this reason, rotating tearing modes are also called drift
tearing modes.

As an example, the collisionless regime is discussed here. For γ � νe, the starting point are
following equations:

d
dt

(
ñ

n0

)
= ∇‖

(
J̃‖
en0

)

βe
∂

∂t

(
Ã‖

βeρsB0

)
= cs∇‖

(
ñ

n0

)
− me

mi

d
dt

(
J̃‖

en0cs

)
− cTe

eBLn
βe

∂

∂y

(
Ã‖

βeρsB0

)
.

Linearizing as before, substituting ∂/∂t → −iω, ∂/∂y → iky and introducing the diamagnetic
frequency ω∗ = kycTe/eBLn, a dispersion relation similar to Eq. (A.8) is obtained

c2

ω2
pe

∂Ã‖
∂x

∣∣∣∣∣
∆

−∆

= Ã‖(0)
ω − ω∗
ω

∫ ∆

−∆

dx
1− (vth,eky/ωLs)

2 x2
. (A.17)

Writing the width of the inner layer as ∆ ≈ −iωLs/kyvth,e, the previous equation becomes

∆′

k2
0

=
ω − ω∗
ω

(
−iωLs

kyvth,e

)
π.

Separating real and imaginary part, we obtain ωr = ω∗ and γ = ∆′kyvth,e/πLsk
2
0. In the

collisionless regime, the growth rate of the mode is not influenced by the density gradient,
cf. Eq. (A.9) and the rotation frequency is given by the diamagnetic frequency. The treatment
of the singularity on the right-hand side of Eq. (A.17), that has been removed simply with a
convenient definition of ∆, relies on the kinetic analysis presented in the next section.
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A.3 Linear kinetic description

In a kinetic approach, the source terms in Poisson and Ampère equations, i. e. the charge
density and the current density, are calculated as the zeroth and first-order moments of the
distribution function, that satisfies the kinetic equation. As in the two previous sections, the
analysis developed here concerns the central layer, and the solution for Ãz has to be matched
again with that obtained in the outer region (some comments on the outer layer are made at
the end of the section). In the inner layer, the derivatives with respect to y are neglected with
respect to those in the x direction and the relevant Maxwell equations read

∂2φ̃

∂x2
= 4πe (ñe − Zñi) (A.18)

∂2Ãz

∂x2
= −4π

c
J̃z. (A.19)

In the determination of the current, only the motion of the much more mobile electrons is
considered. Correspondingly, only the kinetic equation for the electrons is addressed explicitly
here. It was shown in Sec. A.1 that in the collisionless and semicollisional regime the ions do
not contribute to the tearing mode dynamics. Explicit results are known for the ion response
needed for the collisional regime [149]. In this section, only the solution for the collisionless
tearing mode is derived and compared to that found in the previous section.

In a current slab, equilibrium quantities depend on the x coordinate only. The equilibrium
distribution function can be written as a shifted Maxwellian

f0 ≈ fM

(
1 +

mvzuz

T

)
,

where the velocity in the z direction uz = −(c/4π)B0/en0Ls � vth,e yields the equilibrium
current that generates the equilibrium field B0y = xB0/Ls.

The linearized kinetic equation reads

∂f̃

∂t
+ v · ∇f̃ + C(f̃) = −ṽ · x̂∂f0

∂x
+

e

m

(
Ẽ +

v × B̃
c

)
· ∂f0

∂v
(A.20)

with the collision operator C = −(ν/2)(∂/∂v) · (v2I − vv) · (∂/∂v). Assuming again the
perturbation to vary as exp[i(kyy − ωt)] and considering the relation between the parallel and
the y direction, the previous equation becomes finally

−
[
i
(
ω − k‖v‖

)
+
ν

2
∂

∂v
·
(
v2I− vv

) ∂

∂v

]
f̃ = (A.21)

ikyc

TB

(
φ̃−

v‖
c
Ã‖

)[
dn0

dx
T

n0
+m(vz − uz)

duz

dx

]
fM −

(
v‖Ẽ‖ − Ẽzuz +

ik‖v‖Ãz

c
uz

)
efM

T
,

where the temperature gradient has been neglected to facilitate the comparison with the fluid
results presented in the last section. In Ẽz, the electrostatic term ik‖φ̃ can be neglected with
respect to the last term of Eq. (A.21), so that the solution of in the collisionless regime ν → 0
can be immediately written as

f̃ =
−ieẼ‖v‖
ω − k‖v‖

(
1− ω∗

ω

)
fM

T
+
ω∗
ω

eφ̃

T
fM − eÃz

c
uz
fM

T
. (A.22)
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In this expression, a term (k‖v‖/ω)φ̃ has been added and subtracted and the diamagnetic
frequency ω∗ = kycT/eBLn is defined as in Sec. A.2. In the inner layer, the equilibrium
current is assumed to be nearly constant and the term proportional to duz/dx is dropped. It is
important for the determination of ∆′ in the outer region, since it represents the contribution
of the unperturbed current-density gradient to the current perturbation, as shown at the end
of this section. The last two terms on the right-hand side of Eq.(A.22) do not contribute to the
perturbed electron current in the inner layer, which is therefore

J̃z = −e
∫
v‖f̃d3v =

ie2Ẽ‖
T

(
ω − ω∗
ω

)∫ ∞

−∞

v2
‖fM

ω − k‖v‖
d3v.

The treatment of the singularity arising for parallel velocities matching the propagation velocity
of the mode can be performed by following the prescription of Landau [150], who first showed
that, at the resonance, a plasma wave can be damped or driven depending on whether there
are more particles with slightly lower or slightly higher velocity than the phase velocity of the
wave. The physics of Landau damping is described in several textbooks and is not discussed
here. The resonant integral can be expressed in terms of the plasma dispersion function [151]
Z(ω/k‖vth,e) employing the relation Z ′(ζ) = −2(1 + ζZ(ζ)) as

J̃z =
iω2

pe

4πω

(
ω − ω∗
ω

)
Ẽ‖

(
ω

k‖vth,e

)2

Z ′
(

ω

k‖vth,e

)
.

As we know from Sec. A.1, in the collisionless regime we can neglect the contribution of φ̃ to Ẽ‖
and write Ẽ‖ = iωÃ‖/c. Inserting the previous expression for J̃z in Eq. (A.19) and integrating
across the inner layer, a dispersion relation similar to Eq. (A.17) is obtained:

c2

ω2
pe

∂Ã‖
∂x

∣∣∣∣∣
∆

−∆

= Ã‖(0)
ω − ω∗
ω

∫ ∆

−∆

(
ω

k‖vth,e

)2

Z ′
(

ω

k‖vth,e

)
dx. (A.23)

The integral on the right-hand side yields −2i
√
πωLs/kyvth,e, so that separating real and imag-

inary part we have ω = ω∗ and γ = ∆′kyvth,e/2
√
πk2

0Ls, confirming the validity of the results
presented in the previous section.

As mentioned before, the gradient of the equilibrium current profile is accounted for by the
term containing duz/dx in Eq.(A.21). As known from Sec. 2.2, this term represents the source
of free energy which can lead to an instability and is fundamental to determine the stability
parameter ∆′ in the outer region from ∇‖J‖ = 0, see Eq. (2.14). Indeed, the outer domain is
defined as the region where the electric field perturbation Ẽz caused by the growing mode is
shorted out, ω � k‖v‖. If we neglect ω in the resonant denominator and include the duz/dx
term in f̃ , Eq.(A.22), we see that this actually is the only term leading to a current perturbation
in this limit,

J̃z = −e
∫
v‖f̃d3v = − B̃x

ikyB0y

∂J0z

∂x
, (A.24)

where in the last step we wrote ky/k‖ = B0/B0y and Ãz = B̃x/iky. The current given by
Eq. (A.24) satisfies Eq. (2.14).
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Appendix B

Useful identities

a · (b× c) = b · (c× a) = c · (a× b) (B.1)
a× (b× c) = (a · c)b− (a · b)c (B.2)
(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) (B.3)
∇ · (fa) = f∇ · a + a · ∇f (B.4)
∇× (fa) = f∇× a +∇f × a (B.5)
∇ · (a× b) = b · ∇ × a− a · ∇ × b (B.6)
a× (∇× b) = (∇b) · a− (a · ∇)b (B.7)
∇(a · b) = a× (∇× b) + (a · ∇)b + b× (∇× a) + (b · ∇)a (B.8)
∇× (a× b) = a(∇ · b)− b(∇ · a)− (a · ∇)b + (b · ∇)a (B.9)
∇× (∇× a) = ∇(∇ · a)−∇2a (B.10)
∇× (∇f) = 0 (B.11)
∇ · (∇× a) = 0 (B.12)
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Abstract

The beam tracing technique is used to describe the propagation and absorption of Gaussian wave beams with frequencies
in the electron-cyclotron frequency range in a fusion plasma. Like in the standard ray tracing method, Maxwell’s equations
are reduced to a set of first-order ordinary differential equation. The technique employed here, however, allows for diffraction
effects, neglected by the geometrical-optics procedure. The beam is specified in terms of the trajectory of the beam axis, the
evolution of both the curvature of the wave front and the width of the field profile, as well as the absorption of the wave energy
by the plasma. A Fortran code is presented, which solves the beam tracing equations in a tokamak geometry for arbitrary
launching conditions and for both analytic and experimentally prescribed magnetic equilibria. Examples of wave propagation,
power deposition and current profiles are computed and compared with ray tracing results. 2001 Elsevier Science B.V. All
rights reserved.

1. Introduction

Electromagnetic wave beams in the frequency range of the electron-cyclotron (EC) resonance play an important
role in the physics of fusion devices. They are employed for heating and current drive, as well as for diagnostic
purposes. From a theoretical viewpoint, the most known and widespread technique used to perform calculations
concerning propagation and absorption of EC waves is surely the geometrical optics (GO) approach [1–3]. This
technique is applied whenever the radiation wavelengthλ is much smaller than the inhomogeneity scale of the
mediumL, i.e. whenever it is possible to introduce a parameterµ, such that

µ ≡ ωL

c
� 1, (1)

whereω/2π is the wave frequency andc is the speed of light. This condition is usually well satisfied for the case
of EC waves in tokamak plasmas. GO reduces Maxwell’s equations to a set of first-order ordinary differential
equations, thus greatly simplifying the solution of the problem, since it gives a simple and intuitive picture of wave
propagation (in terms of rays) and allows a straightforward numerical implementation.

* Corresponding author.
E-mail address: emp@ipp.mpg.de (E. Poli).

0010-4655/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(01)00146-1
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Unfortunately, the lowest-order GO equations do not retain typical wave effects, such as interference and
diffraction. In fact, Eq. (1) is only a necessary condition for applicability of the ray method [4], but not a sufficient
one. For instance, it can be shown that in a homogeneous medium the effects of diffraction can not be neglected if
W2 � λ
, whereW is the width of the beam and
 is the length of the propagation path. Hence, diffraction becomes
important if
 is sufficiently large. Moreover, if one takes
 ≈ L (inhomogeneous medium), diffraction effects are
significant forW ≈ √

λL, i.e. for

W

L
≈ 1√

µ
. (2)

Several methods, such as the parabolic equation [5–8] or the complex-eikonal method [9–12], have been proposed
in order to solve Maxwell’s equations taking advantage from condition (1) without neglecting diffraction. However,
they require the solution of a set ofpartial differential equations, thus losing one of the most attractive features of
GO.

In the beam tracing (BT) approach [13], on the contrary, a set ofordinary differential equations is obtained.
These equations give the evolution of the axis of the beam and of a set of parameters connected with the curvature
of the phase front and with the amplitude profile. In the code which is presented here, the BT method is applied
to the significant case of a beam with a Gaussian amplitude profile, or shortly a Gaussian beam. The code allows
the user to calculate the propagation of the beam in a tokamak plasma, as well as the power transferred to the
plasma and the current driven by the wave. It has been shown [11,14,15] that the diffractive broadening of the
beam can lead to significant deviations in the absorption profiles with respect to standard GO calculations. One
of the most attractive features of EC waves is given by the possibility of producing highly collimated beams. A
proper estimation of the profile of power absorption is therefore important in all those applications where a strong
localization of power deposition is desirable.

In this paper, Section 2 is devoted to a brief discussion of the basic equations of the BT technique. The features
of the numerical approach adopted to solve these equations are presented in Section 3. Details about the physics
involved in the numerical solution are given in Sections 4, 5: in Section 4, the toroidal geometry and the plasma
equilibrium which characterize a tokamak experiment are elucidated, whilst the beam description is analyzed in
Section 5. The numerical results of typical test-runs are given in Section 6 and compared with the corresponding
results of GO. Conclusions are summarized in Section 7.

2. Beam tracing method

2.1. Beam tracing equations

In the BT approach, a solution to the wave equation for the electric fieldE

c2

ω2∇ × (∇ × E) − ε · E = 0 (3)

(whereε is the dielectric tensor) is sought in the form

E(r) = A(r)e(r)eiµ(s(r)+iφ(r)), (4)

whereA is the amplitude ande the unit polarization vector. The phase of the waves(r) ≡ s(r) + iφ(r) includes a
real part, which has the same meaning as in usual GO, and an imaginary part connected with the description of the
Gaussian field profile, or, in other words, with the transverse (with respect to the propagation direction) structure
of the beam. The functionφ(r) � 0, therefore, is not connected with the damping of the wave due to absorption.

As in GO, the short-wavelength limit condition (1) is supposed to hold. In addition, it is assumed that the beam
width is ordered such thatλ � W � L (this is the case in a typical experimental set-up). It is recalled [cf. Eq. (2)]
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that diffraction effects become significant just in this limit. Physically, it is supposed that the field amplitude
|E| varies faster across the propagation direction (due to its Gaussian shape) than along it (due to refraction and
absorption). This assumption, which is made also in the approach of parabolic equation, is exploited to simplify
the quasi-optical equations [13,16] by means of aparaxial expansion of the wave field around the beam axis. This
amounts to performing an expansion of the amplitude profile into Gaussian modes. The lowest-order term in such
an expansion gives a purely Gaussian beam, which is therefore called also “Gaussian beam of the lowest order”.
Because of its practical interest, only this case is considered here. It has been shown [12] that within the ordering
assumed here, a Gaussian beam maintains its shape during the propagation.

From the previous discussion, it follows that the complex phase of the wave field in Eq. (4) can be expanded
around the beam axis in the following way (summation over repeated indices is adopted):

s(r) = s0(r) + Kα[xα − qα] + 1
2sαβ [xα − qα][xβ − qβ ], (5)

φ(r) = 1
2φαβ [xα − qα][xβ − qβ], (6)

whereqα andKα are, respectively, the components of the position vector{xα} ≡ r and the wave vector{kα} ≡ ∇s,
calculated on the beam axis. The second-order coefficientssαβ describe the change of the wave vector along the
wave front and are hence related to its curvature. The coefficientsφαβ appear in the real part of the exponential
factor exp(iµs) and are then connected with the width of the amplitude profile. Their meaning is further discussed
in Section 5. The quantitiesqα , Kα , sαβ and φαβ are found as the solutions of the following set ofordinary
differential equations (beam tracing equations) [13]:

dqα

dτ
= ∂H

∂kα

,
dKα

dτ
= − ∂H

∂xα

, (7)

dsαβ
dτ

= − ∂2H

∂xα∂xβ

− ∂2H

∂xβ∂kγ

sαγ − ∂2H

∂xα∂kγ

sβγ − ∂2H

∂kγ ∂kδ

sαγ sβδ + ∂2H

∂kγ ∂kδ

φαγ φβδ, (8)

dφαβ

dτ
= −

(
∂2H

∂xα∂kγ

+ ∂2H

∂kγ ∂kδ

sαδ

)
φβγ −

(
∂2H

∂xβ∂kγ

+ ∂2H

∂kγ ∂kδ

sβδ

)
φαγ , (9)

where

H ≡ det
[
(c/ω)2(−k2I + kk) + εh

] = 0 (10)

is the dispersion function of GO and like in the ray tracing method it is assumed that the anti-Hermitian part of
the dielectric tensor is much smaller than the Hermitian part, so thatH is real. All the derivatives ofH on the
right-hand sides of Eqs. (7)–(9) are to be calculated on the beam axis, the evolution of which is given by the first
two Eqs. (7). Since these equations are nothing but the ray equations of standard GO, it results that the maximum of
the wave field propagates like in GO. The ray given by Eqs. (7) is called the central or reference ray and is denoted
by �.

According to the paraxial expansion, the damping of the wave is calculated on the reference ray only by means
of the equation

d|A|2
dτ

= −(∇ · V + 2γ )|A|2, (11)

whereV ≡ ∂H/∂k andγ ≡ e∗ · εa · e is the absorption coefficient.
It should be finally remarked that the elements of the matrices{sαβ} and{φαβ} are not independent: the symmetry

of the two matrices and the six constraints

sαβVβ + ∂H

∂xα

= 0, (12)

φαβVβ = 0 (13)

must be taken into account.
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Due to the symmetry of{sαβ} and {φαβ}, the number of equations to be solved is 6 [central ray, Eqs. (7)] +
(6+ 6)[{sαβ} and{φαβ}, Eqs. (8), (9)] + 1[wave amplitudeA, Eq. (11)] = 19. The conditionH = 0 (which in the
BT approach holds on� only) and the constraints (12), (13) are used here to prescribe consistent initial conditions
for the beam parameters, and during the run as a check of solution accuracy. It can be noticed that, in contrast to
standard GO, where 7× nr (nr is the number of rays traced) equations are to be solved, here 18+ nb (nb is the
number Gaussian modes; in this paper,nb = 1) equations are considered, showing that the BT method can be even
faster than the ray tracing approach.

2.2. Dispersion function

A fundamental role in Eqs. (7)–(11) is obviously played by the dispersion functionH defined by Eq. (10).
Adopting the usual choice of the cold-plasma dielectric tensorεh [17], H can be readily calculated

H = SN4⊥ + [
D2 −PS − S2 + (P + S)N2‖

]
N2⊥ +PN4‖ − 2PSN2‖ + (S2 −D2)P, (14)

where

S ≡ 1− ω2
p/ω

2

1− ω2
c/ω

2
,

D ≡ −ωc

ω

ω2
p/ω

2

1− ω2
c/ω

2
,

P ≡ 1− ω2
p

ω2

have been introduced and

ωp(r) ≡
√

4πn(r)e2

m
,

ωc(r) ≡ eB(r)
mc

are the electron plasma frequency and the electron cyclotron frequency, respectively (n is the electron density,e the
absolute value of the electron charge andm the electron mass).N‖ is the component ofN ≡ ck/ω parallel to the
confinement magnetic fieldB (i.e. N‖ = N · B/B) andN2⊥ = N2 − N2‖ . In order to avoid singularities atω = ωc ,

the dispersion functionH adopted in the code is actually given by Eq. (14) multiplied by 1− ω2
c/ω

2.
It should be remarked that no mode selection is operated in Eq. (14); with this choice, the derivatives ofH can

be calculated in a simpler way. The mode of the propagating wave is selected by imposing initial conditions that
satisfy the dispersion equationHM = 0 for the required modeM at the starting point and controlling the condition
HM = 0 to be then fulfilled along the whole propagation path.

3. The numerical approach

As mentioned in the introduction, the BT method is applied here to the fusion-relevant problem of propagation
of EC waves in a tokamak configuration. The code presented here has therefore been called TORBEAM, since it
solves the BEAM tracing equations in a TORoidally symmetric geometry. The numerical solution of the problem,
however, has been performed in such a way that the user should be able to adapt the code to a different frequency
range (e.g., lower hybrid waves) or to a different geometry (e.g., stellarator) in a straightforward way. To achieve
this, the choice of a laboratory (fixed) Cartesian coordinate system is the most natural starting point. The connection
between this system and a curvilinear coordinate system suggested by the specific nature of the problem (e.g., a set
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of toroidal coordinates for a tokamak geometry) is provided by separate routines. The beam tracing Eqs. (7)–(11)
are therefore written in this fixed reference frame. Other important features of the numerical approach outlined
here are:

• the plasma equilibrium can be prescribed both analytically and by means of experimental data (cf. Section 4);
• arbitrary initial conditions for the wave beam can be assigned and the beam can be followed in its vacuum-

plasma crossing (cf. Section 5);
• power-deposition and current-drive profiles can be obtained with allowance for the diffractive broadening of

the beam (cf. Section 6).
The code structure is described below. The programming language used is Fortran 77. It is to be remarked

once again that the BT Eqs. (7)–(11) are a set ofordinary differential equations, which can be integrated by
means of a standard Ordinary-Differential-Equations (ODE) solver. The main task of the code is then to supply the
coefficients that appear in the equations, i.e. the first- and second-order derivatives of the dispersion functionH

and the absorption coefficientγ .
• TheMAIN part of the code calls for the input data and the initial conditions for the 19 BT equations, then for

the ODE solver; the results of the integration are given as output, along with absorption and current profiles (the
current-drive efficiency is calculated by the subroutineCURBA, see below);

Initialization routines

• subroutineINPUT reads the input provided by the user, which involves the beam parameters as well as
the plasma parameters for the case of analytic magnetic equilibrium (cf. Section 6); the experimental
equilibrium is loaded by means of

• subroutineGRID; it reads the input data files providing the magnetic configuration of the system and density
and temperature profiles (see Section 4); the derivatives of the relevant quantities are calculated by finite
differences on this grid; the minimization routinePOWELL is used to find the position of the magnetic axis,
if needed;

• subroutineINIT returns the initial conditions for the unknown functions in Eqs. (7)–(11) satisfying the
constraints (12), (13) andH = 0;

Core routines

• the beam tracing equations are written (Cartesian coordinates) in subroutineEQS; the routine is called
directly by the ODE solver and calls in turn the routinesDERVAC, DERIV;

• subroutinesDERVAC, DERIV provide the derivatives ofH (Cartesian coordinates) and the absorption
coefficient in vacuum and in the plasma, respectively; on the vacuum-plasma boundary the initial conditions
are re-calculated in subroutineINTERF;

• subroutineOCOP givesω2
c/ω

2 andω2
p/ω

2 and their derivatives with respect to the Cartesian reference
frame; this is obtained by calling the subroutinesINVER, INVDER, MAGDER, DENDER for the case
of analytic equilibrium and the subroutineOCPEXP for the case of experimental equilibrium;

• subroutinesROT, NBIG, NPAR, NPERP calculate the components ofN2‖ , N2⊥ and their derivatives
(Cartesian coordinates);

Geometry-dependent routines

• subroutineELTEMP supplies the electron temperature needed by the absorption routineDAMPBQ;
• the numerical inversion from the Cartesian to the toroidal coordinates (cf. Section 4) is performed by

subroutinesINVER, INVDER (analytic equilibrium);
• the magnetic-field profile and the density profile, along with their derivatives, are expressed in term of

the toroidal coordinates in subroutinesMAGDER, DENDER (analytic equilibrium); in case of experimental
equilibrium, they are provided by
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• subroutineOCPEXP; it is remarked that for the case of a magnetic equilibrium prescribed by experimental
data it is always possible to prescribe density and temperature profiles analytically;

Interpolation routines (experimental equilibrium)
the subroutinesIJOUT, INTPSI, INTPB, INTDAB, INTPOP, INTPTE provide the polynomial inter-
polation of the various quantities loaded inGRID by calling

• POLIN2, POLINT, POLCOF, DDPOLY [18];

Auxiliary routines

• the subroutineCOEF computes coefficients needed in theMAIN for current-drive calculations;
• subroutineELLPSE calculates the amplitude profile of the beam;
• subroutinePLPNTS gives the points to be stored in a file for plotting purposes;
• subroutineCARTES performs the numerical transformation from poloidal to Cartesian coordinates

(experimental equilibrium);
• POWELL [18] is a minimization routine; it callsLINMIN, NMBRAK;
• GETDLP, IFBAUG are routines used for the application of the code at ASDEX Upgrade to load

experimental data files;

Absorption and current drive routines

• DAMPBQ (by Westerhof [19]) employs the weakly relativistic approximation for the dielectric tensor and
gives the imaginary part of the wave vectork′′ as output [cf. Eq. (15)];

• CURBA (by Cohen [20]) calculates the current drive efficiencyη [defined in Eq. (16)] including effects of
trapped particles, as well as ion-electron collisions and poloidal variation of the collision operator;

ODE solver
the routine employed here isLSODE (by Hindmarsh [21]).

It can be seen that the core of the code, which is written in Cartesian coordinates, is geometry-independent.
The properties of the system that depend on the geometry are connected with the core by means of the interfacing
routines called by subroutineOCOP.

As a concluding remark, it is mentioned that instead of Eq. (11), which gives|A|2 ∝ U , whereU is the wave
energydensity, the evolution of thetotal wave powerP is calculated by means of the equation

dP

dτ
= −2k′′ · VP, (15)

which can be obtained from Eq. (11). The driven current is then obtained by means of the equation

I = ηP

2πR0
, (16)

whereR0 is the major radius of the torus (see Section 4), andη is provided by the subroutineCURBA.

4. Toroidal geometry

4.1. Analytic equilibrium

In the code, the fixed Cartesian coordinate system{x, y, z} is chosen such that the verticalz-axis coincides
with the axis of symmetry of the torus and thexy-plane with the equatorial plane. An analytic description of the
magnetic equilibrium can be given in terms of a set of toroidal coordinates{xα} ≡ {r,χ,ϕ} (where the minor radius
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(a) (b)

Fig. 1. (a) Beam propagation (ASDEX Upgrade parameters) in the poloidal plane and (b) the corresponding power absorption profile (analytic
equilibrium) in the GO approximation (dashed line) and in the BT approach (solid line).

r and the poloidal angleχ span the poloidal plane and the toroidal angleϕ is a coordinate along the torus). Here,
an elongated geometry with Shafranov shift [22] is considered, i.e. the Cartesian coordinates{x, y, z} are linked to
the toroidal coordinates by means of the relations

x = [
R0 + r cosχ − 0(r)

]
cosϕ ≡Rcosϕ, (17)

y = [
R0 + r cosχ − 0(r)

]
sinϕ ≡Rsinϕ, (18)

z = rκ(r)sinχ; (19)

whereR0 is the major radius,0(r) the Shafranov shift andκ(r) the elongation. It is clearlyR2 = x2+y2. A typical
tokamak configurations represented by Eqs. (17)–(19) is presented in Section 6 (Fig. 1).

Since, in general,ωc,ωp,N
2‖ ,N2⊥ are given as functions ofr,χ,ϕ, in order to calculate their derivatives with

respect to{x, y, z}, one needs to compute the inverse Jacobian tensor

{
J−1
αβ

} =
{
∂xα

∂xβ

}
=




[
κ(r)cosχ cosϕ

]
/j

[
κ(r)cosχ sinϕ

]
/j sinχ/j

−[
rκ(r)

]′ sinχ cosϕ/rj −[
rκ(r)

]′ sinχ sinϕ/rj
[
cosχ − 0′(r)

]
/rj

−sinϕ/R cosϕ/R 0


 ,

wherej = j (r,χ) ≡ κ(r)cosχ[cosχ −0′(r)]+ [rκ(r)]′ sin2 χ and the prime′ denotes the derivative with respect
to r. The second-order derivatives of the toroidal coordinates with respect to the Cartesian ones are also needed in
the BT approach. They can be obtained by means of the formula

∂2xα

∂xβ∂xγ

= ∂J−1
αβ

∂xγ

= ∂xρ

∂xγ

∂J−1
αβ

∂xρ

= J−1
ργ

∂J−1
αβ

∂xρ

.

In the previous expressions, the functionsr(x, y, z),χ(x, y, z),ϕ(x, y, z) are calculated by numerical inversion.
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The equilibrium magnetic field is the sum of a toroidal contributionBt = Bteϕ and a poloidal contribution
Bp = Bpeχ , with eϕ,χ ≡ ∂r/∂(ϕ,χ)/|∂r/∂(ϕ,χ)|. The toroidal and poloidal components of the magnetic field
are prescribed by specifying, besides the Shafranov shift0(r) and the elongationκ(r), the value of the toroidal
field Bt0 on the geometrical axis of the torus and the profile of the safety factorq(r). It can be shown [23] that for
a toroidally symmetric device inside each magnetic surface it isBtR = BtcRc andBpR/|∇r| = BpcRc/|∇r|c,
where the subscriptc denotes the point on the surface corresponding toχ = π/2. Introducing the inverse aspect
ratio

ε(r) ≡ r

Rc(r)
= r

R0 − 0(r)
,

the components of the magnetic field can finally be expressed as

Bt = R0

R Bt0 = Btc(r)

1+ ε cosχ
,

Bp = rBtc(r)

Rc(r)q(r)

[rκ(r)]′√1+ [κ2(r) − 1]cos2χ

(1+ ε cosχ)j (r,χ)
.

By further assigning the electron density profile (the density is supposed to be a function of the radial
coordinater)

n(r) = n1

[
1−

(
r

a

)e1
]e2

+ n2, (20)

(where a is the minor radius) it is finally possible to calculate the first- and second-order derivatives ofH

required by the BT equations. The specification of the electron temperatureTe(r) and the effective charge
Zeff(r) ≡ ∑

i niZ
2
i /ne (wherei runs over the ion species in the plasma) allows the calculation of the absorption

coefficient and the current drive efficiency.

4.2. Experimental equilibrium

The magnetic configuration can be provided also numerically by assigning the (Cartesian) components of the
static magnetic fieldB and a flux coordinateψ on a grid in the poloidal plane(x, z). In the code, the magnetic field
strengthB ≡ |B| and the components of the unit vectorb ≡ B/B are needed in order to calculate the EC frequency
ωc and the parallel wave vectorN‖. Density and temperature can be also prescribed numerically; in this case they
are tabulated as functions ofψ .

The first-order derivatives of the relevant functions are obtained for the case of equally spaced grid points by
taking finite differences between neighboring points using the formula [24]

f ′ = 1

h

[
0f + 1

2
(2s − 1)02f + · · · + d

ds

(
s

n

)
0nf + · · ·

]
, (21)

where the limit s → 1 is understood,h is the distance between neighboring grid points,0f ≡ fi+1 − fi ,
0k+1f ≡ 0(0kf ). Forn = 2, Eq. (21) yields for instance(

∂f

∂x

)
i,j

= fi+1,j − fi−1,j

xi+1 − xi−1
,

(
∂f

∂z

)
i,j

= fi,j+1 − fi,j−1

zj+1 − zj−1
. (22)

The second-order derivatives are evaluated as(
∂2f

∂x2

)
i,j

= fi+1,j − 2fi,j + fi−1,j

(xi+1 − xi)2
, (23)

(
∂2f

∂x∂z

)
i,j

= fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1

(xi+1 − xi−1)(zj+1 − zj−1)
, (24)
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(
∂2f

∂z2

)
i,j

= fi,j+1 − 2fi,j + fi,j−1

(zj+1 − zj )2
. (25)

If the grid points are not equally spaced (which is usually the case for the density profile), the derivatives are
calculated as the average of “forward” and “backward” derivatives.

During a run, a subset of grid points close to current pointr(τ ) is selected and the relevant quantities are found
by polynomial interpolation (polynomial interpolation has been preferred to spline to avoid noise due to errors in
the boundary conditions).

5. Beam description

In Section 2 it has been pointed out that a wave beam can be described in a 3D geometry by means of a set of
parameters connected with the position of the beam axis, the curvature of the phase front and the amplitude profile
[Eqs. (7)–(9)]. Wave damping is calculated on the reference ray by means of Eq. (15).

The physical content of Eqs. (7) is apparent, the unknown quantitiesqα(τ ) andKα(τ) representing, respectively,
the position of the beam axis and the wave vector on it, given as functions of the evolution parameterτ . In order
to clarify the physical meaning ofsαβ,φαβ that appear in Eqs. (8), (9), it is useful to consider a Gaussian beam
propagatingin vacuo along thex-axis. Eqs. (12), (13) give immediately the constraintssxx = sxy = sxz = 0 and
φxx = φxy = φxz = 0 (wheresxx ≡ s11, sxy ≡ s12, etc.). As a first example, the casesyz = φyz = 0 can be discussed.
From Eqs. (4)–(6) it results

E ∝ exp

{
iµ

[
f (x) + 1

2

(
syy(x)y

2 + szz(x)z
2)] − µ

2

[
φyy(x)y

2 + φzz(x)z
2]}, (26)

wheref (x) ≡ s0(x) + kxx describes the behaviour of the wave phase along the propagation direction and has a
physical meaning which is analogous to that of standard geometrical optics. The quadratic terms appearing on the
right-hand side of Eq. (26) can be written in an even more transparent form by introducing the (principal)radii of
curvature of the wave frontRα

sαα(x) ≡ ω/c

Rα(x)
(α = y, z; no sum onα), (27)

and the (principal)beam widths Wα

φαα(x) ≡ 2

W2
α (x)

(α = y, z; no sum onα). (28)

It is now clear that the contour levels of the phase front and amplitude profile given by Eq. (26) are described by
quadratic forms whose axes are aligned with they- andz-axes of the laboratory system (in particular, sinceφ � 0,
the contour levels ofφαβxαxβ are ellipses). The casesyz �= 0 (or φyz �= 0) corresponds then to a rotation of the
principal radii of curvature (or principal widths) with respect to the fixed reference frame [25].

In the general case of inhomogeneous media, the right-hand side of Eq. (12) is different from zero, and the
connection between the phase-front curvature and the parameterssαβ becomes more complicated. On the contrary,
the right-hand side of Eqs. (13) is always zero. Applying a rotation{x, y, z} → {X,Y,Z}, where theX-axis, say, is
parallel toV, one obtains againφXX = φXY = φXZ = 0; the physical meaning ofφYY ,φYZ,φZZ is then the same
as discussed above.

It has been already mentioned that the beam can be followed in its vacuum-plasma crossing. The initial
conditions for the beam parameters are assigned in vacuo, wheresαβ andφαβ are linked to the relevant physical
quantities by means of Eqs. (27), (28). The beam propagates in vacuo till it reaches the boundary with the plasma
(which is usually represented by a magnetic surface). The beam parameters inside the plasma are calculated
by equating the phase of the wave on both sides of the boundary surface. This a tricky problem, because the
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constraints (12), (13) are to be satisfied. Nevertheless, the proper matching equations can be found [26]. They are
used to re-assign the initial conditions for the unknown functions in Eqs. (7)–(11) inside the boundary surface.

The method adopted to compute absorption should finally be outlined. For each integration stepi where
absorption takes place, a corresponding “infinitesimal” absorption profile is calculated by assuming that it has
a Gaussian shape. The maximum of this Gaussian curve is proportional to the power dPi = Pi − Pi−1 absorbed at
that step and its width is given by the projection of the beam width onto the direction of∇r. The actual absorption
profile is calculated as a superposition of the infinitesimal absorption profiles (the current-drive profile is calculated
in a parallel fashion). It is then clear that diffractive beam broadening can lead to a discrepancy between BT and
GO profiles (cf. Section 6); on the other hand, if the propagation takes place mainly perpendicularly to the flux
surface, this discrepancy is expected to be small.

6. Numerical examples

The validity of the numerical results obtained by means of the BT code has been investigated following three
different criteria. First of all, the quantitiesqα,Kα, sαβ,φαβ obtained as the solution of Eqs. (7)–(9) must satisfy
the dispersion equationH = 0 and the constraints (12), (13). In particular,H = 0 is a check on the integration
accuracy of Eqs. (7) describing the reference ray�, whilst Eqs. (12), (13) involve also the second-order parameters
in the wave phase (5), (6), and hence can be employed as a check on the integration accuracy of Eqs. (8), (9). This
check is performed at each step during the run of the code; for the case of experimental equilibrium, it gives also
an estimate of the accuracy of the interpolation procedure.

A second criterion which has been used to validate the code is the comparison with existing analytic solutions of
the BT equations. Solutions of diffraction equations can be obtained for instancein vacuo and in an inhomogeneous
(isotropic and anisotropic) medium with plane geometry [27]. The code can be adapted to such a geometry by
simply taking the limitR0 → ∞ andκ(r) → ∞ in Eqs. (17)–(19).

Finally, the results of the code can be compared with the results obtained by means of a ray tracing code like
TORAY [19,28] (see below).

Some numerical examples are now discussed. Typical running time for full absorption and current drive
calculation with an experimental equilibrium is less than two minutes on a SUN Ultra 10.

The input parameters are specified by means of a namelist which is read by subroutineINPUT. They are
• xrtol, xatol: relative and absolute tolerance parameters for the ODE solver;
• xstep: integration step dτ ;
• ianexp: switch between analytic and numerical equilibrium;
• nni, nnj: nni×nnj is the number of grid points;
• nshot, xtbeg, xtend: number of the shot to be analyzed and time parameters at which the

(experimental) equilibrium is required;
• nmod: switch between ordinary and extraordinary mode;
• nlnch: selects the quantities to be plotted;
• xf, xpw0: wave frequency (Hz) and injected power (MW);
• xthdeg, xphdeg: poloidal and toroidal injection angles (degrees);
• xxb, xyb, xzb: coordinates of the launching point (cm);
• xryyb, xrzzb, xwyyb, xwzzb: initial principal radii of curvature and widths (cm) [see Eqs. (27),

(28)];
• xrmaj, xrmin: major and minor radius of the tokamak (cm);
• xb0, xdns, edgdns, xe1, xe2: toroidal field on the geometrical axis (T), central and edge density

(cm−3), coefficients of the density profile (20) (analytic equilibrium);
• xte0, xteedg: central and edge electron temperature (analytic equilibrium).
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(a) (b)

Fig. 2. (a) Beam propagation (RTO/RC ITER) in the poloidal plane and (b) the corresponding power absorption profile (numerical equilibrium).
Again, the dashed line corresponds to the GO calculation and the solid line to the BT calculation.

For the case of analytic equilibrium, the code also provides the functions0(r), κ(r), q(r) (and their derivatives)
andZeff(r) (cf. Section 4).

A first example obtained by running the code is shown in Fig. 1. Flux surfaces are calculated analytically
as explained in Section 4 and are represented by dotted lines. The central electron density is 6· 1013 cm−3,
1 � κ(r) � 1.5, −10� 0(r) � 5 cm and 1� q(r) � 4; Tmax = 1 keV. The wave frequency isω/2π = 140 GHz
(which corresponds to the second EC harmonic forB(R0) = 2.5 T); the poloidal launching angle is 20◦ (the
toroidal angle is zero), the initial width is 3.8 cm and the initial focusing is 1/R = 1/82 cm. Beam and plasma
parameters are in the range of interest at ASDEX Upgrade. The beam is described in the figure by means of its
reference ray and its width in the plane of the plot. Dashed lines represent GO calculations, obtained by computing
the central ray only (with the proper initial conditions) in two further runs. The corresponding absorption profiles
are also displayed. The diffractive broadening of the beam is shown to have a significant effect on the deposition
profile, since the beam is focused just in the absorption region aroundR0 = 165 cm.

In the next example, a grid in the poloidal plane supplies the magnetic configuration envisaged for the
Intermediate Aspect Ratio RTO/RC ITER [29]. The major radius of IAM isR0 = 6.20 m, the minor radius
a = 1.90 m, the magnetic field on the axisB0 = 5.51 T. In Fig. 2, an example of propagation in the poloidal plane is
shown. The beam is launched from the low-field side with a poloidal injection angleϑ0 = 20◦ (the toroidal injection
angle is again zero). The wave frequency isω/2π = 160 GHz (first-harmonicO-mode heating is considered), the
beam has an initial widthW = 6 cm and a radius of curvature of the phase frontR = 250 cm; the input power is
10 MW. Absorption occurs atx � 600 cm. BT and GO calculations are again compared.

