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Zusammenfassung

In dieser Arbeit analysieren wir die wesentlichen Merkmale und Eigenschaften einer
Stromversorgung, die hauptsachlich auf den variablen Quellen onshore und offshore Wind
und Photovoltaik beruht. Verwendet werden gemessene Leistungsdaten tiber Verbrauch und
Erzeugung in Deutschland im Jahr 2010. Die Erzeugungskapazitdten werden in dieser Arbeit
zu hoheren installierten Leistungen skaliert. Der Hauptzweck dieser Arbeit ist es, die
charakteristischen Merkmale und die weitgehend systemorientierten Konsequenzen einer
Versorgung mit fluktuierenden Quellen hoher Leistung aufzuzeigen.

Die wesentlichen Ergebnisse sind:

- Die Nutzung von erneuerbaren Energien (EE) verlangt die Installation von zusatzlichen
Versorgungskapazitaten, welche die der gegenwartig installierten thermischen Kraftwerke
deutlich Gbersteigen.

- Die Nutzung von EE ersetzten konventionelle Kraftwerke in geringem Umfang (< 10%).

- Die direkt nutzbare Einspeisung von EE ins Netz saturiert deutlich unterhalb der
Verbrauchslinie.

- Bei einem starken Ausbau von EE werden groRe Mengen an Uberschussenergie erzeugt, die
nicht ohne weiteres exportiert werden kénnen, weil sie an die Kapazitatsgrenzen potenzieller
Empfanger stol3en.

- Es gibt eine optimale Zusammensetzung von Wind und PV Erzeugungskapazitaten, welche
die Nutzung eines thermischen Versorgungssystems zur Deckung der Residuallast
minimalisiert.

- Wegen der Schwankungen von EE werden alle Komponenten des Versorgungssystems mit
niedrigen Lastfaktoren betrieben, was einen 6konomischen Betrieb gefahrdet.

- Dies gilt auch fiir ein Speichersystem, wenn der einzige Zweck die Speicherung von
Uberschussenergie darstellt. Unabhangig von der gewihlten Speichertechnologie kann ein
derartiger Speicher kaum unter 6konomischen Bedingungen betrieben werden.

- Das Residuallastsystem hat auf haufige Leistungsanderungen groBer Amplituden zu
reagieren. Dieser Umstand reduziert die Betriebseffizienz und erhéht die Gefahr der
Materialermidung.

- Nur unter grofRen technischen und finanziellen Anstrengungen lassen sich die niedrigen
spezifischen CO, Emissionswerte erreichen, die in der Kombination von Wasserkraft und
Kernenergie in Europa bereits realisiert sind.

- Da die Uberschussleistung maximal ist wenn auch der Verbrauch am hdchsten ist
(unglinstige Phasenlage), ist das Konzept des Nachfrage-Managements von eingeschranktem
Wert. Der effizienteste Weg, Uberschussstrom zu nutzen und die Residuallast zu reduzieren,
ist, die wirtschaftlichen Aktivitaten auf die Perioden mit niedrigem Verbrauch auszudehnen
etwa auf die Wochenenden.



- Innerhalb der Annahmen dieser Studie finden wir, dass die Konsequenzen (berschaubar
bleiben, wenn der Beitrag der erneuerbaren Energien auf einem Anteil von 40% des
Jahresstrombedarfs begrenzt wird.

Diese Studie wurde im Rahmen folgender Annahmen durchgefiihrt:

- Der jéhrliche Strombedarf bleibt konstant.

- AuRer Abfall wird keine Biomasse fur die Stromproduktion verwendet.
- Stromimport und nukleare Erzeugung werden nicht betrachtet.

- Transport- und Prozessverluste werden vernachléssigt.

Die Berechtigung fir diese Annahmen wird diskutiert.



Abstract

In this paper we analyse and present the major features of electricity production being based
predominantly on variable wind onshore and offshore and on photovoltaic (PV) generation.
Actual data are taken from the German demand and supply situation in 2010. On this basis,
the generation capacities are scaled to higher installed powers. The main purpose of the paper
is to show characteristic trends and the mostly system oriented consequences of large-scale
wind and PV use with fluctuating input.

The major findings are:

- The use of renewable energies (RE) requires the installation of additional power capacity,
which surpasses the present one of conventional thermal power systems.

- RE do not displace thermal power; the capacity saving is < 10%.

- The directly used RE shows the tendency of saturation substantially below complete
coverage of the demand.

- Large amounts of surplus energies are produced by RE at a power level where export may
not be possible any longer because of capacity limitations of potential receptors.

- There is an optimal mix between wind and PV generation, which minimises the use of a
back-up system based on thermal power plants to cover the residual demand.

- Because of the variable nature of RE all components of the supply system operate under low
capacity factors jeopardizing their economic basis.

- This applies also to a storage system set up for the sole purpose to store and integrate the
surplus energy. Irrespective of the technology, such a storage can hardly be operated under
economic conditions.

- The back-up system has to respond to frequent and large power changes. This will reduce
the efficiency and cause material fatigue.

- The specific low reference CO, emissions, which are already realised in the combination of
hydro- and nuclear power in Europe, can be reached with RE only with a tremendous
technical and financial effort.

- As the surplus power is maximal at the maximal demand (and not out of phase to it)
demand-side management will be of limited use. The most efficient way to utilise surplus
energy and reduce thus back-up energy is the avoidance of low-load periods by moving
electricity consuming activities into the weekends.

- Within the boundaries of this study, we find that RE can be integrated up to a share of about
40% of the annual demand with manageable consequences.

This study is based on the following assumptions:

- the annual electricity demand stays constant;



- apart from waste no bio-energy is used for electricity production;
- electricity import and nuclear power are not considered;
- transport and process losses are not considered.

The justification of these assumptions will be discussed.



1. Introduction

The need and desire for energy will further grow because the Earth population will further
grow and the per-capita energy use will continue increasing: A saturation of the population
can only occur over decades; the increase in per-capita energy is driven by the large global
differences in the individual availability of primary energy from tens of kW to a few 100 W in
terms of power. The success with new energy technologies will decide about the avoidance of
societal frictions in possible periods of deficit and energy paucity and the prevention of the
ongoing environmental damages by the replacement of fossil fuels.

There are only three paths to a sustainable energy supply system — fission on the basis of
breeders, fusion, and RE in their different forms of occurrence [1]. In this paper we analyse
the major characteristics of an electricity supply system being predominantly based on RE.
We do this with the example of Germany because of the rapid deployment of renewable
energies. Germany will soon demonstrate the pros and cons of a rapid technology change for
an essential commodity like electricity and it provides an attractive basis for a forward-
looking analysis.

2. Construction of the data set

Modelling of characteristics of the electricity supply system for Germany with increasing
contributions of the RE forms wind (on and offshore, Wo, and Wo¢) and photovoltaic (PV)
power has been studied on the basis of available data of 2010.

The following source data were used.

The electricity demand (load) was obtained from Tennet [2] with 15 min resolution and from
ENTSO-E [3] with 1 h resolution. The more representative ENTSO-E data were taken. The
ENTSO-E data were scaled to deliver the net electricity production of 588 TWh in 2010 (see
Table 1) [4]. Thus, the demands both from the high-voltage and the lower-voltage grids are
included.

Source TWh %
Coal 105,8 18
Lignite 135,2 23
Nuclear 135,2 23
Gas 82,3 14
Wind onshore 35,3 6
Photovoltaic 11,8 2
Bio-mass 29,4 5
Hydro electricity 17,6 3
Oil, pump storage, others 29,4 5
waste 5,9 1

Table 1: Electricity sources in Germany in 2010 [4].

The onshore wind data are obtained from 50Hertz [5] with 15 min resolution. In order to
represent the total wind electricity in 2010, the data were scaled to the totally harvested wind
electricity of Germany of 35.3 TWh [4]. In order to check whether this spatial extrapolation is
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justified the 50Hertz onshore wind data are correlated with data obtained from TransnetBW
[6] representing the wind pattern over Baden-Wirttemberg. The correlation coefficient
R=0.48. The correlation function has a distinct maximum with a delay of 2h.

Offshore wind is not yet available in Germany to the extent that one could apply the same
procedure as for onshore wind. The offshore data used were constructed from wind velocity
data v, obtained from FINO3 [7]. Data were taken from the sensor at 100 m height pointing
in 345° direction®. The offshore wind power is given by the cubic relation: P = o v,,°. In order
to get verified power values the data from the first successful operation of the north-sea test-
field Alpha Ventus wind park [8] were used. The 2x6 wind turbines with a nominal power of
5 MW each worked from October 2010 to June 2011 without interruption and produced 190
GWh. For the determination of o the wind velocity data were matched to the operational
conditions of the wind turbines. The power was set to 0 for wind velocities v,, < 3.5 m/s (cut-
in velocity) or vy, > 30 m/s (which was not reached in the considered data sample); P was
assumed to scale according to the above cubic relation between 3.5 m/s and 14.5 m/s and to
be constant at the maximal power (5 MW) for 14.5 (rated velocity) < v, < 30 m/s (cut-out
velocity). It is problematic to take point data as representatives for a turbulent field where
specifically the peaks average out to a certain extent. In case of offshore wind, the peaks are
removed by the maximal power setting of the turbines. Therefore, this way of constructing the
data seems justified.

Again, as a means of control, the FINO3 velocity data and the onshore wind power values
were correlated (v,,> with Pg,). The correlation coefficient R = 0.46 indicating a weak but
distinct relationship of the data as can be expected facing the long-range nature of the wind
pattern over Germany (50Hertz region) and the German Bay region. The correlation is
between a point value (FINO3 velocity) and a field average value (Po,). The correlation
function has a maximum and decreases for larger time displacements between the data. For
comparison, the offshore wind data were also correlated to the PV data. Of course, no
correlation is expected. The correlation coefficient is found to be R = 0.09.

