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The magnetohydrodynamic dynamo effect is considered to be the major cause of magnetic field generation
in geo- and astrophysical systems. Recent experimental andnumerical results show that turbulence constitutes
an obstacle to dynamos; yet its role in this context is not totally clear. Via numerical simulations, we identify
large-scale turbulent vortices with a detrimental effect on the amplification of the magnetic field in a geometry
of experimental interest, and propose a strategy for facilitating the dynamo instability by manipulating these
detrimental “hidden” dynamics.
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Introduction.–The magnetohydrodynamic (MHD) dynamo
effect is considered to be the main cause of the generation
of self-sustained magnetic fields in geo- and astrophysicalob-
jects [1]: The kinetic energy of an electrically conductingfluid
can be transformed into magnetic energy,EM, as found ana-
lytically, experimentally, and numerically [2, 3, 5, 6]. A mag-
netic fieldB can be generated in a conducting fluid (e.g., liquid
metal or plasma) when the advection term in the governing in-
duction equation sufficiently dominates the diffusion termin
order to amplify initial magnetic perturbations, and when the
geometry of the flow is such that an amplification mechanism
can occur.

Recent experimental, analytical and numerical investiga-
tions [4, 7–10] suggest that large-scale fluctuations of theflow
constitute an obstacle to dynamos, which are sometimes not
observed experimentally at Reynolds numbers where they are
theoretically expected [11]. Strategies are needed in order to
overcome this problem, and turbulence control is considered
to be the key action to take [10].

We study numerically dynamo action in a turbulent flow
that is stirred by a large-scale, constant axisymmetric force in
spherical geometry, as in the Madison Dynamo Experiment
(MDE) [11]. The force creates a two-vortex flow around thez
axis (the so-calleds2t2flow), previously studied numerically
by Dudley and James [15] who suggested it as a flow which
optimizes the magnetic field generation. We carried out simu-
lations using the DYNAMO code [16, 17], a pseudo-spectral
code which mimics the conditions of the MDE, in order to
identify the vortices with possible negative effects, charac-
terized their scale and their temporal evolution, and finally
proposed practical strategies whereby these vortices may be
controlled experimentally.

In order to understand which configurations are detrimen-
tal for the dynamo process, we analyze the simulated veloc-
ity fields via Singular Value Decomposition (SVD), a mathe-
matical method used in order to simplify the representationof
datasets (see [18] or [19] for its applications to fluid dynam-
ics). SVD reduces the number of variables necessary to quan-
tify the properties of the data under analysis: One can limit
oneself to analyzing only the information described typically
by the first few new variables. A generic spatio-temporal field

A is sampled overNspacespatial points andNtime timeshots,
i.e.,Ai j = A(ri ,t j) (i = 1, ...,Nspace; j = 1, ...,Ntime). It is then
decomposed via the SVD theorem,

Ai j =
NSVD

∑
k=1

σkuk(ri)vk(t j), (1)

whereNSVD= min(Nspace,Ntime).
The spatial fieldsuk(ri) are the new generalized basis func-

tions and the temporal functionsσkvk(t j) can be seen as the
temporal evolution of the amplitude of thek-th mode. The
“singular values”σk are ordered in descending order of mag-
nitude: σ1 > σ2 > ... > σNSVD; they quantify the weight of
the associatedk-th mode relative to the other modes, i.e., the
amount of information (closely related to the energy) con-
tained in it. In the following, the fieldsuk(ri) will be called
the SVD modes.

Simulation setup.–The DYNAMO code solves the Navier-
Stokes equation coupled with the magnetic induction equa-
tion, which, in its nondimensional form, reads

∂B
∂t

= Rm∇× (v×B)+ ∇2B, (2)

where Rm= µ0σRU is the magnetic Reynolds,R the char-
acteristic length associated with the system (the radius ofthe
sphere),U the characteristic amplitude of the velocity field
v, and σ the conductivity of the medium. We apply the
SVD analysis on the spectral representation of the velocity
fields produced by hydrodynamical simulations (i.e., setting
to zero the conductivity of the medium) whose numerical fluid
Reynolds numbers are Re0 = {600,1100,3000}. Re0 is a pa-
rameter read by the DYNAMO code before a simulation is
started; it is multiplied with the characteristic velocityU to
obtain the real fluid Reynolds number Re.

