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The paraxial WKB (pWKB) approximation, also called beam tracing method, has been employed in order
to study the propagation of the lower hybrid (LH) waves in a tokamak plasma. This approach reduces the
Maxwell’s equation to a set of ordinary differential equations, including the ray tracing as a particular case and
takes into account also the diffraction effects of the wave. A new code, LHBEAM (Lower Hybrid BEAM tracing),
is presented which solves the pWKB equations in a tokamak geometry for arbitrary launching conditions and
for analytic and experimental magnetic equilibria. In addition, LHBEAM includes the linear electron Landau
damping for the evaluation of the absorbed power density and the reconstruction of the electric field. Some
LHBEAM calculations and a comparison with the ray tracing code GENRAY and the full wave solver TORIC-LH

are presented.

I. INTRODUCTION AND BACKGROUND

Lower hybrid current drive (LHCD) is an efficient tool
for non-inductively driving current off-axis in tokamak
plasmas. Hence, it may play an important role for the
current profile control in the advanced tokamak scenario
[REFERENCE!!]. Some unresolved issues in the study of
the LH wave propagation still exist, such as the spectral
gap problem?, i.e., the fact that the parallel (to the mag-
netic field) refractive index spectrum generated at the
plasma edge does not appear to be wide enough to allow
the waves to interact with a large number of electrons,
and the most recent one related to the “density limit” in
the efficiency of LHCD?3.

The most common approach employed to analyze
radio-frequency wave propagation, and specifically LH
wave propagation, is the ray tracing (RT) method based
on the WKB approximation or also called the geomet-
rical optics approach®®. This approach is based on the
fact that, in most cases of practical interest, the typical
inhomogeneity scale of the plasma L is much larger than
the radiation wavelenght A and the time T which char-
acterizes the changes in the plasma properties is much
larger than the wave period 27 /w. This is referred to as
the short-wavelength limit and can be expressed by the
introduction of a large dimensionless parameter

L
n{w,Tw} >1 (1)
c
(c is the speed of light and w = 27 f with f the wave
frequency). In this situation, the geometrical optics ap-
proach is usually employed in order to solve the Maxwell’s
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equations, which are reduced to a set of ordinary differ-
ential equations (ODE). The electromagnetic wave beam
is then viewed as a bundle of rays, traced independently
from each other; along the rays, the wave polarization
and amplitude can be calculated. The geometrical optics
provides a very powerful tool for solving Maxwell’s equa-
tions in the short-wavelength limit, since it allows both a
simple picture (in terms of rays) of the wave propagation
and a direct application to practical problems. In fact,
the integration of a set of ordinary differential equations
is, from a computational point of view, straightforward.
Although the geometrical optics is widely employed in lit-
erature, it is important to remark that condition (1) gives
a necessary but not a sufficient condition for applying ge-
ometrical optics®?. For this reason, there are situations
in which the applicability of the geometrical optics is vi-
olated, even if the short-wavelength condition is fulfilled:
this might be the case of the LH waves which are consid-
ered in this work. The necessary and sufficient conditions
for the applicability of the geometrical optics have been
analyzed in detail by Kravtsov and Orlov®. In particular,
for the specific case of a homogeneous medium, the suf-
ficient condition (Fresnel condition) for the applicability
of the geometrical optics is®
W2
2 (2)
where W is the wave beam width and ¢ is the length of
the propagation path. In other words, the condition (2)
states that if W > /¢, the diffraction does not play
a significant role; on the other hand, if W < v/Al, the
diffraction must be taken into account. Inequality (2)
that is strictly valid for a homogeneous medium, can also
be extended qualitatively to the case of inhomogeneous
media.
Condition (2) shows that a new scale length comes
explicitly into play, namely, the beam width W. In par-
ticular, for a wave propagation path of length ¢ = O(L),



it is seen that diffraction effects are significant for

Vo)