The photovoltaic data were obtained from 50Hertz in 15 min increments [5]. Like in the other
cases, they were scaled to the photovoltaic energy harvested in 2010 of 11.8 TWh. A further
correction was necessary because of the strong development of PV systems in Germany in
2010 growing from 9.9 GW installed power at the end of 2009 to 16.8 GW (up to 17.3 GW
can be found in the literature) a year later. As we assume constant installed PV power for the
scenarios to be analysed in this study, the 2010 data were corrected assuming a linear growth
of installed power in 2010 (which differs from the actual growth curve, which is ignored). The
corrected PV data set would have delivered 13.4 TWh at a constant installed power of 16.8

! A few gaps in the data were filled with data from the sensor at 106 m height. The missing data of the 1% week
in January 2010 were replaced by data from January 2011 of the same week. The velocity data are provided in
10 min increments. For a synchronized data base ordered in quarter-hour steps, the data at the full and the half
hour could directly be used. The data at 15 min and 45 min were obtained by interpolation.



GW.

In this manner, a data base for the load, Wy, Wos and PV power is obtained for 35040 time
points with a resolution of 15 min. The ENTSO-E load data with 1 h time steps are kept
constant over the 15 min time grid. The comparison with the regionally limited Tennet load
data with 15 min resolution shows that no significant error is introduced by smoothing the
load. Anyway, the major dynamics in the data base is introduced by the RE supply forms. For
the temporal response studies of Chapt. 5, however, the better time resolved Tennet data were
used.

In 2010, the net electricity production in Germany of 588 TWh originates from the different
sources according to table 1.

The fossil fuel fraction is about 55%. The 35,3 TWh from onshore wind were produced by
27,2 GW installed wind power and correspond to about 1300 h at full load (full load hours,
flh, = harvested annual electrical energy/installed power) or, equivalently, to a capacity factor
(availability factor, cf = flh/8760) in the use of the installations of 15 % (2010 was a low-
wind year). The up scaled 13,4 TWh from PV are based on 16.8 GW installed PV power and
correspond to about 800 h of full load or to a capacity factor of 9 %. The operation of the
Alpha Ventus wind farm for a full year would have yielded 0.203 TWh for the 60 MW
installed power. This corresponds to 3400 h at full load or a capacity factor of 39%.
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Fig. 1. a) Variation of the load during 2010; b) onshore wind power in 2010; the red line
denotes the installed wind power; c) PV power in 2010 but for constant installed power of
16.8 GW (red line); the strong built-up of PV systems through the year has been corrected.

Figures 1 a) to c) depict the data base constructed from actual data of 2010 as described
above. Plotted are a) the demand (load), b) the onshore wind power and c) the PV power in
their temporal developments through the year 2010. The PV data have been corrected for
constant installed power. The horizontal lines in Fig. 1 b) and c) represent the installed power
levels, which are found to be larger than the power peaks in the data sets indicating a reduced
average availability. Figure 1 shows both the weekly and the seasonal variation of the reduced
load; the daily variation is not resolved.

Figure 2. plots the load, onshore wind, and, on top of it, the PV contributions for January and
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July 2010 from the data set of Fig. 1 in more detail with the daily variation being resolved
now. The demand is lower during the weekends; wind is erratic and larger in winter and
spring. PV responds in a periodic form — clearly visible in July - with maxima coinciding with
the load maxima around noon-time.
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Fig. 2. Load, onshore wind and, on top of it, PV are shown for January (left) and July 2010.
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Fig. 3. Duration curves for 2010. (1) denotes the load; (2) the reduced load with
contributions from hydro electricity, storage and waste subtracted from the load; (3)
denotes the residual load when wind (4) and PV (5) are additionally subtracted. The
horizontal line denotes the nuclear power contribution; the grey area represents the
contributions of fossil fuel power plants.

Figure 3 shows the duration curves for the load and the contributions from wind and PV for
2010. In this plot, the data are not ordered chronologically, but rather is the respective power
(averaged over 15 min) ordered in descending sequence. This diagram allows categorizing the
different contributions into base-load, mid-load and peak-load. It also helps to see the impact
of an increasing share of renewable energies onto the park of conventional systems. Curve 1
corresponds to the load of 2010; curve 2, which is dubbed “reduced load” in this paper, IS
obtained when the electricity contributions from hydro, storage and waste are subtracted;
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curve 3 represents the load after wind and PV contributions are subtracted (residual load).

Curve 4 and 5 are the duration curves of wind and PV, respectively. The horizontal line and
the area beneath denote the corresponding nuclear base-load contribution; the grey area
corresponds to the production of fossil power stations with CO release. Curve 4 shows that
wind blows nearly throughout the year, whereas PV contributes for about half a year.

Figure 3 points to a fundamental problem in the use of RE. The load curve is - seen from
above — largely convex. The duration curves of wind and PV, however, are concave. Scaling
to higher levels of wind and PV power capacity in order to ultimately match the annual
energy consumption leads to large energy surpluses for extended periods. Figure 4 illustrates
this consequence of the different duration curve curvatures in an exemplary way for onshore
wind scaled up to increasing shares of the annual electricity production. For the case that
onshore wind delivers the same amount of energy as the load demands (100% curve in Fig. 4)
the areas beneath this curve and the one beneath the load curve are the same. The temporal
distributions of available power and demand do, however, not fit. The area where the 100%
curve is above the load represents the surplus energy; the area with the load being above the
100% curve has to be delivered additionally by a back-up system satisfying the residual load.
This 100% case is denoted in this paper as the “equal energy case”.
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Fig. 4. Duration curves representing the load (black) and onshore wind electricity (in
colour) of 2010 along with scaled up values representing up to 100% of the average
annual electricity demand.

Large RE power capacities have to be installed for substantial contributions to the annual
energy demand. As a consequence, the peak power loads are greatly different for the surplus
power and the back-up power cases. The power peaks dispatched into the grid can be as large
as 400 GW, those which have to be handled as surplus power can be as large as 300 GW for
the “equal energy case”. The peak powers in the back-up system do — of course - not surpass
the level of the load. They can be lower to the extent the RE have contributions ensured
throughout the year. These characteristics of variable supply are discussed in more detail in
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the following chapters.
3. Scaling studies

Whereas the net electricity production in 2010 is 588 TWh, the reference load value for the
scaling studies of this paper is the “reduced load” of 562 TWh with the contributions from
hydro, waste and storage electricity subtracted. Basis and starting point are the 2010 data. We
will not consider a bio-mass contribution assuming that the energy from bio-mass will be used
in the future more for transportation, preferably for air traffic and less for electricity
production. We further assume that the electricity consumption will not change expecting that
effects of higher efficiency will be compensated by an expansion of the use of electricity e.g.
in the field of mobility and smart supply systems or by technical measures, which will help
reducing the primary energy consumption like a wide use of heat pumps. Nuclear energy and
net electricity import are not considered.

For each time point i in the data base the load, the on- and offshore wind power and the PV
power are given. A positive difference between load and the sum of the three RE forms
defines the back-up power at the time interval i. A negative difference (RE power > load)
gives the surplus power.
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Fig. 5. For the conditions of the first week in February 2010 the load (black), directly used
RE power (blue) and surplus power (red) are plotted. The RE part is scaled such that the
annual energy of load and RE are the same (“equal energy case”). Wind and PV are
mixed in the form of the “optimal mix” as will be discussed in Chapt. 4.

Figure 5 shows the different contributions for — as an example - the first week in February
2010 and shows the sharing between the different contributions — reduced load, directly used
RE power and surplus power. As the powers do not agree for each moment, surplus energy
needs to be collected and back-up power has to be available. The directly used power is
limited by the load. The part surpassing the load adds to surplus power (negative). In periods
where the RE contribution falls below the load, the surplus power is zero; the differences to
the load are covered by the back-up system. The case shown in Fig. 5 is constructed such that
the annual energies of load and RE sources are the same — the so-called “equal energy case”.
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In this specific case the integral energies of the back-up system is equivalent to that of the
surplus. The mix of RE energies in Fig. 5 corresponds to the so-called “optimal mix” to be
discussed in Chapt. 4.

3.1. RE produce 100% of the annual electricity

Each of the RE supply forms has its own characteristics. In order to elucidate these features
we first analyse and discuss them separately. The RE power in these cases is selected such
that for each form separately the RE produces as much energy as the load integrally demands.
The intention with the termination at this point is that the surplus power - if proper storage
were available — would just be sufficient to compensate the primarily missing energy. In this
case, no back-up power would be required any longer. Transfer and other process losses are
not considered here.
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Fig. 6. a) The scaled RE power is plotted for the case that the annual electricity
production by RE is equal to the annual demand. Black represents the directly used power
with the load as upper limit; red (negative) the surplus power. a) represents onshore, b)
offshore wind and c¢) PV.

Figure 6 a) to c) represent the power of onshore and offshore wind and of PV. Positive values
denote the power directly contributing to satisfy the demand. The upper limit of the curves is
determined by the load. What goes beyond the load represents the surplus power and is
plotted negatively.

- Onshore wind power fluctuates with large amplitudes truly reflecting the variability of wind
velocity. Onshore turbines rarely meet the conditions of strong winds where the wind turbines
are switched to the constant output power mode.

- Opposite to this, offshore wind power is rather constant in amplitude because strong wind
leads to prolonged phases with the turbines regulated at the rated output power point.

- PV power is again different because its power is periodic with daily peak contributions well
matched to the high-demand periods. The cyclic behaviour of PV is reflected in the upper part
of Fig. 6 ¢) marking well the demand peaks.

The two wind cases show lower power coverage of the load in summer whereas, reciprocally,
the low coverage by PV is in the winter months. The surplus power peaks can be exceedingly
high in the limit considered here (“equal energy case”) and reach values frequently beyond

12



300 GW in case of PV and onshore wind.

Counts
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Fig. 7. Histograms of the directly used RE power (black) scaled to the 100% limit — the
“equal energy case”. As a reference, the histogram of the reduced load is shown. a)
onshore wind; b) offshore wind; c) PV.

The histograms in Fig. 7 plot the directly used power (black) produced by the three RE forms,
which is delivered into the grid. It is compared with the load (green). The load distribution is
characterized by two maxima, the higher-power one representing rather the load during the
day, the lower-power one the load more during the night and weekends. The width of the two
profiles is mostly given by the seasonal cycle. The RE powers show typically the concave
distribution with the frequency of occurrence decreasing toward higher powers. The
distribution of the directly used power increases, however, in the power range of the load
because all power values falling into this interval but also all higher ones contribute to it.
Because of the decay of the distribution toward higher powers, the “filling” of the power band
of the load requires a large installed power so that specifically the excess power levels can be
used to fill the load power band, which is offset from zero by a gap — the base load. The
selectiveness of this process is obvious from Fig. 7 c¢). In case of PV, the highest peaks are
delivered during daytime. Therefore, the day-peak of the load is preferentially filled.