The last two figures refer to comparisons with the ray-tracing code TORAY. In these examples, only one ray,
i.e. the central one, is calculated by TORAY (“one-ray” calculation; in other words, the transverse structure of the
beam is neglected). The goal is to perform an easy check of the accuracy of the numerical procedure adopted in the
BT code. The ray calculated by TORAY should coincide with the BT reference ray (which satisfies the same GO
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Fig. 3. Comparison with TORAY for the case of a circular equilibrium without Shafranov shift. Both power absorption and current density
profiles are shown. Crosses refer to the result of TORBEAM, stars to those of TORAY.

equations). Moreover, also in the BT code absorption and current profiles can be calculated neglecting the finite
width of the beam (“one-ray-like” procedure), and the results should then coincide again with those of TORAY. The
plasma parameters are again in the range of interest of ASDEX Upgrade. The central density is 1.6 · 1013 cm−3,
the magnetic field on the axis is 2.1 T and the central temperature is 2 keV. In Fig. 3, an analytic equilibrium
with circular concentric flux surfaces has been considered. The BT reference ray is undistinguishable from the
result of TORAY. The same feature is exhibited by the absorption and current-drive profiles, where the solid line
represents the standard BT calculation (including finite beam width), the crosses give the result of the “one-ray-
like” BT calculation and the stars reproduce the TORAY profiles. The figure shows a complete overlap of both
“one-ray” curves. In Fig. 4, the same comparison is performed for the case of a magnetic equilibrium taken from
a shot (#12257) of ASDEX Upgrade. The small discrepancy between both “one-ray” calculations of the current
profile is seemingly due to the different interpolation procedures adopted in the two codes for the calculation ofB
andωp .

7. Conclusions

The Beam Tracing method is applied to the calculation of propagation and absorption of an electron cyclotron
wave beam in a tokamak plasma. Like in standard geometrical optics, the beam is described by solving a set of
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Fig. 4. Comparison with TORAY for the case of a typical ASDEX Upgrade magnetic equilibrium (cf. Fig. 3).

ordinary differential equations. The BT approach, however, allows for diffraction effects, neglected by the ray
tracing procedure. The code TORBEAM presented here performs the integration of the BT equations for both
analytic and experimental plasma equilibria and arbitrary launching conditions for the wave beam. The numerical
implementation of the BT equations is straightforward and the solution is performed by using a standard ODE
solver. Numerical examples show that diffractive broadening of the beam can change significantly the power
deposition and current density profiles with respect to GO predictions.
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TEST RUN INPUT

The input variables described in Section 6 are given in the following namelist. The values reported here have
been used to produce Fig. 4.

Input values for beam tracing
&edata
xrtol = 1.d-7, xatol = 1.d-7, xstep = 4.d0, ianexp = 2, nni = 39, nnj = 69,
nshot = 12257, xtbeg = 3.5, xtend = 3.5, nmod = -1, nlnch = 1,
xf = 140.1d9, xthdeg = -6.15, xphdeg = -14.6, xxb = 234., xyb = 0., xzb = 0.,
xryyb = 129.4, xrzzb = 129.4, xwyyb = 2.97, xwzzb = 2.97, xpw0 = 1.,
xrmaj = 165., xrmin = 65., xb0 = 2.1, xdns = 1.6d13, edgdns = 1.4d13,
xe1 = 2., xe2 = 1., xte0 = 2., xteedg = 2.d-1
&end

TEST RUN OUTPUT

The output of the test run is:

Absorbed power (MW) 0.95446679492053 max. at rho = 0.71869060640973
Driven current (MA) -1.0880371644799D-02 max. at rho = 0.69477110677367

In addition to the standard output, data files (containing informations about beam trajectory, absorbed power and
driven current) can be produced.
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In the theoretical description of the neoclassical tearing mode it is usually assumed that the ion banana
width wb is much smaller than the island width W . This assumption is questionable at least for the
island size at the mode onset. We show that a significant fraction of the (ion) bootstrap current survives
inside the island when wb is comparable to W . This effect also leads to a linear scaling of b

onset
u with the

normalized ion poloidal gyroradius r
�
u , in agreement with the experimental results of ASDEX Upgrade.

DOI: 10.1103/PhysRevLett.88.075001 PACS numbers: 52.25.Dg, 52.30.Cv, 52.65.Pp

Neoclassical tearing modes (NTMs) have been found to
often limit the energy which can be stored in the plasma of
a toroidal confinement device such as a tokamak and are
predicted to have a significant impact on the performance
of the International Thermonuclear Experimental Reactor
ITER. The NTM occurs when a sufficiently large initial
magnetic perturbation, the so-called “seed island,” is pro-
duced by the background magnetohydrodynamic activity.
Inside the island, the reconnection of the field lines leads
to a flattening of the pressure profile and, consequently, to
a drop of the bootstrap current. (The bootstrap current is
generated by the particles trapped in the outer side of a
toroidal confinement system. In the presence of a pressure
gradient, they generate a current parallel to the magnetic
field.) The magnetic field associated with the “hole” in the
bootstrap current in turn reinforces the perturbation and
drives the instability.

The theoretical description of NTMs is based on the
generalized Rutherford equation [1–5], in which the vari-
ous mechanisms that can stabilize or destabilize the mode
are taken into account. It is obtained by integrating Am-
père’s law across the island region, using Ohm’s law to
express the inductive contribution to the current density.
The result is an evolution equation for the island half-
width W :

4p

1.22hc2

dW

dt
�

D0

2
1

4
p

2
c

qR

sBW

3
Z `

21
dV

I dj cosjp
cosj 1 V

jn.i.
k . (1)

In this equation, h is the neoclassical resistivity, D0 is
the stability index of the equilibrium current profile [1], q
is the safety factor, R is the major radius, s is the mag-
netic shear, and B is the magnetic field strength. A heli-
cal angle j � mu 2 nw, where m and n are the poloidal
and toroidal numbers of the resonant surface and u and
w are the poloidal and toroidal angles, respectively, has
been introduced along with a normalized helical flux V �
�q0

s�2qs� �c 2 cs�2�c̃ 2 cosj, where c is the poloidal
flux, the prime denotes the derivative with respect to c,

c̃ is the strength of the flux perturbation, and the subscript
s means that a quantity is evaluted at the resonant surface.
V is defined in such a way that B ? =V � 0 and V � 21
at the O point of the island and V � 1 at the separatrix. In
this Letter, the only contribution to the noninductive part
of the current jn.i.

k is supposed to be given by the bootstrap
current jbs, which must be calculated in the perturbed mag-
netic configuration and substituted in Eq. (1). This yields

4p

1.22hc2

dW
dt

�
D0

2
1 a2

p
´

Lq

Lp

bu

W
1

1 1 �W0�W�2
,

(2)

where a2 is a numerical coefficient of order one, bu �
8pp�B2

u (p is the pressure and Bu is the poloidal field),
1�Lq � d lnq�dr, 1�Lp � 2d lnp�dr, and ´ � rs�R is
the inverse aspect ratio of the resonant surface. In the pre-
vious equation, the role of finite perpendicular transport in
preventing a complete flattening of the pressure profile
inside the island [6] has been taken into account. The
corresponding reduction of the neoclassical drive is ex-
pressed by the term containing W0 � 2.55rs�x��xk�1�4 3

�q�ms´�1�2. An important remark to Eq. (2) is to be made.
In order to obtain an analytic expression for jbs to be sub-
stituted in Eq. (1), it is supposed that the island width W
is much larger than the ion banana width wb �

p
´ ru ,

where ru � yT �vcu is the ion poloidal gyroradius (yT is
the thermal velocity of the ions and vcu is ion cyclotron
frequency calculated using the poloidal magnetic field). In
this limit, the bootstrap current completely vanishes inside
the magnetic island (if the aforementioned finite-x� effect
is neglected). However, the opposite limit also deserves
careful investigation, since at least in the early phase of a
NTM it is often wb � W . In this case, it can be thought
that the particles trapped in the region around the island
(where the pressure gradient is not flat) significantly over-
lap the island and might then provide the source for the
bootstrap current also inside it. This effect is of course
supposed to be larger for the ions than for the electrons,
which have a much smaller banana width. Therefore, elec-
trons are neglected in the calculations presented below.
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The role of the finite banana width of the ions is exam-
ined in this Letter. To this aim, the drift-kinetic equation
for the ion distribution function f,

df

dt
�

≠f

≠t
1 �ykb̂ 1 vd� ? =f � C� f� , (3)

is to be solved in the presence of an island (in this study,
the width of the island is kept constant and its position
in the plasma is held fixed). The limit we are interested
in, wb � W , requires a numerical solution. A physically
reasonable and computationally useful choice is to employ
the df method. The solution f of Eq. (3) can be written
as the sum of a time-independent term f0 which is analyti-
cally known and a second term df which expresses the
temporal evolution of the distribution function and is to
be determined numerically. In our approach, df is repre-
sented by the distribution in the phase space of an ensemble
of markers (“particles”) which evolve according to a Ham-
iltonian set of equations of motion. If df ø f0, i.e., if the
final solution is a small perturbation of the background dis-
tribution function, solving for df instead of f leads to a
substantial reduction of the simulation noise, since a much
smaller number of markers is required. Here f0 is assumed
to be a Maxwellian fM ; Eq. (3) then gives

≠df
≠t

1 �ykb̂ 1 vd� ? =df � C�df� 2 vd ? =fM . (4)

The left-hand side of this previous equation is the total
derivative of df along the particle orbits, and the term vd ?

=fM acts as a source for df. Equation (4) is integrated
over a collisional time interval Dtc in two steps. First, the
markers evolve collision free according to the equations of
motion. They are integrated using the guiding center code
HAGIS [7], which solves the equations of motion in toroidal
geometry in the presence of a perturbation of the magnetic
equilibrium employing Boozer coordinates. In a second
step, collisions are modeled by a Monte Carlo procedure
[8]. The parallel velocity of the particles obtained from
the first step is modified according to the pitch-angle part
of the collision operator; i.e.,

C� f� �
≠

≠l
�nlf� 1

1
2

≠2

≠l2 �n�1 2 l2�f� , (5)

where l � yk�y is the cosine of the pitch angle and n�y� �
�3
p

2p�4t� �yT �y�3G�y�yT �. In the previous equation,
t is the ion-ion collision time and G�x� � ��x2 2 1�2� 3

erf�x� 1 x exp�2x2��
p

p ��x5. The Langevin equation
corresponding to the collision operator (5) is �l � 2nl 1p

n�1 2 l2� J�t�, with a Gaussian random noise J�t�.
The change in the parallel velocity of the particles can then
be written dyk � 2yknDt 1 gy�

p
nDtc [so that dy

2
� �

2�2yk 1 dyk�dyk], with random numbers g such that
�g	 � 0 and �g2	 � 1. The scheme is implemented in
such a way that momentum is conserved. Quantities of
interest are obtained by flux surface average according to
the definition

1
n

øZ
Adf d3v

¿



RV1dV

V2dV Adf dGRV1dV
V2dV f0 dG

, (6)

where dG is the phase-space volume element. Therefore,
the plasma column is divided into cells, bounded be-
tween two neighboring flux surfaces (labeled by the helical
flux V).

The approach described previously is applied to the
study of the bootstrap current in the island region for the
case of a (3,2) mode in a tokamak with ITER-like and
ASDEX Upgrade (AUG)-like parameters. Typical parame-
ters are for ITER (deuterium plasma): major radius R �
8 m, magnetic field on the magnetic axis B0 � 6 T, cen-
tral density n0 � 1020 cm23, central temperature T0 �
10 keV; for AUG (hydrogen, deuterium plasma): R �
1.5 m, B0 � 2.5 T, n0 � 6 3 1019 cm23, T0 � 2 keV.
The magnetic equilibrium is specified analytically and the
unperturbed flux surfaces are circular and concentric. The
equilibrium density and temperature profiles decay expo-
nentially with respect to c, i.e., roughly Gaussian with re-
spect to the radius r. In some simulations (cf. Fig. 3), a flat
density profile has also been considered in order to show
that the effect under investigation takes place also in the
absence of density gradients. The parameters are chosen
such that the bounce time tB � qR�yT

p
´ is much shorter

than the trapped-to-passing scattering time tS � ´�ni , and
the plasma is hence in the banana collisionality regime
n� � tB�tS ø 1.

In order to investigate finite-banana-width effects on the
neoclassical drive of the tearing mode, the bootstrap cur-
rent in the island region has been studied varying the ra-
tio wb�W . As a first example, in Fig. 1 a “large” island
(wb�W � 0.11) is considered. Figure 1a shows the den-
sity profile (the similar behavior of the temperature profile
is not reported here) resulting from the simulation, which
exhibits a flattening in the center of the island and steeper
gradients just outside, in such a way that far from the reso-
nant surface the unperturbed profile is recovered. These
features of the density profile explain the behavior shown
in Fig. 1b, where a drastic drop of the (ion) bootstrap cur-
rent jik � �enyk	 inside the island can be observed, along
with a small residual current near the island edge and an
excess of current just outside. The ion current is com-
pared with the theoretical value calculated analytically in
the absence of the island [9]. Figure 1b also shows the
helical component of the current (i.e., that part of the
current which has the same helicity as the resonant sur-
face) jhe � �enyk cosj	, which represents the actual driv-
ing term in the Rutherford equation (1). Inside the island
(where the current itself vanishes) jhe is obviously zero.
Just outside the island, the main contribution to jhe comes
from the region around the X point, where cosj � 21,
and hence jhe is negative.

Figure 2 shows the opposite limit of a “small” island.
In this case, the width of the island becomes comparable
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FIG. 1. Density (a) and ion bootstrap current (b) profiles in
the presence of a large island W ¿ wb . The diamonds refer
to the results of the Monte Carlo df simulations, and the solid
curves to the analytical calculations for an unperturbed magnetic
equilibrium. In (b), stars show the helical component of the
ion current.

or even smaller than the width of the ion banana orbits
and it can be expected that the trapped particles overlap
the island and generate a nonvanishing bootstrap current
also inside it. This picture is confirmed by the simula-
tions. No drop of the ion current in the island is observed
and the unperturbed profile is recovered over the whole
radial range. Correspondingly, a nonzero contribution
to the helical current coming from the O point (where
cosj � 1) of the island is observed. It can be seen from
Fig. 2a that the overlapping process is not directly related
to a recovery of the unperturbed density profile inside the
island, and the density profile still significantly flattens. In
other words, in this magnetic configuration the local value
of the bootstrap current is not consistent with the value of
the local gradients.

These features are summarized in Fig. 3. The averaged
current density inside the island jisl (normalized to the un-
perturbed current density at the resonant surface) is plotted
as a function of the ratio wb�W for ITER and ASDEX
Upgrade parameters. For large values of the island width,
jisl ! 0 according to the standard picture of the NTM.
When the island width is reduced, jisl increases until it
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0.000
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j i||
 / 

e 
n

0
 v

t0
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FIG. 2. Density (a) and ion bootstrap current (b) profiles in
the presence of a small island wb�W � 1.1. Solid lines again
show the analytical calculation; diamonds and stars refer to
the simulated ion bootstrap current and its helical component,
respectively.

reaches the unpertubed value for W � wb . In this case,
no perturbation of the ion bootstrap current is present in
the plasma and there is no ion contribution to the drive of
the mode. This has significant consequences for instance
for AUG, since the typical width of the seed island which
triggers the mode is between 1 and 5 cm, and the width
of a banana orbit is between 7 mm and 3 cm, depending
on both the plasma composition and discharge parameters.
Hence, at least in its early phase, the NTM is more stable
than usually assumed. Two other remarks can be made.
First of all, the fact that ITER and AUG simulations lie
approximately on the same curve when plotted as a func-
tion of wb�W confirms the interpretation that this ratio is
the parameter governing this effect. Moreover, the data
can be fitted by the curve jisl�junpert � 7x2��1 1 7x2�,
showing a quadratic dependence on x � wb�W . This can
be connected with the simple picture that the strength of
finite-banana-width effects is proportional to the area of
the island overlapped by the trapped particles.

It is interesting to finally discuss the scaling of bu at
the onset of the NTM as a function of the normalized ion
poloidal gyroradius r

�
u � ru�a (where a is the minor

radius of the tokamak). At AUG, a linear scaling law
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FIG. 3. Averaged current density inside the island versus the
ratio wb�W . Diamonds refer to simulations performed using
ITER parameters (squares: flat density profile), triangles to AUG
parameters with hydrogen plasma, and stars to AUG parameters
with deuterium plasma. The solid line shows the fit jisl�junpert �
7x2��1 1 7x2�, with x � wb�W .

b
onset
u ~ r

�1.02
u has been observed [10] for islands whose

width remained constant after the onset (in these cases the
NTM is usually triggered by the sawtoothing activity and
the seed island can be very close to the saturated island
width). Supposing W0 , wb, it can be assumed that the
most important stabilizing effect for the ions at small island
widths is that presented in this Letter (the role of the po-
larization current is neglected). For the electrons, the finite
perpendicular transport can be taken as the main stabiliz-
ing effect at small island widths. The Rutherford equation
(2) might therefore be modified to

4p

1.22hc2

dW
dt

�
D0

2
1

a2

2

p
´

Lq

Lp

bu

W

3

µ
1

1 1 �W0�W�2 1
1

1 1 7�wb�W�2

∂
,

(7)

where the second term between parentheses has been taken
according to the fit of Fig. 3. The value of b

onset
u cor-

responding to marginal stability (dW�dt � 0 for a given
seed W � Wseed) can be calculated directly from Eq. (7).
In the limit W0 , wb , this yields

bonset
u ~

y3 1 7y
2y2 1 7

wb

rs
, (8)

where y � Wseed�wb . The scaling Wseed�r ~ r
�3a
u has

been predicted theoretically [11], where the exponent a

depends on the details of the physical model. A fit to AUG
data gives [12] a � 0.38. Since it is clearly wb�r ~ r

�
u ,

it results that y depends very weakly on r
�
u. Equation (8)

hence gives b
onset
u ~ wb�r ~ r

�
u which is in agreement

with the experimental observations of AUG.
All previous studies have neglected the effect of the

overlap of the seed island by the trapped particles. It has
been shown in this Letter that this is not justified. The de-
pendence of the residual ion current inside the island on
the ratio wb�W has been derived from a large set of nu-
merical simulations. Furthermore, it has been shown that
this effect can predict the observed r

�
u scaling of the value

of bu at the mode onset. The latter point sheds an entirely
new light on the scaling properties of the instability, since
the only previously known explanation relied on the polar-
ization current model.
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Abstract
In the theoretical description of the neoclassical tearing mode the bootstrap
current is assumed to completely vanish inside the magnetic island if finite
perpendicular transport can be neglected. In this paper, the effects due to
both the finite-orbit width of the trapped ions and their toroidal precession
(not included in the standard analytic theory) on the island current are
investigated. The evolution of the ion distribution function in toroidal geometry
in the presence of a perturbed magnetic equilibrium is computed numerically
employing the δf method, collisions being implemented by means of a Monte
Carlo procedure. It is shown that a significant fraction of the (ion) bootstrap
current survives inside the island when the ion banana width wb approaches the
island width W , and no loss is observed for wb/W � 1. This effect is reduced
when the collision time becomes longer than the toroidal drift time. The value
of the current is found to be inconsistent with the local gradients in the island
region. The finite-banana-width effect leads to a linear scaling of the value of
the poloidal β at the mode onset with the normalized ion poloidal gyroradius
ρ∗

p, in agreement with the experimental results of ASDEX Upgrade.

1. Introduction

Neoclassical tearing modes (NTMs) have often been found to determine the achievable β

(the ratio of plasma to magnetic pressure) in long-pulse discharges in tokamak devices and are
predicted to be the most significant β-limiting phenomenon for ITER. The NTM occurs when
a sufficiently large initial magnetic perturbation, the so-called ‘seed’ island, is produced by
the background magnetohydrodynamic activity. The perturbed magnetic configuration leads
to a flattening of the pressure profile inside the island and, consequently, to a loss of the
bootstrap current. For conventional scenarios with monotonic safety factor profiles, this loss
leads to a further growth of the perturbation field and is the origin of the instability. This
neoclassical drive of the tearing mode was first identified at TFTR [1] and subsequently in
several experiments1. A fully-developed NTM usually produces a degradation in the plasma
confinement and sometimes a disruptive end of the discharge.

1 See [8] for a complete list.
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The thoretical description of the temporal evolution of the neoclassical tearing mode relies
on the generalized Rutherford equation which allows for the different mechanisms that drive
or damp the mode [2–8]. It can be obtained from the integration of the (toroidal component of)
Ampère’s law for current and field perturbations across the island region:

4π

1.22ηc2

dW

dt
= �′

2
+

4
√

2

c

qR

sBW

∫ ∞

−1
d�

∮
dξ cos ξ√
cos ξ + �

j n.i.
‖ . (1)

In equation (1), W is the island half-width, η is the neoclassical resistivity, �′ is the usual
stability parameter of the current profile [3], q is the safety factor, R the major radius,
s = (r/q)dq/dr the magnetic shear (r being the minor radius) and B the modulus of the
magnetic field. Two coordinates have been introduced in equation (1). The first one is
the helical angle ξ ≡ mθ − nϕ, where m and n are the poloidal and toroidal number of the
resonant surface and θ and ϕ are the poloidal and toroidal angles. Along an unperturbed
field line at the resonant surface ξ = const. The second coordinate is the helical flux
� ≡ (q ′

s/2qs)(ψ − ψs)
2/ψ̃ − cos ξ , where ψ is the (unperturbed) poloidal flux, the prime

denotes the derivative with respect to ψ , ψ̃ is the strength of the flux perturbation and the
subscript s means that a quantity is evaluted at the resonant surface. In a perturbed equilibrium,
� must be used instead of ψ to label the perturbed magnetic surfaces (it can be shown that
B ·∇� = 0). With this definition, � = −1 corresponds to the O-point of the island and � = 1
to the separatrix. The only contribution to the non-inductive current j n.i.

‖ considered here is the
bootstrap current since the focus is on the behaviour of this current in the presence of the island
and not on the evolution of the NTM. In the analytic theory, approximate expressions for the
bootstrap current are calculated and substituted into equation (1). They rely on the assumption
that the orbit width of the trapped ions wb = √

εsvT /ωcp (where ε = r/R, vT is the thermal
velocity and ωcp is the cyclotron frequency evaluated using the poloidal field) is much smaller
than the island size, wb � W . However, the opposite limit wb � W also deserves attention,
since this turns out to be the experimental situation at least at the onset of a NTM in today’s
fusion devices. In ASDEX Upgrade, for instance, the typical size of a seed island is about
1–5 cm, whereas the usual size of a (thermal) ion banana orbit is about 7 mm–3 cm, depending
upon the isotope and the plasma temperature. Moreover, the theoretical description of the
NTM in its early phase is still under debate, and an explanation of the observed behaviour is
still to be achieved.

It is useful to briefly recall here the kinetic description of the bootstrap current generation
for the standard case of an unperturbed magnetic configuration. The driving mechanism of the
current at a certain point is given by the trapped particles that describe an orbit passing through
that point. Depending on the sign of their parallel velocity, these particles will drift inward or
outward with respect to that point. In the presence of a density (temperature) gradient, there
will be then more (faster) particles on the inner orbits than on the outer orbits. The difference
between the flows related to the inner and outer orbits gives the so-called ‘banana’ current [9]
at the point under consideration for each particle species (this flow can be considered the
parallel analog of the diamagnetic flow). The banana flow is then transferred by collisions to
the passing particles, which carry the largest part of the (bootstrap) current. More precisely, the
aforementioned flows can be ordered as follows. Banana current: total ion and electron flow
(separately): bootstrap current (difference between ion and electron flows) = ε3/2 : 1 : ε1/2.
Returning to the case of a magnetic island, in the analytic theory of the NTM it is usually
assumed that inside an island the pressure profile is flat, so that there is no net banana flow
due to the trapped particles drifting in opposite directions and hence no bootstrap current.
However, this description neglects those orbits that lie partly inside and partly outside the
island. Since the particle population of these orbits is still influenced by the gradients outside

78



Monte Carlo δf simulation of the bootstrap current 73

the island, the aforementioned flux difference leading to the banana current could still take place
also inside the island. It can be assumed that this (partly) restored banana flow is then again
transferred to the passing particles by collisions, giving rise to a (partly) restored bootstrap
current. When wb and W are comparable, this overlap of an island by the trapped particles
coming form outside can be thought to be the standard situation.

An additional mechanism which may modify the standard picture of the bootstrap current
in the island is the drift of the trapped particles in the toroidal direction. It is known that
the (vertical) drift of the particles due to both the gradient of the confinement field and its
curvature is responsible for a finite radial excursion of the particle orbits with respect to the
flux surface which leads not only to the finite orbit (banana) width but also to a precession
of the trapped particles in toroidal direction, as the orbits do not close on themselves. Such
a process could partly restore the toroidal symmetry of the perturbed system and change the
fraction of the bootstrap current that survive inside the island.

Both aforementioned effects are expected to be more important for ions than for electrons,
which have a much smaller banana width and a much faster trapped-to-passing scattering time.
Therefore, only the behaviour of the ions is considered in the paper. The parallel current in
the island is to be expressed in terms of a distribution function which is the solution of the
drift kinetic equation. This solution is obtained by means of Monte Carlo δf simulations;
this approach is described in section 2. The numerical simulations are presented in section 3,
where the main results are discussed. The conclusions are summarized in section 4.

2. The numerical scheme

2.1. The Monte Carlo δf approach

An accurate description of the bootstrap current in the presence of an island structure requires
the solution of the drift kinetic equation

∂f

∂t
+ (v‖ + vd) · ∇f = C(f ). (2)

In equation (2), v‖ is the velocity parallel to the magnetic field, vd is the magnetic-drift velocity
and C is the (pitch-angle) scattering operator (see equation (4)). The function f describes the
distribution in the phase space of the guiding centres of the ions. As it has already been
mentioned, approximate analytic solutions to equation (2) can be found [5, 7] by employing
a double expansion in W/rs � 1, wb/W � 1. In the limit we are interested in, wb ≈ W ,
this approach cannot be used and a numerical solution is needed. A useful scheme is the
so-called δf method. The solution f of equation (2) is supposed to be a deviation δf from a
bulk distribution function f0 which is supposed to be analytically known and will be assumed
in the following to be a Maxwellian, f0 = fM . In principle, f = f0 + δf is nothing but a way
of re-writing the distribution function. However, since δf is to be represented numerically by
an ensemble of ‘markers’, a significant reduction of the computational effort can be achieved
if δf � fM . Indeed, this is expected to be the case, since the drift velocity is usually much
smaller than the parallel velocity. The resulting equation for δf is then

∂δf

∂t
+ (v‖ + vd) · ∇δf = C(δf ) − vd · ∇fM. (3)

In the numerical approach employed here, δf is represented by a distribution of marker
particles. Equation (3) is solved in two steps. In the first one, the markers evolve collisionless
according to the system’s Hamiltonian equations of motion which are integrated in the full
tokamak geometry in the presence of the magnetic perturbation (NTM) using the HAGIS
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code [10] (HAmiltonian GuIding centre System). In HAGIS, the equations are formulated
using the Boozer magnetic coordinates ψ, θ, ϕ. In the second step, the velocities of the
particles are changed according to the pitch-angle part of the collision operator,

C(f ) = 3
√

2π

4τi

G

(
v

vT

)
1

2

∂

∂λ
(1 − λ2)

∂f

∂λ
, (4)

where τi is the Braginskii ion collision time, λ ≡ v‖/v is the cosine of the pitch-angle and

G(x) = 1

x5

[(
x2 − 1

2

)
erf(x) +

x exp(−x2)√
π

]
.

The Langevin equation corresponding to equation (4) is λ̇ = −νλ +
√

ν(1 − λ2)�(t) (with a
Gaussian random noise, �). It can be solved using random numbers γ such that 〈γ 〉 = 0 and
〈γ 2〉 = 1: the change of the particle velocity in a time step �tc is then

δv‖ = −v‖ν�t + γ v⊥
√

ν�tc,

δv2
⊥ = −(2v‖ + δv‖)δv‖.

It should finally be remarked that the collision operator (equation (4)) does not conserve
the parallel momentum, i.e.

∫
v‖C(f ) d� = �p‖ 
= 0 (d� is the phase-space element).

The momentum is conserved in this scheme by modifying the weights δf of the markers
δf → δf + �δf such that∫

v‖�δf d� = −�p‖ = −
∫

v‖C(f ) d�.

This Monte Carlo approach has recently been implemented into the HAGIS code and has
been applied to the study of wide-orbit neoclassical transport in an unperturbed magnetic
configuration [11].

2.2. The magnetic configuration

In the numerical simulations presented in this paper, the magnetic equilibrium is specified
analytically and the unperturbed flux surfaces are circular and concentric, i.e. the toroidal and
poloidal components of the magnetic field and the safety factor can be expressed in the usual
polar coordinates r, χ as

Bt = Btc

1 + ε cos χ
, Bp = Bpc(r)

1 + ε cos χ
, q(r) = q0(1 + br2). (5)

In the previous equations, the subscript c means evaluation at χ = π/2. Btc (the toroidal field
on the magnetic axis) is assumed to be constant and Bpc(r) can be expressed as a function of
Btc and q(r) as

Bpc(r) = εBtc

q(r)
√

1 − ε2
. (6)

A useful feature of equation (5) is that the polar coordinates r, χ can be linked analytically to
the Boozer coordinates ψ, θ :

r = Rc

√
1 − 1 + b

b
tanh2 [√b(1 + b)(a0 − q0ψ)

]
, (7)

χ = 2 arctan

[√
1 + r

1 − r
tan

(
θ

2

)]
, (8)
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with a0 ≡ arctanh
[√

b/(b + 1)
]
/
√

b(b + 1). Equations (6)–(8) allow a considerable saving in
the amount of computing time necessary for the numerical inversion. The detailed derivation
is reported in the appendix.

In the presence of an island, the poloidal flux ψ can no longer be used to label the magnetic
surfaces. To this aim, a suitable coordinate (the helical flux �) has been already introduced in
section 1 (cf equation (1)). In the code, the more accurate helical flux function �̄ defined as

�̄ ≡ �̄helical(ψ, ξ) ≡ ψ − ψt(ψ)

qs

+ ψ̃ cos ξ,

where ψt = ∫ ψ

0 q(ψ ′) dψ ′ is the toroidal magnetic flux, is employed to describe the magnetic
surfaces. On expanding �̄ to the second order around the resonant surface ψ = ψs and using
q = dψt/dψ , it can be seen that � � −[�̄ − �̄s(ψ̃ = 0)]/ψ̃ . Flux-surface averages are then
evaluted according to the definition

〈A〉 = lim
δ�̄→0

∫
A d3r∫
d3r

⇒ 1

n

〈∫
Aδf d3v

〉
�
∫ �̄+δ�̄

�̄−δ�̄
Aδf d�∫ �̄+δ�̄

�̄−δ�̄
f0 d�

. (9)

In the perturbed magnetic configuration, the boundary surfaces between neighbouring cells
are then functions of the three Boozer coordinates ψ, θ, ϕ and not of the poloidal flux ψ alone.
Consistently with the definition of � in section 1, the island half-width can be expressed in
terms of ψ as

�ψ � 2

√
ψ̃qs

q ′
s

. (10)

In the simulations, the island width can be controlled by changing the perturbation parameter
ψ̃ . The motion of the particles is calculated along the perturbed field lines, i.e. including the
effect of the axisymmetry-breaking due to the presence of the helical island.

3. The bootstrap current in the island region

In the simulations, a m = 3, n = 2 mode in a tokamak with the magnetic equilibrium described
in section 2.2 has been studied. Two sets of parameters have been taken into consideration:
ITER-like (major radius R = 8 m, magnetic field on the magnetic axis B0 = 6 T, central
density n0 = 1020 m−3, central temperature T0 = 10 keV) and ASDEX Upgrade (AUG)-like
(R = 1.5 m, B0 = 2.5 T, n0 = 6 × 1019 m−3, T0 = 2 keV). For the case of AUG, simulations
with both hydrogen and deuterium have been carried out in order to vary the width of the
banana orbit at a given temperature. The density and temperature profile were exponentially
decaying with respect to the poloidal flux ψ (i.e. approximately Gaussian with respect to r):
n = n0 exp(−ψ/ψa), T = T0 exp(−2ψ/ψa). The case of flat density n = n0 is discussed in
section 3.2. During each simulation, the position and the width of the island are kept constant.

In the process under consideration there are three different timescales of interest, i.e.
the bounce time τB = qR/vT

√
ε, the trapped-to-passing scattering time τS = ε/νi and the

toroidal drift time of trapped particles τD = 4πεωcR
2/qv2

T . Here, only the case of banana
regime ν∗ ≡ τB/τS � 1 is considered.

3.1. Finite-banana-width effects

First of all, the change of bootstrap current profile in the island region for different values of
the ratio wb/W has been considered [12]. In the simulations, this has been investigated by
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Figure 1. (a) Ion bootstrap current in the presence of a large (wb/W ≈ 0.1) island. The radial
position chosen for the cells is a cut through the O-point of the island. Diamonds represent
the bootstrap ion flow obtained from the simulations and the stars its helical component. The solid
line gives the analytic calculation for the case of an unperturbed equilibrium. (b) Time evolution
of the current inside the island (×) and far from it (♦). On the x-axis, the time is normalized to the
(ion–ion) collision time.

varying the island width W (acting on the flux perturbation ψ̃ , see equation (10)) and leaving
the other parameters unchanged. The case τD � τS is considered in order to exclude any
possible contribution from the toroidal drift of the trapped particles.

Figure 1(a) shows the case of a large island for which wb/W ≈ 0.1. The island is
represented by a radial cut through the O-point. It should be pointed out that the simulation
points are actually flux-surface averages calculated inside cells bounded by surfaces with
�̄ = const. according to equation (9), so that not all the points inside a given cell have the
same radial position. The bootstrap current (or more precisely the parallel ion flow) obtained
from the simulation as ji‖ = 〈envi‖B〉 is compared with the analytic prediction in the absence of
any magnetic perturbation [13]. Inside the island, the expected drop of the current is observed,
while far from the island the current converges to the unperturbed value. As can be seen
in figure 1(b), the bootstrap current requires a few collisional times to build up (outside the
island). Inside the island, the current oscillates about zero (the poorer statistics is essentially
due to the smaller number of simulation particles in the island). Also reported in figure 1(a)
is the so-called helical component of the current jhe = 〈envi‖B cos ξ〉, which according to
equation (1) gives the actual drive of the mode. The helical current vanishes in the island,
where the total current itself is zero, and has mainly a cos ξ = −1 contribution from the
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Figure 2. Density (a) and temperature (b) profiles for wb/W ≈ 0.1. Diamonds refer to the results
of the simulations, the solid curves to the unperturbed profiles.

region outside the island around the X-point. The behaviour of the current shown in figure 1 is
consistent with the density and temperature profiles presented in figure 2. The current excess
just outside the island of figure 1(a) can be explained by the steeper profiles which tend to
recover the unperturbed shape far from the island (this is not expected to be the experimental
case, at least for the temperature profile in the presence of a critical gradient).

Figure 3 shows the transition to smaller island widths, i.e. to larger values of the ratio
wb/W . As the overlap of the island by the trapped particles (cf section 1) increases, the
bootstrap current inside the island grows, starting from the edge. When wb/W approaches
unity, no drop in the current is observed. A positive contribution to the helical current can now
be noticed inside the island, in particular close to the O-point, where cos ξ = +1. Unlike the
case of a large island presented in figures 1 and 2, in the presence of a large overlap between the
particles and the perturbed region, the behaviour of the current is not consistent with the local

83



78 E Poli et al

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.25 0.30 0.35 0.40 0.45 0.50 0.55
r/a

0.25 0.30 0.35 0.40 0.45 0.50 0.55
r/a

0.000

0.005

0.010

0.015

0.020

j i|
|/e

n 0
v t

0
j i|

|/e
n 0

v t
0

Figure 3. Bootstrap current profiles for (a) an intermediate (wb/W ≈ 0.5) and (b) a small
(wb/W ≈ 1.1) island width. Solid lines again represent the analytic calculation, while diamonds
and stars refer to the simulated ion bootstrap current and its helical component, respectively.

gradients. Even when the unperturbed current profile is completely recovered, the pressure
exhibits a significant residual flattening inside the island, as shown in figure 4. This is consistent
with the simple physical picture that the trapped ions which contribute to the banana current
‘feel’ the gradients that are outside the island and spend most of their time there. Hence, they
contribute little to the pressure inside the island. ITER parameters have been employed in
figures 1–4.

The averaged value of the bootstrap current inside the island from several simulations is
plotted in figure 5(a) as a function of wb/W . For large islands, the island current vanishes
according to the usual NTM description. In the opposite limit W → wb, the island current has
the same value as in the unperturbed case, which corresponds to the situation of no drive.
In figure 5(b), the ‘radial’ integral (i.e. the sum over the cells) of the helical current jhe

across the island region, which is proportional to the neoclassical drive of the NTM (see
again equation (1)), as a function of wb/W is plotted. It can be seen that in the limit of small
islands the positive contribution to jhe coming from inside the island cancels the negative
contribution coming from the region around the X-point outside the island (cf figure 3(b)),
confirming that in this case the ion drive vanishes. This means that in the limit wb/W ≈ 1 the
NTM is driven only by the electrons.
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Figure 4. The same as figure 2 for wb/W ≈ 1.1.

With regard to this last point, the reaction of the electrons to the ion flow in the island
is briefly discussed here. It is recalled that in the standard picture (i.e. in an unperturbed
equilibrium) the total ion flow originating from the ‘banana’ flow can be written in the steady
state as

enu‖i = c

Bp

dpi

dr
,

(where for simplicity only the contribution of the pressure gradient has been considered and
the contribution of the second thermodynamic force, i.e. the temperature gradient, has been
neglected). The previous equation arises in the fluid picture from the condition that in steady
state the viscous force is zero2. On the other hand, the electron flow is determined by both
the friction between electron and ions, which forces the electrons to flow in the same direction

2 Cf [9], p B234, and references therein.
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Figure 5. Averaged current density inside the island (a) and radial average of the helical current
across the island region (b) versus the ratio wb/W . Diamonds refer to simulations performed using
ITER parameters, triangles to AUG parameters with hydrogen plasma, stars to AUG parameters
with deuterium plasma. In (a), the fitting curve jisl/junpert = 7x2/(1 + 7x2), with x = wb/W , is
shown.

as the ions, and the flow originating from the electron banana flow (which is in the opposite
direction and is smaller than the former term by a factor

√
ε):

enu‖e = lei

lei + µe

enu‖i − µe

lei + µe

c

Bp

dpe

dr
,
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Figure 6. The same as figure 5(a), where the diamond refer to simulations where τS � τD and
stars to simulations where τS > τD . The parameters of the simulations are given in the text. The
dashed line is the same as in figure 5(a).

where lei = menνei is the electron–ion friction coefficient and µe = menνei
√

ε is the electron
viscosity coefficient (the electron–electron collisions have been neglected for simplicity). The
bootstrap current arises as the difference between the ion and electron flows, i.e.

jbs = µe

lei + µe

(
enu‖i +

c

Bp

dpe

dr

)
.

In the frame of the finite-banana-width effect discussed above, it can be assumed that the ion
contribution is restored by the overlap between trapped particles and island. However, if the
electron pressure is supposed to remain substantially flat inside the island, the second term in
the previous equation vanishes (and the bootstrap current is proportional to the parallel ion
velocity u‖i , which is calculated in the numerical simulations). It is then this ‘hole’ in the
bootstrap current that drives the NTM when wb ≈ W .

