Facilitating dynamo action via control of large-scale turbulence
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The magnetohydrodynamic dynamo effect is considered ttvdeniajor cause of magnetic field generation
in geo- and astrophysical systems. Recent experimentahameérical results show that turbulence constitutes
an obstacle to dynamos; yet its role in this context is naltptlear. Via numerical simulations, we identify
large-scale turbulent vortices with a detrimental effettioe amplification of the magnetic field in a geometry
of experimental interest, and propose a strategy for fatiig the dynamo instability by manipulating these
detrimental “hidden” dynamics.
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Introduction.—The magnetohydrodynamic (MHD) dynamo A is sampled oveNspace Spatial points andime timeshots,
effect is considered to be the main cause of the generatioire., Ajj = A(ri,tj) (i=1,...,Nspace j = 1,...,Niime). It is then
of self-sustained magnetic fields in geo- and astrophysizal decomposed via the SVD theorem,
jects [1]: The kinetic energy of an electrically conductftuid
can be transformed into magnetic enefigy,, as found ana- Nsvb
lytically, experimentally, and numerically [2, 3, 5, 6]. AaD- Aj = Z OkUk(ri)Vk(tj), (1)
netic fieldB can be generated in a conducting fluid (e.g., liquid K=1
metal or plasma) when the advection term in the governing in

duction equation sufficiently dominates the diffusion térm The spatial fieldsi(r;) are the new generalized basis func-

order to amplify |n|t|a_l magnetic perturbat_l(_)nsz and theF tions and the temporal functiorvi(tj) can be seen as the
geometry of the flow is such that an amplification meChan'Srrfemporal evolution of the amplitude of theth mode. The

can oceur. ) ] o . “singular valuesoy are ordered in descending order of mag-
Recent experimental, analytical and numerical investigap;,de: 01> 02 > ... > Ong,p, they quantify the weight of

tions [4, 7-10] suggest that large-scale fluctuations ofltve o asgociateld-th mode relative to the other modes, i.e., the
constitute an obstacle to dynamos, which are sometimes NAnount of information (closely related to the energy) con-

observed experimentally at Reynolds numbers where they ak8ined in it. In the following, the fieldsi(r;) will be called
theoretically expected [11]. Strategies are needed inrdede 1o SvD modes.

overcome this problem, and turbulence control is consilere  gjmuylation setup.The DYNAMO code solves the Navier-

to be the key action to take [10]. Stokes equation coupled with the magnetic induction equa-
We study numerically dynamo action in a turbulent flow tjon which, in its nondimensional form, reads

that is stirred by a large-scale, constant axisymmetricefdam

spherical geometry, as in the Madison Dynamo Experiment a8 =Rm x (v x B) + 0°B 2)

(MDE) [11]. The force creates a two-vortex flow around the ot ’

axis (the so-called2t2flow), previously studied numerically where Rm= ppoRU is the magnetic Reynold® the char-

by Dudley and James [15] who suggested it as a flow whickacteristic length associated with the system (the radiuiseof

optimizes the magnetic field generation. We carried out simusphere)U the characteristic amplitude of the velocity field

lations using the DYNAMO code [16, 17], a pseudo-spectral, and o the conductivity of the medium. We apply the

code which mimics the conditions of the MDE, in order to SVD analysis on the spectral representation of the velocity

identify the vortices with possible negative effects, @tar fields produced by hydrodynamical simulations (i.e., agtti

terized their scale and their temporal evolution, and fynall to zero the conductivity of the medium) whose numerical fluid

proposed practical strategies whereby these vortices raay tReynolds numbers are Re- {600,110Q 3000}. Re is a pa-

controlled experimentally. rameter read by the DYNAMO code before a simulation is
In order to understand which configurations are detrimenstarted; it is multiplied with the characteristic velocltyto

tal for the dynamo process, we analyze the simulated veloabtain the real fluid Reynolds number Re.

ity fields via Singular Value Decomposition (SVD), a mathe- The number of radial grid points in the spherejis= 512.