Maximal power | Directly used energy | Back-up =  surplus
(GW) (TWh) energy (TWh)

Wind onshore 365 344 218

Wind offshore 165 344 218

PV 463 214 348

Table 2. Given are the key characteristics of the three RE cases under the condition that the
annual energy produced by the RE system is equal to the annual energy demand. Given are
the maximal power (identified as a lower limit to the installed power, because the average
availability factor < 1, see Fig. 1), the directly used energy into the grid and the energy
delivered by the back-up system being equal to the surplus energy.

Both onshore and offshore wind produce powers up to the level of the demand curve. But the
highest power peaks of the load occur in winter during daytime with little PV contribution.
Therefore, this part of the load is — unlike the other cases - not covered in case of PV; a gap
remains between the peak load and the PV distribution at the highest powers. For these
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periods, when exclusively PV is considered, the back-up system must be available up to the
maximal required power.

The integrals of the directly used power distributions are not the same for the three cases
(though the conditions RE energy = annual energy demand is the same). PV produces
substantially more surplus energy than the other two cases — but in summer, which does not
help the needs in winter.

Table 2 shows the various key characteristics of the three RE forms under the limiting
condition of the “equal energy case”.

For the same annual energy, the necessary wind power to be installed is lower by a factor of
more than 2 in case of offshore than onshore wind. The energy values for directly used and
surplus/back-up energies, respectively, are the same for the wind cases because of a similar
data structure representative of turbulent generation processes; they are different for PV with
a more periodic spectral content. In a control run with random numbers replacing actual wind
or PV data, the directly used, surplus and back-up power levels are equal at 281 TWh adding
up to the reduced load of 562 TWh.
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Fig. 8. shows the duration curves for a) onshore, b) offshore and ¢) PV. The black curve
is the reduced load; the blue curve represents the RE contribution; the green curve the
residual back-up power and the red branch the surplus power.

Figure 8 a) to c¢) show the duration curves for the three cases considered. The black curve is
the reduced load as defined above. The blue curves represent the RE power, which can
directly be used. On- and offshore wind have contributions almost throughout the year. PV
covers only about 50% of the year because of nighttimes without delivery. The green curves
denote the duration curve for the residual back-up power. Its contribution is strongly reduced
compared to the original situation without RE contribution (see table 2); it loses the
characteristics of a base load. The negative red curves represent the surplus power
reproducing the already known effect that the surplus power is limited in case of offshore
wind and extreme in case of PV.
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3.2. Surplus power and operation mode of the back-up system

With controllable sources, the power supply system responds to the periodic variation of the
day/night cycle, the weekly and the seasonal variation: Electricity production is demand
driven. The load variations are periodic and predictable. With RE the supply system splits up
into the primary sources wind and PV and the secondary source, the back-up system based on
thermal power for the near future covering the residual load. With increasing RE shares, the
periodic variation of the back-up systems is changed to an erratic one reflecting the spectral
character of the stochastic supply and to a lesser extent the periodic pattern of the load:
Electricity production becomes supply driven.
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Fig. 9. a) Plotted is the load of the period from mid-February to mid-March 2010. Fig. b)
and c) represent the variation of the back-up systems when 10 % or 30% (Fig. 6c¢)),
respectively is obtained from onshore wind.

Figure 9 shows the variation of the back-up power with onshore wind energy shares
increasing from 0 to 30% of the annual demands. With 10% wind contribution the periodic
pattern of the load is largely maintained. This reflects roughly the 2011 situation in Germany
(wind and PV: 66 TWh = 11% of the demand [9]). With 30 % share, the periodic pattern is
dissolved and the temporal characteristics of the residual power display chaotic traits.

In the following, we discuss the features in the transition from continuous to variable supply
along power histograms. Figure 10 a) shows the power histogram of the reduced load. The
peak and the base load powers are shown as vertical lines. The double-hump structure has
already been discussed.

In the case that onshore wind contributes with 10% to the annual demand (Fig. 10 b)) the
main feature — the residual back-up power (black) distributed between base and peak load
limits and separated from zero — is largely maintained. The lower level of the base-load is
slightly shifted to lower power values. With 30% wind contribution to the annual electricity
(Fig. 10 c)), the base load has disappeared and the back-up system has to supply all power
levels from 0 to the maxima of the reduced load. In this case, already a distinct amount of
surplus electricity is produced, which is plotted on the negative axis (red). This trend
continues to larger wind electricity shares (Fig. 10d) with surplus power levels reaching
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beyond 100 GW. Figure 10 e) represents the case where the annually produced wind energy
(sum of directly used and surplus energies) is equivalent to the annual demand (“equal energy
case”). Figure 10e) also shows the small shift of the power range of the back-up system away
from the original peak load line to a slightly lower value. For this case, close to 10 % of the
installed back-up capacity can be saved owing to the installed wind system and its continuous
contribution throughout the year (see also Table 3).
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Fig. 10. Histograms of the reduced load and the power delivered by back-up systems
(black) and of the surplus power (red) with onshore wind contributions increasing from
10% to 100% of the annually demanded electricity in 2010. The vertical lines denote the
base-load (blue) and the peak-load (red) power levels.

Figure 11 shows power histograms of the back-up system and the surplus power for offshore
wind and PV in the limit of the “equal energy case”. The histograms are distinctively different
to those of onshore wind. In the case of offshore wind, the maximal power is limited because
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— unlike onshore - the individual turbine is frequently operated under the conditions of
constant rated power. The negative power hump is caused by the excess power, which lies
between maximum wind converter power and the peak load.
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Fig. 11. Histograms of the power delivered by the back-up system (black) and the surplus
power (red) with offshore wind and PV contributions, respectively, of 100% of the
annually produced electricity in 2010. The vertical lines denote the base-load (blue) and
the peak-load (red) levels.

In case of PV only, small power contributions occupy the power range from 0 to the original
base load (blue line). The reason is the distribution of the power in a wide range reaching
beyond 300 GW. The day peak is reduced in the back-up power spectrum; the night peak
remains, however. The original base-load is marked in the histogram of the back-up power
because PV is not able to cover this part of the load representing demands during the night.

The available back-up power has to remain at full capacity. No savings are possible and the
back-up power has to be able to fully meet the peak load. The histogram shown in Fig. 11 b)
reflects the lack of PV support during winter-day peak loads from the perspective of the back-
up power. In winter, 100% of the back-up system can be in operation. PV alone does not
allow saving conventional power plant capacity.

Energy  source and | RE contribution Capacity factor of back- | Maximal power of
contribution (used+surplus) (%) | up system back-up system (GW)
0 0.70 92
Wind onshore 10 0.67 86
Wind onshore 30 0.53 85
Wind onshore 50 0.43 84
Wind onshore 100 0.30 83
Wind offshore 100 0.29 87
PV 100 0.43 92

Table 3. Shown is the utilization of the back-up system (capacity factor) and its maximal
power at variable RE contributions to the annual demand.
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Table 3 lists the capacity factors of the back-up system defining its annual utilisation for
varying contributions of the RE systems and also gives the maximal back-up power observed
in the data set averaged over 15 min. Given are the results for variable contributions of
onshore wind and for 100% energy from offshore wind or PV, respectively. For the “equal
energy case” onshore and offshore wind reduces the back-up capacity factors to about 30%. In
case of PV, the back-up system is more frequently in use. As already shown in Figs. 6 and 11,
PV does not allow a reduction in installed back-up power — unlike wind electricity with a
reduction from 92 to 83 GW (- 8%). The jump from 92 GW installed power to 86 GW with
already 10 % onshore wind is caused by the removal of peak load demands from the back-up
system, which happens for about 50 h in the year. This effect may be a particularity of the
wind situation in 2010.
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Fig. 12. a) Plotted is the produced energy against the maximal RE power in the data set
(lower limit of the installed power) for on- and offshore wind and PV. The horizontal line
represents the level of the reduced load in Germany in 2010. The squares close to the origin
represent energy and installed power of onshore wind (black), offshore wind (red) and PV
(blue) for 2010, 2011, and as expected for 2012. The open crosses represent the key data of
the optimal mix of RE system as described in Chapt. 4. b) directly used energy; c) surplus
energy; d) back-up energy. The curves in Fig. 12 end when the total energy delivered by the
RE systems is equal to the annual demand (see Fig. 12 a).
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3.3. Summary of scaling studies

In Fig. 12 a) the produced RE electricity (directly used and surplus) is plotted against the
maximal RE power in the data set of the respective scan for on- and offshore wind and PV.
The relation is — of course — linear. Technical losses in production or transmission are
neglected because they are not relevant for the considerations of this paper. The necessary
installed power capacities are actually larger than the power values quoted here? by a factor of
1.2 for onshore wind or 1.5 for PV, respectively. For the truly installed power and the
corresponding capital costs for their implementation, the maximal power values of Fig. 12
represent therefore lower limits.

The horizontal dotted line in Fig. 12 a) corresponds to the reduced load of integrally 562
TWh, which has to be produced to meet the 588 TWh net electricity target together with
electricity from hydro and waste. The solid data points close to the origin represent energy
and installed power of onshore wind (black squares), offshore wind (red square), and PV
(blue square) at the end of 2010, and 2011 and as expected for 2012. These data points
indicate the still infant nature of the RE deployment in Germany in spite of tremendous
efforts. The open crosses indicate the locations of the three RE components in case of the
optimal mix as described in Chapt. 4. All curves in Fig. 12 end when the energy produced by
RE agrees with the annual demand — at the conditions of the “equal energy case” (e.g. see Fig.
12a)).

Figure 12 b) plots the annually produced energy, which is directly used for the three systems
under consideration against the maximal power occurring in the data base. Figure 12 c) shows
the annual surplus energy and finally, in Fig. 12 d) the energy of the back-up system is
plotted.