The role of the toroidal precession of the trapped particles has been investigated comparing
simulations with τD � τS (this can be obtained for instance by lowering the collision frequency
in the code) with simulations where τD � τS (as those presented above). A new parameter
set has been considered in order to approach a reasonable CPU time in the simulations:
R = 4 m, B0 = 8 T, n0 = 1020 m−3, T0 = 20 keV. These values yield at the resonant surface
τS/τD = 2.4 for ν∗ = 0.001 (i.e. a trapped particle can drift approximately twice around the
torus before experiencing a collision) and τS/τD = 0.024 for ν∗ = 0.1. The averaged island
current obtained from these simulations is shown in figure 6. It is seen that for τD � τS the
island current follows the curve shown in figure 5(a). Rather surprisingly, when the toroidal
precession time of the trapped ions becomes shorter than the collision time, the simulations
show a reduction of the bootstrap current inside the island, i.e. the limit jisl ≈ junpert is reached
at higher values of the ratio wb/W .

3.2. The case of a flat density profile

The behaviour of the ion flow for the case of a flat equilibrium density has also been studied.
Indeed, in a tokamak H-mode discharge the density profile is often almost flat at the resonant
surface. In this case, for a certain range of island widths the value of the bootstrap current
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inside the island could be expected to even slightly exceed the unperturbed value. This can
be understood remembering that only those trapped particles which significantly overlap the
island (i.e. have a part of their orbits outside the island and a part inside) lead to a non-vanishing
banana current in the island. In other words, the island acts as a filter on the banana particles
contributing to the current. For large islands no particle significantly overlaps the island
(except for the region close to the separatrix), whilst for small islands nearly every trapped
particle contribute to the overlap and hence to the current inside the island. In the intermediate
region, only particles with large orbits (high velocity), can contribute, while particles with
thin orbits (small velocity) can only produce a current near the separatrix. A simple picture is
the following: only particles whose velocity exceeds some threshold (depending on wb/W )
contribute to the current, while the slow particles (the shaded region marked ‘cut’ in figure 7(a))
do not contribute. It can be seen that on the outer side of the island, where the temperature is
lower, the number of particles having a small orbit width is larger than on the inner side, so that
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Figure 7. (a) Distribution functions on the inner (——) and outer (- - - -) side of the island in the
presence of a temperature gradient and their contributions to the current (the total current is flowing
out of the page). (b) Banana current as a function of a cut in the velocity space.
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the ‘small-v’ region of the velocity space would give a contribution in the opposite direction
with respect to the total current. If this region of the phase space is supposed to be cut off by
the island, the current can exceed the standard value.

This effect can first be estimated analytically for the trapped particles, which provide the
seed for the bootstrap current. In order to get an analytic estimate of this effect, a distribution
function f0 which is a function of the constants of motion, i.e. satisfying df0/dt = 0, with
d/dt = ∂/∂t + (v‖ + vd) · ∇, can be considered

f0 = n(Pt )

√(
m

2πT (Pt )

)3

e−E/T (Pt ),

where the conserved toroidal momentum Pt is

Pt = mRvt +
e

c
RAt = mR

Bt

B
v‖ − e

c
ψ

and E = mv2/2. In the standard neoclassical ordering, the first term on the right-hand side of
the previous expression is small compared with the second one by a factor wb/r (as can be
seen taking ψ ∼ rRBp), and the distribution function is close to a local Maxwellian

f0 � fM(ψ) − mcR

e

Bt

B
v‖

∂fM

∂ψ
, (11)

where

∂fM

∂ψ
= fM

[
1

n

∂n

∂ψ
+

(
E
T

− 3

2

)
1

T

∂T

∂ψ

]
.

The case dn/dψ = 0 is discussed. The contribution of the trapped particles to the current
e
∫

v‖f0 d3v inside the island can be then written

jb = 2πe

∫ ∞

vcut
⊥

v⊥ dv⊥
∫ √

2εv⊥

−√
2εv⊥

v‖f0 dv‖, (12)

where d3v = 2πv⊥ dv⊥ dv‖ and the cut vcut
⊥ expresses the integration over the region of ‘large’

banana orbits. The term O(0) in equation (11) (which corresponds to the approximation of
no drift) is even in v‖ and does not contribute to the previous integral. The integration of
equation (12) can be carried out using the formulae

∫ v̄‖

−v̄‖
v2

‖

(
mv2

‖
2T

− 3

2

)
e−mv2

‖/2T dv‖ = −v̄3
‖ e−mv̄2

‖/2T � −2
√

2ε3/2v3
⊥,

∫ v̄‖

−v̄‖
v2

‖
mv2

⊥
2T

e−mv2
‖/2T dv‖ = v2

⊥


−v̄‖ e−mv̄2

‖/2T +

√
πT

2m
erf



√

mv̄2
‖

2T






� −
√

2ε1/2v3
⊥

(
1 − ε

mv2
⊥

T
− 1 +

ε

3

mv2
⊥

T

)
,
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where in the second step v̄‖ = √
2εv⊥ has been used and terms up to O(ε3/2) have been

retained; it is noted that the contributions O(
√

ε) cancel. One has then

jb = −2π
cmRBt

B

dT/dψ

T
n
( m

2πT

)3/2 √
2ε3/2

∫ ∞

vcut
⊥

v4
⊥

(
2m

3T
v2

⊥ − 2

)
e−mv2

⊥/2T dv⊥

= − (2ε)3/2

3
√

2π

cn

Bp

dT

dr

{
e−m(vcut

⊥ )2/2T

[
6vcut

⊥

√
m

T
+ 2

(
vcut

⊥

√
m

T

)3

+

(
vcut

⊥

√
m

T

)5
]

+ 3
√

2π


1 − erf



√

m(vcut
⊥ )2

2T






 . (13)

It is noted in passing that for vcut
⊥ → 0, i.e. for integration over the whole trapping cone,

the previous formula yields the expression for the banana current [9] in the presence of a
temperature gradient

jb = −(2ε)3/2 cn

Bp

dT

dr
.

The banana current in the presence of a cut vcut
⊥ in the velocity space, equation (13),

exhibits a maximum for v̄cut
⊥ = √

3/2vT , where jb(v
cut
⊥ = v̄cut

⊥ )/jb(v
cut
⊥ = 0) = 1.16 (see

figure 7(b)). It can be assumed that only those particles having a banana width larger than
the island width W significantly overlap the island. In this case, the banana current inside
the island has a maximum for W = √

3/2wb (it is recalled that wb is the ion banana width
calculated with the thermal velocity), i.e. for

wb

W

∣∣∣
max

=
√

2

3
≈ 0.8.

This condition for the banana current to be maximum can be assumed to hold for the total
bootstrap current as well. In the case of a flat density profile, there is then a competition
between this effect and the usual drop of the bootstrap current due to the pressure flattening in
the island. The result is a widening of the ‘plateau’ jisl/junpert ≈ 1 towards smaller values of
the ratio wb/W , as shown in figure 8.

3.3. Scaling of βp at the onset of the NTM

An interesting consequence of the reduction of the ion drive of the NTM due to finite-orbit-
width effects is the scaling law for the value of βp ≡ 8πp/B2

p at the onset of the mode
(p is the plasma pressure). This parameter plays a significant role both theoretically and
experimentally. In the standard analytic theory of the NTM, the bootstrap current can be
calculated (in the aforementioned limits wb/W, W/rs � 1) and substituted into the right-hand
side of equation (1). This yields

4π

1.22ηc2

dW

dt
= �′

2
+ a2

√
ε
Lq

Lp

βp

W

1

1 + (W0/W)2
, (14)

where a2 is of order unity, 1/Lq = d ln q/dr and 1/Lp = −d ln p/dr . In the previous equation,
the reduction of the neoclassical drive due to the finite radial transport across the island (which
can partly restore the pressure gradient inside the island [14]) has been taken into account
through the ‘threshold’ term W0 = 2.55rs(χ⊥/χ‖)1/4(q/msε)1/2. For �′ < 0, equation (14)
predicts that (for given p and q profiles) the mode can become unstable (dW/dt > 0) only
for sufficiently high values of βp. Moreover, since the second term on the right-hand side of
equation (1) becomes smaller as W increases, a saturation of the island growth is predicted.
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Figure 8. Diamonds represent the averaged island current as in figure 5(a); squares represent
simulations with flat equilibrium density. ITER parameters are considered. The fitting curves in
the region around wb/W ≈ 1 are shown to guide the eye.

From the experimental point of view, a linear scaling of βonset
p with the normalized poloidal

ion gyroradius ρ∗
p has been observed at AUG in those NTM events for which the seed island

was as large as the saturated island width. This can happen when the NTM is caused by the
sawtooth activity [15].

It has been shown in section 3.1 that the ion drive vanishes when wb ≈ W . A way to
incorporate this effect in equation (1), neglecting the role of the polarization current (which
is still under debate), and assuming that the electron drive is limited by finite-χ⊥ effects, is to
re-write it as

4π

1.22ηc2

dW

dt
= �′

2
+

a2

2

√
ε
Lq

Lp

βp

W

(
1

1 + (W0/W)2
+

1

1 + 7(wb/W)2

)
. (15)

The second term between parentheses on the right-hand side has been taken from the fit to the
simulations shown in figure 5, assuming that for the ions W 2

0 � 7w2
b . The scaling for βp at the

onset of a nearly-saturated (dW/dt ≈ 0) NTM can be obtained directly inverting equation (15)
evaluated for W = Wseed:

βonset
p ∝ wb

rs

y4 + (7 + W 2
0 /w2

b)y
2 + 7W 2

0 /w2
b

2y3 + (7 + W 2
0 /w2

b)y
, (16)

where y ≡ Wseed/wb. Theoretical predictions for the scaling of the seed island [16] give
Wseed/rs ∝ ρ∗3α

p , with α in the range between 0.25 and 0.66 depending on the physical model.
Fitting the AUG experimental data [17] yields α ≈ 0.38. This means that the dependence of
y on ρ∗

p is very weak. The scaling (and the size) of W0 is also controversial. Evaluating
W0 using the Spitzer formula for χ‖ yields W0 < wb and equation (16) gives a scaling
βonset

p ∝ wb/rs ∝ ρ∗
p, in agreement the AUG experimental results. It has already been stressed

(see for instance [18]) that such small values of W0 can hardly be the only explanation for the
NTM treshold in the experiments. Recently it has been pointed out [19] that the so-called heat
flux limit gives much larger values of W0, and W0 ≈ wb can hold. In this case, the last term
in the numerator of equation (16) could play a role. However, in this limit it has also been
found that W0/rs scales linearly with ρ∗

p. It is then possible that two effects leading to a linear
scaling βonset

p ∝ ρ∗
p take place simultaneously.
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Generally speaking, equation (15) predicts larger threshold widths and smaller saturation
widths than a model where only finite-χ⊥ effects are considered.

4. Conclusions

The details of the behaviour of a NTM in its early phase is still a challenge for both theory and
experiment. A numerical description of the bootstrap current in the presence of a magnetic
island based on a numerical solution of the drift kinetic equation has been presented in this
paper. It has been shown that the effects due to the finite ion banana width (compared to the
island size) cannot be neglected. The numerical tool developed in order to study these effects is
also a promising candidate for the investigation of kinetic effects in the presence of a potential
connected with the island motion with respect to the surrounding plasma.

The persistence of the bootstrap current in an island for which wb ≈ W has been traced
back to the overlap of the trapped particles with the island. This is consistent with the residual
flattening of the pressure profile observed in the simulations even when the unperturbed current
profile is completely recovered and gives also an explanation for the behaviour of the current
in the presence of a flat density profile. In present-day experiments, the situation wb ≈ W is
very common at least at the beginning of a NTM. The relevance of finite-banana-width effects
in connection with the experimental observations, such as the scaling of βp at the mode onset
has been stressed. A detailed investigation, however, is still to be performed and has to cope
with several theoretical uncertainties, such as the role of the polarization current, the transport
model to be used for W0 and the value of the coefficients for the various terms contributing
to the Rutherford equation. The reduction of the ion drive discussed in this paper is also
potentially important for ITER. In which range the ratio wb/Wseed will be in ITER is still
under discussion, as the scaling law for the seed island is still unknown.

Appendix. The circular equilibrium

In the numerical simulations, an analytic equilibrium with (unperturbed) circular concentric
magnetic surfaces is adopted. The magnetic field and the safety factor are given by
equation (5), i.e.

Bt = Btc

1 + ε cos χ
, Bp = Bpc(r)

1 + ε cos χ
, q(r) = q0

(
1 + br2

)
,

with Btc = const. The factor Bpc(r) can be obtained by expressing the safety factor according
to its definition and recalling that for a circular equilibrium it is Bt/Bp = d�t/d�p =
(R dφ)/(r dχ):

q(r) ≡
∮

dχ

2π

dφ

dχ

∣∣∣∣
field line

=
∮

dχ

2π

rBt

RBp

= rBtc

RcBpc(r)

∮
dχ

2π

1

1 + ε cos χ
,

where R = Rc(1 + ε cos χ) and φ is the usual toroidal angle. From the evaluation of the
integral

∮
dχ/(1 + ε cos χ) = 2π/

√
1 − ε2, equation (6) follows.

Integration of dψ/dr = RBp = RcBpc, which follows from the expression for the poloidal
magnetic field Bp = ∇φ × ∇ψ and |∇φ| = 1/R, yields

ψ(ε) = R2
cBtc

∫ ε

0

ε dε

q(ε)
√

1 − ε2
= R2

cBtc

q0

[
a0 − 1√

b(1 + b)
arctanh

(√
b(1 − ε2)

1 + b

)]
,

where a0 ≡ arctanh
[√

b/(b + 1)
]
/
√

b(b + 1) and ψ(0) = 0 has been chosen. The last
equation can be inverted to give equation (7).
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The covariant θ -component of the magnetic field in Boozer coordinates is related with the
total toroidal current flowing inside a flux surface by the formula 2πBθ = ∫

dSt · (∇ × B),
where dSt is the surface element in the poloidal plane. It follows

Bθ = 1

2π

∫ r

0
dr ′
∫ 2π

0
r ′ dχ

1

r ′
∂(r ′Bp)

∂r ′ = rBpc√
1 − ε2

,

where equation (6) has been used. On the other hand, by definition it is

Bθ = B ·
∂r
∂θ

= B ·
∂r
∂χ

∂χ

∂θ
= rBp

∂χ

∂θ

and hence

dθ

dχ
= rBp

Bθ

=
√

1 − ε2

1 + ε cos χ
.

Integration of the last equation yields

θ = 2 arctan

[√
1 − ε

1 + ε
tan
(χ

2

)]

which can be inverted to give equation (8).
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Role of Kinetic Effects on the Polarization Current around a Magnetic Island
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The polarization current due to a magnetic island rotating in a tokamak plasma is believed to play a
central role in the initial evolution of the neoclassical tearing mode. Monte Carlo �f simulations are
performed which also cover a parameter range that is not amenable to analytic treatment but is relevant to
experiments. It is shown that the polarization current can change sign when the island rotation frequency
is of the order of the ion parallel streaming around the island. Moreover, the current is reduced when the
island width is of the order of the ion banana width. Finally, the transition to the enhanced high-
collisionality regime is shown to occur for collision frequencies higher than those typical of today’s
experiments.

DOI: 10.1103/PhysRevLett.94.205001 PACS numbers: 52.55.Fa, 52.25.Dg, 52.30.Cv, 52.65.2y

The magnetic-field lines of a toroidal fusion device
usually lie on nested toroidal surfaces, called magnetic
surfaces. This situation implies good radial confinement,
since the particle transport along the field lines exceeds by
several orders of magnitude the transport perpendicular to
them. This favorable configuration, however, can be bro-
ken by the appearance of radially extended magnetic is-
lands. As in this case the confinement becomes poorer, the
control of this kind of plasma instabilities constitutes a
major issue for present fusion machines and the future
experimental International Thermonuclear Experimental
Reactor (ITER). In more detail, a magnetic island can be
driven unstable by the drop of a part of the plasma current
(the so-called bootstrap current) inside the island itself
[1,2]. This instability is called the neoclassical tearing
mode (NTM). Several other ingredients play a role in the
evolution of a NTM. In particular, many investigations on
the role of the polarization current associated with the
motion of the island relative to the bulk plasma [3,4]
have been carried out. In the time-varying electric field
of the island, the plasma ions move perpendicularly to the
magnetic field. A parallel flow of the mobile electrons
ensures charge neutrality and contributes through
Ampère’s law to the evolution of the magnetic field of
the island. Under the assumption that the polarization
current is stabilizing, it has been invoked as a possible
explanation for the threshold observed in the experiments
for the minimum island size which leads to an unstable
NTM and for the scaling with the normalized ion gyrora-
dius of the plasma pressure at the onset of the instability. It
is shown in this Letter that a proper calculation of the
polarization current requires a full kinetic treatment of
the orbit of the particles in toroidal geometry in the pres-
ence of a rotating island and the related electric field.

The evolution of the island half-width W is usually
studied in terms of the generalized Rutherford equation
[5,6]. Its final form is obtained by substituting the non-
inductive part of the parallel current density jn:i:

k
into

dW
dt

� c1�0 �
c2
W

Z 1

�1
d�

I d	 cos	���������������������
cos	��

p jn:i:
k
; (1)

where �0 is the stability parameter of the equilibrium
current profile, � is a magnetic-surface label (B � r� �

0) defined as � 	 
q0s=2qs�
 �  s�
2= ~ � cos	, where q

is the safety factor,  is the (unperturbed) poloidal flux, the
prime denotes the derivative with respect to  , ~ is the
strength of the flux perturbation, the subscript s means that
a quantity is evaluated at the resonant surface, and 	 �
m�� n’�!t is the helical angle (m and n are and
poloidal and toroidal mode numbers, � and ’ the poloidal
and toroidal angles, and ! the mode rotation frequency).
With this definition, � � �1 denotes the O point of the
island, � � 1 the separatrix. The electrostatic potential
associated with the island rotation through the plasma is
assumed to be a flux-surface function, 
 � 

��, in the
island’s rest frame [3,4]. Finite-Larmor-radius corrections,
which could lead to deviations from this assumption, are of
higher order and are not included here. As shown in Fig. 1,
in this reference system the electric field of the island

VEj pol

Ω = const.

ξ

cells for
flux-surface
average

Φ(Ω)

FIG. 1. Polarization current jpol in the presence of a magnetic
island.
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generates an E� B flow along the flux surfaces with a
velocity vE which is larger around the island O point than
around the X point, since r� is larger in the first case and
smaller in the second one. This acceleration and decelera-
tion is balanced by a Lorentz force jpol � B, where jpol �
eni=!c
dvE=dt� must be directed perpendicularly to the
flux surfaces as shown in the figure (e is the particle charge,
ni the density, and !c the cyclotron frequency). This is the
classical polarization current. Since the cyclotron fre-
quency is much smaller for the ions than for the electrons,
it results that the polarization current is mainly carried by
the former ones. In a toroidal device, the poloidal E� B
flow is damped due to the neoclassical viscosity and a
parallel flow uk � cE=Bp (Bp is the poloidal component
of the magnetic field) develops in such a way that its
poloidal component compensates the poloidal component
of the E� B flow. This corresponds in the fluid picture to
an enhancement of the polarization current by a factor
B2=B2

p � q2="2 (where " � r=R is the inverse aspect
ratio), since the accelerated and decelerated parallel flow
is a factor B=Bp larger than the poloidal flow, and this
acceleration is to be provided now by the poloidal compo-
nent of the magnetic field in the Lorentz force. This
enhancement is lower by a factor "3=2 if the collision
frequency  is much smaller than !, since in this case
only the trapped-particle component of uk varies along the
island, as discussed later.

In order to calculate from r � j � 0 the contribution to
jn:i:
k

due to the polarization current, some assumptions are
made in the standard toroidal theory of NTMs. First of all,
it is assumed that !> kkvk, where kk � �m
r� rs�=
RqLq is the parallel wave vector [1=Lq � 
1=q�dq=dr]
and vk is the velocity component parallel to the magnetic
field. This means that the advection which causes a particle
to ‘‘feel’’ different electric fields is due to the E� B
motion around the island rather than the streaming of the
particles around the island along the field lines. For ! of
the order of the diamagnetic frequency, the previous con-
dition approximately corresponds to $p >W; i.e., the
island width should be smaller than the poloidal ion
gyroradius (cf. also the discussion below). A second as-
sumption is made on the island width, namely, that it
has to be larger than the ion banana width wb �

���
"

p
$p,

so that the distribution function can be analytically ex-
panded in powers of wb=W. This means that the standard
theory of the polarization current in a toroidal configura-
tion is valid only in the range [4] wb <W < $p. Finally,
the value of the collision frequency at which the transition
(referred to above) from the low-collisionality to the high-
collisionality regimes takes place is under debate.

An investigation of the behavior of the polarization
current in the parameter range not covered by the existing
theory is of prime importance to understand its contribu-
tion to the NTM evolution under experimental conditions.
In this Letter, this issue is addressed making use of a Monte
Carlo �f approach. The drift kinetic equation is solved

numerically by following the distribution in the phase
space of a number of markers (which represent the plasma
ions and evolve according to the equations of motion) in a
tokamak geometry in the presence of a perturbed magnetic
field [7]. More exactly, the markers describe the time
dependent deviation �f from the stationary background
distribution function, supposed to be a Maxwellian. The
integration of the equations of motion is performed using
the HAGIS code [8]. Collisions are implemented by a Monte
Carlo procedure [9]. In this numerical scheme, no assump-
tion on the island size, the island rotation frequency, or the
collision frequency is required. In the simulations pre-
sented below, no mode evolution is considered, i.e., W
and ! remain constant during each run. The electric po-
tential associated with the island is prescribed such as to
ensure an asymptotically vanishing electric field [3,4]:


 �
!q
mc

�
 �  s� � h
���; (2)

where h
�� � 
WRBp=
���
2

p
�


�����
�

p
� 1��
�� 1� and c is

the speed of light [�
x� is the Heaviside function]. The first
term on the right-hand side of Eq. (2) leads to the E� B
rotation of the whole plasma, and the second term de-
scribes the modification of this potential outside the island
(where �> 1). The boundary condition of vanishing elec-
tric field far from the island is satisfied by the profile
function h
��, i.e., h
� � 1� �  �  s. The results pre-
sented in the following do not depend critically on the
exact functional form of h
�� close to the separatrix, as
the electric drift remains of the same magnitude compared
to the magnetic drift, and local effects are smeared out by
the finite width of the trapped-particle orbits when W �
wb. In the island’s rest frame, the first term on the right-
hand side of Eq. (2), proportional to  , drops and in
d=dt � @=@t� v � r the explicit time derivative does not
contribute. The perpendicular current (mainly carried by
the ions) can be directly found as

j upper;lower
? � e

�Z
_�
dr
d�

�fd3v
�
upper;lower

;

where angular brackets denote a flux-surface average along
the perturbed magnetic surfaces and the superscripts refer
to the lower (from the X point to the O point) and upper (O
point to X point) part of the island, cf. Figure 1. A magnetic
island with m � 3, n � 2 is considered.

The first set of simulations (Fig. 2) shows a scan over !
of the perpendicular current j? 	 
jupper? � jlower? �=2, aver-
aged on the island inside and over a region lying within a
distance of 3W from the island separatrix. In these simu-
lations, the following parameters have been employed:
major radius R � 8 m, magnetic field B0 � 8 T, deute-
rium plasma with density ni � 1020 m�3, and temperature
Ti � 5 keV. For these parameters, the polarization current
is in the ‘‘low-collisionality’’ regime and the dominant
contribution to it comes from the trapped particles. The
background pressure profile is chosen to be flat. Since the
diamagnetic frequency is zero in this case, the polarization
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current is predicted to be proportional to !2, such that it
has two coincident zeros for the case of a nonrotating
mode. The perpendicular ion current found in the simula-
tions, however, shows a more complicated behavior.
Around ! � 0, the perpendicular current scales nearly
linearly with the rotation frequency. This can be under-
stood recalling the fact that in this range the toroidal
precession of the trapped particles related with the
magnetic-field inhomogeneity dominates over the electric
drift. In this case, j? / vtd � ruk / !, where vtd is the
toroidal precession velocity. This mechanism explains
also the sign reversal which is found for positive ! at
about !=kkvth � 0:1, i.e., for ! � n!td, where !td is
the precession frequency of trapped thermal ions. In the
island’s rest frame, this value of ! corresponds to the
inversion of the precession direction. Another sign reversal
is found in the region ! � kkvth, i.e., for ! of the order of
few thousand rad=s. It is seen in the simulations that only if
! reaches this order of magnitude the E� B drift domi-
nates the motion of the trapped particles around the island
so that the particles follow approximately the perturbed
flux surfaces. For lower values of the frequency, they show
a larger excursion away from the magnetic surfaces due to
a competition between electric drift and toroidal preces-
sion, and this motion dominates over the polarization drift.
This effect is not captured by a fluid treatment or within a
slab-geometry description. This second sign reversal,
which reflects through the quasineutrality equation on the
parallel current entering Eq. (1), is particularly important
for the NTM theory, as it occurs in the range where the
island rotation frequency is likely to lie. In fact, in different
sets of simulations this transition occurs always in the
range ! � kkvth, which in the experiment is close to the
diamagnetic frequency !�, since !�=kkvk � 
$p=W��


Lq=Ln�, where Ln is the gradient scale length. This shows
that the contribution of the polarization current to the NTM
evolution depends critically on the exact value of the
rotation frequency even for flat pressure gradients. The
interplay between these toroidicity-induced kinetic effects
in this frequency range and the physics connected with the
interaction with the drift wave described by the sheared-
slab gyrokinetic model by Waelbroeck et al. [10] still

remain an issue for further investigation. At large frequen-
cies, the quadratic scaling of the perpendicular current is
found, due to the fact that the advection occurs through the
E� B velocity, so that j? / vE � ruk / !2 as in the stan-
dard theory (Fig. 2, small picture). It is interesting to note
that in this regime the effect of the polarization current on
the island evolution through jk, inferred from r � j � 0
and an estimate of r? � j? obtained from the simulations,
gives a stabilizing influence if the region across the sepa-
ratrix is neglected, and destabilizing if it is included in the
radial integration, according to previous results[11,12].

The second point dealt with in this Letter is the behavior
of the polarization current when the island width is com-
parable to the ion banana width. In this limit, the standard
neoclassical approximation that wb is smaller than any
gradient length breaks down. The condition W � wb is
experimentally relevant, as it is satisfied in present-day
machines at least in the initial phase of a NTM. Since the
plasma parameters (in this case the electrostatic potential)
are different inside and outside the island, one can suppose
that a trapped particle near the island separatrix moves
according to a banana-width-averaged potential. It has
been shown recently that the bootstrap-current drive of
the NTM is significantly reduced with respect to the stan-
dard theory if W � wb [13]. In order to isolate the con-
tribution of the ‘‘standard’’ polarization current,
simulations at relatively high frequency (! � 104 rad=s,
which corresponds to !=kkvth � 2:5) have been per-
formed. Moreover, a lower magnetic field (B0 � 2 T) has
been taken in order to have W=wb � 1 without reducing
the island size too much with respect to the minor plasma
radius (since this would require a larger number of simu-
lation particles). The other parameters are the same as
discussed above. The behavior of uk at W � wb around
the island region is found to be very similar to that of the
parallel ion flow due to the pressure gradient in the same
limit [13]; i.e., the motion of the trapped particles depends
on the variation of the plasma properties across the island
separatrix, as expected. For the polarization current, the
standard theory (W � wb) predicts no dependence on the
island width [and hence jpol

k
/1=W2 from rkjk ��r�j?
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FIG. 3. Polarization current reduction for island widths W
comparable to the ion banana width wb.

-4 -2 0 2 4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
ω/k|| vth

-5.0×10-8

0

5.0×10-8

1.0×10-7

1.5×10-7

j pe
rp

 / 
e 

n 0
 v

th

FIG. 2. Perpendicular current around the island as a function of
the island rotation frequency normalized to kkvth.
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and rk /W, r? / 1=W, yielding the known 1=W3 scaling
of the polarization-current term in the Rutherford equation,
cf. Equation (1)]. This can be seen in Fig. 3 to hold only if
W * 2wb for the parameters discussed here. The polariza-
tion current then decays nearly linearly as a function of
W=wb. The sign reversal shown in the figure for very small
island widths comes from the current generated inside the
island. Analyzing again the radial profile, it turns out that
the parallel current follows a similar trend, due on one hand
to the reduction of the gradients outside the island, and on
the other hand because of the stabilizing influence of the
current inside the island found in the simulations. For too
small values of W=wb, the island width becomes of the
order of the ion gyroradius and the drift kinetic approach
employed here becomes invalid.

As the last topic, the behavior of the polarization current
as a function of the collision frequency is investigated. This
collisionality dependence is related to the rate at which the
collisional momentum transfer from the trapped particles
to the passing particles in the parallel flow uk occurs. The
trapped particles (which undergo a toroidal precession to
compensate the poloidal component of vE) transfer their
momentum to the passing particles at a rate  =". If this rate
is much smaller than! (or kkvk, whichever is the larger), a
passing particle can orbit the island many times between
two successive collisions, and receives from the trapped
particles a momentum input averaged along the island, i.e.,
flux-surface averaged. The passing-particle component of
the parallel flow uk is therefore constant along the flux
surface and does not contribute to v � ruk and hence to the
polarization current. The only contribution comes from the
trapped-particle parallel flow (smaller by a factor "3=2),
which is always connected with the local electric field and
hence does vary along the flux surface. On the other side, if
 ="� ! the trapped particles transfer their momentum to
the passing particles locally, and the whole E� B flow
varies along the flux surface and contributes to the polar-
ization current, according to the fluid picture mentioned at

the beginning. In the simulations shown in Fig. 4, the
parameters are the same as given above, except for B �
6 T. The high-collisionality regime is reached for rather
high values of the collisionality, the normalized collision
frequency  � being close to unity. The transition can even
fall into the plateau regime, then the theoretical upper limit
is not reached [Fig. 4(b)]. The simulations are in good
agreement with the theoretical curve proposed by
Mikhailovskii et al. [14]. These results indicate that the
transition to the high-collisionality regime can hardly oc-
cur in high-temperature plasmas.

The three issues investigated here and connected with
the polarization current in the presence of a rotating island
show that a complete kinetic description of the particle
dynamics in toroidal geometry is indispensable in order to
obtain a reliable theory of the NTM. A change of sign, not
predicted by the fluid theory, is found for frequencies of the
order of kkvth even in the absence of a pressure gradient.
This shows the importance of kinetic effects in this fre-
quency range. Moreover, the size of the current is usually
overestimated in the analysis of the mode evolution. It is
demonstrated that it is reduced when the island width is
comparable to the ion banana width. The transition to the
high-collisionality regime, sometimes invoked to explain
the experimental results [15], can hardly be reached in
mid-scale and large-scale tokamak experiments. These
results point towards a reduction of the role the polariza-
tion current in the evolution of the NTM. A contribution to
the determination of the NTM threshold can, however, not
be excluded.
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Abstract
The polarization current associated with a neoclassical tearing mode (NTM) is studied by means of drift kinetic δf
simulations. This current has been invoked as a possible explanation for both the observed threshold for the minimum
island size that can grow unstable and the scaling of the plasma pressure at the mode onset with the normalized
gyroradius, even though the theory is not able to predict the island rotation direction and hence the role (whether
stabilizing or destabilizing) of the polarization current for the island evolution. In the numerical approach presented
in this paper, the island rotation frequency can be assigned as an input parameter and the corresponding behaviour
of the current can be studied. The calculations are performed in toroidal geometry in the presence of a helical
perturbation. It is found that kinetic effects lead to a sign reversal of the polarization current for rotation frequencies
close to the diamagnetic frequency even for flat pressure profiles, thus influencing both the sign and size of the
polarization-current contribution to the NTM evolution.

PACS numbers: 52.25.Dg, 52.30.Cv, 52.65.Pp, 52.65.Cc

1. Introduction

The tearing mode [1, 2] can be neoclassically destabilized in
an otherwise tearing-stable plasma, as it has long been shown
both theoretically [32, 4] and experimentally [5, 6]. In this
case, the mode is driven unstable by the loss of bootstrap
current inside an initial (‘seed’) magnetic island. The magnetic
perturbation associated with this drop in the bootstrap current
leads to a further growth of the island. A saturated neoclassical
tearing mode (NTM) causes a confinement degradation in
today’s fusion devices, and would significantly reduce the
performance of ITER. At present, predictions of the conditions
under which the NTM will appear in ITER, and calculations
about its possible stabilization, are made difficult mainly by
the uncertainties about the physics determining the stability of
‘small’ islands, i.e. islands with a size comparable to the seed-
island size, as is the case in the early phase of the mode, or
when the island width is reduced, e.g. through localized current
drive [7]. In particular, it is often seen experimentally that the
seed island must exceed a given threshold in order for the mode

2 See National Technical Information Service Document No DE6008946.
Copies may be ordered from the National Technical Information Service,
Springfield VA 22161.

to become unstable. This is an indication that, in these cases,
there must be some stabilizing mechanism, acting at small
island widths, that balances the neoclassical drive. Among
the possible candidates discussed in the literature, the one that
has probably received the most attention is the polarization
current related to the time-dependent electric field associated
with the rotation of the island with respect to the plasma [8,9].
Actually, whether this contribution to the evolution of the
NTM is stabilizing or destabilizing is far from being clear
(see [10] for a comprehensive summary). This is basically
due to the fact that an accurate description of the physics
determining the island rotation frequency is missing, so that the
magnitude and even the sign of this frequency are still under
debate. Actually, this is not the only uncertainty in the theory
of the island polarization current. First of all, its contribution
to the NTM evolution has been discussed extensively in the
‘low’ [9] and ‘high’ [8] collisionality regimes. It is found
that in the low-collisionality regime the polarization current
is neoclassically enhanced by a factor q2/

√
ε with respect to

the classical value (q is the safety factor and ε the inverse
aspect ratio of the resonant rational surface), whereas in the
high-collisionality regime the enhancement factor is q2/ε2.
The value of the collisionality (or, better, of the ratio between
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the collision frequency and the island rotation frequency) at
which the transition between the two regimes takes place is
under discussion both experimentally and theoretically. This
point is briefly touched upon in the next section. Moreover, in
order to isolate the polarization current from the contribution
of the parallel ion streaming in the analytic solution of the drift
kinetic equation [9], it is to be assumed that

ω � k‖v‖, (1)

where ω is the island rotation frequency in the plasma rest
frame, v‖ is the particle velocity parallel to the magnetic field
and k‖ ≈ (m/Rq)W/Lq is the parallel wave vector (m is
the poloidal mode number of the perturbation, R is the major
radius, W is the island half-width and 1/Lq = (1/q)(dq/dr)

is the inverse scale length of the safety-factor profile q). An
investigation of the polarization current for frequencies that do
not satisfy the condition expressed by equation (1) is necessary,
since the actual value of ω is unknown, and the relevant physics
in a full three-dimensional geometry has not been considered
so far. This is the aim of this paper.

An accurate determination of the conditions under which
an unstable NTM appears in a plasma is a very complicated
task, requiring a full understanding of both the seeding
process (and hence coupling of perturbations of different
helicities [11] and the inclusion of electromagnetic turbulence
[12]) and the dynamics of small islands, where the standard
neoclassical ordering breaks down [13] and several other
effects are believed to play a role (anomalous transport across
the island [14,15], interaction with the drift wave [16], pressure
variation within the perturbed magnetic surfaces [17], etc). In
progressing towards the goal of a self-consistent description
of the NTM, it is therefore important to determine which
physics ingredients must be taken into account. In this sense,
a numerical solution of the drift kinetic equation (as presented
in this paper) allows one to explore physical processes that are
experimentally relevant but cannot be addressed through a fluid
description, a sheared-slab analysis or an analytic approach.
It is shown here that a detailed calculation of the ion motion
modifies the accepted picture of the NTM polarization current.

This paper is structured as follows. In section 2, a
physical picture of the polarization current associated with a
rotating magnetic island is given and the basic features of the
Rutherford [2] equation used in the NTM theory are recalled.
The distribution of the ions (which carry the polarization
current) in phase space is calculated by means of a Monte
Carlo δf scheme, as outlined in section 3. The results of
the numerical simulations are discussed in section 4, while
conclusions are drawn in section 5.

2. Physical picture of the polarization current in the
presence of a rotating island

Under experimental conditions, a magnetic island, in general,
rotates with respect to the surrounding plasma. As mentioned
above, there still exists no reliable prediction for the value
of the island rotation frequency ω. This issue will not be
addressed in this paper. The rotation frequency will be taken as
a free parameter in the numerical simulations. The electrostatic
potential associated with the island rotation, which determines

the island polarization current, is proportional to ω, cf
equation (2). In this section, the potential that is used in the
simulations is briefly derived and the resulting polarization
current is discussed.

In the presence of an island, the magnetic field B can
be written as B = RBt∇ϕ + ∇ϕ × ∇(ψ + ψ̃), where Bt is
the equilibrium toroidal magnetic field, ϕ the toroidal angle,
ψ the unperturbed poloidal flux and ψ̃ = α cos ξ = −RA‖
is the helical flux perturbation that describes the island, α

representing the strength of the perturbation (which can again
be treated as an input parameter in the simulations presented
in section 4). The helical angle ξ ≡ mθ − nϕ − ωt has
been introduced, where m and n are the poloidal and toroidal
numbers of the mode and θ is the poloidal angle. The quantity
	 defined as 	 ≡ 2(ψ − ψs)

2/W 2
ψ − cos ξ (the subscript s

denotes evaluation at the resonant surface and W 2
ψ = 4αqs/q

′
s ,

the prime indicating differentiation with respect to ψ) can then
be used as a flux-surface label, since B · ∇	 = 0. With this
definition, 	 = −1 corresponds to the O-point of the island,
	 = 1 to the separatrix. It can be shown that the (poloidally
averaged) gradient operator along B can be introduced as
∇‖ = k‖ ∂/∂ξ |	. The electrostatic potential can be obtained
by supposing that the mobile electrons short-circuit the parallel
electric field E‖ = −∇‖� − (1/c)∂A‖/∂t . Using the identity
∂A‖/∂ξ = (qk‖/m)∂ψ/∂ξ |	, the condition E‖ = 0 yields

� = ωq

mc
[(ψ − ψs) − h(	)], (2)

where h(	) is a flux-surface function to be determined from
the boundary conditions. It can be assumed that the electric
field vanishes far away from the island,

h(	) → (ψ − ψs) if |ψ − ψs | � Wψ. (3)

A simple choice for h(	) is then [8]

h(	) = Wψ√
2

(
√

	 − 1)�(	 − 1). (4)

Here, Wψ is defined to have the same sign as ψ − ψs and
�(x) is the Heaviside step function (�(x) = 1 for x � 0 and
�(x) = 0 otherwise). It can be shown that n = ns + n′

sh(	),
so that equation (4) is consistent with the assumption that the
density is flat inside the island [8, 9] (in the limit of vanishing
perpendicular transport).