matical method used in order to simplify the representation The DYNAMO code uses a spherical harmonics decompo-

datasets (see [18] or [19] for its applications to fluid dyram sition to handle thé and ¢ dependencies of the fields: We

ics). SVD reduces the number of variables necessary to quastudy three simulations with spectral resolution Igfx =

tify the properties of the data under analysis: One can limit{52 52, 180}, respectively, wherknaxis the maximum “angu-

oneself to analyzing only the information described tyfiyca lar momentum” wavenumber. The velocity fields are decom-

by the first few new variables. A generic spatio-temporatifiel posed intameges= (Imax+ 1) (Imax+2)/2— 1 modes [21]. We

whereNsy p = min(Ns pace Ntime)-



analyze, respectivelfime = {1550 700,400} snapshots of
the velocity field after the transient phase. The numbikgs
are chosen according to the available computer resouraes. W
represent the spatio-temporal DYNAMO datasets (i.e., the
spectral components of the velocity field) asNygacex Niime
matrix, whereNspaceiS 2nsNmodes(the prefactor 2 due to the
presence of a toroidal and a poloidal component for every
spherical harmonic mode, see [21]).

Singular values.The decay of the singular valuex is
exponential in the medium range bfmodes and it is even
steeper at low, i.e., the information on the dynamics is con-
densed in the first SVD modes. Table | reports the percentage
of information content of the first modes calculated via the
definition of px = 62(3 12}°0Z) 1 (i.e., the relative amount of
information contained in thk-th mode, see above). At higher
Rey, the flow becomes progressively more turbulent and, com-
paratively, more energy is drained from the mean field an
stored in the other extraneous modes.

%IG. 1: (Color online) Cross section of the sphere, cootéimdane
yz The color represents the magnitude of the velocity fieldhef t
second SVD mode, Re= 600. The vortex has its strongest activity
TABLE I: Information content of the first & modes calculated via along the axis of symmetry, at a distance~00.14.

Px-

k=1 k=2 k=3 k=4k=5k=6
Rey =600 66.6 % 9.6% 5.4% 2.9% 2.4% 1.8%
Rey =1100 56.7 % 16.7% 5.1% 3.6% 2.6% 1.7%
Rey = 3000 54.9 % 15.2% 5.3% 4.1% 2.5% 1.9%

The first two SVD modesFhe first SVD mode,u;(r),
broadly captures the essential features of this hydrodiymam
virtual experiment, being very similar to the mean field, ethi
in turn resembles thg2t2input flow.

The second SVD eigenfunctiom(r), is still relatively im-
portant (see Table I). It consists of three main componéals:

a toroidal vortex (which shares the symmetry of the imps)ler
with a strong activity aipp ~ 0.14R (R is the radius of the
spherep is in cylindrical coordinates); (b) a poloidal circu-
lation which provides the velocity field with a vertical coop
nent; this component has a relatively strong amplitude @b
the same cylindrical distance from tkzeaxis as the toroidal
vortex, makinguz(r) helical; (c) noisy toroidal and poloidal FIG. 2: (Color online) Cross section of the sphere, cootdipdane
components with negligible amplitudes. In other words, theyz The color represents thgcomponent of the velocity field of the
vortex has a smooth and large-scale spatial dependence (s¥&ond SVD mode, Re= 600. The color changes discontinuously
Figures 1 and 2), with an elongated helical shape orientefio™m Y < 0 toy > 0 due to the fact that thecomponent of the unit
along the axis of symmetry of the forcing mechanism. It doed/€CtOre changes sign forg > 0 toy > 0.