The slopes in Fig. 12 a) correspond to the annual full load hours which are 1550 h (wind on),
3385 h (wind off), and 1200 h (PV). The values are too high because the maximal power in
the data set is smaller than the actually installed power (see footnote 2). Particularly, the
actual full load hour of PV is closer to 900 h when the actually installed power is used as
reference.

The directly used energy of Fig. 12 b) shows the tendency to saturate. This effect is
specifically distinct for PV. The non-linear elements causing the saturation are the periods
without RE electricity production irrespective of the installed power - wind velocity below the
cut-in level or the nights in case of PV. All of the three RE forms stay well below the reduced
load (dotted line in Fig. 12) for the conditions considered here.

Owing to their falling power spectrum (e.g. see Fig. 4) RE systems produce large amounts of
excess power (see Fig. 12 c), which cannot be accommodated within the national grid without
storage. PV produces the largest amount of surplus power.

2 E.g. in 2010, the maximal power of onshore wind in the data base was 22.8 GW whereas the installed power
was actually 27.2 GW (see Fig. 1); similarly, the maximal PV power in the data set of 11 GW compares with
16.8 GW installed power.
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Figure 12 d) plots the energy delivered by the back-up system for the three RE cases
considered, which deceases with increasing RE share. This dependence corresponds to the
desired objectives in the use of RE. Back-up power is required up to the “equal energy case”
and beyond. An exclusive PV system would necessitate the largest thermal power back-up
system.

In conclusion, without storage, offshore wind as the “best” RE electricity source produces
about 50% of the annual load with about twice the presently installed conventional thermal
power. The other extreme is PV, which produces with close to 500 GW installed power only
about 1/3 of the annual electricity.

4. Optimal mix between wind and PV installations.

The averaged load curve has a maximum in winter and a minimum in summer. This is also
the case for wind electricity, which helps to match the seasonal cycle and is contrary to
photovoltaic electricity production, which has a minimum in winter (see Fig. 1). On the other
hand, photovoltaic electricity is produced during the day when the demand is highest.
Therefore, wind has a good annual and PV a good daily match to the load curve. The
consequence is that there is an optimal mix for these two renewable energy forms. We define
the optimum as the proper mix of wind and PV power, which minimizes the demand of back-
up power (and therefore the amount of CO, production as long as the back-up system is based
on fossil fuels). We further assume that offshore wind produces 1/3 of the wind energy.
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Fig. 13. The ratio of the back-up energy to the annual reduced electricity demand is plotted
against the energy contribution of the PV system, also normalized to the reduced load. The
parameter of the curves is the ratio of the energy delivered by the RE normalized against
the reduced load. The offshore wind energy is assumed to be 1/3 of the total wind
contribution.
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Figure 13 plots the annually produced energy of the back-up systems normalized to the
reduced load against the PV energy production also normalized to the reduced load.
Parameter of the set of curves is the total contribution of RE also normalized to the reduced
load. The curves show a minimum, which moves to larger PV contributions when the share of
RE increases. The curves do not represent a symmetric case for wind and PV. The wind-only
case is not much above the minimum whereas the PV-only case requires much more back-up
contributions.

Power (GW) Energy (TWh)

Wind onshore 191 294
Wind offshore 44 147
PV 99 121
Back-up system 84 153
Surplus 153
Directly used RE 409
energy

Table 4. Key data for the case that the RE systems produce under the optimal mix conditions
the amount of energy corresponding to the demand (“equal energy case”).
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Fig. 14. Plotted are the various energies involved and the maximal grid power versus the
total annual energy from renewable sources normalized to the annual demand (RE share)
for the optimal mix case.

In the “equal energy case” the optimal PV contribution to the annual demand is 22%; in case
of 37.5% RE share this value drops to 10%. However, for a 25% share and below, the ratio of
wind to PV does not affect much the level of back-up power. Though the share of PV
increases with the RE contribution under optimal mix conditions, the ratio of PV to wind
decreases from about 1 at 37.5% RE share to 0.27 for 100% RE share. The ratio of offshore to
onshore wind is found to not change much the results of Fig. 13.

Table 4 shows the key parameters for the case that RE matches the reduced annual electricity
production (562 TWh) under the optimized conditions of minimal back-up need. Onshore
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wind produces 2/3 of the total wind production in the case considered. Given is the power of
each of the systems along with the energy it produces. As the RE do not match the load for
each of the time points, 153 TWh have to be delivered by the back-up system (being equal to
the surplus energy). The necessary installed power for this purpose is 84 GW.

Figurel4 shows the energies involved in meeting the annual demand — the one produced by
RE, the directly used one, the surplus energy, and the residual energy of the back-up system.
Shown is also the maximal grid power. The results are obtained under optimal mix conditions.
The directly used RE energy (dark blue curve) increases non-linearly indicating — like in Fig.
12 b) for the individual supply techniques — that RE as considered here will not meet the
demand completely. The red curve in Fig. 14 represents the surplus power. Surplus power
starts playing a role beyond about 40% of RE share. The dotted curve is the dispatched power.
The maximal power into the grid is 260 GW and is determined by the RE alone. The loading
of the grid by the back-up systems does, of course, not affect its maximal loading capacity.
The back-up power, which is not plotted, decreases slightly from 92 GW to 84 GW for the
“equal energy case” - an 8% reduction in installed thermal power capacity. At an installed RE
power equal to that of the back-up system (= the presently installed power system), the RE
deliver 25-30% of the annual demand. A distinct difference in supply characteristics happens
for RE shares > 40% with a pronounced increase in surplus energy and in the power to the
grid.

The crosses plotted in Fig. 12 a) represent the key data in RE power and energy for the
optimal mix case.
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Fig. 15. All plots refer to the optimal mix case. a) shows the reduced load (black), directly
used RE power (blue) and surplus power (red) through the year; b) shows the histogram
of back-up and surplus power (red); c) shows the duration curves of the various
contributions. The results are obtained for the “equal energy case’.

Figure 15 gives some further details on the power supply under the conditions of the optimal
mix. In Fig. 15 a) the temporal development of load, directly used power and surplus power is
shown. Figure 15 b) plots the histogram of the residual back-up power (black) and surplus
power (red) and c) shows the duration curves for the reduced load (black), the directly used
RE contribution with a discontinuity in the slope as soon as PV is not contributing any longer
(blue). Finally the situation of the back-up power (green) and the surplus power (red) is
shown. The back-up system is in use for close to 7 months with 1824 full-load hours. Also
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under optimized conditions large power peaks appear up to 200 GW, which may be a
challenge to the grid, specifically to the grids of neighbour countries if this power is to be
exported.
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Fig. 16. Monthly distribution of wind, PV and back-up electricity for the optimal mix case.
In Fig. 16 the monthly distribution of the energy of the three supply systems is shown under

optimum mix conditions. The sum of onshore and offshore wind in blue, the PV energy in
yellow and the energy from the back-system in black.
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Fig. 17. Capacity factor against the RE energy share for the back-up system.
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The seasonal particularities of wind and PV electricity are reproduced. The back-up system is
needed throughout the year. Its supply has maxima in summer, when wind is lowest and in
winter, when PV is lowest. The minima in the back-up system are rather symmetric in April
and October.

The major challenge for the back-up power system is the reduction of the full load hours with
increasing RE share. In Fig. 17, the capacity factor is plotted against the RE share. It
continuously decreases with increasing RE contribution. If the RE are considered individually
the capacity factors of the back-up system are larger than in the optimal mix case (see table
3). Below a capacity factor of about 0.5, the economic operation of power plants, which were
in use under base-load conditions in the past, might become critical. The corresponding RE
share for this to happen is around 40%.

The optimal mix case is not suggested here as a development scenario. This is not possible
under the present deployment strategy in Germany and may not be possible at all. It rather
serves as a reference case to assess and qualify alternatives.

5. Temporal characteristics of power loading to the grid

The historic situation is characterized by power delivery by demand with controllable power
plants categorized in base-, medium- and peak-loads. The dynamics of the power system was
determined by the periodic and rather predictable variation of the load.. With increasing
stochastic contributions both amplitude and response change and are now governed by the
temporal characteristics of the fluctuating sources (see Fig. 9). A detailed account of the
consequences on the conventional power plants in Germany is given in Ref. [10].
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Fig. 18. Histogram of the power levels in the reduced load (red) and with onshore wind
varied from 10 to 100% of the annually consumed electric energy.

Figure 18 is a histogram of the positive power level changes to the grid occurring within 15
min. The range of small and uncritical changes with P < 0,5 GW/15min is removed. The red
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curve represents the power amplitude variation of the load. In order to get the full dynamics of
the system, the Tennet load data [2] are taken, which are resolved in 15 min time increments.
The vast majority of amplitude changes occur at power levels below 2.5 GW. Excursions to
even higher power levels are possible but rare. As expected, with 10% onshore wind
contribution, the situation does not change much. The frequency increases happen mostly in
the incremental power ranges characteristic for the load itself. With 30% wind, the number of
power switches between 3.5 and 4.5 GW per 15 min increases by a factor of 2.5. With 100%
onshore wind the number of power switches between 5.5 and 6.5 GW correspond to the
number of load switches between 3.5 and 4.5 GW. Even higher power increments can occur.
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Fig. 19. Histogram of the power levels of on- and offshore wind, PV and the optimal mix
case under the conditions of the “equal energy case”.

The histogram shown in Fig. 19 plots the power steps occurring with onshore wind and
compares it with offshore wind, PV and the optimal mix case as defined in Chapt. 4. The
“equal energy case” is considered for each of the scenarios. The distributions of the three RE
forms differ quite substantially with offshore wind producing the largest number of power
steps beyond 2.5 GW. Like offshore wind, PV produces high power increments within 15 min
at high power levels of 10 GW and beyond. This corresponds to about half of the day-night
cycle of the load but occurring within 15 min. A grid is required with the technical capability
to handle such extraordinary events. This dynamics implies that e.g. thirty 300 MW G&D
power stations are cycled from 0 to full power. The consequence would be that many of
Germany’s thermal power stations act synchronously.