This last ordering is the basis of the paraxial WKB
(pWKB) approximation also called beam tracing method
and is addressed to in this work. In particular, this ap-
proach allows one to derive a set of ordinary differen-
tial equations as in geometrical optics, taking into ac-
count the diffraction effects!®12 (see Section II). Tech-
niques other than the pWKB approximation, such as
the parabolic wave equation'®>'® and the quasi-optics
approximation'®1?, which simplify Maxwell’s equations
to a more tractable set of equations and take into account
the diffraction effects, have also been considered in the
literature. With respect to the pWKB approximation,
these other methods rely on a set of partial differential
equations (PDE), the solution of which is, in general,
much more difficult, in particular, from a computational
point of view. As mentioned above, the propagation of
LH wave beams is one case in which the sufficient condi-
tion (2) of the geometrical optics, in some situations, is
violated?%2!. In other words, the diffraction effects might
play a significant role in the propagation of the LH waves
as show in the work of Pereverzev?2. In addition, the geo-
metrical optics has applicability limitations in the cut-off
and caustic regions?® which, in the multi-pass regime of
LH wave, can play an important role in determining the
power absorption profile. At the same time, it is really
important to mention not only the asymptotic techniques
developed to solve the Maxwell’s equations but also the
full-wave solvers, which take into account, in principle,
all the wave effects. In fact, the kind of limitations of
geometrical optics mentioned above motivated the devel-
opment of the full-wave solvers such as the TORIC-LH?*
and the LHEAF?® codes.

The aim of this paper is to show the application of
the pWKB on the LH wave propagation by using a new
code, called LHBEAM, which has been developed in order
to have an additional tool which has all numerical ad-
vantages of the most common ray tracing method and,
at the same time, takes into account the effect of the
diffraction phenomena. Preliminary results have been
shown in Refs.?6-27. In particular, in LHBEAM, besides
the LH wave beam propagation, the evaluation of the
absorbed power density through the linear electron Lan-
dau damping and the reconstruction of the electric field
are included. This paper is structured as follows. The
pWKB approximation is derived in Section II. In Section
III, a description of the LHBEAM code is presented. Nu-
merical results are shown in Section IV. Some examples
of LH wave beams propagation and power density pro-
files obtained by LHBEAM with different central electron
temperature are shown together with a comparison with
the ray tracing code GENRAY?® and the full wave solver
TORIC-LH for both a circular cross-section equilibrium
and an Alcator C-Mod like equilibrium.

Il. PARAXIAL WKB METHOD

In this section, we write explicitly the pWKB equa-
tions for an electromagnetic wave beam, with a Gaussian
profile, propagating in a stationary and spatially non-
dispersive plasma and few comments are given on their
physical meaning. The formal derivation of these equa-
tions is based on the works of Pereverzev!'®!! and Poli et
al.'2,

The pWKB method accounts for the detailed form of
the wave field since the very beginning, in particular,
taking into account the diffractive pattern of the beam
cross-section which is characterized by the intermediate
scalelength W (see equation (3)). Specifically, the or-
dering in half-integer powers of 1/x implied by equation
(3) is employed to perform an expansion (paraxial expan-
sion) around the beam axis (also called reference ray).
In physical terms, the wave field amplitude is supposed
to vary across the propagation direction and hence the
maximum amplitude is localized around the reference ray
and away from it the field is negligible.

The pWKB method provides a solution of Maxwell’s
equation

W2
VxVxE—c—Qszo (4)

(where € is the cold plasma dielectric tensor) in the form
E= A(r)e(r)emg(r) _ A(r)e(r)em[s(r)+i¢>(r)] (5)

where A(r) and e are, respectively, the wave amplitude
and the unit polarization vector. Moreover, the functions
5(r) = s(r) +i¢(r) is the complex eikonal.