The electric field E = −∇� can be regarded as composed
of two terms, cf equation (2). The first one is proportional to
the unperturbed flux ψ and leads to an E × B rotation of
the whole plasma, mainly in the poloidal direction. The term
proportional to h(	) vanishes inside the island and damps the
electric field far away from it. In other words, the second
term in equation (2) represents the potential in the island’s
rest frame. In this reference frame, the polarization current
can be understood more easily. A sheared-slab geometry, in
which toroidicity effects are ignored, is considered first. The
E × B flow is faster around the island O-point than around
the X-point, cf figure 1. The corresponding acceleration and
deceleration of the plasma along the flux surfaces, ρ dv/dt

(ρ is the mass density here), must be balanced by a Lorentz
force j × B, where the current is flowing perpendicular to
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Figure 1. Polarization current jpol in the presence of a magnetic
island.

the flux surfaces. This current is the classical polarization
current [18],

j class
pol = en

ωc

dvE

dt
= en

ωc

(vE · ∇)vE. (5)

The picture is slightly more complicated in a toroidal device,
where the poloidal rotation is neoclassically damped and a
parallel flux u‖ = cE/Bp develops in such a way that its
poloidal component compensates the poloidal component of
the E × B flow. The neoclassical polarization current, is
then [19],

j nc
pol = en

ωcp

(vE · ∇)u‖, (6)

which is a factor B2/B2
p = q2/ε2 higher than the classical

one, because in the latter case the flow that varies along the
flux surface is a factor B/Bp larger than in the former case,
and the corresponding acceleration in the Lorentz force must be
provided by the poloidal component of the magnetic field. As
is apparent from equation (6), the polarization current is mainly
carried by the ions, which have a larger inertia. If the collision
frequency is smaller than the island rotation frequency, only the
trapped-particles component ofu‖ actually varies along the flux
surfaces, leading to a reduced neoclassical enhancement [9]
j nc

pol/j
class
pol = q2/

√
ε. The transition between the low- and

the high-collisionality regime can also be investigated using a
Monte Carlo δf approach [20].

The motion of the particles carrying the neoclassical
polarization current has been investigated by Hinton and
Robertson [19] in connection with the radial field generated
by neutral-beam injection. Their results can be applied to
the electric field related to the island rotation. A time-
varying electric field modifies the orbits of the trapped particles
in such a way that a net radial drift (much larger for the
ions) is obtained. In the island’s rest frame, the trapped
particles drifting along the island under the influence of the
E × B flow experience, say, an increasing electric field when
moving from the region around the X-point to the region
around the O-point, and a decreasing electric field in the
opposite case. The corresponding radial drift is schematically
depicted on the right-hand side of figure 1. This drift is

transferred collisionally to the untrapped particles, yielding
the neoclassical polarization current as given by equation (6).
However, if the collision frequency is smaller than the island
rotation frequency, a trapped particle can drift radially back
and forth several times before a collision occurs, so that the
collisional momentum transfer to the passing particles flux-
averages to zero and the polarization current is carried by the
trapped ions alone. In this case, the neoclassical enhancement
factor is q2/

√
ε, as discussed above. This will be the situation

considered in the simulations presented in section 4.
The polarization current (perpendicular to B) is closed by

a parallel electron current to ensure charge neutrality, ∇ · j = 0.
This parallel current contributes to the NTM evolution as
described by the Rutherford equation, which is obtained by
substituting jn.i.

‖ into [4, 9]

4π

1.22ηc2

dW

dt
= �′

2
+

4
√

2

c

qR

sBW

∫ ∞

−1
d	

∮
dξ cos ξ√
cos ξ + 	

jn.i.
‖ .

(7)

In equation (7), η is the neoclassical resistivity, �′ is the usual
tearing stability parameter [2] and s = (r/q)dq/dr is the
magnetic shear (r being the minor radius). The contribution
to jn.i.

‖ due to the polarization current is found to scale
proportional to 1/W 2, leading to a term proportional to 1/W 3

in equation (7). This explains why the polarization current is
particularly important in the initial phase of the NTM, when
the island width is small. The scaling j

pol
‖ ∝ 1/W 2 is due to

the fact that in ∇‖j‖ = −∇⊥ · j⊥ one has ∇‖ ∝ k‖ ∝ W and
∇⊥ ∝ 1/W . The (perpendicular) polarization current itself is
independent of the island size because vE and its derivative
along the vE direction do not depend on W ; cf equation (5) or
equation (6). The limits of validity of the picture outlined in
this section are discussed below on the basis of Monte Carlo
δf solutions of the ion drift-kinetic equation.

3. The Monte Carlo δf approach

The calculation of the polarization current in a three-
dimensional geometry relies on the solution of the drift kinetic
equation,

df

dt
= ∂f

∂t
+ (v‖b̂ + vd + vE) · ∂f

∂r
− e

mi

vd · ∇�

v

∂f

∂v
= C(f )

(8)

in a toroidal geometry, including the presence of the island
in the magnetic configuration. In equation (8), f is the ion
distribution function, vd and vE are the magnetic and electric
drift velocities, e and mi are the charge and the mass of
the ions and C is the pitch-angle scattering operator. The
parallel electric field E‖ has been set to zero in equation (8),
since it is assumed to be immediately short-circuited by
the electrons (cf [9]). In this paper, the δf method is
employed. The distribution function is written as the sum
of a time-independent analytically known bulk term f0 and a
deviation δf to be evaluated numerically. The equation for δf

is, then,

d(δf )

dt
= C(δf ) − vd · ∇fM − efM

T
vd · ∇�, (9)
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Figure 2. A typical radial profile of the polarization current jpol

(normalized to enevth) as obtained from the Monte Carlo δf
simulations. The current flows in the lower and in the upper part of
the island in opposite directions, cf figure 1.

where the right-hand side of equation (9) represents the
‘source’ that leads to a deviation from f0, supposed here to
be a Maxwellian fM . No assumption is made here
about the magnitude of δf as compared to f0, so that
equation (9) is completely equivalent to equation (8). However,
computational time is saved with respect to a full-f solution if
|δf | � |f0|, as is usually the case since |vd , vE| � vth. This
numerical scheme is pretty similar to that already described
in detail in previous papers, where it was used to study near-
axis neoclassical transport [21] and bootstrap current in the
presence of an island [22]. The evolution of the system is
represented by means of ‘markers’, which span the whole
phase space and represent the ions. They evolve according
to the equations of motion, which are integrated by means of
the code HAGIS [23]. Collisions are implemented by means
of a momentum-conserving Monte Carlo procedure [21].

The magnetic equilibrium is specified analytically to save
computational time. The unperturbed magnetic surfaces are
circular and concentric. A magnetic perturbation of given
helicity can be assigned by choosing the mode amplitude
α ∝ W 2 and the mode rotation frequency ω (contained in ξ ), as
explained in section 2. No evolution of W and ω is considered.
Flux-surface averages are obtained by integrating in space
between neighbouring surfaces. For quantities which flux-
surface average to zero, a further refinement in the spatial
integration is obtained by introducing smaller cells in the
ξ -direction (figure 1). A typical polarization-current profile is
shown in figure 2, where a cut through the O-point in the radial
direction has been taken to highlight the presence of the island.
It can be seen that the contributions originating from the
upper and lower parts of the island average to zero within the
numerical accuracy. A knowledge of the profile is important
in order to deduce the behaviour of the parallel closure current,
as discussed at the end of the next section.

4. Numerical results

In the numerical simulations, the following parameters have
been employed: major radius R = 8 m, magnetic field
B0 = 8 T, deuterium plasma with density ni = 1020 m−3,
temperature Ti = 5 keV. A flat background pressure profile
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Figure 3. The perpendicular current j⊥ as a function of the island
rotation frequency ω (normalized to the parallel streaming
frequency k‖vth).

is taken and no bootstrap current is generated. The only
contribution to the parallel flow is then due to the island electric
field. An island width W = 6.8 cm has been taken, which
corresponds to W/wb = 9.6 and W/a = 0.017, where wb

is the (thermal) ion banana width and a is the minor radius.
A discussion of the behaviour of the polarization current
in the limit W ≈ wb (for which the neoclassical ordering
breaks down) will be performed in a separate paper. Since
the perpendicular current is zero when flux-surface averaged,
it is calculated here as j⊥ ≡ (j lower

⊥ − j
upper
⊥ )/2, where the

superscripts refer to the lower (from theX-point to theO-point)
and upper (O-point to X-point) parts of the island, see figure 1.
The poloidal and toroidal mode numbers in the simulations
are m = 3, n = 2. The behaviour of j⊥ as a function of ω

is discussed, beyond the limitation expressed by equation (1).
The results of the simulations are shown in figure 3, where
j⊥ is radially averaged over a region lying within a distance
of 4W from the resonant surface. Since the pressure gradient
is zero in these simulations, the polarization current could be
expected to scale as j⊥ ∝ ω2, consistently with equation (5)
and the fact that � ∝ ω, equation (2). The actual behaviour of
j⊥ is much more complicated, indicating that other physical
processes are involved.

An analysis of the particle motion in the island potential
helps us understand the features of figure 3. It turns out that
for frequencies in the range −1 � ω/k‖vth � 1 (where in
these simulations k‖vth = 3.9 × 103 s−1), the toroidal drift
of the trapped particles cannot remain out of consideration.
The motion of a trapped particle for ω/k‖vth 
 0.15 and
ω/k‖vth 
 0.77 is shown in figure 4. In figure 4(a), the island
rotation frequency and the toroidal precession frequency ωtp

are comparable. This modifies the fluid picture of figure 1,
where only the E × B drift in the island’s electric field is
considered. The result of this combination of electric and
magnetic drifts is a deviation from the perturbed flux surface
under the influence of the radial component of the E × B

velocity, which dominates over the polarization drift. The
direction of this radial drift depends on whether the toroidal
precession is slower or faster than the island rotation, as can
be seen in figure 5(a), where particles having v/vth ≈ 2.3
precess at the same speed at which the island is rotating,
ωtp ≈ ω/2 (the toroidal mode number is here n = 2). This
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Figure 4. Motion (with respect to the perturbed-surface label 	) of a 3 keV trapped ion drifting beside a magnetic island. The island
rotation frequencies are ω = 600 rad s−1 (a) and ω = 3000 rad s−1 (b). Motion along the whole island corresponds to �ξ/2π = 1.

(a) (b)

Figure 5. Velocity distribution of the perpendicular current j⊥ in the first outer cell after the island separatrix for ω/k‖vth = 0.15 (a) and
ω/k‖vth = 0.51 (b).

explains the sign reversal in j⊥ (see figure 3) for ω/k‖vth 
 0.1.
When the island rotation frequency becomes larger and larger,
the toroidal precession becomes less and less important so
that the trapped particles bounce following, on average, the
perturbed flux surface as in the fluid picture (cf figure 4(b),
where the perturbed flux surfaces are represented by horizontal
lines) and the polarization drift becomes comparable with the
combination of electric and magnetic drift described above.
This happens first for low-energy particles, which have a
correspondingly small precession frequency (ωtp ∝ v2), as
can be observed in figure 5(b), where the motion of thermal
particles is dominated by the polarization drift, whereas for
suprathermal particles the toroidal precession is still not
negligible. Moreover, it can be seen from figure 5(b) that
the polarization drift and this precession-induced drift are in
opposite directions, leading to the second sign reversal seen
in figure 3 for ω of the order of the parallel streaming k‖vth.
This sign reversal is particularly important, because it occurs
for values of ω that lie in the range where it is expected to
be experimentally, i.e. close to the diamagnetic frequency. It
is noted that ω∗/k‖v‖ 
 (ρp/W)(Lq/Ln), which is close to
unity, at least when the island is not fully developed. This
transition is not captured by a fluid approach, or by a kinetic

treatment in a slab geometry. It is also interesting to note that
in the range where the ‘standard’ polarization current is found,
ω starts to be comparable to the bounce frequency of the ions
ωb and the ion motion is the result of the superposition of
the two periodic motions (figure 6(a)). This is confirmed by a
Fourier analysis of the trapped-particle trajectory (figure 6(b)).
It is found in the simulations that slow particles with ωb � ω

do not contribute to (or even reduce the value of) j⊥.
It is recalled that the polarization current contributes to

the island evolution through its parallel closure, which can
be obtained by integrating the continuity equation ∇‖j‖ =
−∇⊥ · j⊥. One could wonder whether the sign reversal found
for j⊥ also holds for j‖. If one evaluates the contribution of
the parallel current to the island stability using the simulated
radial profiles and the current continuity equation, it turns out
that the polarization current is stabilizing if the region across
the island separatrix is excluded from the radial integration,
while it is destabilizing if it is included, according to the present
theoretical understanding [24]. This clearly shows that a major
role is played by the current profile across the island separatrix.
Analysing the simulated j⊥-profiles, one can deduce that the
different sign of j⊥ around ω = O(k‖vth) corresponds to a
different sign of j‖, implying a different contribution of the
polarization current to equation (7).
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Figure 6. Trajectory of a 3 keV trapped particle with respect to the perturbed flux surfaces (a) and its Fourier transform (b) for an island
rotation frequency ω/2π = 1.53 kHz. The bounce frequency is ωb/2π = 1.83 kHz. The peak on the left corresponds to a frequency
(ωb − ω)/2π .

5. Summary and conclusions

The polarization current due to a rotating magnetic island
has been studied in this paper employing drift kinetic δf

simulations. A drift kinetic approach was employed by Carrera
et al [4] to describe the neoclassical drive due to the drop of
the bootstrap current inside the island and by Wilson et al
[9] to investigate the role of the polarization current in a
low-collisionality tokamak. The numerical approach enables
one to investigate a broader parameter range than allowed
by the analytic three-dimensional theory. In the calculations
presented in this paper, the island width is supposed to be
much larger than the ion banana width, i.e. the drift kinetic
equation can be employed for the solution of the problem
as usually done in neoclassical theory. It is interesting to
note that the numerical method explained in section 3 allows
one to explore the limit where the neoclassical ordering
breaks down and wb ≈ W , as long as the island width
remains much larger than the gyroradius (which seems to be
usually the case in the experiment; for instance, the initial
island width measured in ASDEX Upgrade is usually above
1 cm). The limit wb ≈ W , however, is not addressed here.
Only the ions are described by the simulation markers, and
the potential is prescribed. The electrons just short-circuit the
parallel electric field. An extension of the analysis to include
self-consistent potentials and the electron dynamics would
be very interesting and is planned for the future. Anyway,
the results presented in the paper are rather insensitive to the
details of the electric potential around the separatrix, if the
boundary condition expressed in equation (3) is assumed.
Substituting the function h(	) given by equation (4), which
corresponds to equation (42) of [25], with a different profile
function, like equation (43) proposed in the same paper,
h(	) = (Wψ/

√
2)(

√
	 + 1/

√
2 − 1)�(	 − 1), merely leads

to some shifts of the values of j⊥. The general picture,
however, remains the same as described in the preceding
sections.

Kinetic effects have a strong impact on the simple fluid
picture of the polarization current. In particular, the toroidal
precession modifies the motion of the trapped particles along
the island. The resulting combination of electric and magnetic

drifts leads to a (mainly radial) motion, which dominates
over the polarization drift when ω ≈ ωtp. For frequencies
of the order of k‖vth (which is used as a measure of the
diamagnetic frequency), the drift kinetic analysis presented
here shows that the polarization current goes through zero even
in the absence of any pressure gradients both for positive and
negative ω. A semianalytic evaluation of the sign of the parallel
closure current based on the simulated j⊥-profiles yields a
similar behaviour as found for the perpendicular current. This
demonstrates that a full toroidal treatment of kinetic effects is
necessary in order to have reliable predictions of the behaviour
of the neoclassical polarization current and of its role for NTM
stability.
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Abstract
A predictive analysis of the capabilities of the ITER electron cyclotron wave system is presented in this work.
Modifications of both the upper launcher and the equatorial launcher aimed at increasing the potentialities of the
system are identified and discussed. A modification of the upper launcher has already been incorporated in the
updated front steering design called the extended physics launcher. By adopting different deposition ranges for
the upper and lower steering mirrors, this design offers the flexibility to drive current from the radial region required
for the stabilization of neoclassical tearing modes (NTM) up to that required for sawtooth control, allowing a synergy
with the equatorial launcher. Here a comparison of the performance of the new design of the upper launcher with
those of a dropped upper launcher is performed, showing that better performance for both NTM stabilization and
sawtooth control may be obtained by lowering the upper port location. An analysis of the EC current driven by
the equatorial launcher is also presented, showing that adding to the present design the possibility to drive counter-
current in addition to the existing co-current capability would increase the flexibility of the system. The behaviour
of all launchers at reduced magnetic fields is also discussed.

PACS numbers: 52.35.Hr, 52.50.Sw, 52.55.Fa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ITER electron cyclotron wave (ECW) system consists
of up to 24, 170 GHz gyrotrons, 1–2 MW each, connected
to one launcher situated in one equatorial port (EL) or four
launchers situated in the upper ports (UL), for a nominal
injected power of 20 MW. Both the UL and the EL will
launch wave beams polarized as ordinary mode (O-mode) in
the case of magnetic fields close to the nominal one (BT =
5.3 T) or such that the EC wave resonates as first harmonic
inside the plasma, polarized as extraordinary mode (X-mode)
in the case of BT in the range of second harmonic. Key
objectives of the whole system are central heating, q profile
control and stabilization of magnetohydrodynamic (MHD)
instabilities, mainly neoclassical tearing modes (NTM) and
sawteeth. The two launchers systems have different current
drive characteristics: the EL, where the beams are steered
in the toroidal direction, gives broad driven current density
(jCD) profiles and high driven current (Icd), good for central
deposition and current profile control, while the UL, where the
beams are steered in the poloidal direction, may allow narrow

jCD profiles, good for controlling MHD activity such as NTM
and sawteeth. However, to fulfil all the above-mentioned goals,
both systems should be optimized such as to adequately cover
the largest operational domain possible.

We recall that up to the end of 2005 the exclusive goal
assigned to the UL (based on three upper ports) was NTM
stabilization, while all other functions were ascribed to the EL.
Detailed beam tracing calculations have been carried out by
means of two beam tracing codes, GRAY [1] and TORBEAM
[2], with the goal of evaluating the performance of the UL for
NTM stabilization considering a number of different mm-wave
designs proposed for the remote steering (RS) and the front
steering (FS) launcher options, as part of EFDA technology
tasks [3]. The analysis of all launcher design options has
been based on three selected H-mode scenarios (scenarios 2,
3 and 5) having considerably different q, T , n and bootstrap
current profiles at one time slice (end of burn or EOB) [4]
(see also table 1). To account for the uncertainties in the
detailed predictions of the ITER plasma profiles, both the
equilibrium database and the analysis have been extended to
include variations of the poloidal beta βp and of the internal
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Table 1. Parameters of the ITER H-mode reference scenarios.

Ip ne0 Te0 Jbs (ρ2/1) Jbs (ρ3/2)
Scenario (MA) βN (1020 m−3) (keV) ρtor2/1 (MA m−2) ρtor3/2 (MA m−2)

EOB2 15 1.8 1.02 24.8 0.75 0.073 0.62 0.094

EOB3 12 2.2 0.86 31.8 0.67 0.120 0.56 0.147

EOB5 17 2.1 1.24 29.5 0.78 0.096 0.67 0.111

inductance li representative of typical variations observed in
JET and ASDEX Upgrade H-modes with q95 between 3 and 4.
Only the two modes having the most severe effects on plasma
confinement, namely (2,1) and (3,2), have been included in the
analysis. The radial range of interest, representative of likely
locations of the 3/2 and 2/1 q surfaces in most NTM-prone
ITER plasmas, turned out to be from ρtor ∼ 0.55 to ρtor ∼ 0.85
(ρtor being the square root of the normalized toroidal flux).
This set of conditions established the access requirements
for the UL, and provided the basis for the definition of the
steering range. Considering that the main effect of ECCD
in stabilizing the NTM is to drive a helical current within
the island to compensate the missing bootstrap current jbs,
ηNTM = jECCD/jbs has been defined as the NTM stabilization
efficiency. Further, we adopted a criterion to evaluate the
launcher performance based on a fit to experimental data [5],
i.e. ηNTM has to be above 1.2 at q = 2 and q = 3/2 flux
surfaces of all the H-mode reference scenarios considered.
The analysis showed that, provided an ‘optimal’ fixed toroidal
injection angle and well collimated beams are used, the FS
launcher exceeds the requirements by a large margin, bringing
the power requirement down to 2/3 of the installed 20 MW [6].

Since the FS design offers appreciable reserve in ηNTM,
a new variant of the UL has been designed that, by adopting
different deposition ranges for upper and lower mirrors, offers
the flexibility to increase the access range beyond that required
by the NTM stabilization, thus allowing a synergy between
UL and EL [7]. Besides providing good values of ηNTM,
this new variant, called extended physics launcher (EPL),
allows to drive well-localized current density up to the q = 1
location. This makes it attractive for additional applications
besides active NTM stabilization, as, for instance, plasma
current tailoring, control of a (4,3) mode in order to achieve a
‘frequently interrupted regime’ (FIR) and sawtooth control. In
the FIR regime the growth of (3,2) NTM is often interrupted
by ergodization due to its nonlinear coupling to an ideal
(4,3) mode. On ASDEX Upgrade it has been shown that
lowering the magnetic shear with co-ECCD just outside the
radius of the q = 4/3 flux surface triggers the transition to
this regime [8]. Sawtooth activity is of primary importance
for ITER where the energetic alpha particles are expected
to transiently stabilize the internal kink modes, allowing the
radius of the q = 1 surface to expand and periods between
crashes to become long [9]. The crashes events terminating
long sawtooth free periods can provide ‘seed islands’ for the
NTMs [10]. Therefore sawteeth destabilization, i.e. shortening
the sawtooth period, may prevent destabilization of the NTMs.
It has also been shown, both theoretically and experimentally,
that localized co-CD just inside (or counter-CD just outside)
the q = 1 surface may shorten the sawtooth period [11, 12].
The effectiveness in controlling the sawtooth period depends
on the capability of ECCD to modify the evolution of the

magnetic shear at the q = 1 surface, i.e. on the radial derivative
of the driven current profile [13].

All this leads to the conclusion that the efficiency for
all the objectives of the EPL increases with more localized,
higher current density profiles. A larger efficiency means that
less power is required to fulfil the objective. Minimizing the
EC power is in itself an important issue for ITER since this
will limit the deterioration of the fusion gain Q [14]. The
optimization of the EC current driven by the EPL has been
carried out with respect to the injection angles and the beam
parameters, by considering the present upper port location.
However, additional optimization of the driven current density
profiles may be obtained by lowering the upper port location,
due to a greater localization occurring when the EC beam
travels tangentially to the flux surface in the neighbourhood
of the absorption region [15, 16]. Here a variant of the EPL is
considered. We refer to this variant in terms of dropped upper
launcher (DUL), which is similar to the EPL except for the fact
that it is lowered by approximately 65 cm (one blanket shield
module).

As far as the equatorial launcher is concerned, we point
out two possible modifications of the present design. Note
that one of the main applications foreseen for the EL is central
heating, that might be required, for example, to go above the
L–H threshold or to control the density peaking during the early
stage of the scenario, as currently done in experiments [17].
Presently central heating can only be provided with co-current
drive (co-CD), which might lead to excessive peaking of the
current density profile in the standard scenario 2, to early onset
of q = 1 surface in the hybrid scenario 3 or even to prevent the
development of steady state scenario 4. Recent experimental
results demonstrated the advantages of using counter-ECCD
for q profile control in advanced scenarios or balanced co- and
counter-ECCD to achieve ‘pure’ heating [18, 19]. Extending
the present design of the EL to have at least one of the three
rows of beams providing counter-ECCD would allow to nearly
cancel out the current drive effects on the plasma current profile
whenever ‘pure’ heating is required. Moreover, this would
improve the flexibility of the system for central q control,
since three actuators, i.e. central co-ECCD, counter-ECCD
and heating, would be made available. An additional useful
modification is the possibility of launching poloidally tilted
beams from the top and low steering mirrors in order to improve
their capability of accessing the core plasma region.

The paper is organized as follows. In section 2 a
comparison of the efficiencies for NTM stabilization and
sawteeth control of the EPL and the DUL is presented. In
section 3 the capabilities of the EL are shown and the potential
effects of central co- and counter-ECCD on the q profile of
the inductive scenario 2, the hybrid scenario 3 and the reverse
shear scenario 4 are discussed. In section 4 an overview of
the capabilities of all launchers at reduced magnetic fields is

2

106



Nucl. Fusion 48 (2008) 054012 G. Ramponi et al

Figure 1. Peak of the driven current density (a), normalized width at 1/e�ρtor (b), total driven current (c) and poloidal steering angle (d) as
a function of the radial location ρtor for 1 MW of injected power into the plasma of scenario 2 (EOB2) from the USM of the DUL and of the
EPL with toroidal injection angle β = 20◦.

presented. The last section is devoted to some concluding
remarks.

2. Comparison of the EPL and DUL performances

The EPL consists of four launchers, each housing eight beams,
and two steering mechanisms, positioned at different heights
in the present upper port plug. The two steering mirrors are
identified as upper steering mirror (USM) and lower steering
mirror (LSM). A switching system prior to the port entrance
can deviate the beams coming from the 24 gyrotrons to either
the 16 entrances associated with the USM or the 16 entrances
with the LSM; therefore the maximum power that can be
injected from each set of steering mirrors is ∼13.3 MW. The
lower set is dedicated to covering the outer region of the
plasma, i.e. 0.55 � ρtor � 0.85, and the upper set to accessing
radial range 0.3 � ρtor � 0.8. In the region of overlap, the
injected power may reach 20 MW. The main physics objectives
of this launcher are NTM stabilization and sawtooth control.

As already mentioned, the optimization study for the EPL
has been carried out with respect to the toroidal injection
angles to find the ‘optimal’ compromise between the driven
current and the Doppler shift broadening and with respect to the
beam parameters to find the ‘optimal’ beam size. Using well-
collimated beams with focus inside the plasma and ‘optimal’
toroidal injection angles, values in excess of the requirements
in the figures of merit for both NTM stabilization and sawteeth
control have been achieved [20]. Here, considering that
additional optimization of the driven current density profiles
is obtainable lowering the launching location, namely using
the ‘DUL’, we shall compare the performances of the two
launchers in terms of the figures of merit for their main physics
objectives.

The ECCD calculations by the GRAY code have been
carried out for both steering mirrors of the EPL and the DUL

having the following locations: EPL LSM: (R, Z)=(6.90 m,
4.18 m); DUL LSM = (R, Z)=(7.70 m, 3.55 m); EPL USM:
(R, Z)=(6.85 m, 4.39 m); DUL USM = (R, Z)= (7.56 m,
3.73 m). The same circular, well-collimated beams, proved
to be ‘optimal’ for EPL, have been used to compare the two
launchers: the beam launched from the LSM locations has its
waist w0 = 2.1 cm at a distance +1.62 m from the steering
mirror (+ means towards the plasma) while that launched from
the USM has its waist w0 = 2.9 cm at a larger distance from
the mirror (+2.13 m). The beams are launched with fixed
toroidal angle β, where β is the angle between the vertical
plane containing the beam line and the vertical plane containing
a major radius, and are steered by varying the poloidal angle
α, i.e. the angle between the horizontal and the projection of
the beam line on the plasma cross section. The comparison is
performed for β = 20◦ (except for EPL LSM where β = 18◦

in the range of radial locations that has been chosen for the
EPL.

Figures 1 and 2 show the peak values of the current density
profiles, their normalized full widths at 1/e (�ρtor), the driven
currents and the poloidal steering ranges for USM and LSM
injection into the plasma of scenario 2 (EOB2). The better
performance of the DUL is evident mainly at the innermost
surfaces. This is mainly due to the better relation between the
launcher location and the geometry of flux surfaces providing
narrower current density profiles. In addition, larger values of
the driven current are obtained due to the larger local values
of n||. In the case of USM (figure 1), an increase in the driven
current density by a factor of up to 2.6 (at ρtor = 0.3) and a
substantial reduction in the profile width (up to a factor 0.5)
are obtained. We note, however, that a larger steering range
is required for the DUL to cover the same radial region as
covered by the EPL. For instance, while with the DUL USM
the steering range required to drive current from ρtor = 0.8 to
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Figure 2. Same as figure 1, for injection from the LSM of the DUL at β = 20◦ and from the LSM of the EPL at β = 18◦.

ρtor = 0.3 is �α = 36◦, with the EPL USM �α = 24◦ is
sufficient.

In the case of the LSM (figure 2), an exception to the
favourable behaviour of the DUL is observed for ρtor � 0.8.
This is mainly due to the fact that the power absorption in that
radial region occurs at larger distances from the DUL LSM
with respect to EPL LSM, so that the ‘local’ spot size of the
beam launched from DUL LSM is larger than the ‘local’ spot
size of the same beam when launched from EPL LSM. This
may be deduced by looking at beam trajectories from the LSM
of both DUL and EPL shown in figure 3. By taking this into
account, a different beam, with focus at a larger distance from
the LSM, should be used for a better performance of DUL at the
outermost flux surfaces. We further note that, if the EC power
is injected from the DUL LSM, low α, ‘quasi horizontal’ beam
trajectories are needed to get ECCD at the outermost surfaces.
These trajectories are affected by high refraction that, in its
turn, affects the local beam size making the beam astigmatic.
These observations indicate that a specific optimization study
would be required for the DUL to assess its performances at the
outermost surfaces, by also taking into account the possibility
of exchanging the roles of the two steering mechanisms.

In order to compare the efficiencies of the two launchers
for NTM stabilization with localized ECCD, the three H-mode
reference scenarios, i.e. the inductive scenario 2 (EOB2), the
hybrid scenario 3 (EOB3) and the low q scenario 5 (EOB5)
have been considered. The main parameters of the scenarios
are summarized in table 1.

The values of the figure of merit for (2, 1) and (3, 2) NTM
stabilization are shown in table 2 and in table 3, for 13.3 MW
of EC power injected, respectively, from the EPL LSM and
from the DUL LSM. Besides ηNTM, the full widths, wcd, of
the EC current profiles (with wcd = a�ρtor and a = 200 cm
the plasma minor radius), and the products ηNTMwcd reflecting
the effective total driven current are quoted in the tables.

Looking at tables 1 and 2, the following observations
can be made: (i) all ηNTM values are above 1.2 by injecting
13.3 MW from either launcher; (ii) in the case of the DUL,
larger ηNTM values (by a factor from 1.2 at q = 2 of scenario
2 up to 2.3 at the q = 3/2 of scenario 3) and smaller wcd are
obtained at the resonant surfaces of all scenarios (apart from
at the q = 2 surface of the low q scenario 5 due to the above-
mentioned beam size effect); (iii) still in the case of DUL, for
all relevant surfaces the product ηNTMwcd is larger by a factor
from 13% (q = 2 of scenario 2) up to 39% (q = 3/2 of
scenario 3).

Since the power required for full stabilization, which
also depends on the width at which the mode is stabilized,
decreases for smaller wcd and for larger values of the products
ηNTMwcd, we may argue that, by injecting the EC power from
the DUL, a reduction of ∼20% (on average) of the power
needed to stabilize the NTMs may be achieved. We also
stress, however, that accurate evaluations should also take into
account the marginal island width below which the modes
self-stabilize [21].

Concerning the capabilities of the two launchers for
sawtooth control, it is clear that accurate predictions require
transport modelling including a sawtooth period model that
takes into account the stabilizing effect of alpha particles.
However, a criterion to alter the shear at q = 1 for a significant
change in the sawtooth period has been provided in the form
IECCD/�ρ2 � Ip(ρq=1)/2(ρq=1)

2, IECCD being the total driven
current, �ρ the (normalized) full width at 1/e of the driven
current profile, and Ip(ρq=1) the plasma current inside the
q = 1 surface [22]. Although this criterion does not take into
account the stabilizing effect of alpha particles, so that it will
not apply quantitatively to ITER, ηs = IECCD/�ρ2 is taken as
a figure of merit and used here to compare the EPL and DUL
efficiencies for local shear modification. The values of ηs for
PEC = 1 MW injected from the DUL USM and EPL USM
are shown in figure 4. According to these results, the DUL
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Figure 3. Trajectories of the wave beams injected into the plasma of
scenario 2 from USM (a) and from LSM (b), aiming to drive current
at the extrema of the corresponding radial range, for both EPL and
DUL. The dotted and dashed lines denote the q = 2 and q = 3/2
flux surfaces, respectively.

efficiency to alter the magnetic shear close to q = 1 appears
to be a factor ∼4 superior to the EPL efficiency. However, to
confirm that the DUL can increase the shear at q = 1 at a faster
rate and to a larger value compared with the EPL requires a
full simulation.

Table 2. NTM figures of merit for EPL LSM.

Scenario q ηNTM wcd (cm) ηNTM wcd

EOB2 2 2.8 2.4 6.7
3/2 1.8 3.8 6.8

EOB3 2 2.0 3.0 6.0
3/2 1.3 4.7 6.1

EOB5 2 1.7 2.0 3.4
3/2 1.4 2.8 3.9

Table 3. NTM figures of merit for DUL LSM.

Scenario q ηNTM wcd (cm) ηNTM wcd

EOB2 2 3.4 2.3 7.6
3/2 3.4 2.7 9.0

EOB3 2 3.2 2.2 7.1
3/2 3.0 2.9 8.5

EOB5 2 1.5 2.7 4.0
3/2 2.0 2.5 5.0

Figure 4. Figure of merit for sawtooth control for 1 MW injected
into the plasma of scenario 2 from the DUL USM and the
EPL USM.

3. Analysis and performances of the equatorial
launcher

The current design of the EL foresees 1 equatorial port,
24 beams injected from 3 steering mirrors (8 beams/mirror)
located at R = 9.2 m and z = 0.02, 0.62 and 1.22 m, which we
shall call low, mid- and top mirrors, respectively. The launch
is horizontal, with a toroidal steering capability between 20◦

and 46◦, and provides only co-current drive [23]. As already
pointed out by several authors, see e.g. references [24, 25],
only the mid-mirror can deposit the power close to the plasma
centre, while central deposition may be improved by adding
a fixed poloidal angle to the top and low front mirrors. In
reference [20] it has been shown that a tilt angle α ∼ ±100

allows driving current very close to the centre of the plasma
of scenario 2. To account for possible vertical shifts of the
plasma centre, we performed the calculations assuming a tilt
angle of ±5◦ for the top and low front mirrors, respectively. To
simulate the eight beams, a single wide astigmatic beam has
been considered. In a local reference frame where the z-axis
is along the beam line and the x- and y-axes are in a plane
orthogonal to it (with x in the horizontal plane) the beam is
characterized by the waists wx = 4.04 cm and wy = 1.02 cm
at distances dx = −678.1 cm and dy = 69 cm from the front
mirrors along the z-axis (where negative d values mean behind
the mirror). The driven co-current, the peak current density,
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Figure 5. Driven co-current per unit power (a), peak current density (b) normalized radius of the peak current density (c) and normalized
width at 1/e of the current density profile (d) as a function of the toroidal steering angle for the three rows of the EL with a tilt angle of 5◦ of
the top and low front mirrors. The solid curves refer to the mid-mirror, the dotted ones to the low-mirror and the dashed ones to the
top-mirror. The equilibrium and plasma parameters are those of scenario 2 at EOB. The curves are plotted up to β values that allow full
power absorption.

Figure 6. Same as figure 5, for scenario 3.

the normalized radius of the peak current density and the
normalized width of the current density profiles as a function of
the toroidal injection angle are shown in figure 5 for scenario
2 and in figure 6 for the case of the hybrid scenario 3. It
may be observed that a large amount of co-current close to the
plasma centre is driven for β = 20◦, in the case of scenario 2,
and for β ∼ 23◦ in the case of scenario 3, while the current
density profiles are much broader than those obtained with
the upper launchers. For instance, in the radial region where

q = 1 is likely to occur (ρtor ∼ 0.4), the width of the current
density profiles driven by the EL appears to be up to 4 (8) times
larger than the width of the profiles driven by the EPL (DUL).
Both the beam size and the Doppler shift are seen to contribute
to the current density profiles broadening up to β = 30◦ in
scenario 2 and up to β = 28◦ in scenario 3. For larger β

values, the Doppler shift prevails. Therefore, a beam with a
smaller size would not improve the poor localization of the EC
current driven at radii ρtor > 0.3 in scenario 2 and ρtor > 0.2
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Figure 7. Current density profile for 1 MW of EC power injected
from the mid-row at β = 20◦ into the plasma of scenario 3.

in scenario 3. Also to be noticed is that for high β values
(β > 40◦), high n‖ effects lead to incomplete absorption of
the O-mode EC power. As a consequence, the access range
for each mirror is limited up to ρtor < 0.5, depending on
the scenario. Moreover, for the low β values for which the
interaction with the O-mode first harmonic occurs on the high
field side (this happens for scenario 3 at β values below 22◦), a
fraction of the power may be absorbed at downshifted second
harmonic, leading to ECCD profiles with a counter-current in
addition to the driven co-current. An example of such a profile
is shown in figure 7, in the case of the high temperature scenario
3 for injection at β = 20◦. In the case shown in the figure,
40% of the power injected from the mid-row is absorbed as
second harmonic close to the plasma centre.

In order to fulfil its physics objectives as core heating
(without peaking the plasma current), sawtooth control, to
assist a reversed shear formation, the EL design should allow
also for counter-current drive. Therefore, in addition to the
inductive scenario 2 and the hybrid scenario 3, here we shall
also consider the advanced scenario 4. The latter is a steady
state 9 MA strong reverse shear scenario producing about
300 MW of fusion power with Q = 5. Its main parameters
are listed in table 4.

Profiles of co- and counter-ECCD computed for the three
scenarios by taking into account the full available power
PEC = 20 MW are shown in figure 8. The toroidal angles
β have been chosen to get the ECCD profiles closest to the
plasma centre in each scenario. The total driven current values
are +0.45 MA and −0.47 MA for scenario 2, +0.51 MA and
−0.54 MA for scenario 3 and, +0.66 MA and −0.67 MA for
scenario 4, where+refers to co-ECCD and−to counter-ECCD.

The potential effects of the driven current on the q profiles
have been estimated by the equilibrium code CHEASE [26]
and are shown in figure 9. Although the resistive evolution
of the plasma current profile is not taken into account in this
analysis, results show that, with an improved design, the EL
could provide a large range of variation of central q for all
scenarios, particularly if counter-ECCD is included in the EL
capabilities. It is also important to note that, whenever central
heating is required, the driven co-current might peak the plasma
current density profile and lead to early appearance of theq = 1
surface for the hybrid scenario or to a monotonic profile for
scenario 4. The only possibility of avoiding unwanted low
central q values is to compensate with a counter-current to
allow either central heating (co- + counter-CD) or central
counter-CD. Even a single row of counter ECCD beams in the

EL would significantly increase the potentialities of the system,
providing a larger flexibility in controlling q0 in the advanced
scenario 4.

4. Analysis at reduced magnetic field

The analysis presented so far has been carried out at the
nominal value of the ITER magnetic field. However, at initial
operation ITER will work at magnetic fields BT < 5.3 T.
Actually it is foreseen that the full field operation will occur
about two years after the ‘first plasma’ [27]. The question
therefore arises on determining the accessibility of the present
system at reduced magnetic fields. The problem for the UL
(based on three upper ports) was analysed in [25,28]. Although
the magnetic topology of the equilibrium of scenario 2 was not
identical and a different scaling of kinetic parameters was used,
similar conclusions were drawn for the UL in the two papers.
The analysis we present here has been performed for scenario
2 (EOB2), scaling the plasma current and kinetic profiles in
order to keep fixed the edge safety factor q95, the plasma β and
the Greenwald number n/nG.

It is worth recalling that neither upper nor equatorial
launchers can work in the magnetic field range 3.4–4.2 T since
the EC resonances for f = 170 GHz are located outside the
plasma or quite close to the boundary. For the UL, where the
toroidal angle β is fixed, when the magnetic field is reduced
below 5.3 T for the case of the O-mode, first harmonic (OM1),
and below 2.65 T, for the case of the X-mode second harmonic
(XM2), it is generally observed that the access to the innermost
flux surfaces is strongly reduced whenever the EC resonance is
too far to the high field side. In the case of XM2, for magnetic
fields higher than 2.65 T low and broad current density profiles
are obtained when the EC resonance falls close to the radial
location of the launcher. This is due to both trapping effects and
to the ‘quasi’ vertical trajectories (with high α values) required
to drive current at the relevant flux surfaces.