The benefit of the optimal mix is obvious from Fig. 19. The power step values are close to
those of onshore wind electricity. In all cases, however, the power increments beyond 4.5 GW
are distinctively larger than the load alone would cause.

We have seen that with increasing RE share the capacity factor of the back-up system drops.
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The periods become longer where the back-up system is not in operation. It can be expected
that the number of power cycles for the back-up system therefore decreases with increasing
RE contribution. The number of cycles above 1 GW power increment is plotted in Fig. 20 for
onshore wind with different shares and for offshore wind, PV and the optimal mix case for the
100% “equal energy case”. The cases | AP| < GW are excluded to separate the frequent small
power steps from the critical excursions of interest here.
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Fig. 20. The number of power switches of the back-up system > 1GW are plotted against
the annual RE normalized against the annual demand. The results for both positive and
negative excursions are shown. For onshore wind, the continuous development from 0 to
100% RE contribution to the load is plotted; for the other cases (offshore, PV and the
optimal mix case) only the results of the 100% (“equal energy”) cases are given. The
solid curve is a guide to the eye for positive and the dashed curve for negative W,, power
increments.

The distribution between positive and negative power increments is rather symmetric. As
expected, the number of power switches drops toward high fractions of onshore wind. The
maximum is at about an onshore power fraction of 60% with nearly 14000 bipolar large
power cycles in a year. This goes nearly a factor of two beyond the number of equivalent
cycles of the load. The consequence is a much stronger operational demand for the back-up
system and represents a challenge to its technical integrity specifically for the larger power
excursions necessitating a nearly coherent response of the back-up system. Some of the
technical consequences are analysed in Ref. [11].

In the following, we carry out the same analysis for the surplus power, which has to be
exported or avoided as long as no other technical use (e.g. storage) is available. For the back-
up systems the power is limited by the level of the load and the power increments AP are,
therefore, limited in power. This is different in case of the surplus power and its excursions
can be much larger than those of the back-up system (see Fig. 6).
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Fig. 21 a) to f) indicates the range of surplus power and surplus power steps AP as they occur
in the cases of onshore wind (varied between 30 and 100% of the load), offshore wind, PV
and the optimal mix case (each for the “equal energy case”). In this diagram, each power
increment AP; = Pj;1-P; is associated with the surplus power value P;. As we have already
seen, the power values reach beyond 300 GW. Specifically large values appear for PV. In
case of offshore wind, the power is limited by the features of turbine operation (see Chapt. 2).
But in this case, the changes in power are specifically large. For positive surplus power
values, the range AP > P is not covered (see e.g. Fig. 21 d)). The reason is the way the data are
plotted (AP; versus P;), which limits, for positive power values, the minimal surplus power
step size to the power itself. For the “equal energy/optimal mix case” the rate of change of the
back-up system power per minute is between 2% related to its power of 84 GW.
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Fig. 21. Plotted is the increment of surplus power from one level to the next one 15 min
later against the power prior to the change for the cases studied here: In a) to c) the results
for onshore wind are shown with different contributions to the annual consumption (30 —
100%). In the cases d) to f) the 100% (“‘equal energy”’) cases are plotted for offshore wind,
PV and for the optimal mix case.

6. Storage

Storage would allow to use the surplus power and to ultimately replace the thermal
technology of the back-up system achieving thus completely CO,-free electricity supply and
would allow smoothing the fluctuations on RE electricity production. No specific storage
technology is assumed here.
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6.1. Long-term storage

In the following, we investigate the external conditions for large-scale electricity storage,
which would serve a complete annual cycle. The storage parameters are developed first from
the characteristics of the three types of sources assumed — on- and offshore wind or PV,
respectively. At first, we discuss each source type separately. A condition for a long-term
storage system is that its variation is periodic. As we consider one year, the storage conditions
at the end of the year have to be the same as at the beginning. Under idealized model
assumptions, we fix the initial storage level so that during the year, the complete storage
capacity will be used.
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Fig. 22. The variation of the storage loading with time through the year for the 4 cases
considered.

Storage energy (TWh) Maximal storage power (GW)
Onshore wind 60 +296, -83 (1 month)
Offshore wind 67 +123, -87 (24 days)
PV 166 +397, -92 (two months)
Optimal mix 33 +179, -85 (11 days)

Table 5. Storage capacity and maximal storage power for the 4 cases considered under the
conditions of the “equal energyloptimal mix case”; positive: charging; negative: dispatching;
see Fig. 22. The respective period for the power > 100 GW is given in brackets.

Figure 22 shows the variation of the storage level over the year separately for onshore and
offshore wind and PV. The “equal energy case” is considered because in this case the surplus
energy (to be stored) equals the back-up energy (to be substituted). For the wind cases, the
storage level has the tendency to increase in the first months of the year. The storage
minimum is reached in August. For PV a larger storage has to be provided because it first
empties in the first months till the minimum is reached mid-March. In the months following
March the storage steadily fills with the filling maximum in September-October. The PV
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storage follows a sinusoidal curve like the solar radiation, however 90° out of phase.

The red curve in Fig. 22 depicts the “optimal mix case” presented in Chapt. 4. The required
storage is strongly reduced with two filling minima in February-March and in August.

Table 5 summarises the key parameters of the storage system. PV requires by far the largest
storage. Again, the benefit of the optimal mix is evident requiring the smallest capacity. The
seasonal differences in input add up rather favourably in this case and reduce the size of
storage. The maximal discharging power values (negative) are rather similar for the four cases
and they are at the level of the back-up system to be replaced. The charging power levels
(positive) are high and vary strongly, depending on the type of source. The maximal power is
required, however, for shorter periods only. The figures in brackets in Table 5 denote the
periods where the power is above 100 GW. The smallest seasonal storage with a capacity of
33 TWh — as required for the optimal mix case - surpasses the one presently available in
Germany by a factor of 500. Such a storage cannot be realised irrespective of the technology
employed. Seasonal storage in a closed German system does not seem possible.
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Fig. 23. For the period shown, the needed back-up power is plotted without storage for
the standard “equal energyloptimal mix case”. The negative values show the storage
power for two cases, which differ in storage capacity, 2000 and 5000 GWh, respectively.

The right ordinate shows the storage loading for the two capacities considered (lower
traces).

6.2. Short-term storage

In the following we investigate continuous operation of the storage — loading whenever
surplus power is available up to a specified storage capacity and discharging whenever the RE
delivery is insufficient till the storage is empty or a re-loading period starts. Figure 23 shows
for the period — Jan. 23 till Feb. 13 — first the time traces of the back-up power in a system
without storage and then the storage power (plotted negatively) for two storage capacities — 2
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and 5 TWh. Considered again is the “equal energy case”. Also, the storage loadings (lower
curves) are shown. This diagram serves to elucidate the operation of the storage and its impact
on the dynamics of the back-up power system. When the storage is sufficiently filled, the
power from the storage matches (and substitutes) the back-up power. The larger the storage
capacity, the shorter are the remaining periods needing back-up support. When the storage is
empty its power becomes zero and this happens for the larger capacity storage at a later time.
When the storage is full, surplus power is not fully used and available for other means.
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Fig. 24. For one week in summer (a) and one in winter (b) the reduced load is shown for
the standard “equal energyloptimal mix case” along with the RE power, the surplus
power, and the power from charging (neg) and discharging the storage.

—reduced load
N back-up no storage
110" | — storage 50 GWh
— 100 GWh
—200 GWh
8 10 —500 GWh 4
\___‘ —— 1000 GWh
N ——2000 GWh
g . 5000 GWh ]
610 7
g \"‘“‘--..._ ]
| “\ 1
o - \
4 AN
= AN '
210 L VNR 1

time (year)

Fig. 25. Annual duration curves of the back-up system starting from the reduced load and
the residual load without storage (dotted curve). The results are shown for the standard
“equal energy/optimal mix case”.
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Figure 24 exemplifies the operation with an assumed 200 GWh storage (about 4 times the
presently installed storage capacity in Germany) in the limit that the energy produced by RE
is equal to the demand (“equal energy case”) and for the optimal mix. Shown is one week in
summer (28.6. — 4.7.) and one in winter (21.2. — 27.2.). The weeks start with Monday. In
summer, the RE electricity is produced by PV systems and is fairly periodic. The surplus
power fills the storage, which then delivers the power mostly in the following night. In the
winter week, the power is delivered primarily by wind. The surplus power is generally too
large to be accommodated by the storage system. Storage stops in the middle of the period
with available surplus power because of capacity limitation. Discharging of the storage is
erratic and is interrupted for longer periods in phases of large RE power with sufficient
surplus production at a full storage or in periods of an empty storage without surplus
production. The necessary back-up energy reduces from annually 153 TWh to 128 TWh in
this case whereas the back-up power does not change.

Figure 25 shows the duration curve for the reduced load to start with and subsequently the
residual back-up powers for the standard “equal energy/optimal mix case”. The dotted curve
shows the residual power without storage. The difference is covered by the RE share. The
following curves show the further reduction of the residual power with electricity storage of
different capacities. The operational period of the back-up system successively shortens with
increased storages capacity. This is, of course, the intended effect. But even with an
unrealistic storage of 5000 GWh capacity, back-up power is still needed but operated in the
sum for two months only.
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Fig. 26. Annual duration curves of the storage power starting with the reduced load for
various storage capacities. Both the charging and discharging (negative) periods are
plotted. The calculations are done for the standard “equal energyloptimal mix case”.
Shown is also the residual load (with the RE contribution subtracted from the reduced
load) without storage.
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Figure 26 shows the duration curve, now of the storage system of different capacities starting
from the reduced load and the residual load without storage in the limit of the “equal
energy/optimal mix case”. The positive branches show the discharging, the negative ones the
charging periods. At low capacity, the charging periods are slightly longer than the
discharging ones. This turns around for large storage capacities, which are able to
accommaodate large power peaks shortening the charging periods.

Storage capacit Capacity factor flh back-u Capacity factor
(%Whg Y| fin storage (n) pstor)egge system (h)IO bacpk-upysystem

50 177 0.02 1711 0.195

100 241 0.027 1636 0.187

500 541 0.062 1343 0.153

1000 768 0.088 1140 0.130

2000 957 0.109 899 0.103

5000 1244 0.142 603 0.069

Table 6 Shown are the full-load hours (flh) and the capacity factors for storage and back-up
system for the cases plotted in Fig. 25 and 26.