According to the discussion above, the two functions
s(r) and ¢(r) are given by an expansion around the refer-
ence ray and they read (summation over repeated indices
is adopted)

s(r) = so(r) + No(7)[za — za(T)] +

+ 550a(0)lea — za(Dlles — 25, (6)

6(1) = S0as(Dlza — Ta(r)llzs —zs(r)], (7

where x,(7) and N, (7) being the coordinates and the
components of the refractive index along the reference
ray, respectively. 7 is a parameter along the reference
ray. In particular, the zero-term in equation (6) is exactly
the same as in the geometrical optics approach. On the
other hand, in the expansion of ¢(r) the first-order term
is equal to zero because, ¢(r), evaluated on the refer-
ence ray, is zero by construction and, being, in addition,
positive-definite, we also have V¢ = 0 (for all details the
reader is referred to Refs.!9712). Then, z(r) and N(7)
satisfy the set of Hamiltonian differential equation of the
ray tracing

dre _ OH  dNo _ OH (8)
dr ~— ON,’ dr = Oz’



where H is the (real) determinant of the dispersion tensor
A = (NN — N2I) + " with N(= ck/w) the refractive
index, I the identity tensor and & the Hermitian part
of the plasma dielectric tensor. The remaining functions
sqp and ¢,g obey the equations

dsop __ O°H__ 0°H  PH
dr — Owa0zs  Oz0ky ) 010k,
0?H 2H
- m&msﬁé + m@m(ﬁﬁé, 9)

doop __( PH  PH -
dr — \0wa0k, = 0ky0ks )"

P2H  PH
— . 1
(azgakW ok, ok Sﬂ‘s)% (10)

In addition, the solution of these equations are subject
to the constraints

OH OH
and
OH
— = 12
(baﬁ 8N[3 0 ( )

so that the number of independent equations, for s,z and
®ag, is then reduced to six. In particular, equations (11)
and (12) can be employed either to reduce the number of
equations or as a check of the numerical accuracy.

In order to understand the physical meaning of 5,3 and
¢, which guarantee the description of the wave effects,
we consider a simple case in which the beam propagates
in free space along the z-direction. Then, equations (11)
and (12) give the constraints s,, = Szy = Sz, = 0 and
Pez = Pzy = Pz = 0, respectively. Moreover, it is sup-
posed that s,. = ¢,. = 0. In this particular situation,
the wave electric field, given by equation (5), becomes
(neglecting the amplitude and the polarization)

Eox exp {m [f(m) + % (syy(@)y® + s:22(2)2%) | +

~ 5 [onle? + 6.2 | (13)

where f(z) = [ Ny (x)dz describes the phase evolution on
the reference ray (i.e., along the propagation direction)
and has the same physical meaning as in geometrical op-
tics. The next step is to introduce the radii of curvature
of the wave front R, and the beam widths W,,, in such a
way that the quadratic terms, present in equation (13),
can be write in a form which clarifies the physical inter-
pretation of them:

w/c

R, ()’

Saa () (no sum over «), (14)

and

2

Paa(T) = oo

W2a)’ (no sum over «), (15)

along the y and z-direction. Therefore, the symmetric
tensor sop is connected with the curvature of the wave
front, whereas ¢, describes the beam profile. In addi-
tion, from equation (13), one can note that the contour
levels of the amplitude profile are given by a quadratic
form whose axes are aligned with the y and z axes of the
laboratory system. Such a quadratic form ¢y, y? + ¢, 2>
is positive definite and its contour levels are ellipses (they
can become circles when two beam widths are the same
along the two directions). The ellipse having semi-axes
equal to W, will be called attenuation ellipse. An anal-
ogous analysis can be carried out for phase fronts that,
in particular, are characterized by the quadratic form
Syyy? + $:.22. When s, # 0 (¢y. # 0), one has the
rotation of the principal radii of curvature (the principal
widths) with respect to the fixed reference frame. For in-
stance, in the case of inhomogeneous media, during the
propagation of the wave beam, the evolution of the at-
tenuation ellipse can be quite complicated, in fact the
attenuation ellipse can rotate and change the shape. In
Section IV A, a 3D plot of a LH beam is shown in which
the evolution of this attenuation ellipse can be clearly
seen.