The number of radial grid points in the sphere isnr = 512.
The DYNAMO code uses a spherical harmonics decompo-
sition to handle theθ andφ dependencies of the fields: We
study three simulations with spectral resolution oflmax =
{52,52,180}, respectively, wherelmax is the maximum “angu-
lar momentum” wavenumber. The velocity fields are decom-
posed intonmodes= (lmax+1)(lmax+2)/2−1 modes [21]. We
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analyze, respectively,Ntime = {1550,700,400} snapshots of
the velocity field after the transient phase. The numbersNtime

are chosen according to the available computer resources. We
represent the spatio-temporal DYNAMO datasets (i.e., the
spectral components of the velocity field) as anNspace×Ntime

matrix, whereNspace is 2nrnmodes(the prefactor 2 due to the
presence of a toroidal and a poloidal component for every
spherical harmonic mode, see [21]).

Singular values.–The decay of the singular valuesσk is
exponential in the medium range ofk modes and it is even
steeper at lowk, i.e., the information on the dynamics is con-
densed in the first SVD modes. Table I reports the percentage
of information content of the first 6k modes calculated via the
definition ofpk = σ2

k(∑
NSVD
k=1 σ2

k)
−1 (i.e., the relative amount of

information contained in thek-th mode, see above). At higher
Re0, the flow becomes progressively more turbulent and, com-
paratively, more energy is drained from the mean field and
stored in the other extraneous modes.

TABLE I: Information content of the first 6k modes calculated via
pk.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Re0 = 600 66.6 % 9.6% 5.4% 2.9% 2.4% 1.8%
Re0 = 1100 56.7 % 16.7% 5.1% 3.6% 2.6% 1.7%
Re0 = 3000 54.9 % 15.2% 5.3% 4.1% 2.5% 1.9%

The first two SVD modes.–The first SVD mode,u1(r),
broadly captures the essential features of this hydrodynamic
virtual experiment, being very similar to the mean field, which
in turn resembles thes2t2input flow.

The second SVD eigenfunction,u2(r), is still relatively im-
portant (see Table I). It consists of three main components:(a)
a toroidal vortex (which shares the symmetry of the impellers)
with a strong activity atρ ∼ 0.14R (R is the radius of the
sphere,ρ is in cylindrical coordinates); (b) a poloidal circu-
lation which provides the velocity field with a vertical compo-
nent; this component has a relatively strong amplitude at about
the same cylindrical distance from thez axis as the toroidal
vortex, makingu2(r) helical; (c) noisy toroidal and poloidal
components with negligible amplitudes. In other words, the
vortex has a smooth and large-scale spatial dependence (see
Figures 1 and 2), with an elongated helical shape oriented
along the axis of symmetry of the forcing mechanism. It does
not show any counter-rotating feature, as thes2t2flow; on the
contrary, its “winding” configuration is equal in the two hemi-
spheres.

Note that this flow is characterized, at first glance, by a
puzzling breaking of the symmetry expected from the driving
mechanism; the flow is driven by counter-rotating impellers,
and yetu2(r) is characterized by a uniform rotation orienta-
tion on the axis between the impellers. The expected sym-
metry can only be observed - in an average sense - when one
follows the temporal evolution of the mode, which exhibits
alternating phases of opposite rotational orientation (see be-
low).

The presence (and the fluctuations) of these secondary flow

FIG. 1: (Color online) Cross section of the sphere, coordinate plane
yz. The color represents the magnitude of the velocity field of the
second SVD mode, Re0 = 600. The vortex has its strongest activity
along the axis of symmetry, at a distance of∼ 0.14.

FIG. 2: (Color online) Cross section of the sphere, coordinate plane
yz. The color represents theφ component of the velocity field of the
second SVD mode, Re0 = 600. The color changes discontinuously
from y < 0 to y > 0 due to the fact that they-component of the unit
vectorêφ changes sign formy > 0 toy > 0.

can extract energy from thegrowingmagnetic mode and inject
it into dampedmagnetic modes, hampering the dynamo insta-
bility, e.g., via a non-linear three-mode interaction similar to
that described in [10].