In the case of the EL, where the toroidal angle β is used
to steer the radial location of the driven current, when BT

decreases with respect to 5.3 T the OM1 power absorption and
ECCD occurs in the high field side with respect to the plasma
centre. On these long trajectories, a fraction of the EC power
may be absorbed at downshifted second harmonic, leading to
ECCD profiles with a counter-current in addition to the driven
co-current. For magnetic fields around 2.65 T (XM2 case),
finally, third harmonic absorption (XM3) may considerably
reduce the EC power available close to the second harmonic
resonance.

Let us then investigate whether, using the DUL instead
of the EPL, advantages can be found in terms of accessibility
and performances in plasmas at reduced magnetic fields. The
OM1 case is represented in figures 10 and 11, where the driven
current density as a function of its radial location is shown for
magnetic fields reduced by 10%, 15% and 20 % with respect
to the nominal field. As may be observed, ECCD down to
ρtor < 0.5 is no more allowed for both the DUL USM and
the EPL USM, already for a 10% reduction of the nominal
magnetic field. The possibility of using the USM for sawtooth
control is therefore lost in both cases. In order to determine the
allowed BT range, we therefore use the criterion that co-current
has to be driven in the entire radial range of NTMs, i.e. from
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Table 4. Main parameters of scenario 4.

Ip ne0 Te0 Raxis Zaxis

(MA) βN (1019 m−3) (keV) q0 qmin ρqmin (m) (m)

9 2.5 7.3 23.9 4.3 2.7 0.7 6.67 0.52

Figure 8. Co- and counter-ECCD profiles for 20 MW injected from
the EL with a tilt angle of 5◦ of the top and low front mirrors, and
with a toroidal angle β = ±20◦ for scenario 2 (a), β = ±23◦ for
scenario 3 (b), β = ±25◦ for scenario 4 (c).

ρtor = 0.55 up to ρtor � 0.85, at least by launching from
the LSM. As easily argued from figure 11, the minimum field
for which the above criterion is satisfied is BT ∼ 4.5 T for
the DUL, and BT ∼ 4.7 T for the EPL. Therefore the BT

range where OM1 current drive is efficient for stabilization
of all NTMs is larger for DUL. Furthermore, recalling that the
bootstrap current density is scaled as the magnetic field, we
also find that at resonant surfaces of scenario EOB2 the values
of the NTM figure of merit, for a power of 13.3 MW, exceed
the threshold value 1.2 in the whole range of magnetic field
available for each launcher.

The same analysis has been performed for XM2 around
half the nominal magnetic field, B = 2.65 T. The range
of magnetic fields where the two launchers efficiently drive
current is from 2.3 to 2.8 T for the EPL, and from 2.3 T up
to 3 T for the DUL. Therefore the magnetic field gap between
OM1 and XM2 is reduced by 20% if the EC power is launched
from the DUL.

Figure 9. Potential effects of co- and counter-ECCD on the q
profiles of scenario 2 (a), scenario 3 (b) and scenario 4 (c), estimated
by the CHEASE code. The equilibrium q profile qeq is shown for
each scenario. The upper and lower solid lines represent the q
profiles in the case of counter- and co-ECCD with PEC = 20 MW.
The dashed upper lines refer to the case of counter-ECCD obtained
with 6.7 MW in the case of scenario 3, and with only 3 MW in the
case of scenario 4. The dashed lower lines refer to the case of
co-ECCD with 10 MW in both scenarios 3 and 4.

The capabilities of the EL at reduced BT have been
investigated by considering the mid-row only. The results
obtained for the OM1 case are shown in figure 12, for values
of BT reduced by 10%, 15% and 20%. It is worth pointing
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Figure 10. Driven current density per unit EC power, for magnetic
fields reduced by 10%, 15% and 20%, for injection from the USM
of the EPL (a), for injection from the USM of the DUL (b). The
nominal field case is included as a reference. The vertical dashed
lines indicate the radial location of the q = 3/2 surface and the
q = 2 surface for scenario EOB2.

Figure 11. Same as figure 10, for injection from the EPL LSM, (a),
for injection from the DUL LSM (b).

out that, as BT < 5.3 T, the effective β range decreases due
to incomplete power absorption. As already mentioned, at
the low β values for which co-current is driven in the high
field side with respect to the plasma centre, a counter-current
affects the driven current profiles. This occurs at β < 25◦ for

Figure 12. Radial location (a) and total driven current (b) as a
function of β, by injecting 1 MW of EC power as OM1 from the
mid-row of the EL at nominal field and three values of BT reduced
by 10%, 15% and 20%. The curves are shown up to values of the
toroidal angle β for which the EC power is fully absorbed.

Figure 13. Same as figure 12, for XM2 and for values of BT in the
range 2.65–3.2 T.

BT = 4.77 T, at β < 27◦ for BT = 4.55 T and at β < 32◦

for BT = 4.24 T. Moreover, we note that the access range is
limited up to ρtor � 0.2 for BT = 4.77 T, and up to ρtor � 0.3
for BT = 4.55 T.

The performances of the EL for injection of the second
harmonic X-mode (XM2) are shown in figure 13. As already
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mentioned, we observe that, for BT � 2.75 T, third harmonic
effects are dominant. A large fraction of the injected power is
absorbed as XM3 in the low field side region, even preventing
the interaction in the XM2 region, and the values of the driven
current become quite low. This result, however, is strongly
dependent on the assumption one makes for the temperature
at scaled magnetic field. We also observe that a significant
amount of current may be driven in the central region only for
BT in the range 2.75–3 T. For BT increasing from 3 to 3.2 T,
the radial range where a significant amount of current may be
driven is shifted towards large radii, therefore the main goals
of the EL, i.e. heating and CD close to the centre, can no
more be fulfilled. We finally observe that for BT > 3.2 T,
negligible current is driven at the outermost surfaces since
ECCD is dominated by trapped particle effects.

5. Summary and conclusions

The analysis performed in this work compared the performance
of the present EC upper launcher design, the EPL launcher,
with that of the same launcher moved vertically down in the
ITER machine by approximately one blanket shield module,
labelled the DUL launcher. The comparison showed that
the DUL, by providing higher and narrower current density
profiles, would increase the performance for both NTM
stabilization and sawtooth control. The better performance
for the DUL occurs mainly at the innermost surfaces, leading
to an increment of the figure of merit for sawtooth control up
to a factor 4. An exception to the favourable behaviour is
found for the EC current driven at the outermost surfaces, and
is mainly due to the fact that the beam used for the LSM in
the present simulation is not ‘optimized’ for the DUL. Another
advantage of lowering the upper port plug is that, at low BT

operation, the range of magnetic field where EC current may be
driven in the whole radial range of NTMs would increase both
in the OM1 case and in the XM2 case. Therefore the magnetic
field range where the NTM region is not accessible would be
reduced by 20% with respect to the present location. The main
disadvantage of the DUL is that it requires a larger steering
range to drive current in the same plasma region compared with
the EPL. This would result in a larger rotation of the steering
mirror and, as a consequence, in higher levels of induced stress
in the critical component of the steering mechanism.

The main results provided by the analysis performed for
the equatorial launcher are that, with a tilt angle of 5◦ added
to the top and low front mirrors, better access to the plasma
core can be provided. However the access range is limited
to ρtor < 0.5, due to incomplete power absorption for the O-
mode at large n‖ values. Quite broad current density profiles
(�ρt > 0.1) are observed in the radial region where the q = 1
surface is likely to occur, i.e. ρtor ∼ 0.3–0.4, the broadening
being dominated by the Doppler shift. This makes the EL
less efficient than the UL for sawtooth control. Moreover
it has been shown that, adding to the present design the
possibility to drive counter-current in addition to the existing
co-current capability would largely increase the flexibility of
the system, by decoupling heating and current drive, whenever
only heating is necessary, or providing the possibility of
controlling the central q in the advanced scenario 4.

Finally, it has been shown that the EL has a very limited
access range (up to ρtor � 0.2) when the magnetic field is
reduced by only 10%. Recalling that, for the same magnetic
field, the UL cannot drive current inside ρtor = 0.5, sawtooth
control is not possible anymore at this field. For a magnetic
field reduced by 15% or by 20%, the access range of the EL
increases up to ρtor ∼ 0.3 or up to ρtor ∼ 0.45, respectively;
however, the current density profiles also show a counter-
current due to power absorption at the downshifted second
harmonic. Moreover, in the range of the second harmonic X-
mode, a significant amount of current may be driven in the
central region only for BT in the range 2.75–3 T. Therefore
the capabilities of the EL are strongly reduced by reducing the
magnetic field.
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Abstract
The current flowing around a magnetic island and connected to its rotation with
respect to the plasma is studied by means of a drift-kinetic approach. It is shown
that the current due to a change in the precession frequency of the trapped
particles in the island potential can compete with the standard polarization
current for island rotation frequencies close to or below the diamagnetic
frequency. The passing particles are found, on the contrary, to have little impact
on the standard picture. The analytical results are shown to explain the features
of the island current seen in numerical simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The tearing mode is a non-ideal MHD instability which changes the topology of the magnetic
field by reconnecting separate field lines, thus causing the appearance of magnetic islands. In a
toroidal fusion device, this severely deteriorates the radial confinement of particles and energy.
These modes are localized on the so-called resonant surfaces, where the safety factor q is a
rational number. First studies [1, 2] described the tearing mode as a dissipative phenomenon
for the magnetic energy stored in the plasma, so that the growth rate of the mode was basically
determined by the equilibrium magnetic configuration through the parameter �′. Later, it
was shown both theoretically [3, 4] and experimentally [5, 6] that the tearing mode can also
be destabilized in a tokamak by the loss of bootstrap current caused by the appearance of a
‘seed’ island, and this neoclassical drive characterizes the so-called neoclassical tearing modes
(NTMs). While the neoclassical drive and the stabilizing effect of the equilibrium current
profile can describe the non-linear saturation of the mode under experimental conditions, to
compute the stability and the growth of a seed island, one needs to take into account other
effects which are still to be fully explained. Among these, the rotation of the island with
respect to the plasma turns out to potentially play a major role. For ‘fast’ rotating islands (i.e.
ω sufficiently larger than k‖vth, where ω is the island rotation frequency with respect to the
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plasma, i.e. in the local equilibrium E × B frame, k‖ is the parallel wave vector defined in
equation (6) below and vth is the ion thermal velocity) sufficiently larger than the ion banana
width [7], a well-known contribution comes from the polarization current [8, 9], which arises
because particles experience a time-dependent electric field during their streaming around the
island. This phenomenon has different physical features depending on collisionality [10–13]
and frequency [14]. Moreover, other effects have been shown to be relevant, for example finite
ion banana width effects [7, 15] or even finite Larmor radius effects [16]. As a matter of fact,
for small islands the gyroradius scale starts to be relevant, and a gyro-kinetic approach can be
necessary to get a satisfactory physical picture [17–19].

As a general theory for the determination of the mode rotation frequency ω is currently not
available, we perform a parametric study in ω focusing on a frequency range which has not been
explored yet, even though it can be physically meaningful for a NTM. A common assumption in
the theory of the polarization current consists of the ordering ω ∼ ω∗, where ω∗ is the electron
diamagnetic frequency. According to the scaling criteria discussed in detail in section 4, this
ordering leads to ω ∼ k‖vth. Physically, this means that the island rotation occurs on the
same timescale as the transit time of the particles around it, potentially leading to resonant
interactions between the mode and the particles, as already pointed out previously [14]. To
investigate these processes, a kinetic approach is necessary. In a previous study [11], focusing
on the contribution of the polarization current, terms in k‖vth have been disregarded. In this
paper, we retain these terms and investigate their contribution to the currents generated by
a rotating magnetic island. We neglect the mode evolution due to the plasma response, so
that the island width and its rotation frequency are constant with time. Moreover, we assume
for simplicity a flat pressure gradient for the background plasma. Although fundamental for
a self-consistent determination of the island dynamics, the inclusion of a finite gradient in
the background pressure is not strictly necessary to understand the phenomena related to the
resonances between island and particle motion, which are the subject of this paper.

We show that, at low frequencies, the contribution of the polarization current can be
overcome by other electric and magnetic effects. In particular, we demonstrate in this work
that a crucial contribution comes from the mutual interaction between the island propagation
and the electric and magnetic precession of the trapped particles in the toroidal direction. The
corresponding perturbed parallel current is shown to stabilize the NTM for ω > 0, or for
|ω| sufficiently larger than ωtp if ω < 0, where ωtp is the precession frequency of trapped
particles defined in equation (29) below. Passing particles are, on the contrary, shown to give
a negligible current contribution. The analytical results are shown to explain the behaviour of
the island current as calculated by means of the Hamiltonian drift-kinetic code HAGIS [20].

This paper is structured as follows. In section 2, the chosen magnetic geometry is outlined.
In section 3 we describe the analytical and numerical techniques adopted to solve the drift-
kinetic equation. In sections 4 and 5 we solve the drift-kinetic equation in the ω ∼ k‖vth and
in the ω � k‖vth regime. This allows us to highlight the role of passing and trapped particles,
respectively. Analytic solutions are compared with numerical simulations. The results are
further discussed and summarized in section 6.

2. Magnetic geometry

In the calculations which follow, we assume an axisymmetric, large-aspect-ratio toroidal
geometry, with circular cross section. We define ε as the inverse aspect ratio. For convenience
we use here the same notation as in [11]. The coordinate system is represented by a poloidal
flux χ , which can be used as a radial coordinate, a toroidal angle ζ and a poloidal angle θ .
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This choice is such that

∇ζ × ∇χ = rBθ∇θ,

where r is the minor radius coordinate and Bθ the poloidal component of the magnetic field.
The equilibrium magnetic field is expressed by

B = I (χ)∇ζ + ∇ζ × ∇χ, (1)

having defined I (χ) = RBζ , where R is the major radius and Bζ the toroidal component
of the magnetic field. Thus, the equilibrium magnetic field is such that B · ∇χ = 0. We
suppose that the magnitude of the magnetic field B varies over the poloidal cross section as
B = B0 (1 − ε cos θ). The helical angle ξ is introduced as

ξ = mθ − nζ − ωt,

where m, n are the poloidal and toroidal mode numbers, respectively and ω is the island rotation
frequency, supposed to be a constant in time for simplicity. We can include the magnetic island
as a perturbation in the magnetic field writing

B = I (χ)∇ζ + ∇ζ × ∇ (χ + ψ) , (2)

where

ψ = ψ̃ cos ξ, (3)

where ψ̃ is supposed to be a constant according to the well-known constant-ψ approximation
[2]. We can define a new coordinate system, using χ, ξ and θ , and this is the system which
will be used in this paper from here on. It is possible to build a perturbed flux surface label
	, such that in the presence of the magnetic island B · ∇	 = 0. Writing with a subscript s
quantities which are calculated on the resonant surface, we obtain

	 = 2 (χ − χs)
2

W 2
χ

− cos ξ, (4)

where W 2
χ = 4ψ̃qs/q

′
s , is connected to the island half-width w by the relation Wχ = RBθw,

q is the safety factor and the apex ′ refers to the derivative with respect to χ . With the help of
the function 	, one arrives at the following expression for the parallel gradient:

∇‖ = 1

Rq

∂

∂θ
+ k‖

∂

∂ξ

∣∣∣∣
	

, (5)

where

k‖ = −m
(χ − χs)

Rq

q ′
s

qs
. (6)

It can be seen that ψ can be thought of as a perturbation of the parallel component of the
magnetic vector potential A. As we suppose that every parallel electric field E‖ is immediately
shorted out by the very fast electron streaming along the field lines, we obtain an analytical
expression for the (θ -independent) scalar potential using the Faraday’s law:

∇‖� = −1

c

∂A‖
∂t

⇒ � = ωq

mc
[χ − χs − h(	)] , (7)

where use has been made of equation (26) below. Here, h(	) is a function which plays the
role of an integration constant, and can be determined from boundary conditions. A simple
choice for h(	) can be found in [10]:

h(	) = Wχ√
2

(√
	 − 1

)
� (	 − 1) ,

where Wχ is defined to have the same sign as (χ −χs) and �(x) is the Heaviside step function.
This choice allows the scalar potential to vanish far away from the magnetic island. Moreover,
this fixes h(	) to the value of zero inside the island (	 = −1 corresponds to the O-point,
while 	 = 1 to the island separatrix).
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3. The Drift-kinetic equation

3.1. Analytic approach

The drift-kinetic equation describes the time evolution of the distribution of the particles’
guiding centres in a magnetized plasma. This means that particles are treated like streaming
along magnetic field lines through their parallel velocity, and drifting across the field lines
through their electric and magnetic drifts. Gyration motion is implicitly present in the mirror
force and in defining the magnetic moment µ (supposed to be a constant), but spatial variation
of physical quantities on the Larmor radius scale is neglected:

∂fj

∂t
+ v‖j∇‖fj + vE×B · ∇fj + vDj · ∇fj − qj

mj

vDj · ∇�

v

∂fj

∂v
= Cj(fj ). (8)

The subscript j labels the different species that are present in the plasma. Spatial derivatives
have to be taken at constant kinetic energy. This form of the drift-kinetic equation is explained
in detail in [21].

The magnetic drift velocity can be written in the form

vDj = −v‖j b × ∇
(

v‖j
ωcj

)
, (9)

where b is the unit vector parallel to the magnetic field and ωcj is the cyclotron frequency for
the j th particle species. In this work we focus on ions, supposing that the only contribution
of electrons is shorting out the parallel electric field E‖. As every physical quantity such as
temperature (T ) or the distribution itself is referred to ions, we can from here on drop the
subscript j without ambiguity. We keep the index i only for the ion mass mi and for the ion
charge qi in order to avoid confusion with the poloidal mode number m and the safety factor
q, respectively. Equation (8) is solved splitting the distribution function into an analytically
known part F0, assumed here to be an isotropic Maxwellian

FM (v) = n0

( mi

2πT

)3/2
emiv

2/2T

(where the density n0 and the temperature T are assumed to be uniform, cf section 1), and
a part g do be determined perturbatively. Specifically, in the coordinate system discussed in
section 2, writing the full expression for drifts, equation (8) takes the form

− ω
∂g

∂ξ
+

v‖
Rq

∂g

∂θ
+ k‖v‖

∂g

∂ξ

∣∣∣∣
	

+ m
c

B

I

Rq

∂�

∂χ

∂g

∂ξ
− m

c

B

I

Rq

∂�

∂ξ

∂g

∂χ
+

Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂g

∂χ

−m
Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
∂g

∂ξ
− qi

m i

[
Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂�

∂χ
− m

Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
∂�

∂ξ

]
∂g

∂v

= −qiFM

T

[
Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂�

∂χ
− m

Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
∂�

∂ξ

]
, (10)

where we have neglected the collision operator (the role of collisions will be discussed later
on). The parallel velocity v‖ is written in the so-called pitch-angle variables [21]:

v‖ = σv
√

1 − λB.

Here λ = 2µ/miv
2, where µ is the magnetic moment and σ is the sign of the parallel velocity.

A trapped particle has 1/B > λ > 1/BM, where BM is the maximum value of the magnetic
field on a given flux surface. With these variables, the integration operator over velocity space
becomes ∫ ∞

−∞
. . . d3v = πB

∑
σ=±1

∫ ∞

0
v2 dv

∫ 1/B

0
. . .

dλ√
1 − λB

. (11)
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Equation (10) is solved performing a double parameter expansion of the perturbed
distribution g, i.e.

g =
∞∑
m,n

g(m,n)δm�n, (12)

where

δ = ρb

w
, � = w

a
(13)

are supposed to be two small parameters (here, ρb is the ion banana width and a the tokamak
minor radius). The ordering of the various terms in equation (10) with respect to δ and �

will be discussed in sections 4 and 5. The only ‘free’ parameter is the island propagation
frequency ω. In section 4 we maintain the ordering assumptions for ω used in [11], which
leads to ω ∼ k‖vth. In section 5, we order ω ∼ ωD, where

ωD = q

Rrωc

1

2θb

∫ θb

−θb

[
µB

m i
+ v2

‖

]
cos θ dθ (14)

is the (bounce averaged) toroidal precession frequency of the trapped particles [22], as defined
θb the bounce angle.

The aim of these ordering assumptions is to study which physical phenomena can take
place when the island propagation frequency ω starts to be comparable with the particles’
transit frequencies around the island itself, which are basically linked to k‖v‖ (with v‖ ∼ vth)
for passing particles, and to ωD for trapped particles. This second case can also be thought of
as ordering the island propagation frequency like the parallel streaming of the trapped particle,
as ω ∼ ωD means ω ∼

√
εk‖vth. This point will be developed in section 5.

3.2. Numerical approach

The HAGIS code (HAmiltonian GuIding centre System) [20] solves the drift-kinetic equation
for ions by means of a Hamiltonan approach and with the δf technique. This method consists
of writing the distribution f as f = F0 + δf , where F0 is known and arbitrary. This approach
is completely general, but can be convenient from the numerical point of view only if f is not
expected to be so different from the chosen F0, which means

δf

F0
� 1,

which is what we expect to find. The HAGIS code calculates the evolution in time of the
distribution function by means of ‘markers’ which span the whole phase space and represent
the ions. These ‘markers’ evolve according to the Hamiltonian equations of motion, which
are integrated by the code. As in section 3.1, we choose F0 as a space-independent isotropic
Maxwellian. In the simulations presented in the next sections, we consider a tokamak with
circular concentric flux surfaces and major radius R = 8 m, aspect ratio a/R = 0.5, magnetic
field B0 = 8 T, deuterium plasma with density ni = 1020 m−3 and temperature T = 5 keV.
Collisions are described by a Monte Carlo algorithm which models pitch-angle scattering [23].
A (m = 3, n = 2) magnetic island with a fixed half-width w = 6.8 cm is included in
the simulations, and the island frequency ω is treated as an input parameter. With these
values, the ratio between the island width and the thermal ion banana width corresponds to
w/ρb ≈ 9.6 and the ratio between the island width and the tokamak minor radius a corresponds
to w/a ≈ 0.017. The space domain is divided into ‘radial’ cells (between two neighbouring
perturbed flux surfaces) and into helical cells, in such a way that the volume between two
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X-points of a magnetic island consists of six helical cells (for further details see [24]). All
numerical results presented below refer to the ‘upper’ half of the magnetic island (i.e. from
O-point to X-point travelling in the positive-θ direction). In the ‘lower’ half, results can be
shown to simply change their sign.

4. The ω ∼ k‖v‖ regime

4.1. Solution of the drift-kinetic equation

The solution of the drift-kinetic equation presented in this paper closely follows the analytic
treatment presented in [11]. In that paper, F0 is chosen so that an adiabatic response of the
ions to the electrostatic potential is included, and equilibrium gradients are retained. Under
these circumstances, the lowest order perturbation g(0,0) has the double role of cancelling the
adiabatic response and of introducing the perturbations due to the island in the density and
temperature profiles. The next-order term in the expansion of the distribution function with
respect to δ, i.e. g(1,0), is shown to be linked to the neoclassical parallel fluxes, including that
due to radial electric fields. The frequency ωE, corresponding to the latter, is defined as in [25]:

ωE = c
Er

RBθ

, (15)

where in this case the radial electric field we are interested in is generated by the island itself.
By means of the charge continuity equation, Wilson et al showed that this electric drift is the
physical trigger of the polarization current, because it allows trapped particles to experience a
time-varying electric field.

Let us now turn to equation (10). In this section, we follow the ordering assumptions
adopted in [11]. This, in particular, consists of

∂

∂θ
∼

∂

∂ξ
∼ 1,

qi�

T
∼

g

FM
∼ � ρθ ∼ w

(ρθ being the poloidal ion Larmor radius). As for the island propagation frequency, if the
pressure profile possesses a finite gradient characterized by the length Lp, a natural choice
is to assume ω to be of the same order as the diamagnetic frequency (ω∗ = mcT n′

e/qiqne,
with n′

e = ∂ne/∂χ , ne being the electron density). Supposing n′
e ∼ ne/RBθa (i.e. making the

choice Lp ∼ a), this implies (cf equation (13)):

Rq

v‖
ω ∼

Rq

v‖
ω∗ ∼

Rq

vth

mcT n′
e

qiqne
∼

ρθ

a
∼ �.

The term describing the parallel streaming turns out to be of the same order, since (see
equation (6))

Rq

v‖
k‖v‖ ∼ (χ − χs)

q ′
s

qs
∼

w

r
∼ �,

having assumed (χ − χs) ∼ Wχ , as we focus our calculations on the vicinity of the island,
and Lp ∼ Lq ∼ εLs , Lq and Ls being the radial scale length of the safety factor and of the
magnetic shear, respectively.

As already mentioned, to point out the effects linked to the mutual rotation of particles and
island, in our analysis we take a flat pressure profile, ω∗ = 0, and treat ω as a free parameter.
In this section, we retain the ordering ωRq/v‖ ∼ �, which implies ω ∼ k‖vth. The resulting
ordering of the terms in equation (10) is

� : 1 : � : � : � : δ : �δ : �δ : �2δ = δ : �δ.
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It is worthwile to stress the fact that the term vD · ∇ in equation (8) consists of two different
components which, under our assumptions, are not of the same order.

We now turn to the order-by-order solution of equation (10). As we do not include an
adiabatic split in F0, and as we do not consider density and temperature equilibrium gradients,
according to the meaning of g(0,0) elucidated above, we assume

g(0,0) = 0. (16)

The O (δ) equation reads

v‖
Rq

∂

∂θ
g(1,0) = −qiFM

T

Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂�

∂χ
, (17)

which can be directly integrated to give

g(1,0) = −I
v‖
ωc

∂�

∂χ

qiFM

T
+ h̄

(1,0)
P + h̄

(1,0)
T (18)

(in the first term on the right-hand side of this expression, it is easy to identify the first-order
expansion of a Maxwellian shifted by a velocity cEr/Bθ in the parallel direction). The bar over
a function indicates that it is θ -independent, so, h̄-functions represent the integration constants.
We have divided them, separating the passing region of phase space (subscript P) from the
trapped one (subscript T).

As g(0,0) = 0, the O (�) equation simply amounts to
v‖
Rq

∂

∂θ
g(0,1) = 0. (19)

The g(0,1) = ḡ(0,1) is θ -independent. This information allows us to eliminate the contribution
of g(0,1) when performing the θ averages in equation (21) below.

To calculate the h̄-functions, we move to the O (�δ) equation. Using the identity

∂

∂t
+ c

B × ∇�

B2
· ∇ = d0

dt
= dh

d	

ω

mψ̃
Rqk‖

∂

∂ξ

∣∣∣∣
	

+
ω

m

(
1 − ∂h

∂χ

)
∂

∂θ
, (20)

we obtain
dh

d	

ω

mψ̃
Rqk‖

∂g(1,0)

∂ξ

∣∣∣∣
	

+
ω

m

(
1 − ∂h

∂χ

)
∂g(1,0)

∂θ
+

v‖
Rq

∂g(1,1)

∂θ

+ k‖v‖
∂g(1,0)

∂ξ

∣∣∣∣
	

+
Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂g(0,1)

∂χ
= m

Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
∂�

∂ξ

qiFM

T
. (21)

In order to calculate the h̄-functions, it is convenient to use the bounce average operator,
which has two different definitions in the trapped and in the passing region of phase space. We
consider the passing region first. Starting from the average operator

〈. . .〉θ = 1

2π

∮
. . . dθ,

the bounce average operator is defined as [21]〈
Rq

v‖
. . .

〉
θ

= 1

2π

∮
Rq

v‖
. . . dθ.

So we find〈
dh

d	

ω

mψ̃

Rqk‖
v‖

+ k‖

〉
θ

∂h̄
(1,0)
P

∂ξ

∣∣∣∣∣
	

= I

〈(
dh

d	

ω

mψ̃

Rqk‖
v‖

+ k‖

)
v‖
ωc

〉
θ

∂

∂ξ

∣∣∣∣
	

(
∂�

∂χ

)
qiFM

T

+ I

〈
m

Rq

∂

∂χ

(
v‖
ωc

)〉
θ

∂�

∂ξ

qiFM

T
. (22)
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As we focus on the contributions which vanish on the flux-surface average, h̄-functions are
supposed here to vanish when averaged over 	, where the average on 	 is defined as

〈. . .〉	 =
∮ · · · dξ/

√
	 + cos ξ∮

dξ/
√

	 + cos ξ
.

This is because all the contributions which do not vanish by using this operator are related to
the bootstrap current. So we obtain

h̄
(1,0)
P = − 4I

W 2
χ

ωq

mc

dh

d	

qiFM

T

〈(
dh

d	

ω

mψ̃

Rq

v‖
+ 1

)
v‖
ωc

+
qs

q ′
s

∂

∂χ

(
v‖
ωc

)〉
θ

·
[〈

dh

d	

ω

mψ̃

Rq

v‖
+ 1

〉
θ

]−1 [
χ − 〈χ〉	

]
. (23)

The physical features related to this solution will be discussed in the next section.
We now solve equation (21) in the trapped region of velocity space. The corresponding

bounce average operator becomes [21]〈
Rq∣∣v‖

∣∣ . . .

〉T

θ

=
∑

σ=±1

1

2θb

∫ θb

−θb

Rq∣∣v‖
∣∣ . . . dθ,

yielding

∂h̄
(1,0)
T

∂ξ

∣∣∣∣∣
	

= I

〈
k‖

∣∣v‖
∣∣

ωc

∂

∂ξ

∣∣∣∣
	

(
∂�

∂χ

)
+ m

∂

∂χ

(∣∣v‖
∣∣

ωc

)
∂�

∂ξ

〉T

θ

×

〈

dh

d	

ω

mψ̃

Rqk‖∣∣v‖
∣∣

〉T

θ




−1

qiFM

T
. (24)

We can approximate the right-hand side of this equation noting that〈
1

v‖

〉−1

θ

〈∇v‖
〉
θ

= 〈
v‖∇v‖

〉
θ

+O
(
ε2

)
. (25)

Equation (25) and the identity

k‖
∂χ

∂ξ

∣∣∣∣
	

= m

q

∂A‖
∂ξ

= m

q

ψ̃

R
sin ξ (26)

allow us to write equation (24) in the more perspicuous form

h̄
(1,0)
T = −qiFM

T
[ωD + ωŝ]

[
χ − 〈χ〉	

]
c

. (27)

Here, ωD is defined as in equation (14) and ωŝ is related to the toroidal precession of a trapped
particle due to the magnetic shear [22],

ωŝ =
〈

qŝv2
‖

r2ωc

〉T

θ

, (28)

where ŝ is the magnetic shear (the correlation of the ωD and ωŝ-terms with the poloidal
component of magnetic drifts and the terms in k‖v‖, respectively, is discussed in the appendix).
As both ωD and ωŝ are related to magnetic effects, from here on we define the magnetic toroidal
precession frequency [22]:

ωtp = ωD + ωŝ. (29)

Note that, within this ordering, h̄
(1,0)
T does not depend on any quantity related to the island,

apart from the average radial position 〈χ〉	.
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4.2. The perturbed current

The quasi-neutrality condition ∇ · J = 0 is now used to derive an expression for the θ -
independent parallel current which closes the polarization drift. In [11], this equation reads

k‖
∂J Pol

‖
∂ξ

∣∣∣∣∣
	

= −qiI

ωc

ω

mψ̃

∫
d3vv‖

∂

∂χ

[
dh

d	

〈
Rqk‖

∂g(1,0)

∂ξ

∣∣∣∣
	

〉
θ

]
, (30)

where the superscript Pol refers to the polarization current. Considering the physical relation
previously discussed between g(1,0) and ωE, the integral on the right-hand side can be connected
to the total time derivative of the electric precession (i.e. the acceleration along the island surface
which allows the particle to experience a time-dependent electric field, see equation (20)). This
is the physical mechanism of the neoclassical polarization. In the limit ω � k‖v‖ adopted
in [11] (which is an assumption that goes beyond the chosen scaling, and was adopted to isolate
the polarization current), h̄

(1,0)
T is zero, while a leading order annihilation takes place because

the θ -dependent part of g(1,0) and h̄
(1,0)
P differ only for higher order terms in ε. As a result, the

polarization current contributing to the island dynamics is carried only by the trapped particles
and is therefore O

(
ε3/2

)
.

In our case, the quasi-neutrality condition includes the terms in k‖v‖ and has the following
expression:

k‖
∂J‖
∂ξ

∣∣∣∣
	

= −qiI

ωc

∂

∂χ

∫
d3vv‖

〈[
dh

d	

ω

mψ̃
Rqk‖ + k‖v‖

]
∂g(1,0)

∂ξ

∣∣∣∣
	

〉
θ

. (31)

The terms in square brackets represent the advection along the magnetic surface, which
includes now, in addition to that due to the island rotation and to the electric drift d0/dt

(see equation (20)), also the parallel streaming of the ions through the term in k‖v‖. According
to equations (18) and (23), we obtain

∂J‖
∂ξ

∣∣∣∣
	

= −qiI

ωc

∂

∂χ

∫
d3vv‖�FM

〈(
ū + v‖

) ·
[(

v‖
ωc

)
(32)

−
〈(

ū

v‖
+ 1

)
v‖
ωc

+
qs

q ′
s

∂

∂χ

(
v‖
ωc

)〉
θ

·
〈

ū

v‖
+ 1

〉−1

θ

]〉
θ

,

with

� = 4I

W 2
χ

ωq

mc

dh

d	

qi

T

∂χ

∂ξ

∣∣∣∣
	

and

ū = dh

d	

ω

mψ̃
Rq.

Equation (32) exhibits an important feature: the resonant denominator that appears in
the distribution function (23) is almost cancelled by a similar numerator which arises from
including the parallel streaming in the advection, as discussed above (this cancellation can be
shown to occur up to O

(
ε2

)
). This is a consequence of the motion of the particles, which

have (at least in this ordering) vanishing θ -averaged drifts across the flux surfaces when they
approach the resonance.

Numerically, a resonant behaviour of the perturbed distribution function in velocity space
can be clearly observed in figure 1(a), which shows δf in the vicinity of the inner island
separatrix as a function of v‖/v and of v/vth. The resonance is visible in the part of the
velocity space with v‖ < 0. Passing particles with v‖ > 0 resonate on the other (outer) side
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Figure 1. Perturbed distribution (a) and perpendicular current (b) in velocity space for the
parameters described in section 3.2 and ω = −4000 rad s−1, calculated at the fourth radial cells
outside the magnetic island towards the centre (cf figure 2).
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Figure 2. Radial profile of the perpendicular current (the inner island separatrix is located at
r/a = 0.38) for ω = −4000 rad s−1. Magenta stars represent the contribution of the passing
particles with v‖ > 0, green squares passing particles with v‖ < 0, blue diamonds the total current
due to passing particles, red triangles the trapped particles and the crossed black line the total
perpendicular current. The sudden rise of the current close to the island separatrix is due to the
onset of the standard polarization current [14].

of the island, since k‖ reverses its sign across the resonant surface. The corresponding current
(figure 1(b)), however, does not present such a resonant behaviour. Moreover, it shows an
odd symmetry with respect to v‖/v, so that the passing particles do not contribute to the total
current, i.e. their contribution vanishes after integration over velocity space because of the sum
over σ , as can be seen in figure 2.

Formally, the contribution of the resonance to higher order corrections (not retained in
our calculations) should be treated employing an approach similar to that of e.g. [17, 26–29].
However, we stress the fact that the Landau resonance contributes only to the ‘out of phase’
part of the current, determining the island rotation. These effects are not included in the
analysis presented in this paper, where the rotation frequency ω is treated as a parameter and
not determined self-consistently.
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We conclude this section with a remark concerning the behaviour of the trapped particles.
According to equation (27), the perturbed distribution h̄

(1,0)
T introduces in the solution the

magnetic toroidal precession of the trapped particles. In the next section, we will discuss in
more detail how this precession can interact with the magnetic island. We anticipate that the
h̄

(1,0)
T found above represents an asymptotic limit for the solution we will find in section 5 if

one supposes ω � ωtp.

5. The ω ∼ ωD regime

5.1. Solution of the drift-kinetic equation

We now order the terms of equation (10) supposing ω ∼ ωD (cf equation (14)). As previously
stated, our goal is to study the physical mechanisms linked to the mutual interaction between
the island propagation and the precession of trapped particles around it. The ordering of the
terms in equation (10) becomes

�δ : 1 : � : �δ : �δ : δ : �δ : �δ2 : �2δ2 = δ2 : �δ2.

Again, as we did not include an adiabatic split of the Maxwellian, and as we are neglecting
equilibrium gradients, we can set (see section 4):

g(0,0) = 0. (33)

Let us then move to the O (δ) equation. We have
v‖
Rq

∂

∂θ
g(1,0) = 0, (34)

and this means

g(1,0) = h̄
(1,0)
P + h̄

(1,0)
T . (35)

The bar over a function again indicates that it is θ -independent. We have again divided the
solution into two parts, each describing a different region of the velocity space.

Next we write the O (�) equation. This is simply
v‖
Rq

∂

∂θ
g(0,1) = 0. (36)

So also g(0,1) = ḡ(0,1) is θ -independent.
The following step is to calculate the O

(
δ2

)
equation,

v‖
Rq

∂

∂θ
g(2,0) +

Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂

∂χ
ḡ(1,0) = −Iv‖

Rq

∂

∂θ

(
v‖
ωc

)
∂�

∂χ

qiFM

T
(37)

which can be integrated over θ , so we have

g(2,0) = −I
v‖
ωc

∂

∂χ

[
qi�

T
FM + ḡ(1,0)

]
+ h̄

(2,0)
P + h̄

(2,0)
T , (38)

where again we separate the trapped and passing contributions in defining the functions h̄
(2,0)
P

and h̄
(2,0)
T , which result as constants of integration.

To evaluate the lowest order contribution due to the island, i.e. the ḡ(1,0), we now turn to
the O

(
�δ2

)
equation, which has the form

− ω
∂

∂ξ
ḡ(1,0) +

v‖
Rq

∂

∂θ
g(2,1) + k‖v‖

∂

∂ξ
ḡ(2,0)

∣∣∣∣
	

+ c
B × ∇�

B2
· ∇ḡ(1,0) +

Iv‖
Rq

∂

∂θ

(
v‖
ωc

)
∂

∂χ
ḡ(1,1)

−m
Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
∂

∂ξ
ḡ(1,0) = m

Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
∂�

∂ξ

qiFM

T
. (39)
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Let us solve this equation first in the trapped region of phase space. We use the bounce average
operator defined for the trapped region (see section 4). Recalling equation (38), this yields

− ω

〈
Rq∣∣v‖

∣∣
〉T

θ

∂

∂ξ
h̄

(1,0)
T − I

〈
Rqk‖

∂

∂ξ

( |v|‖
ωc

∂

∂χ
h̄

(1,0)
T

)∣∣∣∣
	

〉T

θ

+ c

〈
Rq∣∣v‖

∣∣ B × ∇�

B2

〉T

θ

· ∇h̄
(1,0)
T − mI

〈
∂

∂χ

|v|‖
ωc

〉T

θ

∂

∂ξ
h̄

(1,0)
T

= mI

〈
∂

∂χ

|v|‖
ωc

〉T

θ

∂�

∂ξ

qiFM

T
+ I

〈
Rqk‖

∂

∂ξ

[ |v|‖
ωc

∂

∂χ

(
qi�

T
FM

)]∣∣∣∣
	

〉T

θ

. (40)

We note that 〈
∂

∂θ

(∣∣v‖
∣∣

ωc

)
∂g(1,1)

∂χ

〉T

θ

= 0

because, for symmetry reasons, we can suppose g(1,1) to be an even function in θ . We also
suppose that h̄

(2,0)
T is independent of σ , which is consistent with the bounce point continuity

condition.
An analytic solution of equation (40) is extremely difficult. However, we can greatly

simplify this equation by employing the same approximation as in equation (25) (for the
details of the calculation see the appendix). If we focus on the dynamics along the island (the
radial component of the E × B drift, which goes to zero faster with χ than the other terms,
will be shown later to be important only to unlock resonating particles), it is possible to write
equation (40) as:[

−ω − m

q
ωE − m

q
ωtp

]
∂h̄

(1,0)
T

∂ξ
= m

q
ωtp

qiFM

T

∂�

∂ξ
. (41)

Equation (41) can be integrated with the condition h̄
(1,0)
T → 0 for χ → ∞. For the sake of

simplicity, we neglect the dependence of ωE on ξ , so that the only quantity depending on ξ is
the electrostatic potential.

h̄
(1,0)
T = −m

q

ωtp

ω + (m/q)ωE + (m/q)ωtp

qi�

T
FM. (42)

Note that in this case the χ part of the potential plays the role of an integration constant. The
physical implications of equation (42) will be discussed in the following section.