Finally, in the framework of the pWKB method, one
can get, analogously to the geometrical optics, the wave
energy transport equation

V.- (vgU) = -27U (16)
where v, (x V(= 28)) is the group velocity, U o« |A|?
is the energy density and v = e* - €® - e the absorption
coefficient (g2 is the anti-Hermitian part of the dielec-
tric tensor). In addition, the polarization vector e is ob-
tained, as in geometrical optics, by the equation A-e = 0.
It is important to stress that, although the form of the
wave energy transport equation (16) is the same as in the
geometrical optics, the physical meaning is different due
to that the pWKB approach describes the evolution of
the energy density of the whole beam and not only for a
single ray as in the geometrical optics. This means that,
equation (16) takes into account, in a intuitive point of
view, not only the contribution of the energy density flux
along the geometrical optics rays, but also the transverse
contribution with respect to them, which is neglected in
the standard geometrical optics. More specifically, the ef-
fects of diffraction enters, e.g., in equation (16) through
the term

0 OH 0%s 0?’H

VoV = Gen 0N, " zadzs ON.ON,

(17)

in which the dependence on the matrix s,g =
0%5/0x*0x” is evident, this quantity being coupled to
the beam widths as discussed above. For the specific
case of an isotropic medium, the analysis of such a con-
tribution has been carried out in Ref.??.



11l. CODE DESCRIPTION

LHBEAM is a Fortan 90 code part of which is based on
the TORBEAM code which is the first code that applied the
pWKB approximation to Gaussian wave beams with fre-
quencies in the electron-cyclotron frequency range in a fu-
sion plasma®’. The aim of LHBEAM is to solve numerically
the 18 ordinary differential equations of the pWKB ap-
proximation, in particular, 6 equations for the reference
ray (cf. equations (8)), 6+6 equations for the compo-
nents of the symmetric matrices sqg, ¢ap (cf. equations
(9), (10)) and 141 equations for the wave amplitude and
the power. In addition, the dispersion equation H = 0,
which in the pWKB approximation holds on the reference
ray only, and the six constraints (cf. equations (11),(12))
are used to prescribe consistent initial conditions for the
beam parameters and, during the run, as a check of so-
lution accuracy. With reference to equations (8)-(10), in
the LHBEAM code the dispersion function H can be chosen
to be either the full electromagnetic dispersion function

Hpry =S le_ — [(S— NH2) (P+8)— D2] NJZ_ n
‘P {(S—Nﬁ)z —D2] (18)
or the electrostatic dispersion function
Hprs = SNT + PN} (19)

where N1 (IV)|) is the perpendicular (parallel) compo-
nent of the refractive index with respect to magnetic field
and the plasma dielectric tensor is computed in the cold
plasma limit and in the range of LH frequency approx-
imation (i.e., w? < w? < w?). In particular, the ele-
ments of the cold dielectric tensor are3!

w2, Wl w? w2, w2
S=1+"2-L, D=L P=1--L__F (20
2w Wiee w w
where
47n.(r)e? eB(r)
2 _ e _
= o (1) = 21
B =TS =0 @
and
dn;(r)Zie? 4 (r) Zege?
wii(r) = Z — ~ = (22)

i=species Mmain
are the square of the electron plasma frequency, the elec-
tron cyclotron frequency and the square of the ion plasma
frequency, respectively (n. (n;) is the electron (ion) den-
sity, e the absolute value of the electron charge and m,
(m;) the electron (ion) mass, B the confinement mag-
netic field, Zeg the effective charge of the plasma and
Mmain the mass of the main ion species). In the case
of full electromagnetic dispersion function, equation (18)
is just the determinant of the dispersion tensor, i.e., no
mode selection is operated at this level. With this choice,

the derivatives of H can be calculated in a simpler way.
The slow wave mode (corresponding to the LH waves) is
selected imposing initial conditions that satisfy the dis-
persion equation H = 0 and controlling that this disper-
sion equation is then fulfilled along the whole propagation
path.

