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We use the non-linear MHD code JOREK to study ELMs in the geometry of ASDEX Up-
grade. Toroidal mode numbers, poloidal filament sizes, and radial propagation speeds are in
good agreement with experimental observations for type-I ELMs. The instabilities exhibit a lo-
calization compatible with “solitary magnetic perturbations” described in Reference [1]. Some
of the results are presented in more detail in Reference [2].

Simulations
Our simulations are carried out with the single-fluid reduced-MHD model of the JOREK

code [3, 4]. Physical variables are poloidal flux Ψ, stream function u (which also acts as electric
potential), toroidal current density j, toroidal vorticity ω , density ρ , temperature T , and velocity
v|| along field lines [5]. The poloidal plane is discretized by 2D Bezier elements [3], while a
Fourier decomposition is applied toroidally. The temporal discretization is performed by a fully
implicit second-order linearized Crank-Nicholson scheme [6]. The sparse system is solved by
the GMRES-method with physics-based preconditioning.

The equilibrium of a typical ASDEX Upgrade H-mode discharge with type-I ELMs is used as
starting condition (#23221@4.7s: q95 = 4.7, Pheating = 9 MW, Iplasma = 1 MA, βN = 1.6%) with
plasma resistivities and viscosities increased versus the experimental values due to numerical
limitations. Toroidal modes n = 0 . . .16 are resolved (periodicity 1). For comparison, cases with
periodicities up to 8 (only n = 0,8,16) are also considered.

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

 160  180  200  220  240  260  280  300

M
a

g
n

e
ti

c
 e

n
e

rg
ie

s
 [

a
.u

.]

Time [µs]

n=0
n=1
n=7
n=8
n=9

n=10
n=11

sub-dominant modes

Figure 1: Magnetic energies are shown for the simulation with periodicity 1. The n = 1 mode non-
linearly grows to a similar energy as the linearly most unstable n = 10 mode.
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Figure 2: Density-perturbations are shown for periodicities 8 (left) and 1 at 294 µs. For periodicity 1,
density-fingers are localized to the upper part of the outboard mid-plane at the poloidal plane shown.

Results
The evolution of magnetic energies is shown in Figure 1. Linearly, the n = 10 mode has the

largest growth rate γSI ≈ 2.0×105 s−1. The initially very small growth rate of the n = 1 mode
(γSI ≈ 2×104 s−1) increases at t = 150 µs to γSI ≈ 4×105 s−1 due to the interaction of n1 = 9
and n2 = 10 modes which may non-linearly drive n3 = ±n1± n2 modes (n3 = 10− 9 = 1, in
this case). In the non-linear phase of the instability, the n = 1 perturbation reaches a similar
magnetic energy as the n = 10 perturbation which remains dominant also at the beginning of
non-linear saturation (t ≈ 300 µs). A first important effect that cannot be covered in simulations
with high periodicity is the strong non-linear growth of low-n modes. The growth rate of the
dominant mode (n = 10 in our case) is not affected significantly by the toroidal mode-coupling.
Also, the radial propagation velocity of the filaments into the vacuum region hardly changes
compared to high-periodicity, the filaments accelerate up to a saturation level of about 3 km/s.

The density perturbation is shown in Figure 2. A ballooning-like structure is observed at the
low-field side of the plasma. The poloidal size of ballooning-fingers is around 10−12 cm at the
mid-plane. Due to mode-coupling, not all fingers grow to the same amplitude at periodicity 1.
A cluster of fingers can be seen that develops stronger than the rest of the ballooning-structures.

The localization becomes even more obvious when the magnetic footprint of the mode is
considered. In Figure 3, the perturbation of Ψ is plotted for different periodicities. Clearly, the
localization of the mode can only be described correctly in simulations with periodicity 1.

Perturbations of all physical quantities are localized to a flux-tube like region close to the
plasma edge which reaches from the vicinity of the lower (active) to the upper (inactive) X-
point (Figure 3d). Strongest amplitudes are observed at the mid-plane, except for v|| which
is perturbed especially around the end-points of the flux-tube due to field-line stagnation. Ψ-
and j-perturbations are located radially in the region of strong plasma current, while kinetic
quantities are perturbed further outwards at the strongest pressure gradients.
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Figure 3: Poloidal flux perturbations are shown at periodicities (a) 8, (b) 4, (c) 2, and (d) 1. Red/blue
contours are drawn at 70% min/max values. Strong localization is observed at small periodicities.

Comparison to Experiments
Simulations with periodicity 1 exhibit a localization similar to solitary magnetic perturbations

recently discovered in ASDEX Upgrade [1]. Toroidally asymmetric ELM-structures are also
described in References [7–9]. Our instability does not show “explosive ballooning” shown
found analytically in Reference [10].

Linearly, n ≈ 10− 13 dominates in our simulations, which is in reasonable agreement with
experimental findings for type-I ELMs in ASDEX Upgrade and MAST, where n = 8 . . .24 was
observed from energy deposition patterns [11], n ≈ 15 using the mid-plane manipulator and
visible-light imaging [12], and n = 18±4 was obtained from ECE-Imaging [13]. Uncertainties
in our simulations come from limited resolution and neglect of diamagnetic stabilization (refer
to Reference [2] for details).

Low-n modes gain large amounts of energy non-linearly in our simulations. This should
allow them to interact efficiently with core-MHD modes like tearing modes which typically also
feature low toroidal mode numbers. There is experimental evidence from DIII-D that ELMs can
be an important trigger for neoclassical tearing modes [14].

The poloidal filament-size at the midplane is around 10−12 cm in our simulation. Sizes of
5−10 cm are typically obtained for ASDEX Upgrade and MAST experimentally [12]. The
deviation might result from simulated plasma resistivities and viscosities larger than in the ex-
periment due to numerical limitations.

Radial propagation velocities increase and saturates at about 3 km/s in our simulations. In
ASDEX Upgrade, a distribution around 1 km/s has been observed, where Filaments faster than
2 km/s occur in 20% of the cases and virtually no filaments faster than 3 km/s are observed [15,
16]. Hence, simulated and measured radial filament speeds agree reasonably well.

Conclusions
Exponentially growing ballooning-like modes have been simulated with the reduced-MHD

version of the non-linear MHD code JOREK in the geometry and using the profiles of a typical
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ASDEX Upgrade H-mode discharge. Dominant toroidal mode numbers, poloidal filament sizes,
and radial filament-propagation speeds are in good agreement with experimental observations
for type-I ELMs in ASDEX Upgrade. At small periodicities, perturbations show a pronounced
toroidal and poloidal localization compatible with solitary magnetic perturbations in ASDEX
Upgrade. Low-n modes are driven non-linearly in the simulations which might explain the in-
teraction of ELMs with core-MHD modes reported in some experiments.

Outlook
In this article, we concentrate on the early ELM-phase. Further studies are planned to com-

pare the simulation of a full ELM crash to experimental observations requiring a more sophis-
ticated modelling of the scrape-off layer. Future numerical improvements and increased com-
putational resources will be used to advance our investigations towards more realistic plasma
parameters in simulations with periodicity 1.
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