not show any counter-rotating feature, ass@&flow; on the

contrary, its “winding” configuration is equal in the two hem

spheres. can extract energy from tlggowingmagnetic mode and inject

Note that this flow is characterized, at first glance, by ait into dampednagnetic modes, hampering the dynamo insta-
puzzling breaking of the symmetry expected from the drivingbility, €.g., via a non-linear three-mode interaction samto
mechanism; the flow is driven by counter-rotating impellers that described in [10].
and yetuy(r) is characterized by a uniform rotation orienta-  Temporal evolution of the first two SVD modeBhe SVD
tion on the axis between the impellers. The expected symanalysis provides a detailed description of the dynamics of
metry can only be observed - in an average sense - when ottiee ux(r) modes: The temporal eigenfunctioagvs(t) and
follows the temporal evolution of the mode, which exhibits oov»(t) describe the (decoupled) dynamics of the associated
alternating phases of opposite rotational orientatioe (g  spatial modes. As can be seen in Figures 3 and 4, the imag-
low). inary parts of the two time series are negligible compared to

The presence (and the fluctuations) of these secondary flothe real parts. The real part vf(t) oscillates around a sta-




ble value which never crosses tbgvi(t) = 0 axis: As we
expect from the constancy of the force, the dynamics of the
velocity field is basically a constaat2flow with a superim-
posed turbulent variation of the local magnitude of the @ect
field, conserving the rotational direction in each hemisphe
The behavior ob,vs(t) is completely different: The real part
changes sign, i.e., the helical vortex alternates phasbowi
posite rotational directions. These dynamics are diffitmilt
extract without the use of SVD, which constructs basis func-
tions specifically suited to the problem, and also cleailgiel
dates the temporal dynamics of each basis function.

The dynamics of this hydrodynamic simulation can be de-
scribed by the following scenario. The usual counter-nogat
s2t2flow is produced by the forcing mechanism and it consti-
tutes the main component of the flow, i.e., a stationary back-
ground flow. Superimposed upon this flow, a vortex-like com-
ponent is spread over the axis of symmetry, with an alternat-
ing activity between two opposed configurations, one with th
same rotation direction of th&t2flow in the northern hemi-
sphere, the other one in the southern hemisphere. The addi-
tivity property of the decomposition states that the fielsioas
ciated with this secondary motion reinforces the magnitfde
the velocity in the northern (southern) hemispheres andwea
ens the other one, when it is in the former (latter) configura-
tion: In addition to the expectesPt2background flow, each
hemisphere has a pulsating activity in counter-phase cespe
to the other.

It is interesting to note that a similar behavior has been
obtained experimentally for a turbulent von Karman singl
flow, where two impellers counter-rotate inside a cylindric
cavity [12-14]. The flow shows two configurations, each one
characterized by a “dominant cell” (alternatively, the thor
or the south cell) with a higher velocity and a larger spatial
extent, comparable to the “dominant hemisphere” picture de
scribed above (although the experimental Re can reachs/alue
of 10°).

Role of time-stationary 4{r) in the dynamo processlta
order to identify the impact afiz(r) on the dynamo, we per-
formed three kinds of time-stationary kinematic (i.e., fllogv
does not evolve and is decoupled from the magnetic field) sim-
ulations at Rg = 600 and different Rm. The first one uses as
fluid flow only us (r) (the dominant mode), weighted with the
mean valuéoivi(t)) (see Fig. 3). The second (third) run uses
the superposition ofi1(r) with ux(r), having weightedix(r)
with the maximum positive (minimum negative) value of the
oscillating time trace. The impact on the dynamo process can
be summarized by comparing the growth rates of the mag-
netic energy (Table 1l and Fig. 5, runs indicated symbadljcal
as “1”, “1+2", “1-2", respectively).