Table 6 describes the use of storage and that of the back-up system in terms of full-load hours
or capacity factors, respectively. These values address the question of economic use of the
infrastructure. Full-load hours and capacity factors increase with storage capacity whereas
those of the back-up system decrease. For the full range of storage capacity assumed the
economic operation of storage and back-up system can be questioned. The lowest storage
capacity of 50 GWh corresponds to the one presently available in Germany. This storage
operates presently under economic conditions. Here, however, we consider exclusively the
conditions for surplus power storage.
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Fig. 27. The storage power for the charging and discharging phases and the dispatched
annual energy is plotted against the storage capacity (for the standard “equal energy” and
optimal mix case).
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Figure 27 plots the storage energy dispatched over the year (replacing back-up energy) and
the charging and discharging powers. The energy which is handled by the storage is small in
comparison to the annual demand (562 TWh) even at storages of unrealistically large
capacity. The charging power is larger than the discharging power roughly by a factor of two.
The latter is determined largely by the dynamics of the load, the former more by the stronger
dynamics of the RE input. Remarkable is that already at a storage of 500 GWh, a high level of
charging power appears. The situation giving rise to this strong non-linearity between storage
capacity and charging power is elucidated in Fig. 28.
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Fig. 28. a) For the standard “equal energy case” the temporal development of the back-
up power is plotted along with the variation of storage power for three storage capacities;
b) shows the storage loading for the three cases. The time window is one day for both
plots.

For three different storage capacities the back-up power and the charging power are plotted in
Fig. 28 a) and the storage loading is shown in b). A case is shown for April where the back-up
power happens to go to zero (between 9:00 and 10:00) because the demand is met by the RE
offer. According to the pre-history, the storage for a capacity < 500 GWh happens to be
empty at this moment. A 2000 GWh storage, however, would be filled to % of its capacity. In
the following period, the surplus fills the storage, the 100 GWh storage is quickly filled
whereas the 500 GWh storage reaches its capacity limit nearly simultaneously with the 2000
GWh one. Therefore, the charging power is nearly the same in these two cases independent of
the storage capacity.

As a consequence, already small storage capacities can give rise to large charging powers. If
there are technical limitations in the transfer and distribution of the power, this example
shows how rather critical conditions can be constructed by the superposition of processes with
different time characteristics. With the assumption of a 200 GWh storage, which is about 4
times larger than the one presently realized in Germany and more than a factor of 10 above
the projects presently under realization [12], already extraordinary power levels have to be
handled.
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Fig. 29. Histograms of onshore wind power for the standard optimal mix, “‘equal energy
case” compared to that of reduced onshore wind to avoid the production of surplus power.

Technlogy Installed power | Annually Increase/decrease in | flh (h)

(GW) produced energy | power compared to 2011

(TWh)

Reduced load 91 562 6116
Onshore wind 69 (82) 106 x2.4 (2.8) 1545
Offshore wind 16 53 x~80 3384
PV 55 (84) 66 x2.2 (3.4) 1217
Back-up system 86 340 -55% 3974
Surplus power 35 3
Storage 35 (charging) 2,7 77
Storage 47 x7.3

(discharging)
Maximal grid | 101
power

Table 7. Key-parameters describing the installed power and annual energy values for the
case that 40% of the annual electricity demand are covered by RE under optimal mix
conditions. The increase with respect to the situation in 2011 is also given. The values in
brackets include the correction of the maximal power values in the data base to the actually
installed powers (see Fig. 1).

The simplest, however uneconomic way to avoid surplus power is to stop dispatching RE into
the grid. This may be technically more easily possible with wind converters than with PV
systems. We consider the “equal energy, optimal mix case”. The sequence of interventions
starts with reducing onshore wind power and continues — if necessary - via offshore wind to
PV. If surplus power is available, first onshore wind is correspondingly reduced. If this is not
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sufficient, offshore wind is also reduced. The full-load hours of onshore wind drop from 1545
h to 828 h, those of offshore drop from 3385 h to 3117 h whereas there is no need to also
reduce PV — which represents anyway the technically most complex form of intervention.
Figure 29 plots the histogram of the original onshore wind power and compares it with the
reduced one to avoid excessive surplus power. As a consequence the peak onshore wind
power values > 100 GW are avoided; the system use is, however, practically halved with
corresponding economic consequences.

7. Scenario characteristics of a probable upper limit: 40% energy from RE sources.

If a total coverage of the German electricity demand by RE were hardly possible, what could
realistically be envisaged and what are the limiting elements? There are several reasons for
limitations — technical problems like grid stability or conflicting technical solutions like in
Denmark between prioritized RE feed-in and CHP production by thermal power stations [13].
Here we assume that the limitations are given by an excessive level of surplus power and the
short-term power increments, which can still be handled by the size of the storage needed, by
the need to operate a back-up system economically and by the option to limit grid expansion
capacity because of costs and its inherent societal complexity. Within these limits, we assume
that RE can deliver 40% of the annual energy demand and that Germany has available a
storage capacity of 200 GWh. The key-data of such an electricity infrastructure are given in
table 7.
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Fig. 30. Shown are the annual duration curves for the case that 40% of the electricity
demand is provided by RE supported by a storage capacity of 200 GWh.

In this setting, the RE is used well. Only 3 TWh are produced as surplus energy and from this,
2.7 TWh are dispatched via the storage. Only 300 GWh (representing an economic value of
several Mill €) have to be exported or avoided by temporarily reducing production capacity.
The storage uses, therefore, the surplus energy well but at a low energy turnaround. Of course,
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such a storage would not be used for exclusively storing the surplus energy but it would
operate like today using the available power and charge and discharge according to the market
situation. Still, the problem is evident: The excess power levels reaching up to 35 GW to be
handled are too large for simple export; the surplus energy levels on the other hand seem to be
too small for economic storage. Even at the assumed RE contribution of 40%, the rational to
operate a storage will come from economic considerations and less from the intension to
maximally use of surplus energy and thus reduce CO, emission. A higher RE fraction will
increase the surplus power but will risk the economic operation of the back-up system without
improving much the one of the storage system (see Fig. 25 and 26).

Figure 30 summarises the 40% RE share scenario in the form of duration curves. Reference is
the reduced load. PV is not available for half of the year. Offshore wind is limited in power
level because of the way the turbines are operated during strong-wind periods (see Chapt. 1).
Storage plays a negligible role because only its interaction with the surplus power is
considered. The supply backbone remains the back-up system. The concern with this scenario
is therefore the unavoidable CO; production if the back-up system uses fossil fuels. CO;
production will be the topic of the following chapter.
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Fig. 31. The specific CO, production is plotted against the normalized RE fraction for the
optimal mix case without storage. For the 100% equal energy case the effect of storage is
also shown (short horizontal lines). The storage capacity is varied from 50, 100, 200, 500,
1000, 2000, and 5000 GWh. The RE/load = 40% case with 200 GWh storage is shown as
red square. The arrows indicate the present levels of specific CO, production of Germany
and various EU countries with strong nuclear contribution.
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8. CO, production

We calculate the CO, production for the optimal mix case on the basis of gas power stations
only, ignoring any coal burning power plants in the future mix. We assume for the fuel 0.43
kgCO,/kWhg. The exact value here is rather irrelevant because the climate relevance of the
use of gas is difficult to predict. Besides the CO; radiation forcing, it depends on the
obviously unavoidable methane losses during transportation, which are typically 3-5%.
Methane contributes to the radiative forcing with a factor > 20 compared to that of CO,. Thus,
the use of gas can be equally damaging globally as the one of coal.

Figure 31 shows the reduction of the specific CO; production with increasing RE fraction.
Reference for each case is a constant electricity need per year. A substantial reduction in CO,
production is already achieved with the replacement of fossil power plants by RE. For the
“equal energy case” also the impact of storage is shown. The horizontal lines indicate the
progressive further reduction of CO, release with storage capacity of 50, 100, 200, 500, 1000,
2000, and 5000 GWh. The further improvement is small specifically when compared with the
large investments needed. Shown is also the RE=40% case with 200 GWh storage of Chapt. 7
(red square).

Arrows along the ordinate indicate the present specific CO, release for electricity production
of various European countries. The present German specific CO, production is about 0.5
kgCO2/kWhg resulting from the fossil fuel mix, an about 20% nuclear contribution and a
similar contribution from RE. Countries which produce electricity by hydro and nuclear
power show outstandingly low specific CO, production figures.

9. Analysis and comments

The production of electricity with variable sources is not the problem. If a society agrees to
the corresponding use of land and finances the necessary investments the electricity to be
produced can be increased proportional to the allocated area®.

The following actual problems and issues in the large-scale use of RE have been identified:

Power and the grid: RE requires large power installations. The necessary investments can be
reduced by a proper mix of wind and PV power. For the optimal mix the installed powers for
on- and offshore wind and PV are 191, 44 and 99 GW, respectively. With these installations,
the RE deliver the energy equivalent of the annual demand (“equal energy case”) whereas
wind contributes with 441 TWh and PV with 121 TWh. For wind power, 2/3 is assumed to
come from onshore and 1/3 from offshore turbines. For the optimal mix case, the energy,
which has to be delivered by the back-up system and the associated CO, output are
minimized. 84 GW installed power contributes with 153 GWh.

It can be doubted that an optimization in the mix of the different technologies can be realized
in practice having in mind the strong north-south variation of wind and PV installations and

® We have not considered restrictions in development zones for RE systems as they are presently defined in
Germany. These zones are subject to political decisions and are expanding with time.
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the differences in market participants between typical wind-energy and PV investors. There is
also no convincing precedence for an optimized course of action, quite the opposite looking at
the different speeds of deployment in Germany of RE electricity sources on the one hand and
the necessary onshore and offshore grids on the other.

With the assumption of this paper (no electricity import, no use of bio-mass apart from
waste), variable sources cannot meet the electricity demand alone. By increasing their share,
the directly used power saturates well below the demand (see Figs. 12 b and 14) whereas the
surplus power rises steeply (see Fig. 12 c). Reasons are the differences in the power
distribution of load and RE with a rather flat and convex duration curve for the load and a
strongly concave duration curve for RE. In order to produce more energy and cover the load —
represented by the areas beneath the curves - excessively high power peaks have to be
accepted (see Fig. 4).