We now turn back to equation (39) and we solve it in the passing region of phase
space. Again we suppose that the bounce average operator (see section 4) cancels the g(1,1)

contribution. The fundamental difference with respect to the trapped particles is that for passing
particles 〈

∂

∂χ

(
v‖
ωc

)〉
θ

= O
(
ε2

)
,

so the term on the right-hand side of equation (39) is negligible. This equation then becomes

− ω
∂

∂ξ
h̄

(1,0)
P −

〈
Rqk‖

∂

∂ξ
g(2,0)

∣∣∣∣
	

〉
θ

+ c
B × ∇�

B2
· ∇h̄

(1,0)
P = 0. (43)

We can choose

h̄
(1,0)
P = 0.
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This solution is consistent with the fact that, in this regime, the contribution of the passing
particles to the perpendicular current is negligible. So we obtain〈

Rqk‖
∂

∂ξ
g(2,0)

∣∣∣∣
	

〉
θ

= 0 (44)

which in view of equation (38) leads to

h̄
(2,0)
P =

〈
I

v‖
ωc

∂

∂χ

qi�

T
FM

〉
θ

. (45)

Inserting equation (45) into equation (38), we see that these equations are linked to the
annihilation in the passing region of the phase space discussed in section 4. Within the ordering
employed in this section, this contribution still exists, but it pertains to a higher order because
of the island propagation frequency ordering, and by consequence all the purely electric effects
(see equation (7)) become less important.

5.2. The perturbed current

The velocity perpendicular to perturbed magnetic surface can be thought as the variation of the
	 coordinate with respect to time, i.e. d	/dt . We are interested in the lowest order, θ -averaged
perturbed current.

By the definition of the total derivative, and noticing that ∇‖	 = 0, we can write

d	

dt
= ∂	

∂t
+ v · ∇	 = ∂	

∂t
+ (vE×B + vD) · ∇	. (46)

Considering equation (7), and recalling that

∂

∂t
= −ω

∂

∂ξ
,

we note that

∂	

∂t
+ vE×B · ∇	 = 0

and this means, for trapped particles

d	

dt
= −m

q
ωD sin ξ. (47)

The radial component of the magnetic drift does not contribute to the current we are interested
in because it θ -averages to zero even in the trapped region of phase space. So the toroidal
precession in this island propagation frequency regime is the main mechanism which allows
a particle to explore different magnetic surfaces. This is a fundamental difference with the
previous section, because for passing particles this contribution averages toO

(
ε2

)
, so that what

forces particles to explore different magnetic surface is not an equilibrium velocity contribution.
Equation (47) allows us to write an approximate expression for the θ -averaged current

crossing the perturbed magnetic surface in the presence of a slowly rotating NTM as a
function of v:

J⊥ (v) = qi

〈
g(1,0) d	

dt

1

|∇	|
〉
θ

= m2

q2

q2
i �

T

ωDωtp

ω + (m/q)ωtp + (m/q)ωE

1

|∇	|FM sin ξ, (48)

estimating with d	/dt · 1/ |∇	| the velocity component perpendicular to the perturbed
magnetic surface. We recall that g(1,0) is non-zero only for trapped particles. This expression
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(a) (b)

Figure 3. Perpendicular current as a function of velocity, calculated at the fourth radial cells
outside the magnetic island towards the plasma centre, for ω = 300 rad s−1 (triangles) and for
ω = −300 rad s−1 (diamonds) in the collisionless regime (a) and in a standard banana collisional
regime (b). Note the different scale on the y-axis.

for the perpendicular current at low rotation frequencies is confirmed by our numerical
simulations.

We see in figure 3 that for positive frequencies no particle can be resonant with the NTM,
since the island drift and the precession of the trapped particles are in opposite directions, so
the distribution is quite smooth. On the other hand, if the frequency is negative, the distribution
starts to be very peaked around that region of phase space where ω ≈ nωtp (we recall that ωtp

depends on v), and changes sign around this critical value of velocity.
Another important information which can be gained from figure 3 is that, for the trapped-

particle resonance under consideration, the physical effect that resolves the singularity in
equation (48) is represented by collisions, even for the low-collisionality regime discussed in
this paper. This is consistent with the fact that, in our simulations, the frequency on which
trapped particles can be scattered into the passing domain is comparable to or higher than
the toroidal precession of thermal ions ωtp ∼ ω. Figure 3(b) is obtained in the standard
banana regime (νcoll/ε ∼ 102 Hz, and ωb/2π ∼ 104 Hz, where νcoll is the collision frequency
and ωb the banana bounce frequency), whereas in figure 3(a), where the collision frequency
is reduced by five orders of magnitude (we call this a ‘collisionless’ regime). Collisions
drastically reduce the peaks of J⊥(v) around the resonance, this effect being more pronounced
for slower particles, as can be expected. As a consequence of this last fact, in particular, the
sign of the total perpendicular current density (i.e. of the integral of J⊥(v) over v) can change
depending on the collision frequency, as shown in figure 4(a). The sign of the perpendicular
current is of course crucial for the determination of the stabilizing or destabilizing nature of
the perturbed parallel current.

To evaluate explicitly the influence of this current on the NTM stabilization, we need to
compute the closure parallel current. However, the integration over the velocity space cannot
be performed because of the resonant denominator in h̄

(1,0)
T (see equation (42)). To account

of the effect of collisions, we go back to equation (41) and we add a simple Krook collision
operator (∂f/∂t |coll = −ν (f − FM), where (f − FM) = h̄

(1,0)
T and ν = ν0vth

3/v3). We
obtain

[
−ω − m

q
ωtp − m

q
ωE

]
∂h̄

(1,0)
T

∂ξ
= m

q
ωtp

qiFM

T

∂�

∂ξ
− νh̄

(1,0)
T . (49)
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Figure 4. (a) Comparison between the perpendicular current integrated in the velocity space versus
island propagation frequency in non-collisional regime (diamonds) and in standard banana regime
(triangles). (b) Perpendicular current integrated in the velocity space versus island propagation
frequency in the non-collisional regime showing the transition to the standard polarization current
(proportional to ω2) at high frequencies.

Again, we neglect the ξ dependence of ωE for the sake of simplicity. Indicating

ω̄ = ω +
m

q
ωtp +

m

q
ωE, F̄ = m

q
ωtp

qiFM

T

and expanding the island potential into its Fourier components

� =
∞∑

k=0

�̂k (χ) cos (kξ)

a solution to equation (49) is found in the form

h̄
(1,0)
T = −ω̄F̄

∞∑
k=0

k2�̂k (χ)

ω̄2k2 + ν2
eν/ω̄·ξ − eν/ω̄·ξ F̄

ω̄

∫ ξ

0
dξ ′e−ν/ω̄·ξ ′ ∂�

∂ξ ′ , (50)

using as a boundary condition the fact that the solution must be finite for ω̄ → 0.
Now we use the quasi-neutrality condition ∇ · J = 0, multiplying the ion and electron

drift-kinetic equations times the respective charge, and then summing them, neglecting the
magnetic drifts of the electrons (cf [11]). The θ -averaged parallel current is then

k‖
∂J‖
∂ξ

∣∣∣∣
	

= mqi

〈∫
d3v

Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
∂h̄

(1,0)
T

∂ξ

〉
θ

≈ nqi

∫
d3v ωD

∂h̄
(1,0)
T

∂ξ
. (51)

The approximations leading to the appearance of ωD in the last step have been discussed
previously (see again the appendix for details). Exploiting equation (50), one obtains after
some algebra

∂h̄
(1,0)
T

∂ξ
= F̄

∞∑
k=0

k2�̂k

ω̄k sin (kξ) − ν cos (kξ)

ω̄2k2 + ν2
. (52)

We neglect the cosine terms in equation (52), because they are related to out-of-phase
current contributions which are not involved in the island stabilization [2] (they contribute
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to determining the island rotation frequency; a detailed analysis of these effects, however, is
beyond the scope of this paper). With this approximation

∂h̄
(1,0)
T

∂ξ
= F̄

∞∑
k=0

�̂k

ω̄k sin (kξ)

ω̄2 + ν2/k2
= − ω̄F̄

ω̄2 + ν2
eff

∂�

∂ξ
, (53)

where the effective collision frequency νeff is implicitly defined by this equation.
Going back to equation (51), with the help of the pitch-angle variables (v, λ) and supposing

ωtp = ωtp (v) (which relies on the fact that in the trapped region of phase space v ≈ v⊥ � v‖),
one obtains

J‖ = −n0
4√
πk‖

√
εn2 q2

i

T
ω0

tpω
0
D

q

mc

dh

d	
K1 (ω)

[
cos (ξ) − 〈cos (ξ)〉	

]
, (54)

where

K1 (ω) =
∫ ∞

0
dyy12 ωe−y2 (

ω + nωE + nωtpy
2
)

(
ω + nωE + nωtpy2

)2
y6 +

(
ν0

eff

)2 ,

having defined y = v/vth and ωtp = ω0
tpy

2, νeff = ν0
eff/y

3. The parameter K1 (ω) can be
computed if all the plasma parameters are known, and it is important to note that it is the only
factor in equation (54) which depends on the island rotation frequency. The integration has been
performed within the condition that this parallel current vanishes when flux-surface averaged.
From here on, we call this perturbed current the precessional current, and we indicate it as J Pr

‖ .
Its contribution to the island stability can be found with the help of the Ampère equation [2]:∑

±

∫ ∞

−1
d	

∮
dξ

J Pr
‖ cos (ξ)√
	 + cos (ξ)

= c

8
√

2
�′

Pr
wB

Rq
. (55)

Here, the sum is defined over the χ > χs and χ < χs regions. It yields, after some algebra

�′
Pr = 32n0√

2πwB

√
εn2 q2

i

T
ω0

tpω
0
D

q

m2c2

qs

q ′
s

R2q2K1 (ω) K2, (56)

where K2 is a negative constant defined as

K2 =
∫ ∞

1

d	√
	

∮
dξ

cos2 (ξ) − cos (ξ) 〈cos (ξ)〉	
	 + cos (ξ)

� −6.65.

The sign of �′
Pr depends only on the sign of K1 (ω). We recall that positive values of �′

correspond to destabilizing effects [2]. Thus, we have a stabilizing current for ω > 0 and, if
ω < 0, for |ω| sufficiently larger than ωtp.

We now compare the contribution we just found and that of the polarization current, in
order to understand under what circumstances one prevails over the other. For the parallel
current which closes the polarization current, equation (30), we refer to the ω � k‖v‖ case,
so that h̄T is zero, while for this comparison we refer to the parallel precessional current as
expressed in equation (51). As we are comparing the two contributions in trapped space, we
do not consider h̄P functions. Using the identity equation (62), see the appendix, we can write

k‖
∂J Pol

‖
∂ξ

∣∣∣∣∣
	

= −qiI
2

ω2
c

ω2q

mc

dh

d	

8

W 2
χ

∫
d3vv2

‖
∂

∂χ

(
dh

d	

)
qiFM

T
sin ξ. (57)

We can compare J Pr
‖ and J Pol

‖ by comparing the two functions under the integration operator.
So, the two contributions are comparable if

I

ω2
c

ω
1

W 2
χ

∂

∂χ

dh

d	
∼ m

Rq

∂

∂χ

(
v‖
ωc

)
nωtp

ω + nωtp
, (58)
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Figure 5. Current on the X-point helical cell (triangles), on the O-point cell (stars), on the
intermediate cell (diamonds) and their sum (solid) for (a) ω = 300 rad s−1 and (b) ω =
−300 rad s−1.

where ωE in equation (51) has been discarded for the sake of simplicity. If we are not so far
away from the island (i.e. (χ − χs) ∼ Wχ ) the derivative in χ of dh/d	 is O (1). According
to the estimate (see the appendix)

∂

∂χ

(
v‖
ωc

)
≈

Rqωtp

Iv‖
, (59)

equation (58) becomes

I 2

ω2
c

ω
v2

‖
W 2

χ

∼ nωtp
nωtp

ω
. (60)

We estimate v‖ ∼

√
εvth. Recalling that the ion banana width ρb can be calculated as

ρb = √
ερθ , we can conclude that the polarization current is comparable with the precessional

current if
nωtp

ω
∼ ρb

w
. (61)

The ratio on the right-hand side of equation (61) is assumed to be small in our calculations,
cf equation (13), so that the assumption that the ratio on the left-hand side of equation (61) is
of the same order of magnitude is absolutely realistic.

6. Discussion and conclusions

We have studied the plasma current due to a rotating magnetic island when the island
propagation frequency is comparable to the parallel streaming of the passing particles (k‖v‖)
or to the toroidal precession frequency the trapped particles (ωtp) in a low-collisional plasma.
When the absolute value of ω is large (ω � k‖v‖, assuming for passing particles v‖ ∼ vth),
the polarization current, which scales like ω2 in the absence of equilibrium gradients, is the
dominant contribution. In section 4, we showed that even if ω ∼ k‖v‖ the polarization current
remains the most important perturbed current linked to the presence of the island rotation, since
the contribution of the resonating (passing) particles, significant for the distribution function,
is almost cancelled when the corresponding current is calculated. In section 5, we showed that
for decreasing values of ω other electric and magnetic effects dominate over the polarization
current. In particular, the toroidal electric field generated by a magnetic island can modify the
magnetic toroidal precession a trapped particle experiences in an equilibrium configuration,
braking or accelerating the particle itself. This leads to the appearance of a precessional
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current competing with the polarization current. For a more detailed physical explanation of
this effect, we distinguish between positive and negative frequencies. For positive frequencies,
the magnetic island is moving towards the −∇ζ -direction, while both electric and magnetic
toroidal drifts point in the ∇ζ -direction. If we suppose to build a frame of reference which
moves in the toroidal direction together with the island (from here on: IFR, island frame of
reference), we will see all the trapped particles travelling in the ∇ζ -direction. The toroidal
component of the electric field Eζ varies sinusoidally along the island, see equation (7). So in
regions where it points in the ∇ζ -direction, all particles tend to increase their kinetic energy
and finally their magnetic precession frequency (recall ωtp ∝ v2), while they slow down in the
opposite case. This means that between O and X and between X and O, all trapped particles
either accelerate or decelerate, depending on the sign of Eζ (they accelerate for Eζ > 0 and
decelerate for Eζ < 0, respectively). Where they decelerate, they tend to accumulate, so that
the local density increases. On the contrary, they tend to disperse as they accelerate, so that
the local density decreases. Figure 5(a) shows this situation in the ‘upper’ half of the island
(as stated before, the situation is opposite in the ‘lower’ half).

This picture is different when ω < 0. In this case the island is propagating in the same
direction as the particles (∇ζ -direction), so in the IFR there are particles moving in the ∇ζ

direction (if |ω| < ωtp, high-energy particles) and in the −∇ζ direction (if |ω| > ωtp, low-
energy particles). Now, when, for example, Eζ points in the −∇ζ -direction, again all particles
decrease their magnetic precession frequency. The behaviour of more energetic particles is the
same as the one described before. But slower particles, if decelerated in the laboratory frame,
actually increase their relative speed with respect to the island, so the effect is an acceleration
in the IFR. In other words, where slower particles accumulate, faster particles disperse and
vice versa, and this explains why the perturbation on the distribution function changes sign
around wtp ∼ |w| . Moreover, another mechanism complicates the overall picture in the case
ω < 0. In this case, the electric toroidal precession ωE acts in the opposite direction with
respect to the magnetic drifts. So, moving from the O-point (where the radial electric field
is maximum, in absolute value) to the X-point (where the radial electric field is the lowest in
absolute value) the number of particles which overtake the island or are overtaken by it in
IFR can change (cf equation (42)). The variation of ωE with ξ is such that the integral of J⊥
over velocity space can change its sign depending on where, with respect to the island, we are
performing the integration. This especially happens if |ω| ∼ ωtp (vth), because in that region
of phase space lies a large number of particles, so even a small shift of the resonant point
means turning a large number of faster particles into slower or vice versa (cf figure 3(a)). This
physical picture is confirmed in figure 5(b)). In this case, we are able to identify the change
of sign of the current going from O-point to X-point, as indeed |ω| ≈ ωtp (vth). It is important
to stress that resonance conditions are highly local, so after a while a resonant particle will be
able to unlock from the island, for example through the radial component of the E × B drift.

There are some strong analogies between the behaviour of the trapped and passing
particles as their motion along the island start to be comparable with the rotation of the island
itself (i.e. the case ω ∼ ωD and ω ∼ k‖v‖, respectively). In both cases, the lowest order
perturbed distribution function exhibits a resonant denominator (equations (23) and (42)),
which underlines the fact that the interaction between the particles and the mode (and the
subsequent modification of the distribution function) is stronger if the particle and the island
have a small relative motion. Indeed, this result is not surprising for most wave–particle
interactions. Nevertheless, significant differences occur as we focus on the corresponding
perturbed current. Trapped particles cross the perturbed magnetic surfaces just because of
their equilibrium drift velocity (see equation (47)), so that every perturbation on the distribution
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immediately leads to a current such that

δJ⊥ ∝ qi 〈δf vD · ∇	〉θ .

This is not the case for passing particles, as their θ -averaged equilibrium drift across the
perturbed flux surface is much smaller. For resonating particles, in particular, the advection is
such that it nearly cancels the contribution of the perturbed distribution function to the current,
as shown in section 4.

Referring to figure 4(b), we can now discuss all the changes of sign of J⊥ as a function
of ω, going from right to left. For positive island frequencies, we experience a change of
sign when the precessional current starts to exceed the standard polarization current. The sign
reversal at ω=0 is due to the fact that the electric potential goes through zero and changes sign
across that value (cf equations (7) and (42)). As a matter of fact, for extremely small negative
values of ω, the situation more or less corresponds to the one which occurs for small positive
values of ω, as almost all particles are faster than the island. So the sign reversal is due to a sign
reversal in the electric field. As ω grows, the fraction of slower particles gets larger, and this
leads to the third change of sign. Collisions contribute to determine the position of this third
reversal, since they determine how the singularity in equation (48) is resolved. Finally, for
large negative values of ω the polarization current prevails again. The qualitative agreement
between the analytical and numerical results is remarkable.

The change of sign determines the stabilizing or destabilizing effect of these currents. The
precessional current is found to be stabilizing for ω > 0 and, if ω < 0, for |ω| sufficiently larger
than ωtp. It is known that polarization current is globally destabilizing, neglecting equilibrium
gradients effects, because of the ‘current spike’ at the island separatrix [30], without which
it would be stabilizing. This precessional current acts against the polarization current (which
is in our case always destabilizing, according to the analysis of [30]). We emphasize that
in this paper we neglected effects connected to equilibrium pressure gradients, as our aim
was not a complete determination of the island dynamics, but rather the discussion of the
contributions linked to the island rotation and to possible resonances with the motion of the
particles. Our finding that precessional effects can compete with the neoclassical polarization
and that trapped-particle resonances have a major impact on this effect highlights once again
that a kinetic description is mandatory in view of an exhaustive theory of NTMs in toroidal
plasmas.

Appendix

In this appendix the relation between the toroidal magnetic precession frequencies of trapped
particles ωD and ωŝ and the corresponding terms in equation (41) is briefly discussed. We start
with ωD, which deals with the poloidal component of the equilibrium magnetic drift vD . As
the spatial derivatives have to be taken at constant kinetic energy, one can write [21]

∇v‖ = − 1

miv‖
µ∇B.

Using this relation, recalling that the parallel velocity and the cyclotron frequency depend on
space only through the magnitude of the magnetic field, one can write

∂

∂χ

(
v‖
ωc

)
= − 1

ωc

[
µ

miv‖
+

v‖
B

]
∂B

∂χ
.

In the large-aspect-ratio approximation B = B0 (1 − ε cos θ), so

∂B

∂χ
= − q

rR
cos θ
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neglecting higher order terms in ε. This implies

∂

∂χ

(
v‖
ωc

)
= q

rRωc

[
µ

mv‖
+

v‖
B

]
cos θ.

The poloidal component of the magnetic drift can, for this reason, be written as

m
Iv‖
Rq

∂

∂χ

(
v‖
ωc

)
= m

q

q

rRωc

[
µB

m i
+ v2

‖

]
cos θ.

This result, after being bounce averaged, corresponds exactly to (m/q) ωD (see equation (14)).
We now focus on the relation between the terms in k‖v‖ in equation (40) and the magnetic

shear frequency ωŝ . We concentrate on

I
v‖
ωc

k‖v‖
∂

∂ξ

∣∣∣∣
	

(
∂

∂χ
�

)
because all terms related to ωŝ have this form in our equations. It is easy to see that

I
v‖
ωc

k‖v‖
∂

∂ξ

∣∣∣∣
	

(
∂�

∂χ

)
= −I

v‖
ωc

k‖v‖
4

W 2
χ

ωq

mc

dh

d	

∂χ

∂ξ

∣∣∣∣
	

.

Recalling that

k‖
∂χ

∂ξ

∣∣∣∣
	

= m

q

∂A‖
∂ξ

= m

q

ψ̃

R
sin ξ (62)

and

ψ̃ = W 2
χ

4

q ′
s

qs

one can find with a little algebra

I
v‖
ωc

k‖v‖
∂

∂ξ

∣∣∣∣
	

∂�

∂χ
= m

q

qŝv2
‖

r2ωc

∂�

∂ξ
,

where ŝ is the magnetic shear (ŝ = r/q dq/dr) and the shear precession frequency [22] can
be easily identified after θ -averaging this expression.
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Abstract
The influence of a static magnetic island on the behaviour of the electrostatic turbulence in a tokamak is
investigated numerically employing global nonlinear gyrokinetic particle-in-cell simulations. The excitation of
turbulence is modified by the magnetic topology of the island. Low mode numbers in the energy spectrum of
the potential disturbances, corresponding to the island perturbation, are amplified by nonlinear coupling with the
microinstabilities, particularly in the presence of strong turbulence. The associated large-scale flows affect the
transport directly and through strain of small-scale eddies. The temperature profile determined numerically in the
island region agrees qualitatively with analytic estimates; however, quantitative discrepancies are found.

PACS numbers: 52.35.Py, 52.65.Rr, 52.65.Tt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the calculation of turbulent transport due to electrostatic
or electromagnetic microinstabilities in tokamaks, the
equilibrium configuration is usually supposed to be
axisymmetric. However, large-scale magnetohydrodynamic
instabilities like the tearing mode [1, 2], leading to the
formation of helical structures (called magnetic islands) that
destroy the toroidal symmetry of a tokamak, are often observed
in fusion experiments. A saturated tearing mode can lead to
a significant degradation of the energy confined in the plasma
or even cause disruptive termination of a discharge. For these
reasons, tearing modes are an area of very active research. In
many tokamak reactors, the tearing mode is found to be driven
unstable by the decrease in the bootstrap current due to the
flattening of the pressure profile inside the island [3–5] (in this
case, the mode is called neoclassical tearing mode, NTM).

It is easy to imagine that the change in the magnetic
topology due to the presence of a large helical perturbation
influences the dynamics of transport. First of all, since a
magnetic island reconnects the magnetic field on both sides
of the rational surface where it develops, it provides a radial
magnetic-field component, thus leading to the appearance of
a huge radial parallel transport, which is otherwise absent
in a tokamak. This is the origin of the flattening of the
pressure profile within the reconnected region mentioned

above. As the microinstabilities that lead to turbulence are
driven by density and temperature gradients, this flattening
drastically reduces the turbulence level in the island. Finally,
the development and the shape of the turbulent structures can
be modified by the helical magnetic field of the mode and by
the interaction with the sheared flows connected to the large-
scale (island) components of the electric field. On the other
hand, the turbulence itself affects the dynamics of magnetic
islands. First of all, small-scale electromagnetic fluctuations
modify the seeding and growth processes [6–8]. Moreover,
the competition between perpendicular and parallel transport
contributes to determining the pressure profile around the
island separatrix [9, 10], in a region which can be as large
as the island itself in the early stage of the island evolution.
The shape of the pressure profile has a strong impact on the
island stability, first of all because it determines the level of
the bootstrap current (and hence its neoclasical stability [9]),
but also because the island rotation due to diamagnetic effects
gives rise to a polarization current [11–13] which is found to be
potentially important for the dynamics of small islands. The
behaviour of the island propagation velocity in the presence
of turbulence has been investigated recently employing a
Hasegawa–Wakatani model in a slab configuration [14].

A complete kinetic self-consistent solution of the problem
of the island evolution in the presence of turbulence in a
realistic tokamak geometry, which involves the resolution of
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time scales ranging from those typical of the particle orbits
to those characterizing the island growth, is computationally
prohibitive. The size of the problem can be reduced,
e.g. by choosing a fluid approach to the computation of the
turbulent fields, by simplifying the magnetic geometry (slab
or cylindrical instead of toroidal), or by considering only short
(turbulence-related) or long (island-related) time scales. A
‘minimal model’ for a self-consistent description of turbulence
and island dynamics has been put forward in [15], which
also includes a detailed discussion of the basic features of
the mutual interaction between small-scale and large-scale
instabilities typical of this problem.

In this paper, full toroidal geometry and a gyrokinetic
description of the ions are retained. Toroidicity and kinetic
effects are known to play a fundamental role in the dynamics
of both the turbulence and the tearing mode. On the other hand,
in the model adopted here, the magnetic island is treated as a
prescribed static perturbation of the background axisymmetric
configuration, and its time evolution is disregarded. A particle-
in-cell (PIC) approach is well suited for a direct numerical
implementation of this model, since PIC codes are based on
the integration of the trajectories of an ensemble of markers
evolving according to a set of Hamiltonian equations of motion,
where the magnetic-field perturbation due to the island can be
included in a quite straightforward way. The self-consistent
electric field is calculated by solving the Poisson equation
on a fixed spatial grid. In the simulations presented here,
performed employing the global gyrokinetic PIC code ORB5
[16, 17], only electrostatic microinstabilities are considered.
With respect to the considerations made above, the model
adopted here is used to describe the influence of the island on
the development of the turbulence (spectrum, coupling to long-
wavelengths modes, shape of the eddies, etc), to determine
self-consistently the heat transport and its dependence on the
island size and geometry and (related to this) to check the
assumptions of previous studies on the transport properties in
the island region.

It is noted in passing that a gyrokinetic approach is needed
not only to properly treat the dynamics of the microinstabilities
but also because finite-orbit effects can become essential for
small islands and in any case around the separatrix [18, 19].

In this paper, section 2 is devoted to a description of
the approach used to include an island structure in numerical
simulations based on the PIC method. Some earlier results on
the determination of the balance between perpendicular and
parallel transport across a magnetic island are summarized in
section 3. The numerical results of the ORB5 simulations are
presented in section 4. Some concluding remarks follow in
section 5.

2. Numerical scheme

2.1. The PIC code ORB5

The PIC method is based on the introduction of an ensemble
of ‘super-particles’, or markers, each one describing a
piece of the phase space associated with a given particle
species. The evolution of the markers is determined by the
corresponding equations of motion, which are coupled to
Maxwell’s equations. The self-consistent fields are calculated

projecting the charge and current associated with each marker
onto a fixed spatial grid. This approach is implemented in
the global gyrokinetic PIC code ORB5, which provides a
numerical solution to the electrostatic approximation of the
gyrokinetic equations in the formulation of Hahm [20]. The
distribution function is split into an analytically known time-
independent part f0 and a perturbation δf which is represented
numerically. The gyrokinetic equations of motion for the
markers are

dR
dt

= v‖b +
1

B∗
‖

[
µB + v‖2

�ci
b × ∇B

−v‖2

�ci
b × (b × ∇ × B) − ∇〈φ〉g × b ] , (1)

dv‖
dt

= −µ

[
b − v‖

B∗
‖�ci

b × (b × ∇ × B)

]
· ∇B (2)

− qi

mi

{
b +

v‖
B∗

‖�ci

[
b × ∇B − b × (b × ∇ × B)

]} · ∇〈φ〉g,

dµ

dt
= 0, (3)

where R is the position of the gyrocentre, v‖ is the velocity
component along the magnetic field, b is the unit vector along
the magnetic field B, µ is the magnetic moment, �ci is the
cyclotron frequency, 〈φ〉g is the perturbed potential (solution
of the Poisson equation) averaged over the gyroperiod, qi

and mi are the particle’s charge and mass, respectively, and
B∗

‖ = B+(mi/qi)v‖b·∇×b. Since along the orbits df/dt = 0,
δf must obey the equation

d(δf )

dt
= −df0

dt
= −v · ∇f0 − v̇‖

∂f0

∂v‖
. (4)

The δf method described above can be successfully applied
to represent the deviation of the moments of the distribution
function from the ‘unperturbed’ state (when no island is
present), as has been shown previously for the case of drift
kinetic simulations [21, 22].

The perturbed potential is obtained as the solution of the
Poisson equation

∇2φ = 4πqi

{
ne −

∫ [
f +

qi

miB
(φ − 〈φ〉) ∂f

∂µ

]

× δ(R + ρ − r)d6Z

}
, (5)

where ρ is a vector directed from the gyrocentre to the position
of the particle and 〈φ〉 is the flux-surface-averaged potential.
The charge connected to each marker is assigned pointwise
to a spatial mesh in order to provide the source term. The
computation of the gyroaveraged density follows an adaptive
procedure, in order to have the same number of sampling
points per arclength along the gyro-ring. Once the perturbed
gyroaveraged charge density associated with each marker has
been projected onto the (B-spline) basis, the equation for
the components of the potential on this basis reduces to an
algebraic matrix equation. The same B-spline basis can be used
to interpolate the radial magnetic-field perturbation associated
with the magnetic island, which is initially assigned on a grid.
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2.2. Including a magnetic island

In the presence of a (static) magnetic island, the tokamak
magnetic field can be represented as

B = ∇ψt × ∇ξ/m + ∇ϕ × ∇
he, (6)

where ψt is the toroidal flux, ξ = mθ −nϕ is the helical angle
(θ and ϕ being the poloidal and toroidal angles, respectively,
and m and n the poloidal and toroidal mode numbers associated
with the island) and


he = ψ − ψt

qs
+ α cos ξ (7)

is the helical flux (ψ is the poloidal flux and the subscript
s denotes that a quantity is calculated at the resonant (m, n)

surface), which can be used to label the perturbed magnetic
surfaces, since B·∇
he = 0. In the limit of vanishing magnetic
perturbation, α → 0, it is easy to show that equations (6)
and (7) reduce to the usual representation of the axisymmetric
tokamak field. The last term of equation (7) describes the
island magnetic field, which is therefore

B̃ = α∇ϕ × ∇ cos ξ = mα sin ξ∇θ × ∇ϕ,

where the perturbation strength α is approximated to be a
constant. With this assumption, the island field is directed
along ∇ψ . This radial component accounts for the most
important modification of particle orbits [23] and has been
included in ORB5 by operating the substitution b → b + b̃
(where b̃ = B̃/B) in the first term of both equations (1) and (2).

Figure 1(a) is a Poincaré puncture plot produced by
following the orbits of 23 particles along the torus, the
electrostatic potential being switched off. The dots obtained
as the intersection of the trajectories with the plane ϕ = 0
show the pattern of the perturbed field lines, which coincides
with the contour levels of 
he (for this plot, particles with
low energy and v‖/v � 1 have been employed to reduce their
drift with respect to the flux surfaces). The density profile,
obtained again in the absence of the electrostatic potential,
is reported in figure 1(b). Here and in the following, the
flux-surface averages are performed in helical cells delimited
by neighbouring surfaces of constant 
he, according to the
definition

〈A〉 = lim
δ
he→0

∫ 
he+δ
he


he−δ
he
A d3r∫ 
he+δ
he


he−δ
he
d3r

. (8)

The density profile shown in figure 1(b) exhibits a clear
flattening within the island. The contribution of the simulation
markers, namely δn = ∫

d�pδf/V (where d�p is the phase-
space element and V is the volume of the cell) is shown by the
dashed line reversing its sign across the island centre.

In the determination of the balance between parallel and
perpendicular transport in the island region, an important
role is played by the (θ -averaged) parallel gradient operator
∇‖ = b · ∇ = k‖ ∂/∂ξ |
he . The parallel wavevector k‖ defined
through this expression for ∇‖ is proportional to the distance
from the rational surface and to the magnetic shear:

k‖ = − m

qR

ψ − ψs

qs

dq

dψ
= εsssn

r2
s

(r − rs), (9)

(a)

(b)

Figure 1. ORB5 simulation performed excluding the self-consistent
electric fields to highlight the motion of the ions along the perturbed
field lines in the presence of a magnetic island: Poincaré puncture
plot (a) and radial density profile (b). The island region is denoted
by the two vertical lines.

where the first expression refers to a full toroidal geometry and
the second to a slab or cylindrical geometry. In equation (9),
ε is the inverse aspect ratio and s = (r/q) dq/dr the magnetic
shear.

3. Parallel and perpendicular transport close to the
island separatrix

In the presence of a magnetic island, since the transport
along the field lines is much larger than across the field,
the pressure profile can be thought to be a function of the
perturbed magnetic-flux label 
he introduced above. Under
this assumption, the pressure gradient jumps from a finite
value to zero when the island separatrix is crossed. However,
the ratio between, say, the parallel and perpendicular heat
conductivity in a tokamak is indeed very large (up to χ‖/χ⊥ ≈
109–1010) but finite. As a consequence, a boundary layer
appears around the island separatrix, along which the heat is
transported from one side of the rational surface to the other
[9, 10]. The features of this process have been investigated
solving the steady-state heat diffusion equation [9]:

χ‖∇2
‖T + χ⊥∇2

⊥T = 0, (10)
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or, alternatively3, the kinetic equation [10]

v‖∇‖f = D⊥∇2f. (11)

The critical width wc in which parallel and perendicular
transport compete is obtained by equating the two terms
of the previous equations. Thus in equation (10) one can
estimate χ‖k‖2 ∼ χ⊥/w2

c , and assuming r − rs ∼ wc in
equation (9), the scaling for wc turns out to be wc/r ∼
(χ⊥/χ‖)1/4(1/εsssn)1/2. The corresponding estimate derived
from equation (11), namely wc ∼ (D⊥/k‖vth)

1/2, is reduced to
the above if a parallel diffusivity D‖ ∼ vth/k‖ is introduced (see
footnote) and again taking r − rs ∼ wc in equation (9). In the
transition layer, the temperature is not a flux-surface function.
The heat is found to be transported along the layer and to flow
across the rational surface near the X-point [9]. The analysis
of Hazeltine et al [10], moreover, predicts that the jump �f of
the distribution function on both sides of the island should be
proportional to the gradient df/dr at the island separatrix, the
proportionality factor being approximately given by the width
of the critical layer wc � √

χ⊥/k‖vth. It has to be stressed
that, in both approaches, the dependence of the perpendicular
(heat) diffusion coefficient on the radial coordinate ψ and on
the helical angle along the island ξ has been neglected, in order
to obtain an analytic solution of the starting equation. In the
next section, this picture is compared with the results of direct
numerical simulations of turbulent transport.

4. Numerical results

The numerical simulations presented in this section have been
performed for a tokamak with circular concentric flux surfaces,
major radius R0 = 3.3 m and minor radius a = 0.47 m. A
flat density profile is considered, the turbulent transport being
caused by an electrostatic ion-temperature-gradient (ITG)
instability. As explained in section 2.2, flux-surface (‘zonal’)
averages have to be performed between surfaces of constant

he, which are not axisymmetric (n = 0) if a magnetic
island is present. However, the assumption that the zonal
potential coincides with an n = 0 mode is hard-wired in
ORB5 when adiabatic electrons are considered. Therefore,
within the adiabatic approximation, a proper computation of
the zonal flows turns out to be extremely difficult and is
excluded from the simulations presented here (i.e. n = 0
modes are set to zero). No source terms have been used, so
that the temperature profile relaxes according to the level of
the heat flux. In simulations of this kind, if the normalized
gyroradius ρ∗ ≡ ρs/a is sufficiently small, the time evolution
of both the temperature and the heat flux profiles is slow, so
that a ‘quasi-steady’ state can be identified [24]. This approach
has been used in most of global turbulence analysis and has
been chosen as a standard benchmark case for European global
codes [25]. For simulations without zonal flows such as those
described in this paper, a quasi-steady state can be reached for
ρ∗ < 1/200 (see e.g. [17]). In the ORB5 runs analysed here,
ρ∗ = 1/320. As this corresponds to a pretty low value for

3 It is noted that replacing conduction by convection, i.e. replacing in
equation (10) the term χ‖∇2

‖T with v‖∇‖T (which is in turn equivalent to
estimating [9] χ‖ ∼ vth/k‖) one obtains an equation of the same form as
equation (11).

 

 

Figure 2. Time evolution of the temperature gradient in the island
region in a typical ORB5 simulation (a). In the turbulence-free
phase, the profile flattens in the centre of the island and peaks just
outside because of the ‘compression’ of the magnetic surfaces. In
the turbulent phase, the profile relaxes to a lower value of the
gradient. The time is expressed in units of a/cs (where cs is the
sound speed). Temperature profile at the end of the turbulence-free
phase (b) as a function of the radial coordinate 〈√ψ〉 and of the
helical angle ξ (where ξ = ∓π corresponds to the X-point, ξ = 0 to
the O-point) for a large island (W/a � 0.1).

the ion temperature, the ion streaming along the island is not
very fast. Typical values of χ‖/χ⊥ are therefore4 in the range
106–107.

An example of the evolution of the ion temperature
profile in a typical ORB5 simulation is shown in figure 2(a).
Since the temperature is initialized as a function of the
unperturbed flux coordinate ψ , each run is started with a
turbulence-free phase, in which only potential perturbations
with low mode numbers are allowed. During this time, the ion
temperature becomes constant on the perturbed (constant-
he)
flux surfaces and flattens inside the island. Outside the island,
the temperature gradient increases because the flux surfaces
are on average ‘compressed’ with respect to the unperturbed
magnetic equilibrium. After this phase, turbulent modes are
switched on. Under the influence of the turbulent transport,
the temperature gradient outside the island decreases, at a
particularly fast rate at the end of the linear phase (overshoot).
At the end of the run, a phase with almost constant temperature
gradients in the island region is observed. It is noted that the
gradients are computed in this figure as the variation of the

4 Here, according to [9], we estimate χ‖ ∼ vth/k‖, see section 3.
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Figure 3. Time evolution of the energy spectrum of the turbulence
for a large (W/a � 0.1, (a)) and small (W/a � 0.04, (b)) island,
showing the coupling between large-scale and small-scale fields.
The y-axis reports the logarithm of the toroidal-mode energy
normalized to mic

2
s .

temperature with respect to the flux-surface averaged value
of the radial coordinate, i.e. with respect to 〈ψ〉. In the
calculation of heat conductivity (defined as ratio of heat fluxes
and temperature gradients) presented below, the gradients
are evaluated taking into account that the distance between
neighbouring flux surfaces is a function of the helical angle
ξ . Figure 2(b) shows the flattened temperature profile at the
end of the turbulence-free phase as a function of the radial
(x-axis) and helical (y-axis) coordinates (the inner and outer
separatrices are represented by the two vertical thick solid
lines). For plotting reasons, the island is ‘stretched’ along
the x-axis at the X-points (ξ = ∓π ). The resulting unphysical
cells are displayed in white.