As Fig. 5 shows, a time-stationang(r) has adetrimental
effectwhen coupled to the first SVD mode atfRe 600. At
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FIG. 3: (Color online) Real and imaginary parts of the SVD
temporal eigenfunctiomy (t).
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FIG. 4: (Color online) Real and imaginary parts of the
SVD temporal eigenfunctiom(t).
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FIG. 5: (Color online) Growth rates &y for the runs “1”,
“1+2”", and “1-2", Rgy = 600.

ponent ofus (r) tends to cancel ouf(r) in the "1-2” config-

Rey = 1100,u4(r) is noisier and less axisymmetric since the uration. On the other hand, in the “1+2” configuratiop(r)

temporal sampling is shorter (the resolution is higher died t turns out to be detrimental. This last analysis does not take

dataset should be reduced in order to apply the SVD with thanto consideration the role of the fluctuationsus(r ), which

same CPU resources): adding and subtractiig) anduy(r)

play a detrimental role, as suggested by the three-wava-turb

produces different values gtbecause the noisy toroidal com- lent interaction picture in [10].



TABLE II: Growth rates ofEy for the runs “1” and “1+2”, Rg = TABLE llI: Kinematic simulations of dynamos with an implemted
1100. equatorial disc in the center of the equatorial plapgis the growth
T 112" rate (the time is scaled to the resistive diffusion time= pooL?2) of
Rmy=100 564+0.013 —3.8+0.4 Ewm in the presence of the disk; in the presence of the ringp is

Rmo=150 274404 51+05 the default growth rate, i.e., without any baffle.

Ry Rmg lmax 'd v Yd Yo
300 80 30 0.28 7.62 18.8 4

An interpretation of the(Rmc(Re) curve.—One of the main 300 100 30 0.28 15.5 30.8 9.8
results of [22] is the study of the stability curve R(Re) 300 150 30 0.28 31.2 58.6 24
of this system, where Ryris the critical magnetic Reynolds 288 ggg gg 8'52 25824 igi 2329 6
number_(above \_/vhich the dy_namoinstabilthakes placeg _Th 600 250 72 0.28 29.9 504 22.6
ynderlylng phy_swal m_echanlsm of this curve can be expthine 1000 300 52 0.65 10.4 18.4 10.4
in more detail in the light of the results of this work. Table
| shows that the relative energy content of the vortices with
a negative effect is enhanced by turbulence, whereas the en-
ergy in the mean flow would still depend only on the large-right strategy for facilitating the dynamo instability.
scale force (and not on Re). In fact, the presencerf) Summary.n this Letter, we have reported about hydro-
at Rg = 600 enhances Rpaby 20%, whereas at Be= 1100  dynamic simulations in the context of dynamo theory in a
by 37%. The picture suggests that turbulence, increasig thflow geometry important for laboratory dynamos. We have
energy ofun(r) (with n > 2) and not ofus(r) - which is pre-  shown that a mean counter-rotating flow develops a smaller-
scribed by the force - makes the dynamo instability more dif-amplitude, large-scale turbulent helical vortex orierdézhg
ficult to reach, as the quasi-linear behavior of the RRe) the symmetry axis of the forcing mechanism. This vortex has
curve shows at low Re. On the other hand, the saturation of the spatio-temporal behavior which has been observed experi-
curve at high Re can be explained by the fact that the modesentally in a similar topology: It does not counter-rotatel a
at smaller scales are not allowed to grow indefinitely at highits rotational orientation changes in time, enforcing the s
Rey without a specific small-scale force. ring mechanism in only one hemisphere at a time. These sec-

A possible strategy for enhancing the dynama.erderto  ondary dynamics turn out to be detrimental for dynamo pur-
suppress or manipulate these detrimental dynamics, we inposes. Further MHD simulations suggest experimental meth-
plemented in the code the effect of a discoidal baffle on theds for facilitating dynamo excitation through manipudati
equatorial plane (a circular plate in the middle of the pJane of this helical flow.

Kinematic simulations show that the growth ratef Ey is The computations were performed on the BOB and TOK
strongly enhanced by such a disk, whose radjugas chosen clusters hosted at the Garching Computing Center (RZG) of
in order to cover spatially at least the region of the equaltor the Max Planck Society.

plane through whicluy(r) flows. Table Il shows the effect

of the disk ony. A largerrq is needed to have a non negligi-

ble effect at Rg = 1000, confirming the necessity of a stricter

control of large-scale turbulence at highepR&he valuey,
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