Already at lower RE shares, close to and above 40% of the energy demand, the surplus power
reaches a level, which can be handled neither by reasonable technology nor by cross-border
trade. It also cannot be simply wasted because of its high economic value. The systems —
preferably wind turbines - have to be throttled in this case accepting economic losses (see Fig.
29). Germany, though leading in the installation of RE systems, is still below any of these
critical limits (see Fig. 12 a).

PV is the most ineffective RE supply form. It requires the largest installed power per
delivered energy unit and it causes extreme surplus power peaks. This negative aspect adds to
those which are well know and documented: PV has the highest material use, the highest
primary energy use and the highest costs per unit of electricity produced [14]. On the other
hand, in combination with wind the amount of surplus electricity can be minimized somewhat
in comparison to wind alone, however, at the expense of slightly increased total power.

The grid has to accommodate the load and the surplus power if its production is not
prevented. Under optimal mix conditions the grid power can increase beyond 250 GW (see
Fig. 14). At a RE energy production of 40% of the annual demand the excess power levels
reach the power capacity of the electricity grid of Poland and the Czech Republic (see table
7). As these neighbour-countries are pursuing a supply policy based on controllable power,
erratic interference with their grid system will be neither welcome nor technically
manageable.

Back-up system: Without proper storage, the RE use cannot prevent the need for a back-up
system of conventional power plants — preferably on gas basis to minimize the specific CO,
release. The nominal power of the back-up system has to remain high and is hardly reduced
by the addition of RE power. Its energy supply, however, which is the economic factor,
decreases with increasing RE share (see Fig. 17). At about 40% of RE energy the energy
capacity factor is 0.5 - approaching the limit of economic acceptability (see also Fig. 33).

The back-up system has to be operated under strongly varying conditions. The number of
thermal cycles increases because the system dynamics is no longer determined by that of the
demand rather by that of the supply (see Fig. 20). Additionally, the increments in power
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(positive and negative) increase involving an increasing number of back-up power plants in
the system dynamics (see Figs. 18 and 19). This unfavourable stop-and-go-and-idle mode of
operation adds to the economic problem of thermal power stations - their operational costs
will increase but their capacity factors decrease (see Fig. 17).

For extended periods, the back-up system operates in a rather coherent mode and the involved
units share the consequences of thermal cycling. Such systems cannot be “must-run” plants
like CHP stations.

Storage: Large storage capacity both in energy and power handling capability is necessary
replacing the back-up system of thermal power stations and thus optimize the CO, balance.
Pumped hydropower storage is an established and economic technique in periods of peak
loads. In Germany, about 50 GWh are installed and about 20 GWh are under construction
[11]. In case of the optimal mix with the storage capacity being defined by the surplus energy
matching that of the back-up system — the required storage capacity is 1.8 TWh for the back-
up energy contribution being reduced by a factor of two. A notable effect on reducing the size
of the back-up supply requires, therefore, a storage, which is far beyond any chances of
realization. Even a storage of 200 GWh, which we assumed for the 40% RE-share case,
requires a fourfold increase of the present installation - hardly feasible by pumped storage
inside Germany.
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Fig. 32. Shown is the variation of the Lake Constance level in February if it could be used
as a storage in the “equal energy/optimal mix case”. The example serves to demonstrate
the mere size of storage in case of a substantial RE share.

In order to better visualise the criticality of the storage problem, we exemplify the operational
conditions using Lake Constance as fictitious storage. Its area is 536 km?. We orient ourselves
on the local circumstances of the Schaffhausen hydropower station and assume 10 m for the
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water fall. Figure 32 shows the variation of the Lake Constance water level for the month of
February for the “optimal mix” and the “equal energy” case. The average water level variation
per 15 min is £30 cm; maximal variations of +3 and -1.5 m happen during the year. These are
values representative for the tidal heights at the North Sea coast — happening, however, once a
day. This example also allows highlighting the criticality of power handling by the storage
system. The average storage power corresponds to a water flow of 180000 m?/s. The average
inflow into Lake Constance is about 380 m®/s - a factor of 500 smaller. Correspondingly, the
power rating of the Schaffhausen hydropower station is smaller by a comparable number
(factor 900).

Storage at these scales needs therefore a new technical solution, which might be found in the
production of synthetic hydrocarbons. This technology — based on electrolysis for H,
production using surplus electricity and available CO, — works well at small scales. Critical is
the H; electrolysis in large scales. At present, most of the H, technically required is produced
by thermal steam reforming of methane. The development of stable, economic, and
environmentally acceptable electrolysis technology for large scales and intermittent operation
is still missing. But also with this technology the effort is gigantic. In order to produce the
necessary synthetic hydrocarbons a proper infrastructure is necessary, comparable to the
present German oil refining one.

The alternative — a “hydrogen economy” is known to be highly uneconomic because the circle
from electricity to hydrogen and back to electricity causes losses of a factor 4-5. This would
give rise to a tremendous price discrepancy between primary and secondary electricity with a
strong impact on the economy.

The geological conditions of Norway are often presented as the basis for Germany’s future
electricity storage. One has to be aware that at present pumped storage in Norway is just
sufficient to handle the wind in- and export electricity from and to Denmark. The addition of
large-scale water storage may be questioned out of environmental reasons though the
economic potential might be quite attractive. On the other hand, one may not expect that a
country with 5 Mill inhabitants will provided the technical resources to contribute to the
demand of 80 Mill people.

CO; reduction: A strong reduction of CO; release and an improvement of specific CO,
production can be achieved by the application of RE. Figure 31 shows that the German
electricity production is presently characterized by a high specific CO, production coefficient.
The technical effort is, however, tremendous if the release level of those countries should be
met, whose electricity supply mix consists of nuclear and hydro energy (Switzerland, Sweden
and France). This environmental quality can hardly be realized by the considered RE
techniques under reasonable practical and economic conditions.

There are additionally critical political and economic problems to be considered and
commented:

European development strategy: Many of the problems related to the effort to totally
change a basis technology in a rather short period of time could be ameliorated by a European
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wide approach. This is documented well in the scientific literature [15, 16]. Within an EU-
wide grid the load variation and the degree of intermittency is reduced. In the period where
the German supply situation may become critical because the RE share increases above 40%
Germany may be rather isolated with its enforced expansion in the use of RE. A similar
change may not be initiated in its neighbourhood, characterized by a supply structure
dominated by controllable power. This applies to Poland, Czech Republic, Switzerland,
France, Belgium, Sweden and Norway. In some countries, new nuclear power stations are
planned like in Poland, Czech Republic, Lithuania and Kaliningrad/Russia. Their grids will
not accommodate large amounts of variable electricity.

The different technologies to produce electricity used in Europe and the largely different per-
capita CO,-production as a corollary may further prohibit an EU-wide strategy for jointly
implementing RE on short notice. Some European countries like Switzerland, Sweden,
Norway and soon Finland meet already now the 2050 CO,-goals of Europe and will hardly
see any reason to change their supply technology with the consequence of a temporary
increase in CO,-production by commissioning fast thermal power stations to smooth out the
variable RE supply.
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Fig. 33. Plotted is the electricity price in arbitrary units (the costs for gas are stet to 100%
at its cf-factor) versus the capacity factor for the technologies considered in this report.

Economy: A RE dominated supply system for Germany requires an installed RE power of
about 240 GW, conventional power of about 84 GW, and a storage system with a capacity of
a few 100 GWh. The present storage is, however, mostly used to cope with peak-load
demands rather storing surplus electricity. The full-load hours of onshore and offshore wind
are well defined with about 1700 hours or 3800 h, respectively. Those of PV in Germany are
about 900 h. The use of variable sources with short full-load hours forces the other
components of the supply system operated during the gaps also to low capacity factors.
Specifically, the increase in power installation causes a corresponding decrease of the full-
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load hours of the back-up system. The storage, when seen exclusively as a means to store
surplus power, is subject to the same shortcomings causing low capacity factors. The
complete system comprises of components, which are not operated adequately in an economic
sense. Figure 33 shows the relation of electricity cost C and capacity factor cf for different
systems. The basic relation is C = a/cf + OC. The lower cf, the higher are the electricity costs.
OC are the operational and management costs. oo contains the investment costs, the system
power, the interest rate and the economic plant life time [17]. The electricity costs shown in
Fig. 33 are in arbitrary units because the error bars are large and we are only interested in the
inner relation between the systems considered here. The solid dot on each curve denotes the
typical cf of the systems considered. The electricity price of gas is set to 100% at its rated cf-
value. The other supply forms are scaled according to their individual oo and OC values.
Onshore wind electricity is about 30% more expensive than gas; offshore wind about 50%.
PV suffers strongly from its low capacity factor.

The costs vs. cf curve is rather flat for gas. The reason is that in this case a lower cf
compensates the economic losses because without operation at least fuel costs are saved. This
is different in the other cases, which show a more sensitive dependence on cf. Offshore wind
is also characterized by high O&M costs, which, however, have large error bars (not shown)
because specifically the maintenance logistics is not yet fully optimised. A future large-scale
storage would also be subject to a high sensitivity on the capacity factor. Therefore, it is
difficult to see the economic viability of a large-scale storage system for surplus energy
irrespective of the selected technology. All CO,-free technologies with no fuel costs (wind,
PV, solar thermal) or with low fuel costs (fission, fusion) show a sensitive dependence on cf.

The use of low capacity factor supply systems ultimately touches the question of their
economic use and realisation in the frame of a free economy resting on basic market rules.
Already now utilities in Germany seem to be hesitant to build new thermal power stations
because of economic uncertainties caused predominantly by short full load hours. Possibly
first the economic models for the future operation of storage systems have to be clarified
before initiating large scale projects in this field.

Limit of RE use: For a possibly manageable case, 40% of RE energy share has been
concluded from the studies presented here. The total nominal power arsenal corresponds to
140 GW RE and 86 GW back-up power. Within this limitation, the surplus power and the
dispatched grid powers remains small (see Fig. 14). The full-load hours of the back-up system
is close to 4000 h — maybe a border case for economic operation. The specific CO, production
drops from presently 0.5 kgCO,/kWh to about 0.25 kgCO2/kWh.