Temporal evolution of the first two SVD modes.–The SVD
analysis provides a detailed description of the dynamics of
the uk(r) modes: The temporal eigenfunctionsσ1v1(t) and
σ2v2(t) describe the (decoupled) dynamics of the associated
spatial modes. As can be seen in Figures 3 and 4, the imag-
inary parts of the two time series are negligible compared to
the real parts. The real part ofv1(t) oscillates around a sta-
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ble value which never crosses theσ1v1(t) = 0 axis: As we
expect from the constancy of the force, the dynamics of the
velocity field is basically a constants2t2flow with a superim-
posed turbulent variation of the local magnitude of the vector
field, conserving the rotational direction in each hemisphere.
The behavior ofσ2v2(t) is completely different: The real part
changes sign, i.e., the helical vortex alternates phases with op-
posite rotational directions. These dynamics are difficultto
extract without the use of SVD, which constructs basis func-
tions specifically suited to the problem, and also clearly eluci-
dates the temporal dynamics of each basis function.

The dynamics of this hydrodynamic simulation can be de-
scribed by the following scenario. The usual counter-rotating
s2t2flow is produced by the forcing mechanism and it consti-
tutes the main component of the flow, i.e., a stationary back-
ground flow. Superimposed upon this flow, a vortex-like com-
ponent is spread over the axis of symmetry, with an alternat-
ing activity between two opposed configurations, one with the
same rotation direction of thes2t2flow in the northern hemi-
sphere, the other one in the southern hemisphere. The addi-
tivity property of the decomposition states that the field asso-
ciated with this secondary motion reinforces the magnitudeof
the velocity in the northern (southern) hemispheres and weak-
ens the other one, when it is in the former (latter) configura-
tion: In addition to the expecteds2t2background flow, each
hemisphere has a pulsating activity in counter-phase respect
to the other.

It is interesting to note that a similar behavior has been
obtained experimentally for a turbulent von Kármán swirling
flow, where two impellers counter-rotate inside a cylindrical
cavity [12–14]. The flow shows two configurations, each one
characterized by a “dominant cell” (alternatively, the north
or the south cell) with a higher velocity and a larger spatial
extent, comparable to the “dominant hemisphere” picture de-
scribed above (although the experimental Re can reach values
of 106).

Role of time-stationary u2(r) in the dynamo process.–In
order to identify the impact ofu2(r) on the dynamo, we per-
formed three kinds of time-stationary kinematic (i.e., theflow
does not evolve and is decoupled from the magnetic field) sim-
ulations at Re0 = 600 and different Rm. The first one uses as
fluid flow only u1(r) (the dominant mode), weighted with the
mean value〈σ1v1(t)〉 (see Fig. 3). The second (third) run uses
the superposition ofu1(r) with u2(r), having weightedu2(r)
with the maximum positive (minimum negative) value of the
oscillating time trace. The impact on the dynamo process can
be summarized by comparing the growth rates of the mag-
netic energy (Table II and Fig. 5, runs indicated symbolically
as “1”, “1+2”, “1-2”, respectively).

As Fig. 5 shows, a time-stationaryu2(r) has adetrimental
effectwhen coupled to the first SVD mode at Re0 = 600. At
Re0 = 1100,u1(r) is noisier and less axisymmetric since the
temporal sampling is shorter (the resolution is higher and the
dataset should be reduced in order to apply the SVD with the
same CPU resources): adding and subtractingu1(r) andu2(r)
produces different values ofγ because the noisy toroidal com-

FIG. 3: (Color online) Real and imaginary parts of the SVD
temporal eigenfunctionv1(t).

FIG. 4: (Color online) Real and imaginary parts of the
SVD temporal eigenfunctionv2(t).

FIG. 5: (Color online) Growth rates ofEM for the runs “1”,
“1+2”, and “1-2”, Re0 = 600.

ponent ofu1(r) tends to cancel outu2(r) in the ”1-2” config-
uration. On the other hand, in the “1+2” configuration,u2(r)
turns out to be detrimental. This last analysis does not take
into consideration the role of the fluctuations inu2(r), which
play a detrimental role, as suggested by the three-wave turbu-
lent interaction picture in [10].
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TABLE II: Growth rates ofEM for the runs “1” and “1+2”, Re0 =
1100.