The first set of results presented here concerns the
development of the turbulence in the presence of a magnetic
island. In figure 3, the time evolution of the toroidal energy
spectrum (averaged over the minor radius) is shown for two
different values of the island width. Moving from the linear to
the nonlinear phase the spectrum exhibits an inverse cascade to
smaller mode numbers, as usually seen also when the island is
absent. The nonlinear coupling between the ‘turbulent’ modes
(high n) and the ‘island’ modes (low n) deserves particular
attention. In these simulations with a (3,2) island, a coupling
between mode numbers n1 and n2 in the turbulence spectrum

 

 

 

 

 

Figure 4. E × B heat flux defined in equation (12) as a function of
〈√ψ〉 and of the helical angle ξ for a large island (W/a � 0.1). The
transport due to the large-scale field components (with different
directions) is clearly visible inside the island.

satisfying the relation n1 = n2+2 is found in both the linear and
the nonlinear phase. The low-n modes amplification through
this coupling with the small-scale turbulence is more evident
when the island and the background temperature are larger.
Moreover, the whole spectrum shifts to lower n for larger
islands. In the simulations presented here, ‘seed’ n = 2 and
n = 4 harmonics arise during the turbulence-free phase of the
run described above; under realistic conditions, in general, the
low-n potential associated with the island rotation with respect
to the plasma can play a similar role and interact nonlinearly
with the fluctuating field of the microinstabilities. These low-n
field components affect the transport in the island region in a
twofold way . First of all, they yield a direct transport signal,
in particular where high-n modes have smaller amplitude, for
instance inside the island (an example is shown in figure 4).
While the direct contribution of the large-scale modes to the
transport across the separatrix is negligible, they are essential
for the residual transport level inside the island and finally
for the shape of the temperature profile close to the resonant
surface. As they are generated through nonlinear coupling with
the background turbulence, their importance is directly related
to the strength of the small-scale modes, cf the discussion after
equations (12) and (13) below. The second effect of low-n
modes on the transport is that they generate sheared flows
which strain the turbulent eddies, thus reducing the transport
level. This process, which is closely analogous to the familiar
effect of zonal flows on drift-wave turbulence, is predicted
theoretically (see e.g. [15]) and is nicely confirmed in our
simulations.

We now turn to the analysis of the transport in the island
region. In the simulations, the formation of elongated eddies
across the X-point region is often observed. These eddies
split when they drift inside the island, where the temperature
gradient is much smaller (it is recalled that the island has a
fixed position in these runs). In the region of the plasma
corresponding to the island’s O-point (ξ � 0), a breaking
of the eddies close to the (in particular inner) separatrix is
observed. In this regard, an interesting observation is that
low-n components in the local energy spectrum are usually

5
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Figure 5. Heat flux (a) and heat conductivity (b) in the nonlinear
phase, for a mid-size island (W/a � 0.06).

observed to prevail on the inner side of the island, whereas they
are less strong on the outer side. Correspondingly, the turbulent
eddies are seen to be more pronounced on the outer side.
This is a strong indication that the amplitude of the turbulent
modes is regulated by the sheared flows associated with low-
n fields. These qualitative observations are confirmed by the
transport levels measured numerically. An example is shown
in figure 5(a). Outside the island, in the O-point region, the
E×B transport is strong, consistently with the fact that the flux
surfaces are closer to each other and the temperature gradient
is therefore higher. However, close to the island separatrix,
the largest heat fluxes are often found in the X-point region,
whereas the transport around the O-point is reduced. These
features are found in both the linear and nonlinear phases. The
turbulent transport is of course very low in the island core. The
behaviour of the heat flux as a function of the helical angle ξ

cannot be explained simply in terms of the different ‘distance’
of the flux surfaces at theO-point as compared with theX-point
(i.e. in terms of different local gradients). This can be seen in
figure 5(b), which reports the values of the heat conductivity.
It is noted, in addition, that the penetration (spreading) of the
turbulent structures into the outer side of the island leads to
high values of the conductivity (relatively high transport in
a region of low gradient). The ratio of the heat flux at the
separatrix through the X-point (qX) and through the O-point
(qO) is reported in figure 6 as a function of the initial inverse
gradient length and of the island width. The behaviour of

(a)

(b)

Figure 6. Dependence of the ratio between the heat flux across the
inner island separatrix at ξ = π (X-point region) and at ξ = 0
(O-point region) on the initial temperature gradient at constant
island width (a) and on the island width at constant temperature
gradient (calculated at the beginning of the turbulence phase) (b).

qX/qO shown in figure 6(a) is due to the fact that, below a given
value of the ∇T at the island, the formation of elongated eddies
through the X-point mentioned above is reduced. Moreover, at
higher gradients, i.e. when the turbulence is stronger, the large-
scale sheared flows become stronger as well. The connected
straining of the eddies close to the island separatrix seems to be
more effective in the O-point region than in the X-point region
(this result could change in the presence of strong zonal flows).
The dependence of the ratio qX/qO on the island width reported
in figure 6(b) has been computed for very similar values of
the temperature gradient outside the island. Correspondingly,
the ratio between the energy of small-scale and large-scale
modes is comparable. The assumption that the transport level
is determined by the interaction between low-n and turbulent
flows would then explain the weak dependence of qX/qO on
the island width and be consistent with the results shown in
figure 6(a).

The analytic predictions on the shape of the temperature
profile across the island mentioned in section 3 [9, 10]
are finally checked against direct numerical simulations of
turbulent transport. The basic picture, according to which the
temperature profile must exhibit a transition layer across the
island separatrix, where it is not a flux-surface function, is
qualitatively confirmed. It is recalled that, in addition to the
finite perpendicular transport, finite-orbit effects also play a
role in smoothing the pressure profile across the separatrix
[21, 22]. In the simulations, the ratio between the radial E × B

6
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flux

qE =
∫

mv2

2
vE δf d3v (12)

and the radial component of the parallel flux along the
perturbed field lines

q‖,r =
∫

mv2

2
v‖b̃ δf d3v (13)

is calculated. As expected, inside the island separatrix there is
a layer where these fluxes are of the same order. Depending on
the strength of the turbulence, the ratio qE/q‖,r can be above
or below one (as mentioned at the beginning of this section,
the parallel streaming is not very fast in these simulations).
In the very centre of the island, this ratio can be one or two
orders of magnitude higher than at the separatrix, depending
on the temperature gradients set in the simulations. In the
island centre, the parallel transport becomes less and less
effective, since k‖ is proportional to the distance from the
rational surface, whereas turbulent structures can in some cases
reach the O-point or be transported there by the diamagnetic
rotation of the instability. Moreover, the excitation of low-n
modes inside the island is much stronger if the level of the
background turbulence is increased, as discussed above. A
consequence of the fact that large eddies can develop across
the X-point is that heat can be transported across the resonant
rational surface without undergoing the process of crossing
the separatrix at the O-point and being transported to the X-
point, which is usually considered the standard process for
the transport of heat from one side of the rational surface
to the other [9]. The suggested proportionality between the
jump �T of the temperature profile on both sides of the island
and the gradient dT/dr at the island separatrix [10] has been
investigated through a scan in the background temperature
gradient for two different sets of simulation parameters. The
result of this scan, reported in figure 7, is that the product
wc dT/dr increases faster than �T if the temperature gradient
is increased, whereas their ratio is predicted to be constant,
cf section 3. One possible explanation for this result is that
the assumption of uniform (both across and along the island)
heat conductivity is too crude (it is in fact never verified in
the simulations). Close to the island separatrix, χ⊥ displays a
strong variation as a function of the radius and in particular of
the helical angle, see figure 5(b). Moreover, χ⊥,X and χ⊥,O

vary differently depending on plasma parameters, particularly
on the temperature gradient, as shown above. Whether a
diffusive ansatz can be used at all to describe the transport
across the island separatrix is an interesting issue which will
be addressed in the future.

5. Discussion and conclusions

The investigation of the interaction between magnetic island
and electrostatic drift-wave turbulence in a tokamak plasma
presented in this paper is based on the solution of the
gyrokinetic equation in a toroidal geometry. Emphasis has
been placed on the modelling of the turbulent processes in the
presence of a static island. Global electrostatic simulations
have been performed employing the PIC code ORB5.
PIC codes allow an—at least conceptually—straightforward

Figure 7. Ratio between the ‘jump’ of the ion temperature at the
island separatrix and the product of the critical layer wc times the
temperature gradient as a function of the initial temperature gradient.

implementation of a magnetic island through a modification of
the equations of motion which take into account the presence
of a small radial component of the magnetic field. The
development of the turbulence is modified by the MHD mode
through the associated flattening of the temperature gradient
and through the interaction between large-scale (island) flows
and small-case (turbulence) flows. These low-n flows act both
radially, providing an own transport signal, and azimuthally,
straining the small-scale eddies. Using the terminology of [15],
the feedback of large scales on small scales occurs both in
position space and in k space. The numerical results obtained
in this paper confirm the importance of the complex dynamics
outlined above. In particular, the inhomogeneous behaviour of
the transport both across and along the island has been stressed.
The validity of a transport model for the island based on the
assumption of uniform heat conductivity has been questioned.
More basic questions concerning the diffusive nature of the
transport in the island region remain to be explored.

As discussed in the introduction, in this paper we aim
rather at an accurate description of small-scale instabilities
(through a global toroidal gyrokinetic approach) than at
the resolution of the time scales connected with the island
evolution. In this sense, the choice of a nonrotating island
is linked to the fact that the present numerical scheme
does not include the physics required for a self-consistent
determination of the island rotation, which is connected
to the dissipative phenomena leading to an ‘out-of-phase’
current in the island region [26]. Correspondingly, the
electrostatic potential associated with the island rotation cannot
be determined self-consistently, whereas it is determined
from the Poisson equation for the turbulent fluctuations.
Anyway, since the island rotation is supposed to occur in
the range of the diamagnetic frequency, its interaction with
the drift waves [18] is potentially an important element for
the island stability; moreover, the rotation frequency itself
is expected to by influenced by the radial profiles [14], as
already noted in section 1. Similarly, an important role in
the seeding and in the first phase of the island growth is
played by small-scale electromagnetic fluctuations, which are
not retained in the electrostatic version of ORB5 employed
here. However, as far as the transport properties of the plasma
in the island region are concerned, an electrostatic approach is
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sufficient to address the relevant features of the process studied
here (energy transport generated by small-scale disturbances,
nonlinear mode coupling, interaction between large and small
scales, inhomogeneity of the transport properties in the island
region, etc).

It is recalled that, in the simulations presented here,
the electrons were assumed to be adiabatic. In ORB5, the
adiabatic approximation is implemented under the assumption
of unperturbed flux surfaces. For this reason, zonal flows
were excluded from the computation, and the calculation of
low-n fields was not exact, in particular for large islands. A
way to overcome this problem, thus obtaining a more realistic
prediction of the transport level in the island region, is to
employ kinetic electrons, which have the correct response
to the island topology. It is important to recall, however,
that the physics of self-regulation of turbulent transport
through sheared flows connected to large-scale components
of the electrostatic potential is not entirely excluded from
our simulations, since the low-n fields due to the presence
of the island provide an effect similar to that of zonal flows,
as mentioned above. In this respect, on the contrary, the
neglect of zonal flows in our simulations allows us to discuss
the role of low-n modes on their own. The investigation of
the zonal-flows-physics in the presence of a magnetic island
is planned for the near future. The accurate calculation
of the transport levels is crucial to make more realistic
predictions on the stability of small islands in the presence
of significant perpendicular transport and will allow a more

quantitative analysis of threshold models [9] based on the
‘critical width’ wc ∝ (χ⊥/χ‖)1/4 mentioned in section 3.
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The bootstrap current in small magnetic islands of neoclassical tearing modes is studied with
guiding center particle simulations including pitch angle scattering. A model for a rotating island
and its electric field is used and a new approximation to the electric potential in small islands is
derived. Islands with sizes of the order of the ion banana orbit width are studied by means of a
two-step model, which allows to treat both ions and electrons kinetically. The bootstrap current in
such small islands is found to depend strongly on the direction of rotation of the island. The
bootstrap current in small islands rotating in the ion diamagnetic direction is strongly diminished,
similarly to what happens in big islands. In small islands rotating in the electron diamagnetic
direction, on the contrary, the bootstrap current is almost completely preserved, implying a reduced
neoclassical drive of the island growth. © 2009 American Institute of Physics.
�doi:10.1063/1.3234252�

I. INTRODUCTION

Neoclassical tearing modes �NTMs� play an important
role in present large tokamak experiments, and the planned
international experiment ITER, since they set a limit to the
achievable pressure in long-pulse operation with high
confinement.1 A tearing mode occurs when a magnetic per-
turbation creates by field line reconnection a small unstable
helical island structure in the plasma. In a tokamak, the flat-
tening of the pressure profile due to the fast transport along
the field lines inside a sufficiently big island causes a loss of
the bootstrap current at the position of the island. This loss
corresponds to a perturbed current in the opposite direction
that can drive the mode unstable even when the unperturbed
current profile would be stabilizing.2,3 In this case the mode
is called a NTM.

It is generally assumed that in small islands, due to the
incomplete flattening of the density and temperature profiles,
the bootstrap current is not entirely lost. The incomplete flat-
tening of the pressure profile in a small island is due, on the
one hand, to the fact that the parallel transport is indeed very
high but finite. This implies that there exists always a layer
around the island separatrix where the perpendicular trans-
port across the separatrix competes with the parallel trans-
port. Profile flattening is strongly reduced when the island
width is of the order of the width of this layer. For the tem-
perature profile, e.g., the critical size is about
��� /���1/4�rR0�1/2,4 where �� and �� are the perpendicular
and parallel heat conductivities, respectively. A second rea-
son for the incomplete disappearance of the bootstrap current
is the effect of the finite ion banana orbit width, which is
important when the island width is comparable or smaller
than the typical ion orbit width. Previous kinetic
investigations5,6 of the bootstrap current in small static is-
lands have shown that the ion component of the bootstrap
current is entirely restored when the island width falls below
the thermal ion banana width.

In this work, we study the effect of the finite ion orbit
width on the bootstrap current in small islands. In addition to
the model used in Refs. 5 and 6, we take into account the
rotation of the island and the corresponding electric field. As
is well known �cf. Sec. III�, in the presence of a radial elec-
tric field Er, the neoclassical damping of poloidal rotation
leads to a contribution to the parallel flow of both ions and
electrons proportional to the ratio between Er and the poloi-
dal magnetic field Bp.7 In general, these flows do not lead to
an electrical current. In the case of a small island, however,
the response to the island electric field �which has large
variations across the island separatrix� can be different for
ions and electrons because of the different width of their
orbits, so that a finite parallel current can be generated. Since
the direction of the Er /Bp flow is related to the direction of
the island rotation with respect to the surrounding plasma,
the contribution of such a current to the island dynamics can
be stabilizing or destabilizing depending on the sign of the
island rotation frequency. Here, we study the response of
both ions and electrons to islands rotating in either direction,
treating the island width and the rotation frequency as input
parameters. The surface-averaged parallel current, the
changes of the density and temperature profiles, and the
plasma flow are determined by means of guiding center par-
ticle simulations. Ions and electrons are treated kinetically,
including ion-ion, electron-electron, and electron-ion colli-
sions, according to the two-step model presented in Sec. II.

II. THE SIMULATION MODEL

A. Perturbed equilibrium with rotating island

The magnetic field used in the numerical simulations
consists of a simple equilibrium field with concentric circular
flux surfaces and a perturbation that creates a rotating island
with a single helicity. The toroidal and poloidal components
of the equilibrium magnetic field are
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Bt =
B0

1 + � cos �
, Bp =

�Bt

q�1 − �2
. �1�

This field is expressed in Boozer coordinates � ,� ,� as

B = �� � �� + q��� � � � �� , �2�

where � is the poloidal flux, q is the safety factor, and � and
� are poloidal and toroidal angles. The Boozer angle � is
related to the angle � appearing in Eq. �1� by tan�� /2�
=��1−�� / �1+�� tan�� /2�.6 We assume q=1+q�� with a
constant q�. From the definition of the toroidal flux �per
radian�,

2��t =� BtR0
2�d�d� �3�

and �t=�q���d�, we obtain the poloidal flux � as a function
of the inverse aspect ratio �,

� + q��2/2 = R0
2B0�1 − �1 − �2� . �4�

A perturbation of the vector potential

	A� = − 
̂ cos���R0B, � = m� − n� − �t , �5�

with mode numbers m and n, mode frequency �,
B=�Bt

2+Bp
2, and a constant 
̂ is assumed. This leads to the

poloidal flux perturbation

	� = 
̂R0RBt cos � = �̂ cos � �6�

that creates, near the flux surface with q=qs=m /n, a rotating

helical island of size w�=�4�̂qs /qs� �half of the poloidal flux
difference across the island� and half-width wisld

	�dr /d��w�. The index s indicates the resonant surface, the
prime denotes the derivative with respect to the poloidal flux
� and � is a helical angle. The perturbed poloidal flux is not
suited as a label for the perturbed flux surfaces inside and
near the island. Employing both � and �t we can define a

helical flux as 
hel=�−�t /qs+ �̂ cos �, which is constant on
the perturbed flux surfaces. In the following we use, as an
alternative to � ,� ,�, a normalized helical flux obtained from
a second-order expansion of �t around �s,

� = 2�� − �s�2/w�
2 − cos � �7�

together with � and �. �=1 defines the island separatrix and
�=−1 is the minimum value of � attained at the O point
��=0,�=�s� of the island. For the time-dependent electric
potential of the rotating island we use two different analytic
approximations. First we take the well-known expression8,9

� =
q�

m 
�� − �s� �
w�

�2
��� − 1���� − 1�� , �8�

which was derived assuming E� =−�A� /�t−���=0. The
positive sign holds for ���s and � is defined as ��x�=1 for
x�0 and ��x�=0 for x�0. The first part of � is constant on
the unperturbed flux surfaces and the corresponding part of
the electric field is Er=−�q� /m���	−�q� /m�RBp. It
causes the plasma inside the island to corotate with the is-
land, since �E�B�� /r=� /m is the poloidal rotation fre-
quency of the island. The second part of � reduces the elec-

tric field −�� outside the island, such that it vanishes far
away from the island, where the plasma is assumed to be at
rest. The expression for � in Eq. �8� is valid for big islands,
but we shall show that in small islands the potential can be
very different, depending on the rotation frequency. A second
expression for the potential, valid in small islands, is derived
in Sec. IV.

B. Two step �f model

The bootstrap current is a flux-surface averaged parallel
current, which is driven by radial gradients of density or
temperature. A kinetic description of the bootstrap current
generation is obtained from the drift kinetic equation

df

dt
=

� f

�t
+ v · �f + � ev · E

mv�

−
���B

m

 � f

�v�

= C�f� �9�

for the distribution function f�r ,v� ,�� of the guiding centers.
Here, v=v�b+vd is the guiding center velocity with parallel
component v�, b=B /B, and drift velocity vd=B�mv�

2�b ·��b
+��B+e��� /eB2, �=mv�

2 /2B is the magnetic moment,
E=−bdA� /dt−�� is the electric field, and C�f� is the colli-
sion operator. We have to solve the kinetic equations for ions
and for electrons. Since we assume a given magnetic field
with prescribed perturbation and electric field, the only cou-
pling between the ion and electron equations is via the col-
lision operator. For the ions we can neglect collisions with
electrons because their effect on the ion momentum is very
small. This makes it possible to compute the electric current
in two steps. First the equations for the ions are solved with
C�f i�=Cii�f i� to obtain the distribution function f i. In the sec-
ond step the equations for the electrons are solved, where the
collision operator, C�fe�=Cee�fe�+Cei�fe , f i�, depends on f i,
because here it is important to include the friction between
electrons and ions. With this procedure there is no need to
follow the electrons for several ion collision times, but sev-
eral electron collision times are sufficient. The procedure
was successfully tested with a different code, but with the
same collision model.10

We apply the 	f method, i.e., the distribution function is
split into two parts, f = f0+	f , and only the part 	f is repre-
sented by marker particles, which trace the guiding center
orbits. f0 is chosen suitably with �	f �� f0 in order to make
efficient use of the marker particles. For the ions we choose
a local Maxwellian on the unperturbed flux surfaces,

f i0 =
ni0���

�2�Ti0���/mi�3/2exp
−
mv2/2
Ti0���� . �10�

Here, mi is the ion mass and ni0��� and Ti0��� are the initial
radial profiles of ion density and temperature. This choice
reduces the collision operator to Cii�	f i , f i0�, since C�f i0�=0
holds. For the electrons we choose fe0 as a Maxwellian cen-
tered at the ion flow velocity ui�,

fe0 =
ne0�x�

�2�Te0�x�/me�3/2exp
−
me�v� − ui��x��2/2 + �B

Te0�x� � , �11�

and in the coefficients of Cei�fe , f i� we approximate f i by a
similar Maxwellian �the exact form of f i is not important,
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since the ion velocities are much smaller than the electron
velocities�,

f iM =
ni�x�

�2�Ti�x�/mi�3/2exp
−
mi�v� − ui��x��2/2 + �B

Ti�x� � . �12�

In these expressions, ni�x� and Ti�x� are the radial ion density
and temperature profiles obtained from the ion distribution
function determined in the first step, and we take ne0=ni. The
variable x is either � or � depending on what choice fits
better the solution of the ion equation. This choice of fe0 and
f i reduces the electron collision operator to

C�	fe� = Cee�	fe, fe0� + Cei�	fe, f iM� , �13�

which is applied in the frame of reference moving with the
ion velocity. The distribution function fe0 in Eq. �11� gives a
finite contribution to the parallel electric current that just
cancels the ion current eniui�. Hence, the bootstrap current is
obtained directly from an integral over 	fe. With these
choices for f i0 and fe0 we arrive at the following equations:

d	f

dt
= C�	f� −

df0

dt
. �14�

We use the Hamiltonian guiding center particle code HAGIS

�Ref. 11�, which contains a Monte Carlo procedure for pitch-
angle scattering.12 The Hamiltonian guiding center equations
for the marker particles are consistently obtained from a La-
grangian. They are expressed in the Boozer coordinates �, �,
� and the velocity space coordinates �� =mv� /eB and � and
solved by a Runge–Kutta method with adaptive time steps.
Associated with each particle is a phase space element and
the contribution of the particle to 	f , the product of which is
the particle’s weight. The sources for this weight are the
terms on the right-hand side in Eq. �14�. The effect of colli-
sions is included as follows. The particles move collisionless
for the length of a collision of time step and then the change
of their velocities and weights by collisions is determined as
explained in the next subsection.

Without collisions the distribution function f would be
constant along the particle orbit as expressed by Eq. �14�.
Hence, between collisions we can compute 	f as the differ-
ence between the value f j of the total distribution function on
the particle orbit and the value of f0 at the current position of
the particle in phase space.13 For the jth particle we get

	f j�t� = f j − f0�r j�t�,v j�t�� , �15a�

f j�0� = f0�r j�0�,v j�0�� . �15b�

Between collisions f j is constant, but when collisions occur,
their contributions to the particle weights have to be added to
	f j. This is achieved by changing f j in the collision proce-
dure.

C. Monte Carlo procedure for pitch angle scattering

The collision operator for pitch-angle Coulomb scatter-
ing is applied. For scattering of particles 
 by particles �
with a Maxwellian distribution it reads

C
��f
, f�M� = �̂
��v�
1

2

�

��
�1 − �2�

� f


��
, �16�

where �=v� /v is the cosine of the pitch angle and �̂
��v� is
the velocity-dependent collision frequency. It is obtained
from the pitch angle part of the Landau–Fokker–Planck col-
lision term �Eq. �6.40� in Ref. 7�,

�̂
��v� = �0
��vth


v

3

G� v
vth�


 , �17a�

G�x� = �1 −
1

2x2
erf�x� +
exp�− x2�

x��
. �17b�

The quantity �0
�=n�Z

2Z�

2e4 ln �
� / �4��0
2m


2vth

3 � is related

to the usual collision frequencies ��ii ,�ee ,�ei� by �
�

=4�0
� /3�2�. The thermal velocities are defined as vth


=�2T
 /m
 and vth�=�2T� /m�. For the electron-ion colli-
sions G�x� is replaced by the asymptotic value G=1 for
x=ve /vthi�1. The changes of v� and v� during a collision
time step �tc are computed with �pseudo� random numbers �
fulfilling ���=0 and ��2�=1 as follows:

	v� = − �̂v��tc + �v�
��̂�tc, �18a�

	v�
2 = − �2v� + 	v��	v� . �18b�

The pitch angle scattering does not conserve the particle mo-
mentum, but we achieve momentum conservation in a sec-
ond step by adding a term proportional to �̂v�fM

14,15 to 	f ,
i.e., we change the values f j in Eq. �15a� by

	fcorr. = − �̂�v�v�fM�p�/� �̂�v�mv�
2fMd3v , �19�

where �p� =�m	v�	fd3v is the momentum change in the
Monte Carlo step. In the numerical simulation it is not pos-
sible to compute 	fcorr. at each point in real space, since a
minimum number of marker particles is needed for repre-
senting the velocity space in the integral in Eq. �19�. There-
fore the correction is done within volume elements of finite
size that are constructed as follows. The plasma volume is
divided into thin shells between helical flux surfaces with a
closer spacing near the island for sufficient resolution. These
volumes between flux surfaces are then subdivided further
into smaller cells to avoid a possible spurious momentum
transfer along the helical angle coordinate �. The range of �
from −� to � is divided into ten bins as indicated in the
lower half of Fig. 1. The Monte Carlo procedure described
above was successfully tested in Refs. 10, 12, and 16.
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D. Flux surface averages

The flux surface averages are approximated by volume
averages within a thin shell between two helical flux
surfaces,

�� A	fd3v� 	 �
�−	�

�+	�

A	fd�/�
�−	�

�+	�

Jd�d�d� , �20�

where J is the Jacobian and d�=d3vJd�d�d� is the phase
space volume element. The integral in the numerator of Eq.
�20� is replaced by a sum over the contributions of the
marker particles,

�
�−	� �j �+	�

Aj	f j�� j , �21�

where �� j is the phase space volume associated with the jth
marker, and 	f j the marker’s contribution to 	f . The integral
in the denominator is computed numerically directly from J.
Whenever the dependence of some variable on the helical
angle � is to be resolved, the averages are computed for the
grid cells indicated in lower half of Fig. 1.

III. THE SMALL-ISLAND EFFECT

The island of a NTM is normally rotating with respect to
the surrounding plasma and a radial electric field is present
inside the island that acts to force the plasma to corotate with
the island. �We consider the frame of reference in which the
plasma far from the island is at rest.� Since the trapped par-
ticles, on average, cannot follow the poloidal E�B drift and
by collisions the poloidal rotation of the passing particles is
also damped, a contribution u� = �Er /Bp� to the parallel flow
velocity arises,7 where the brackets indicate the flux surface
average. In a big island the parallel flow velocities of ions
and electrons are equal and thus do not contribute to the
electric current. When, however, the island width is of order

of the ion banana orbit width, this is not the case, and a finite
electric current arises. This effect can best be seen in the
artificial case of a rotating island in plasma with constant
background density and temperatures �equal for ions and
electrons� such that no unperturbed current exists. We dem-
onstrate the creation of this current with numerical results for
a small island with w=0.6. Here and in the following we
denote by w the ratio of the island width and the ion orbit
width,

w = wisld/wion, �22�

with wion=���ip and �ip=mvthi /eBp. The following param-
eters have been used for the calculations: n0=1020 m−3, T0

=1000 eV, �=13 000 s−1, B0=2 T, R0=2 m; the safety
factor q varies radially between 1 and 3, and the island is
located at a flux surface with q=m /n=3 /2 and inverse as-
pect ratio �=0.22; the collision frequency is set to a value
corresponding to ��=�qR /�3/2vth=0.02 at the location of the
island.

The parallel ion flow velocity in steady state after eight
collision times is shown in Fig. 2�a�. In the island the flow
velocity is much smaller than the neoclassical velocity
�Er /Bp� because the ions do not feel the strong electric field
all along their orbits, but only inside the island. In addition,
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FIG. 1. �Color online� Lines of constant helical flux in the �−� plane
�schematic�. In the lower half of the graph the grid cells for computing
�-dependent averages and integrals for the collision operator are indicated.
w� is the island half width.
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FIG. 2. �Color online� �a� Parallel ion flow velocity �red symbols� and �b�
parallel electron flow velocity �red symbols� from a simulation without e-i
collisions vs the radius through the O point of a small rotating island �w
=0.6�. Also shown by solid blue lines is �Er /Bp�.
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due to the finite orbit width a finite ion flow exists outside
the island, although the electric field is very small. The elec-
tron velocity, on the contrary, is close to �Er /Bp� due to the
small electron orbit width, as is shown in Fig. 2�b�, when
electron-ion collisions are switched off. This mismatch of the
flows results in a finite electric current in the island of the
order of �−enEr /Bp�, which is reduced to a smaller value,
when the friction due to collisions between electrons and
ions is included. This is shown in Fig. 3, where the electric
current from a simulation with electron-ion collisions is
depicted.

The finite electric current goes along with a small den-
sity perturbation of order −e� /T shown in Fig. 4, which
creates a finite density gradient in the island and outside the
island near the separatrix. We find that the values of the ion
flow and the bootstrap current obtained from the usual neo-
classical theory7,17 with the perturbed density gradient match
well the numerical results, except close to the separatrix.
This might be surprising since the island is smaller than the
ion banana orbit width, but, on the other hand, the density

variation is only a percent or two over the island width,
hence the gradient length n / �dn /dr� is much larger than the
island width. Near the separatrix the strong change of the
gradient evidently has an effect. The density perturbation and
the electric current have the opposite sign when the island is
rotating in the opposite direction, since the potential is pro-
portional to �. In the normal case of negative density and
temperature gradients the additional small-island current has
the same direction as the unperturbed bootstrap current,
when the island rotates in the direction of the electron dia-
magnetic drift, and it has the opposite direction in the case of
rotation in the ion diamagnetic drift direction.

IV. RESULTS OF THE SIMULATIONS

A. Results with electric potential like in big islands

In the simulations, the mode frequency � is a free pa-
rameter, while in the experiment it depends on the density
and temperature gradients of the unperturbed plasma. From
analytic models for NTMs values �=���1+!�� near either
of the diamagnetic frequencies,

��e = −
mTe

qen0

dn0

d�
, ��i =

mTi

qen0

dn0

d�
, �23�

are obtained,18 where �=nT� /Tn� is the ratio of the logarith-
mic gradients and ! is a factor smaller than unity �since � is
m times the island rotation frequency, the diamagnetic fre-
quencies are multiplied by m here�. For such frequencies the
current of order �enEr /Bp� found in Sec. III is of similar size
as the unperturbed bootstrap current: �enEr /Bp�
	en�q�� /mBp�d� /dr	�T /Bp�dn /dr. Therefore, the boot-
strap current in small islands can differ considerably from
that in big islands. The partial preservation of the ion boot-
strap current, which we found in small nonrotating islands6 is
enhanced or diminished depending on the direction of rota-
tion.

We performed simulations for small islands with finite
density and temperature gradients in the unperturbed plasma.
The density profile is chosen as n=n0 exp�−"� /��a�� with
"=1 or "=0.5 and n0=1020 m−3 �a is the minor radius, with
a /R0=0.333�. The temperature has the same profile, T
=T0 exp�−"� /��a��, where T0 is varied �500–2000 eV� to-
gether with the magnetic field B0 �2–6 T� and the perturba-
tion strength 
̂ �2�10−6–4�10−5� in order to get the de-
sired ratio w=wisld /wion while keeping the island size small
compared to the minor radius. Again, the safety factor q
varies radially between 1 and 3, with q=m /n=3 /2 and
�=0.22 at the location of the island. The collision frequency
is scaled by a constant factor in order to obtain ��

=�qR /�3/2vth	0.02 at the location of the island, such that
the plasma is in the banana regime.

In Fig. 5, the bootstrap current �surface averaged parallel
electric current� in the island region is shown for different
values of w. In the left column the results for islands rotating
at the ion diamagnetic frequency are depicted, and in the
right column the results for islands rotating at the electron
diamagnetic frequency. In the case �=��i, the small-island
current is opposite to the unperturbed bootstrap current and
we see that only a small fraction of the unperturbed bootstrap
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FIG. 3. �Color online� Parallel electric current �red symbols� in the island of
Fig. 2. Also shown is the current �−enEr /Bp� �solid blue line� and the boot-
strap current computed with the perturbed density gradient �green/gray line�.
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current remains present in the island. That implies that al-
most the full bootstrap current drive for the NTM remains
present in this case. With rotation at �=��e, however, the
current due to the small-island effect is in the same direction
as the bootstrap current, and a large fraction of the unper-
turbed bootstrap current is preserved in the island. In this
case the drive of the mode due to the bootstrap current is
strongly reduced in small islands.

In Fig. 5 also the bootstrap current values obtained from
the neoclassical theory17 with the perturbed density and tem-
perature gradients are shown. They match well with the nu-
merical results, except near the separatrix, particularly in the
case �=��e. Looking at the perturbed density and tempera-
ture profiles in Figs. 6 and 7�a�, we notice that in this case
the flattening of the electron density and temperature in the
island produces enhanced gradients just outside the island,
but neither the ion density nor the ion temperature are flat-
tened. The ion temperature profile is unchanged when the
island width is smaller than the orbit width. �In the simula-
tions, the finite collisional heat transport tends to flatten a
little the temperature profile on a scale much larger than the
island width because there is no heat source. This is not
caused by the island and occurs even without the presence of
an island.� In islands rotating at the electron diamagnetic
frequency the ion density is even steeper than the unper-
turbed density. This means that quasineutrality is violated in
this case, which makes it necessary to consider a modifica-
tion of the electric potential which is the subject of Sec.
IV B. In the case �=��i, the ion and electron densities are
both flattened in the island and quasineutrality is preserved.

In this case the residual bootstrap current in the island is due
to the ion temperature gradient. The ion temperature gradient
in the island starts to decrease a little at w=2 as shown in
Fig. 7�b� and almost vanishes at w=10.

Looking at the normalized ion density perturbations
shown in Fig. 8, we can see how the plasma reacts differ-
ently to the rotating island and its electric field depending on
the direction of rotation. In islands rotating at the ion dia-
magnetic frequency the ion density perturbation is always
close to −e� /Ti, which corresponds to a flattening of the ion
density in Fig. 6 when the potential is given by Eq. �8�. In
the case �=��e the ion density perturbation varies from
+e� /Ti in big islands �not shown here, but this corresponds
to flattening� to −e� /Ti in small islands, which corresponds
to the steepening seen in Fig. 6.

The combined results of many simulations are shown in
Fig. 9, where the fraction of the unperturbed bootstrap cur-
rent that is preserved in small islands is plotted versus the
island width. The difference between the bootstrap current
values at �=��e and at �=��i increases with decreasing
island size, but even in islands rotating at the electron dia-
magnetic frequency the bootstrap current is not entirely pre-
served. In the simulations there is a finite electron tempera-
ture gradient in the unperturbed plasma and the electron

-2 -1 0 1 2
(r-rs) / wion

0.0

0.1

0.2

0.3

0.4

0.5

j b
s

[M
A

/m
2
]

w = 0.3ω = ω*i

(a)

-2 -1 0 1 2
(r-rs) / wion

0

100

200

300

400

500

j b
s

[k
A

/m
2
]

w = 0.3ω = ω*e

(b)

-3 -2 -1 0 1 2 3
(r-rs) / wion

0

50

100

150

200

j b
s

[k
A

/m
2
]

w = 0.6ω = ω*i

(c)

-3 -2 -1 0 1 2 3
(r-rs) / wion

0

100

200

300

j b
s

[k
A

/m
2
]

w = 0.6ω = ω*e

(d)

-5 0 5
(r-rs) / wion

0

40

80

120

j b
s

[k
A

/m
2
]

w = 2ω = ω*i

(e)

-5 0 5
(r-rs) / wion

20

60

100

140

j b
s

[k
A

/m
2
]

w = 2ω = ω*e

(f)

FIG. 5. �Color online� Bootstrap current from simulations �red symbols� in
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temperature profile is flattened. The resulting loss of the con-
tribution due to the electron temperature gradient sets an up-
per limit to the bootstrap current. For �=��i there is a lower
limit to the bootstrap current in a small island set by the
current driven by the �unchanged� ion temperature gradient.
The absolute values of these limits depend on the values of
the density and temperature gradients in the unperturbed
plasma, and on the neoclassical parameters such as collision-
ality and trapped particle fraction �in the simulations:
��	0.02, f t	0.6 at the position of the island and �=1�.

B. Results with modified electric potential

The violation of quasineutrality in the case �	��e indi-
cates that in such islands the electric field must be different
from that derived from the potential in Eq. �8�, which is valid
for big islands. In small islands the electric potential is a
more complex function of � and � and waves can be excited
by the island.19 We can get an estimate for the potential as
follows. In view of the results presented above, the ion den-
sity in small islands is approximated by ni	n0�1−e� /Ti�.
Since the small islands which we study are always big com-
pared to the electron banana orbit width, we can take the
solution for the electron distribution function for big islands.
The leading terms which determine the density are9

fe = feM
1 +
e�

Te
−

e

Te

q�� − ��e�
m

�� − �s + h�� , �24�

where h��� denotes the �-dependent part �i.e., the second
term� on the right-hand side of Eq. �8�. Equating the result-
ing density with the ion density leads to

�small 	
Ti

Ti + Te

q�� − ��e�
m

�� − �s + h� �25a�

=
Ti

Ti + Te
�1 −

��e

�

�big �25b�
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=
Ti + Te���i/��

Te + Ti
�big, �25c�

with the potential �big given in Eq. �8�. At frequencies near
the ion diamagnetic frequency the potential in small islands
is about the same as that in big islands, while it is very small
for frequencies near the electron diamagnetic frequency. In
Fig. 10 results of simulations with this modified electric po-
tential are shown, and the dependence of the island bootstrap
current on the rotation frequency is depicted in Fig. 11. In the

case �=��e with a vanishing electric potential the density
remains unperturbed, the mismatch of the electron and ion
densities is removed. The temperature profiles are not differ-
ent from those in Sec. IV A, hence there is some reduction of
the bootstrap current in the island caused by the flattening of
the electron temperature. In spite of the flattening of the elec-
tron temperature the current in the island rotating at �
=1.5��e is almost equal to the unperturbed current because
the density is steepened inside the island. In the case �
=1.5��i the current in the island is very small. This confirms
the result from Sec. IV A that the most of the bootstrap cur-
rent in the island is lost for �	��i, but that a large fraction
is preserved for �	��e.