Discussion of the assumptions: Here we would like to discuss the assumptions we made for
the analyses presented:

(1) Constancy of demand: We have assumed that the annual demand will not drop rather stay
constant. The motivation is given in the main text e.g. the expectation of the additional
demand by a larger fraction of electric cars. Just to back this assertion, we analyse the
additional electricity demand for electro-vehicles by considering an upper limit. In 2010, the
passenger cars covered about 6 10 km in Germany. This corresponds to an individual
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mileage of 7500 km per year. With the assumption for electro-cars of 200 Wh/km, the
additional electricity need adds up to 120 TWh, which increases the present demand by more
than 20%. This increase can hardly be compensated not to speak about overcompensated by
saving measures elsewhere.

We have also assumed that the load curves as given in Figs. 1 and 2 remain invariant. As a
consequence, we have discarded major effects from “demand-side adaptive management” in
the interpretation of demand response. The reason is the unfavourable daily structure of load,
back-up and surplus power as presented in the following. The demand response concept
foresees to move part of the demand into the low-load periods driven by the economic
stimulus of lower electricity costs. The phasing for this concept does not match, however. The
summed-up surplus during the night is 56 TWh under the optimal mix conditions for the
“equal energy case”. This compares to 97 TWh produced during the day. The back-up figures
are 89 TWh during the night and 62 TWh during the day. Surplus coincides with the peak-
load period. The reason is the high PV production during the day as already pointed out in
[18].

8 10 B8 &K A RO KX Rk B | 5 BRI B R B P G O R O R U R TR TR T R R G
] b :
p 3 Load | ]
610 ' W
g 1 ¥ . | ]
L. #10%E 1 ]
o) i ! ]
% surplus ‘surplus
a
2 10°
C béck—dp
0 | 8 B 55 (G Ol il BN S B0 OGO = 159 5 I8 S &) (66 (A Bt B Y5 S | | el B0 = (s B T B (S5 Ham O 581 = = PO ] ) B2 1 o S0 220 05
0 6 12 18 240 6 12 18 24

time (h) time (h)

Fig. 34. Plotted are the daily variation of reduced load, surplus and back-up power
averaged over the year. a) represents the average over the week days Monday to Friday
and b) those of the weekends, Saturday and Sunday.

The up-scaled 2010 data for the optimal mix and “equal energy case” yield the expected
typical daily variation of load, back-up and surplus power. We average over the weeks of
2010 but discriminate between Monday-Friday and Saturday/Sunday because of different load
structures (see e.g. Fig. 2). The averaging is appropriate for the consideration of this chapter —
behaviourism and industrial process changes in the frame of demand-side management -
because also demand-side management has to orient itself on the daily and weekly cycles. The
organisation of erratic shifts of industrial processes following the electricity cost pattern
clocked by the RE offer does not seem practical even for mostly automatic processes.
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Figure 34 plots the variation of load, back-up and surplus power for the two weekly periods
considered. Plotted is the remaining back-up, which cannot be traded-off against the surplus
power because the timing does not fit. During the week, the surplus power is rather periodic
by PV production during the day in periods where, however, the load is also largest. Surplus
energy is not produced preferentially in low-load periods. The wrong phasing leads to a
contradicting situation; a fundamental financial stimulation for demand response is not
provided.

Back-up power is mostly needed in the mornings and the evenings because the activity profile
represented by the load is wider than the one of the average solar radiation. Again, a better use
of the surplus power and reduction of back-up power requires an intensification of the
activities mostly during the day. If nevertheless, the nightly surplus energy is used to reduce
the back-up power during the day, about 7 TWh can be properly dispatched over the year. The
back-up demand is reduced by 4.5% - hardly justifying the investment for such a scheme.
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Fig. 35. The modified load with the weekend load pattern replaced by the average load
pattern during the week (Monday through Friday) is plotted against the original load.

Facing the structures shown in Fig. 34 a) and b), dominated by the coincidence of maximal
load and maximal surplus energy, it is difficult to see how larger shares of the energy demand
could be shifted in time. During the weekend, a large part of the surplus is collected because
the load is low. The back-up power fully responds to the relatively increased surplus offer and
is reduced in this period. More electricity consuming processes could, therefore, be moved to
the weekends smoothing out the weekly load pattern. This seems to be the largest effect in the
effort to adjust the demand to the varying supply in the frame of demand-side management.
When we replace the low-demand weekends by the average demand during the week (leaving
the overall annual energy demand at 562 TWh) a better use of the surplus power is possible.
Figure 35 plots the modified load against the original one. The overall power level during the

week is reduced (lower slope) owing to the increased demand during the weekend. The
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minimal and maximal loads during the weekends are fixed (see horizontal lines in Fig. 34) in
the case of the modified load (the constant average Monday to Friday load values replace the
original and lower values of Saturday and Sunday) whereas the original Saturday/Sunday
loads vary slightly. The use of the weekends allows reducing the peak residual power from 84
GW to 80 GW and extends the full-load hours of the back-up system from 1825 h to 1902 h.
The integral energy savings from improved use of back-up or surplus powers, respectively,
are small — in the range of 1.5%. The savings in CO, emission are in the same range. Facing
the supply and demand structure as shown in Fig. 34, the use of the weekends seem to provide
the largest margins in demand-side management. Nevertheless, its effect is small justifying
the original assumptions taken in this paper.

(2) Discarding of bio-gas for electricity production: In this paper we assumed that bio-gas is
not used for electricity production rather that bio-energy will be used for transportation, most
probably for aviation where alternatives to liquid high-density fuels may not be available. In
2010, 14.5 TWh are produced from Biogas in Germany [19]. This value compares to 153
TWh back-up energy for the ,,equal energy/optimal mix case”. Less than 10% could be
substituted in a CO,-free form using bio-energy. This would ease but not solve the problem.

The recent study by the Leopoldina National Academy of Sciences on the use of bio-energy
[20] confirms the findings of global studies on the limits of bio-mass use [21] viz only a few
percent to the primary energy can be contributed by bio-mass. Reserving the maximal bio-
mass available in Germany of 140 TWh for electricity production [17] would replace less than
50% of the back-up energy (with an assumed efficiency of 50%). Though a large contribution
comes about by considering an unrealistic limit, the problem would still not be solved. Using
bio-mass for aviation where hardly convincing sustainable fuel alternatives exist at present
would require for Germany replacing about 85 TWh fossil fuel. Also this is a border-line case.

(3) The technology change as isolated process in Germany without the benefit of a more
integral European approach: We have already mentioned the difficulties of Germany to match
the expansion of the high-voltage grid to that of RE sources. One reason for the delays is
socio-economic and lies in the local resistance of concerned communities. It can hardly be
expected that additional grids and connectors are put in place in EU countries just for
transmitting electricity from remote sources (Spain, southern Italy, North Africa) to Germany.
The melioration of the operational disadvantages of RE by a larger integrating area will
happen when Europe in total changes its supply technology. For this purpose, new grids have
to be build mostly motivated and executed by national interests. The time scales between the
German transition to a RE electricity supply and the possible one of Europe do not match.
Therefore, in this paper, we assumed that the energy turnaround of Germany cannot rely on
the meliorating benefits of a more integrated approach.

We have also ignored large-scale electricity import, which, on the other hand, is a vital
element of the Germany planning for 2050. Thermal power stations reach their operational
limits not only in Germany but also in Europe and there will be a deficiency of several 100
GW power in the next decade. The possible import of nuclear power from the newly erected
power stations in the East of Germany has not been considered in this paper but may be a
realistic option for the future.
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Literature search: There is vast material available on the topic of this report, which I will not
cover the more so because of the bias of many of them. | will point out, however, the PhD-
theses “Strommarktdesign angesichts des Ausbaus fluktuierender Stromerzeugung” of Niels
Ehlers [22] and “Hohe Anteile von Solar- und Windstrom unter Bericksichtigung hoher
zeitlicher Auflésung von Angebot und Nachfrage* by Th. Grolle Bockmann [23]. Both books
have an objective and approach similar to the present report. Ehlers stresses more the
economic aspects, GroRe Bockmann the system related and technological issues. Both works
go beyond what has been presented here.

Ehlers is concerned about the economic operation of storage and also concludes that seasonal
storage is not possible even with optimistic assumptions. GroRe Bdckmann observed also an
optimum in the mix of wind and PV power and devotes detailed investigations to the handling
of surplus power. The paper also addresses the economy of storage and its criticality in
handling large power levels.

A detailed study on the German electricity development was recently published by DENA,
the German Energy Agency, guided by the political framework for electricty supply with
goals fixed for 2020 and 2050. The report is entitled “Integration der erneuerbaren Energien
in den deutsch-europdischen Strommarkt® [24]. The report is concerned with the large power
capacity needed and addresses ways to handle the surplus, deals with the aspects of import,
storage and demand-side management.

The deficiencies of a supply system based largely on fluctuating sources with large shares are
evident — a complete demand coverage is not possible, a back-up system is needed, which will
mostly be fossil fuel based and not allow a complete CO,-free system. From this point of
view, RE alone are not able to provide a sustainable supply system. The economy of a large-
scale RE electricity supply system and its viability for a highly industrialised society has to be
demonstrated. Like in the past, the most probable outcome of such a demonstration will be a
powerful and reliable electricity system based on different and complementary concepts in
which RE playing an important role.

It is difficult to see that other countries will follow Germany in the rather exclusive strategy it
took to change the sources for a commaodity of this high economic relevance. For others, the
implementation of RE in large scales may be too expensive, not on top of the political agenda
or the natural conditions are simply inadequate.

As a consequence, the development of alternative electricity supply forms is still of highest
relevance and may become even more urgent after a realistic view into the capabilities and the
limits of RE. Because of the limitations and shortcomings in their use, the most obvious
question will be whether and how an electricity system based on variable sources can be
improved and supplemented. This will be a question classically posed to research and
engineering because these disciplines have found the ways in the past to liberate mankind
from the imponderabilities and perils of nature.
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