“1” “1+2”
Rm0=100 5.64±0.013 −3.8±0.4
Rm0=150 27.4±0.4 5.1±0.5

An interpretation of theRmc(Re) curve.–One of the main
results of [22] is the study of the stability curve Rmc(Re)
of this system, where Rmc is the critical magnetic Reynolds
number (above which the dynamo instability takes place). The
underlying physical mechanism of this curve can be explained
in more detail in the light of the results of this work. Table
I shows that the relative energy content of the vortices with
a negative effect is enhanced by turbulence, whereas the en-
ergy in the mean flow would still depend only on the large-
scale force (and not on Re). In fact, the presence ofu2(r)
at Re0 = 600 enhances Rmc by 20%, whereas at Re0 = 1100
by 37%. The picture suggests that turbulence, increasing the
energy ofun(r) (with n≥ 2) and not ofu1(r) - which is pre-
scribed by the force - makes the dynamo instability more dif-
ficult to reach, as the quasi-linear behavior of the Rmc(Re)
curve shows at low Re. On the other hand, the saturation of the
curve at high Re can be explained by the fact that the modes
at smaller scales are not allowed to grow indefinitely at high
Re0 without a specific small-scale force.

A possible strategy for enhancing the dynamo.–In order to
suppress or manipulate these detrimental dynamics, we im-
plemented in the code the effect of a discoidal baffle on the
equatorial plane (a circular plate in the middle of the plane).
Kinematic simulations show that the growth rateγ of EM is
strongly enhanced by such a disk, whose radiusrd was chosen
in order to cover spatially at least the region of the equatorial
plane through whichu2(r) flows. Table III shows the effect
of the disk onγ. A largerrd is needed to have a non negligi-
ble effect at Re0 = 1000, confirming the necessity of a stricter
control of large-scale turbulence at higher Re0. The valueγr

represents the growth rate ofEM in the presence of a outer
ring on the equatorial plane, as implemented recently in the
MDE and used in the past in the VKS experiment. The simu-
lations show that the ring effect does not improve the dynamo
efficiency as the disc does.

Kinematic simulations show that the growth rateγ of EM

is enhanced by both the ring and the disc. Nevertheless, the
ring effect is not as strong as the disc effect. Table III shows
the effect of the disc on the default growth rateγ. We indi-
cate withγr the growth rate ofEM in presence of the ring,γd

in presence of the disc. It should be noted that a largerrd is
needed to have a non negligible effect at Re0 = 1000, confirm-
ing the necessity of a stricter control of large scale turbulence
at higher Re0.

This last analysis suggests how to put into practice these
results: controlling the symmetry around the equator of the
counter-rotating flow, avoiding a strong poloidal circulation
near the axis and facilitating the separation of the dynamics
of the toroidal circulation in the two hemispheres can be the

TABLE III: Kinematic simulations of dynamos with an implemented
equatorial disc in the center of the equatorial plane.γd is the growth
rate (the time is scaled to the resistive diffusion time,τσ = µ0σL2) of
EM in the presence of the disk;γr in the presence of the ring;γ0 is
the default growth rate, i.e., without any baffle.

Re0 Rm0 lmax rd γr γd γ0
300 80 30 0.28 7.62 18.8 4
300 100 30 0.28 15.5 30.8 9.8
300 150 30 0.28 31.2 58.6 24
300 250 30 0.28 52 109 39
600 250 52 0.28 28.4 45.4 22.6
600 250 72 0.28 29.9 50.4 22.6
1000 300 52 0.65 10.4 18.4 10.4

right strategy for facilitating the dynamo instability.
Summary.–In this Letter, we have reported about hydro-

dynamic simulations in the context of dynamo theory in a
flow geometry important for laboratory dynamos. We have
shown that a mean counter-rotating flow develops a smaller-
amplitude, large-scale turbulent helical vortex orientedalong
the symmetry axis of the forcing mechanism. This vortex has
a spatio-temporal behavior which has been observed experi-
mentally in a similar topology: It does not counter-rotate and
its rotational orientation changes in time, enforcing the stir-
ring mechanism in only one hemisphere at a time. These sec-
ondary dynamics turn out to be detrimental for dynamo pur-
poses. Further MHD simulations suggest experimental meth-
ods for facilitating dynamo excitation through manipulation
of this helical flow.

The computations were performed on the BOB and TOK
clusters hosted at the Garching Computing Center (RZG) of
the Max Planck Society.
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