V. SUMMARY

The bootstrap current in rotating islands that are of simi-
lar size or smaller than the ion banana orbit width has been
computed with drift kinetic numerical simulations. A frame
of reference is used in which the unperturbed electric field
vanishes. When the island is rotating in this frame, there is a
radial electric field Er that leads to an additional contribution
to the parallel flows of ion and electrons of magnitude u�

�Er /Bp, where Bp is the poloidal component of the mag-
netic field. Since the electric field varies on the scale of the
island width, which is much larger than the typical electron-
orbit size, but comparable to the ion orbit width, the elec-
trons react to the local field while the ions respond rather to
the orbit-averaged field. The resulting parallel electron and
ion flows differ from each other, thus contributing to the
parallel �bootstrap� current. The electric field also causes a
density perturbation such that this current can be explained
as the bootstrap current caused by this perturbation.

We have shown that when the island is rotating at a
frequency near the ion diamagnetic frequency, most of the
bootstrap current is lost even in small islands, only the con-
tribution due to the ion temperature gradient remains present.
In the case of rotation at a frequency near the electron dia-
magnetic frequency a large part of the bootstrap current is
preserved in the island, and only the contribution due to the
electron temperature gradient is lost. In this case the electric
potential differs strongly from that in big islands. In all cases
the bootstrap current is close to the value of the neoclassical
theory computed with the perturbed density and temperature
gradients.

Since the parallel current in the island influences the
island dynamics, our results have a particular relevance for
the prediction of the stability of magnetic islands. In small
islands rotating in the ion diamagnetic direction, the boot-
strap current drive of the island growth is strong like in big
islands, since most of the bootstrap current is lost also in
these small islands. However, in small islands rotating in the
electron diamagnetic direction are more stable, since the
bootstrap current is largely preserved by the “small-island
effect” presented in this paper, hence the neoclassical drive
of the island growth is strongly reduced. The competition
between this effect and other �de�stabilizing effects acting on
small islands �like, e.g., finite transport across the island4 or
the polarization current8,9,18� is likely to explain the experi-
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FIG. 10. �Color online� Results from simulations with the modified electric
potential in Eq. �25a�: ��a�, �c�, and �e�� electron density �red solid line� and
ion density �blue dashed line� profiles, ��b�, �d�, and �f�� bootstrap current
from simulations �red symbols�, neoclassical value computed with the per-
turbed gradients �solid blue line�, and the unperturbed current �oblique
dashed line�. Vertical dashed lines indicate the position of the island.
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modified electric potential.
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mental finding that magnetic islands often appear only above
a given amplitude threshold, implying some stabilizing effect
acting against the neoclassical drive for small islands.
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Abstract
The evolution of a tearing mode is a multi-scale problem, involving lengths
from below the ion gyroradius up to the dimensions of the system. The effects
due to finite ion Larmor radius on the island dynamics are investigated by means
of numerical gyrokinetic and gyrofluid simulations in tokamak geometry. In
gyrokinetic runs, the magnetic island is prescribed. The coupling induced
by a static island between small and large scale fluctuations in the case of
electrostatic turbulence is discussed and the role of the perturbed magnetic
geometry on the electron response is highlighted. Simulations in the presence of
a rotating island, excluding background turbulence, allow a clear, self-consistent
determination of the electrostatic potential associated with the island rotation
and of the relevant plasma profiles for arbitrary island widths. Finally, the
first gyrofluid simulations showing the growth of an island in the presence of
electromagnetic turbulence for parameters typical of a mid-size tokamak are
presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The tearing instability [1, 2], appearing as magnetic islands developing on low-order rational
surfaces, is often observed in tokamak experiments. A fully developed tearing mode represents
a serious concern for a tokamak reactor, as it limits the achievable plasma pressure and can
trigger disruption events [3]. In axisymmetric devices, the dynamics of the tearing mode is
strongly affected by toroidal effects. The mode is often neoclassically driven by the drop
in the bootstrap current caused by pressure flattening within the reconnected region [4–6].
Moreover, the neoclassical polarization current [7, 8] and Pfirsch–Schlüter currents [9–11]
have been demonstrated to influence the island evolution. More recently, the interaction
between small-scale turbulence and ‘mesoscale’ magnetic islands has attracted a growing

0741-3335/10/124021+17$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

154



Plasma Phys. Control. Fusion 52 (2010) 124021 E Poli et al

attention, also because of the fact that the increasing availability of high-performance numerical
resources allows the exploration of more and more realistic parameters. The importance
of this mutual influence between different scales for magnetic reconnection has been long
recognized in general [12] and for magnetic islands in fusion plasmas in particular [13]. As
far as the influence of small on large scales is concerned, in addition to the investigation of
turbulence as a source of anomalous dissipation (viscosity, resistivity) [14–18], electromagnetic
turbulence has been shown to be able to provide a trigger for the growth of an island [19].
Moreover, turbulent transport contributes to determining the density and temperature profiles
across the reconnected region, in turn influencing the contribution of bootstrap [20] and
polarization [21] current to the island dynamics. On the other hand, the tearing mode has
a major impact on the turbulence profile, as the above-mentioned pressure flattening inside
the island reduces the drive for the instabilities. In addition, the turbulence is regulated by
the sheared flows associated with the long-wavelength modes (this last effect being similar
to that of zonal flows in axisymmetric systems). A nice overview of the properties of the
mutual interaction between small and large-scale instabilities has been given by McDevitt and
Diamond [17].

A magnetic island is a system exhibiting different spatial scales along and across it. In
tokamaks, the poloidal wavelength of the island is of the order of the minor radius, while its
width can be of the order of the ion Larmor radius or below. For this reason, kinetic studies
of the tearing-mode dynamics employing the gyrokinetic theory have already been carried out
in the past. Slab-geometry calculations have been performed to investigate analytically the
problem of the island propagation and the role of the polarization current, the emission of drift
waves and their stability in the presence of an island-perturbed equilibrium [22–25]. Numerical
gyrokinetic particle-in-cell (PIC) simulations have been employed to study the reconnection
problem in a collisionless plasma slab [26] and also extended to the semicollisional regime [27].
On the other hand, the gyroradius is the typical spatial scale of turbulent fluctuations in fusion
plasmas. For a description of the effects of the presence of a tearing mode on microturbulence
and vice versa, finite-Larmor-radius (FLR) effects must then be retained, by means of a
gyrofluid or gyrokinetic approach.

It is clear that the self-consistent evolution of island and turbulence constitutes a formidable
multi-scale problem. On the way to its complete solution, several routes are being explored,
which reduce the size of the problem by means of appropriate simplifications. This paper is
intended to present recent new results on the role of FLR effects on the dynamics of magnetic
islands in toroidal plasmas. We adopt two different numerical approaches, the first based on
gyrokinetic, the second on gyrofluid equations. In the former case, we rely on the separation
between the typical time scales involving the development turbulence and the island growth
(for a discussion see also [21, 28]). In this scheme, the magnetic island is prescribed, i.e.
island rotation and width do not evolve. This excludes, of course, the feedback of short on
long time scales. On the other hand, toroidicity and kinetic effects are retained. They are
known to significantly change the bootstrap [29–31] and polarization current [32–34] and are,
hence, potentially important for the ‘closure’ of the interaction loop, when neoclassical effects
on the mode evolution will be considered. Two sets of gyrokinetic simulations are presented
here. First, we explore the behaviour of electrostatic turbulent fluctuations in the presence of
a static island, which confirm and extend, in particular through the inclusion of the perturbed
magnetic geometry in the electron response [35], previous recent investigations [36]. The
second part of our gyrokinetic results refers to a rotating island, for which the self-consistent
electrostatic potential and the pressure profile are investigated switching off the turbulence.
These simulations, which represent a first steps towards a neoclassical analysis, are found to
support previous drift kinetic results [31]. The latter (gyrofluid) approach mentioned before
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implies a different simplification of the problem (namely, neglecting kinetic effects) but allows
a simultaneous treatment of turbulence and island time scales. Here, the first results obtained
for a set of plasma parameters close to those typical of the ASDEX Upgrade tokamak are
presented. It is worth noting that a fluid approach has already been employed recently to
resolve both turbulence and island scales in both slab geometry [37] and including curvature
effects [38, 39].

In the next section, the numerical tools employed in our simulations, namely the two
gyrokinetic codes ORB5 [40, 41] (PIC, global) and GKW [42, 43] (Vlasov, flux tube) and
the global gyrofluid code GEMZ [44] are briefly presented, with emphasis on the different
treatment of the magnetic perturbation associated with the magnetic island. Gyrokinetic
results in the presence of turbulence are discussed in section 3, while the simulations of a
rotating island in the absence of turbulence are presented in section 4. Section 5 is finally
devoted to gyrofluid simulations. A summary and discussion of the results can be found in
section 6.

2. Numerical tools

The dynamics of microinstabilities in toroidal geometry in the presence of a magnetic island
is investigated in this paper employing the two complementary schemes described above,
namely a gyrokinetic and a gyrofluid approach. A magnetic island developing on a given
rational surface ψs characterized by a poloidal number m and toroidal number n can be
introduced as a perturbation of the parallel vector potential (or, equivalently, of the poloidal
flux ψ̃ = −RÃ‖, R being the major radius of the tokamak) of the form Ã‖ = Ā‖ cos ξ ,
where ξ = mθ − nϕ − ωt is the helical angle (θ and ϕ being the poloidal and toroidal angle,
respectively, and ω the island rotation frequency). The corresponding perturbed magnetic
field is mainly directed radially and varies in the ∇ξ direction as sin ξ . A new flux label

� = 2(ψ − ψs)
2/W 2

ψ − cos ξ , where Wψ =
√

4RĀ‖qs/q ′
s is the island width in ψ units

(the prime denoting differentiation with respect to ψ), can be introduced such that the total
magnetic field is perpendicular to ∇�. With this definition, � varies between −1 at the island
O-point (where ψ = ψs and ξ = 0) and +∞. The island width W is obtained in terms
of Wψ as W = Wψ/|∇ψ |.

2.1. Gyrokinetic approach

Two gyrokinetic codes have been used in our study, based on different methods for the solution
of the gyrokinetic equation.

The global PIC code ORB5 provides a numerical solution to the gyrokinetic equations in
the formulation of Hahm [45]. It employs the PIC method, which is based on the introduction
of an ensemble of numerical particles (markers), each one connected with a piece of the
phase space associated with a given particle species. In the simulations presented here, the
electrons are adiabatic and the markers represent only the main ion species i. The evolution
of the markers is determined by the corresponding equations of motion, which are coupled
to Maxwell’s equations. The self-consistent fields are calculated projecting the charge and
current associated with each marker onto a fixed spatial grid (in this paper, only simulations
of electrostatic turbulence will be considered). The total distribution function is split into
an analytically known time-independent part f0 and a perturbation δf which is represented
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numerically. The gyrokinetic equations of motion for the markers are

dR

dt
= v‖b +

1

B∗
‖

[
µB + v2

‖
�c

b × ∇B − v2
‖

�c
b × (b × ∇ × B) − ∇〈φ̃〉g × b

]
, (1)

dv‖
dt

= −µ

[
b − v‖

B∗
‖�c

b × (b × ∇ × B)

]
· ∇B

−Ze

M

{
b +

v‖
B∗

‖�c
[b × ∇B − b × (b × ∇ × B)]

}
· ∇〈φ̃〉g, (2)

dµ

dt
= 0, (3)

where R is the position of the gyrocentre, v‖ the velocity component along the magnetic
field, b the unit vector along the magnetic field B, µ the magnetic moment, �c the cyclotron
frequency, 〈φ̃〉g the perturbed potential (solution of the Poisson equation) averaged over the
gyroperiod, Ze and M the particle’s charge and mass, respectively, and B∗

‖ = B +(M/Ze)v‖b ·
∇ × b. Since along the orbits df/dt = 0 (no collisions are considered here), δf must obey
the equation

d(δf )

dt
= −df0

dt
= −dR

dt
· ∇f0 − dv‖

dt

∂f0

∂v‖
. (4)

The velocity dR/dt includes the radial motion along the perturbed field lines. The radial
component B̃ of the magnetic field produced by the tearing mode accounts for the most
important modification of particle orbits [46] and has been included in ORB5 by operating the
substitution b → b + b̃ (where b̃ = B̃/B) in the first term of both equations (1) and (2).

In the Vlasov flux-tube code GKW, the gyrokinetic equation is solved in the form

∂g

∂t
+ vχ · ∇g +

(
v‖b + vd

) · ∇(δf ) − µB

M

B · ∇B

B2

∂(δf )

∂v‖
= S (5)

on a five-dimensional grid in the (X, µ, v‖) space, where X is the gyrocentre position
(the index denoting the particle species is suppressed for brevity). In the previous equation, the
distribution function is split into a Maxwellian background term FM and a deviation δf , with the
auxiliary function g defined as g = δf + (Ze/T )v‖〈Ã‖〉gFM. The velocity vχ = (b×∇χ)/B,
with χ = 〈φ̃〉g + v‖〈Ã‖〉g , is a combination of the E × B velocity and the parallel motion
along the perturbed field lines, and vd is the drift velocity due to magnetic-field inhomogeneity
(∇B and curvature). The electrostatic potential is the solution of the Poisson equation, while
Ã‖ is the imposed island perturbation. The source term on the right-hand side of equation (5)
reads as

S = − (
vχ + vd

) ·
[

∇n

n
+

(
v2

‖
v2

th

+
µB

T
− 3

2

)
∇T

T

]
FM − Ze

T

(
v‖b + vd

) · ∇〈φ̃〉gFM

(n and T are the background density and temperature, respectively, and vth = √
2T/M is

the thermal velocity). In the previous equations, the contribution connected to the radial
profile of the toroidal plasma rotation velocity has been omitted. With respect to the global
approach described above, the physical model remains the same, but the equations are solved
in a finite domain of the plasma around a given field line. Correspondingly, the so-called
flux-tube ordering [47] is adopted, in which the deviation of the distribution function from its
equilibrium value is assumed to be small over the region of interest, whereas its gradients can
be comparable to the equilibrium gradients. For a more detailed discussion of the ordering

4

157



Plasma Phys. Control. Fusion 52 (2010) 124021 E Poli et al

assumptions in GKW see [43, 48] (a comparison between the global and flux-tube results is
presented in section 3). GKW is written in field-aligned Hamada coordinates (ψ, ζ, s). When
a magnetic equilibrium with circular concentric flux surfaces is adopted, s can be regarded as a
normalized poloidal angle varying between −1/2 and 1/2 (s = θ/2π in the large-aspect-ratio
limit ε → 0) and ζ = (qθ − ϕ)/2π is chosen such that the parallel-gradient operator B · ∇
involves only ∂/∂s. In these coordinates, the helical angle ξ can be expressed in the vicinity
of the rational surface, which is supposed to be located at the centre of the computational box
(ψ̄ = ψ − ψs being the distance from this surface), expanding the safety factor appearing in
the definition of ζ to the first order around qs = m/n,

mθ − nϕ − ωt = 2π
(
nζ − nsq ′

sψ̄
) − ωt = kζ ζ − skψψ̄ − ωt.

Here, the island wave vector with components kζ = 2πnρ∗ and kψ = q ′
skζ has been introduced

(the wave vector is expressed in units of 1/ρi, with the definition ρ∗ = ρi/R, ρi being the
ion gyroradius). This expression shows that the periodicity constraint in the radial direction
(required by the spectral approach adopted in GKW) cannot be satisfied for every value of s.
Defining the radial width of the box as �ψ = [−π/kψ, π/kψ ], the first step to impose
periodicity is projecting the vector potential on the ψ-harmonics,

Ã‖ = ei(kζ ζ−ωt)

∞∑
p=0

Ap(s)eipkψ ψ̄ ,

with

Ap(s) = kψ

2π
Ā‖

∫ π/kψ

−π/kψ

e−ipkψ ψ̄e−iskψ ψ̄dψ = Ā‖
sin[π(s + p)]

π(s + p)
.

This simple implementation turns out to be unsatisfactory, as it leads to abrupt jumps in the
vector potential at the edge of the radial computational domain, where periodicity is enforced
(figure 1(a)). The problem, however, can be circumvented by introducing a smoothing factor
at high p-harmonics (figure 1(b)), i.e. by operating the replacement

sin[π(s + p)]

π(s + p)
→ exp

[−(s + p)2/L2
] sin[π(s + p)]

π(s + p)

in the previous equation. The exact value of the scale L does not affect the results, provided
it is large enough.

2.2. Gyrofluid approach

Following the dynamics of magnetic islands and microturbulence simultaneously is not
presently feasible by gyrokinetic models without unphysical compromises involving the
parameters of scale separation. If it is to be demonstrated that small and large scales can
interact, then the results are only meaningful with the correct values of the dimensionless
ratios ρs/a or Me/Mi or βe = c2

s /v
2
A or qR/LT , where cs is the sound speed, vA is the Alfvén

speed and ρs is the drift scale (also called the ion sound gyroradius). See [49, 50] for the
significance these parameters, alone and in combination, have for tokamak microturbulence.
A moderate sized tokamak has a/ρs ∼ 200, a deuterium plasma has Mi/Me = 3670, and
typical conditions have βe ∼ 3 × 10−3 for the plasma core. The electromagnetic gyrofluid
equations are as given in [44]. Time dependent equations for six gyrofluid moment variables
(for each species, density, parallel velocity, parallel and perpendicular temperature and parallel
and perpendicular heat fluxes associated with each temperature) are advanced for a singly
charged, single component, purely ionized plasma. The self-consistent fields φ̃ and Ã‖ are
found via the polarization and induction equations, respectively. The tilde symbol denotes
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Figure 1. Implementation of a magnetic island satisfying periodicity conditions in the flux-tube
code GKW: simple projection on radial Fourier harmonics, showing the deformation of the edge
cells to ensure periodicity (a) and smoothing obtained by adding a Gaussian damping on higher
harmonics (b).

a dependent variable. The corresponding free energy conservation law, also given there, is
relevant because the energetic contact between the electromagnetic microturbulence and the
much slower large-scale MHD through much faster shear-Alfvén transients involves a small
amount of energy which, however, yields strong consequences. The only modification in
the equations as used here is the incorporation of the current profile as a free energy source,
as described in section 5. The flux surface geometry is built around the equilibrium flux
surfaces. Islands are initialized or emerge naturally and are represented as part of the Ã‖
disturbances.

For this work the geometry is updated using field-aligned conformal coordinates. Field-
aligning means using a Clebsch representation {xys}, in which x(ψ) is a surface label of
the poloidal flux, s is a parallel coordinate set equal to either the poloidal or toroidal angles,
and y is a function of both angles but through the use of the pitch parameter q(ψ) satisfies
By ≡ B · ∇y = 0 exactly, everywhere. This is only possible for straight field line angle
coordinates because q = Bϕ/Bθ and to build Clebsch coordinates B = χ(x)∇x × ∇y the
condition q = q(ψ) is necessary [51]. The function χ gives effective normalization. Here,
ϕ is the geometric toroidal angle and the choice s = ϕ leads to yk = θ − q−1(ϕ − ϕk) with
the constant ϕk giving the reference position. The use of a different ϕk on each poloidal plane
ϕ = ϕk is a version of the shifted metric procedure [52] which avoids secular deformation in
the metric coefficient ratio gxy/gxx . Here, the sign convention is for B = I∇ϕ + ∇ϕ × ∇ψ

and ∇R × ∇Z · ∇ϕ > 0.
The linear component of the parallel derivative is calculated as B · ∇ = Bs(∂/∂s). The

conformal property is then introduced to further avoid poloidally periodic deformation in the
coordinate cells, by stating B · ∇θc = (fc/R)|∇ψ |2 as the poloidal angle definition, where
fc(ψ) is the conformal flux function found by normalizing θc to a 2π -cycle for periodicity.
The radial coordinate xc(ψ) is defined as ∇xc = fc∇ψ . The straight field line angle definition,
by contrast, is defined as B · ∇θ = I/qR2 since Bϕ = I/R2, with q found by normalizing θ

to a 2π -cycle. We define yc = θc. The relationships θc(θ) and θ(θc) are used to interpolate
the finite difference of ∂/∂s onto a grid which is equidistant in xc and yc in the poloidal plane.
This makes use of the fact that y = θ for ϕ = ϕk . One can then derive the coordinate
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Jacobian ∇xc × ∇yc · ∇s = gxx
c /R and the deformation d = g

xy
c /gxx

c using the definitions
of fc and xc. One finds that in conventional tokamak equilibrium models d2 < 1 almost
everywhere, facilitating both the representation of microturbulence and iterative solvers for
linear operators involving the perpendicular Laplacian ∇2

⊥, and that the conformal property
gxx

c gcyy = 1 is exactly satisfied. In the cylindrical limit one can show yc and θ both relax to η,
the geometric axial angle, and xc relaxes to log r with r the cylindrical radius. The subscript c
in each of these expressions denotes the conformal coordinate system {xc, yc, ϕ}. For further
motivation and details see [51].

3. Gyrokinetic simulations of ITG turbulence in the presence of a magnetic island

Vlasov flux tube and global PIC simulations are employed to investigate the behaviour of
electrostatic ion-temperature-gradient (ITG) driven turbulence in the presence of a prescribed
(m = 3, n = 2) magnetic island. The parameters employed in the runs of GKW are close
to those of the Cyclone base case [53], ρ∗ = (2–4) × 10−3, R/LT = 6.9, R/Ln = 2.2,
ε = 0.19. ORB5 simulations have been run without source terms. To have a phase of
slowly decaying turbulence with quasi-stationary profiles [44], a smaller value of ρ∗ has been
considered, typically ρ∗ = 4 × 10−4. The gradient length for the ion temperature during the
decaying-turbulence phase stays about R/LT ≈ 7 in the region 0.5 �

√
ψ � 0.9 (where

√
ψ

is used as a normalized radial coordinate and the resonant surface is located at
√

ψ = 0.67).
The background density was assumed to be flat, R/Ln = 0. A small inverse aspect ratio,
ε = 0.14, has been considered. The whole radial domain is simulated. In the PIC simulations
presented here, the new electromagnetic version of ORB5 [54] has been used in the electrostatic
approximation. With respect to previous PIC results [36], new code diagnostics have been
implemented (e.g. on the local energy spectrum, see below), but the physical picture remains
the same. In the following, it is shown that the findings of global, slowly decaying turbulence
simulations agree well with local flux-tube simulations as long as the physical model remains
the same, in particular with respect to the treatment of the electron dynamics. As a matter of
fact, both codes assume, for the case of an adiabatic electron response, that the electrons react
instantaneously to the electrostatic potential on the unperturbed flux surfaces. In the presence
of an island, however, the axisymmetry typical of the tokamak configuration is destroyed. The
only feasible way to include the perturbed magnetic geometry in the electron response is to
treat also the electrons as a kinetic species. At the moment, however, this is not possible with
ORB5 if a magnetic island is present (for an unperturbed magnetic equilibrium with nested
magnetic surfaces, ORB5 simulations of electromagnetic turbulence with kinetic electrons
have instead been presented recently [54]). For this reason, modes with m = n = 0 are
excluded from ORB5 runs [36]. In this section, simulations that treat the electrons as a kinetic
species are performed with the code GKW, employing the actual mass ratio of a deuterium
plasma.

The first effect connected with the presence of the island seen in the simulations is the
expected flattening of density and temperature profiles inside the island separatrix, after a
transient phase in which they relax to the perturbed magnetic configuration. Just outside the
separatrix, a steepening with respect to the unperturbed profiles is found, in particular in the
region around ξ = 0 (i.e. at the level of the O-point), where the perturbed flux surfaces are
‘compressed’ by the island. However, a corresponding increase in the turbulence level is
not observed. In contrast, the heat flux and the heat conductivity are reduced in this region,
while they are higher across the X-point, as shown in figure 2, where the eddies can cross
the rational surface. In both codes, an asymmetry in the heat conductivity at the X-point is
usually seen, which can be attributed to the fact that the eddies are able to convect through
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Figure 2. ORB5 simulation showing the heat flux in the island region with the associated the
strong transport through the X-points (ξ = ∓π ) and its reduction on the island separatrix (marked
by thick vertical lines) at the O-point location (ξ = 0).

the island in the drift direction. This convection mechanism seems to act more effectively
than diffusive turbulence spreading [55] in transporting the turbulence towards linearly stable
regions inside the island. The turbulence reduction at the separatrix for ξ = 0 mentioned above
is explained as a result of the action of the sheared flows connected with the long-wavelength
components of the electrostatic potential, which ‘rip apart’ the eddies in analogy to what is
known from zonal-flows dynamics. Figure 3 reports the time evolution of the local turbulence
spectrum at two different radial locations in figure 2, namely 〈√ψ〉 = 0.57 and 〈√ψ〉 = 0.63
(angular brackets denoting the average value of the radial coordinate on the perturbed flux
surface). Well outside the island, it can be seen that the n = 2 component of the electrostatic
potential, which decays during the first phase of the ORB5 simulation (in which the profiles
adjust to the perturbed equilibrium [36]), is again pumped through a nonlinear coupling with
the small-scale (turbulent) modes. However, the energy of the long-scale mode is smaller
than that of turbulence during most of the simulation time and the turbulent eddies efficiently
transport heat across the flux surfaces. In contrast, at the island separatrix, in particular
on the side towards the plasma core, the n = 2 mode largely dominates the other modes.
The result observed in several simulations is a reduction in the heat flux at the separatrix.
From the simulations performed so far [35], however, no firm conclusion can be drawn on
whether nonlinearly generated sheared flows arising in the presence of small magnetic islands
can contribute to the improvement of the confinement in the vicinity of rational surfaces,
which has been reported in experiments [56]. Inside the island, the E × B transport can
be dominated by long-wavelength modes. The transport due to different modes is shown in
figure 4.

The picture outlined above emerges consistently from ORB5 and GKW simulations with
adiabatic electrons. The inclusion of the perturbed magnetic equilibrium in the electron
response through kinetic electrons in GKW, however, shows that the dynamics of the long-
wavelength mode in the island region can change significantly. Figure 5 shows a snapshot of
the electrostatic potential, perturbed density, total density and total density profile across the
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Figure 3. Time evolution of the toroidal energy spectrum (logarithm of the mode energy
normalized to Mic

2
s ) of the potential disturbances for 〈√ψ〉 = 0.57 (outside the island, (a))

and for 〈√ψ〉 = 0.63 (island separatrix, core side, (b)). In the latter case, only low mode numbers
(corresponding to the magnetic island) are significantly excited.

O and X-point. A large-scale electrostatic mode, which we will call ‘vortex mode’ following
[17], develops in the centre of the magnetic island as a consequence of the nonlinear flow of
energy into long wavelengths discussed above. The time evolution of this structure exhibits
a complex dynamics, being non-stationary with a periodic sign reversal of the electrostatic
potential. In passing, we note that a non-zero zonal-flow frequency has been observed recently
in turbulence simulations including a magnetic island in slab geometry [37]. It is shown
in [35] that the heat flux associated with the vortex mode at its peak intensity can largely
exceed the flutter flux, i.e. the radial flux due to the parallel motion of the particles along the
perturbed magnetic-field lines. On average, the flutter flux and the E × B flux due to the
vortex mode yield a comparable contribution to the total heat transport. The strength of the
mode is found to be reduced for smaller ρ∗, i.e. larger scale separation between island and
turbulence. This fact could also be related, however, to the different degree of flattening of the
ion temperature inside the island between both cases and the associated different behaviour
of the microinstabilities. The vortex mode appears also in simulations performed for the
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Figure 4. Radial electrostatic heat flux (integrated over the simulation box) driven by each
component of the spectrum for different values of the ratio W/ρi (GKW simulations).
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Figure 5. Snapshot of a GKW simulation showing the electrostatic potential (top left), δn/n (top
right), the total density (bottom left) and the density profiles (bottom right; the green line represents
the unperturbed profile, the blue line a cut through the O-point and the red line a cut through the
X-point). (Colour online.)
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same plasma parameters in the case of islands rotating at the ion or electron diamagnetic
frequency.

4. Turbulence-free gyrokinetic simulations of rotating islands

We now turn to simulations performed with the code GKW, in which a filter is applied on
short-wavelength components of the spectrum of the electrostatic disturbances to suppress
the turbulence. Moreover, the background density and temperature gradients are reduced,
R/Ln � 1 and R/LT � 3. Although neoclassical physics is still not fully tested in the code
(and therefore collisions are switched off), the presence of fully kinetic electrons allows the
investigation of the behaviour of the potential connected to the rotation of the island, and
provides useful information on the density and the temperature in the presence of toroidal
effects, which can be compared with kinetic simulations that retain neoclassical physics but
not a self-consistent determination of the electrostatic potential [31]. It is worth stressing
that numerical simulations can explore a parameter range which goes beyond the validity of
the neoclassical analytic theory, in particular magnetic islands whose width is comparable or
smaller than the ion banana width. As in the previous section, the island evolution is not
computed and the (constant) island rotation frequency is treated as an input parameter.

A known result of tearing mode theory is that the potential associated with the rotation of
a neoclassical magnetic island is [7, 8]

φ̃ = ωq

mc
[ψ − ψs − h(�)], (6)

as can be derived from the requirement E‖ = −∇‖φ̃ − (1/c)∂Ã‖/∂t = 0. The function h(�)

is an integration ‘constant’ (deriving from the fact that ∇‖� = 0, see section 2) which is
connected with the density profile in the presence of an island [8]. Assuming no sources nor
sinks in the island and a vanishing electric field away from it, h(�) must vanish inside the
island separatrix for parity reasons (this corresponds to profile flattening), and must scale as
ψ − ψs for ψ − ψs � Wψ . The E × B velocity connected with this electrostatic potential
forces the plasma inside the island to co-rotate with it, while it vanishes at some distance from
the island, where φ̃ attains a constant value. When a finite island rotation is enforced in GKW
simulations, and the island width is larger than the ion orbit width, a potential with the shape
given by equation (6) develops, figure 6(a). Its peak value (at the island separatrix) exhibits
the expected linear scalling with the rotation frequency ω, while it vanishes at the edge of
computational domain to satisfy the periodic boundary conditions. If the rotation frequency
is chosen to be in the ion diamagnetic direction, φ̃ is found to be localized in the vicinity of
the island, while its shape is broader if the rotation is in the electron direction. It is known that
islands rotating at a frequency between 0 and the electron diamagnetic frequency lead to the
emission of drift waves [23]. In this case, the maximum of the electrostatic potential outside
the island is found to be localized between the O and the X-point (figure 6(b)), as found in
analytic theory for the slab case [25].

A set of simulations has been performed at small island width (slightly smaller than
the thermal ion banana width) in order to determine the density and temperature profiles
in a rotating island. In recent drift-kinetic simulations [31], it was found that, when the
ratio ρi/W is increased, the ion density perturbation exhibits more and more an adiabatic
(‘unmagnetized’) response [22, 57]. As a consequence, due to the shape of the electrostatic
potential, cf equation (6), the ion density perturbation was observed to lead to a flattening of
the total density profile even in small islands rotating in the ion diamagnetic direction, and
to a steepening for islands rotating in the opposite direction. Correspondingly, the bootstrap
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Figure 6. Electrostatic potential arising from a rotating magnetic island in the absence of turbulence
for a frequency close to the electron diamagnetic frequency in the case of no equilibrium gradients
(a) and with equilibrium gradients (b).

current was found to be strongly reduced in islands rotating at the ion diamagnetic frequency
and largely preserved when the island frequency equals the electron diamagnetic frequency,
implying an enhanced neoclassical stability in the latter case. Since, however, in the presence
of an unflattened ion density quasi-neutrality was violated (the electron orbit width is always
much smaller than the island width and the electron density tends therefore to be flat), in [31]
the (prescribed) electrostatic potential was modified with respect to equation (6) in order
to recover quasi-neutrality. In the simulations presented here, the potential is determined
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Figure 7. Density profiles for a small island rotating in the ion diamagnetic direction (a) and in
the electron diamagnetic direction (b).

self-consistently from the electron response. GKW simulations show that the ion density
profile exhibits the same properties as described above, the electron density profile following
closely that of the ions. As can be clearly observed in figure 7, for rotation frequencies above
the diamagnetic frequency, the density perturbation leads even to a positive density gradient
inside the island (rotation in the ion direction) or to a gradient larger than the equilibrium one
(rotation in the electron direction). In other words, these simulations support the neoclassical
drift-kinetic simulations of Bergmann et al [31], according to which the neoclassical drive is
largely suppressed in a small island rotating in the electron diamagnetic direction.
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5. Self-consistent gyrofluid simulation of the island evolution in the presence of
turbulence

The self-consistent interaction between magnetic islands and turbulence was studied by the
GEMZ model described above. The nonlinear dynamics are followed together with local
modifications in the profiles but the MHD and neoclassical flow equilibrium is removed by
separating nz → n0 + ñz (e.g. for the gyrocentre density of species z) for each dependent
variable. Profile functionsn0 andT0, set equal for ions and electrons, provide gradient dynamics
for the turbulence. Tearing and island dynamics are enabled by keeping ue0 = −J0/ne in the
parallel velocity for the electrons, consistent with the chosen profile q(x). The equilibrium
dynamics [58] are avoided by leaving these profile functions out of the curvature terms. A small
island, added consistently to Ã‖ and J̃‖ as a piece proportional to a simple radial profile and
to cos ξ0 = cos(2θ − ϕ) (here, a 2, 1 island is considered), is combined with the random-bath
turbulent density fluctuations in the initial state.

The plasma parameters are typical of tokamak core conditions (n = 3 × 1019 m−3 and
T = 2 keV and B0 = 2.5 T) in the dimensions R0 = 1.65 m and a = 0.5 m. The profiles have
R/LT = 8 and Ln/LT = 3. Various current profiles were tried. An ‘exponential’ case has
q = 4 exp(r2

a −1), a parabolic case has q = 1+3r2
a and a tearing-unstable case q = 3/(2−r2

a )

taken from Wesson [59], where ra = exp(xc) is the conformal normalized minor radius. In each
case J0 = (B0/µ0R0)(1/r2

a )(∂/∂ra)(r
2
a /q) is chosen consistently. The poloidal and toroidal

flux profiles ψ and ψt do not enter the equations but are used in the helical flux diagnostic
� = R−1

0 [(ψt/2 − ψ) − Min(ψt/2 − ψ)] + Ã‖ of the q = 2 rational surface (the flux label
� introduced in section 2 can be easily derived from � through a second-order expansion of
ψt around the rational surface). Here, the sign convention is for B = I∇ϕ + ∇ϕ × ∇ψ and
∇R × ∇Z · ∇ϕ > 0.

The current profiles in present tokamaks are usually mildly stable to tearing for the
cylindrical model and neoclassical effects are usually invoked to account for observed magnetic
fluctuations consistent with magnetic islands a few centimetres wide. It is important to note
that the combination of gradients and toroidal curvature is severely stabilizing for tearing
modes [10], due to the action of geodesic curvature (the part acting on ∂/∂ψ of the disturbance).
Hence the maintenance of the island has to be a robust effect. Turbulence has two potential
effects on islands. Diffusion is more familiar, but the details of drift wave turbulence [60, 61]
show that this has to act through the pressure and current fluctuations, not the E×B or magnetic
part. The other potential effect is inverse cascade dynamics through these two components.
For drift waves dynamically incompressible vorticity dynamics are active. In addition for
electromagnetic cases one has the inverse helicity cascade in 2D MHD turbulence [62], which
directly affects Ã‖. Normally the nonlinear electromagnetic processes are weaker than the
E × B ones [63]. However, in this case they have the island’s component of Ã‖ to act upon
and are therefore non-negligible.

A further less-familiar component of these dynamics from the point of view of magnetic
island studies is that the turbulence is dominantly ITG driven despite the presence of many other
mode types and despite the mild finite-beta stabilization [50]. The tendency of the electron
dynamics to equalize the pressure along field lines and within the island does not affect ion
temperature fluctuations, so the effect to weaken the turbulence is negligible.

The main result of the computations so far is that the initial long-wave disturbance in
Ã‖ is not only maintained but increased during the turbulence which is well saturated. The
simulations show an island activity which survives in the face of the curvature/toroidicity
effects. The helical flux diagnostic � forms a channel whose width depends on the magnitude
of Ã‖: the contour interval is −1/3 times the minimum value of �, so the channel is wide for
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Figure 8. GEMZ simulations showing the contour plots of the helical flux � at two different
time slices during the simulation, t = 20 and t = 3150 (time is expressed in a/cs units), and the
disturbances spectrum (in terms of amplitude squared) for electron density (n), ion temperature (i),
magnetic field (B), electrostatic potential (p) and parallel magnetic potential (A).

larger islands. The visual appearance is therefore indicative of island robustness. The form
of a 2/1 island indicates island coherence and is confirmed by a corresponding peak in the
disturbance spectrum, as presented in figure 8. A coupling to the m = 3 mode is also visible.
The strength of this coupling also fluctuates as the island evolves. The tearing-unstable case
shown in the figure exhibits a more clear and more coherent island but the other two cases also
show strong activity albeit with less island coherence. The island activity persists despite the
absence of a clear unstable-eigenmode signature in Ã‖—one looks for a slope discontinuity in
the O-point cut of A‖ across the island, which shows neither an obvious eigenmode structure nor
significant chopping by turbulence. Indeed the poloidal spectrum of A‖ shows clear dominance
by the m = 2 component. The control cases without turbulence but with all the toroidal and
pressure gradient effects are yet to be run; these and more detailed energy transfer diagnosis
will provide for more definitive findings which will be published in the future.

6. Summary and conclusions

In this paper, recent advances in numerical simulations of tearing modes in toroidal geometry,
including FLR effects have been reported. The development of highly parallelized and
thoroughly benchmarked gyrokinetic and gyrofluid codes, as well as the increasing availability
of high-performance computer resources allow the first steps in this area, employing realistic
plasma parameters. Three different approaches have been followed here. The first one relies
on the fact that the tearing mode grows on a much longer time scale than the turbulence. The
magnetic island can then be implemented as a static magnetic perturbation and the development
of the microinstabilities retaining toroidicity and kinetic effects can be investigated. Our results
for electrostatic ITG turbulence confirm previous findings [36] that outside the island the
fluctuations are much larger at the X-point as compared with the O-point, where sheared flows
associated with nonlinearly driven long-wavelength modes suppress the turbulence even in the
presence of increased gradients. Inside the island, the turbulence is reduced because of the
flattening of temperature and density profiles due to the fast parallel motion along the perturbed
field lines. Eddies convected in the drift direction contribute significantly to the turbulence
level inside the island in the region close to the X-point. The nonlinear coupling between
small (turbulence) and large (island) scales can generate a vortex mode that can yield inside
the island a transport level comparable to the parallel (flutter) transport. This mode is found
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only if the perturbed magnetic geometry is accounted for in the electron response. These results
show that the transport in the island region has more complex behaviour than in the ‘standard’
paradigm [20] and confirm the importance of the coupling between small and large scale. From
a computational point of view, moreover, they represent a cross-check that different approaches
(local and global) to the solution of the gyrokinetic equation in the presence of an island yield
a consistent physical picture if the same assumptions are made. The second method presented
here again employs a toroidal gyrokinetic formalism, but excludes the turbulence. The long-
term goal is in this case to study processes taking place on the collisional time scale. Although
the collision operator is still not fully functional, first collisionless results for an island with an
imposed rotation reveal the potentialities of this approach, which allows a determination of the
electrostatic potential associated with the island rotation, of the density and current profiles.
Finally, the gyrofluid simulations performed with the GEMZ code demonstrate—for the first
time for realistic tokamak parameters—the role of electromagnetic turbulence for the growth
of the tearing mode, whose evolution is calculated in this case self-consistently as a part of the
global disturbance spectrum.
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