Regarding the evaluation of the power absorption of
LH waves, in LHBEAM a Maxwellian plasma is considered
therefore the main contribution of the imaginary part of
the dispersion relation due to electrons corresponds to the
linear electron Landau damping of the LH waves. More
specifically, the absorbed power is calculated according
to the equation

dP

—_— =2 P 23

dr YELD ( )
where ygrp corresponds to the linear electron Landau
damping given by32 34

2w A3

Wpe
VELDZQ\/E( p)

- X
3.3
w cN”vth

X [(S ~ N})(S — N?) - D2] x

C
exp |- = | . (24)
[ ”tQth]

XaiH—
oN

In equation (24), vi, = /2Te/m, is the electron thermal
velocity, respectively.

The plasma equilibrium is prescribed both analytically
and from experimental data. For the former case, an an-
alytical representation of the poloidal and toroidal com-
ponents of the magnetic field is implemented taking into
account the Shafranov shift and the elongation of the
plasma (see Ref.3?). The radial profile of the density and
the temperature are given in the following form

r

f(r) = (fo — fedg) [1 - (a)d] . + feag  (25)

where f(r) indicates both the density (n(r)) and the tem-
perature (T'(r)) and the subscripts “0” and “edg” denotes
the values at the plasma core and plasma edge, respec-
tively. In equation (25), a is the minor radius of the
plasma torus and the fy, feds, €l and e2 are given as
input parameters for both density and temperature. For
the experimental case, the magnetic configuration is pro-
vided numerically by assigning the (Cartesian) compo-
nents of the static magnetic field B and a flux coordinate
1 on a grid in the poloidal plane (z, z). Density and tem-
perature are also prescribed numerically. They are given
as functions of .

IV. RESULTS AND BENCHMARK

In this section we show some results obtained from
LHBEAM and a benchmark with the ray tracing code
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FIG. 1. (a) 3D evolution of the LH wave beam for Tc 0 = 5 keV and N o = 2.5. Attenuation ellipses (mentioned in Section II)
are plotted in blue and the beam axis in red. (b) A zoom-in of figure (a) in another point of view. The green arrow represents
the wave vector direction along the LH propagation pointing to the high field side and the black arrow represents the direction
of the magnetic field opposite to the direction of the LH wave beam.

GENRAY?® and the full wave solver TORIC-LH?** regarding
the beam axis trajectory, the evolution of the refractive

index along the propagation and the power density pro-
file.

A. Numerical results

The tokamak plasma equilibrium adopted in this sub-
section has a circular cross-section with a major radius
Ry = 64 cm and a minor radius ¢ = 16.5 cm. The mag-
netic field B(Ry) = 8 T and the plasma current I, = 400
kA. Temperature and density profiles have parabolic pro-
file following equation (25). In particular, the central and
the edge electron density are neo = 5 x 102 m=3 and
Needg = 1 x 10" m™3. With reference to the temper-
ature, we consider three different values for the central
electron temperature such as T, o = 3,5, 10 keV whereas
the edge electron temperature, for all three cases, is
Tt.cdg = 0.5 keV. The initial wave front of the LH beam
is considered flat and the beam width is W = 3 cm cor-
responding to a 6 cm height antenna located on the low
field side of the torus. Finally, the frequency of LH beam
is 4.6 GHz and the initial value of parallel refractive in-
dex is N o = 2.5. The input power is assumed to be 1
MW and the full electromagnetic dispersion function (cf.
equation (18)) is adopted.

Figure 1 shows a 3D propagation of the LH wave beam
for Te0 = 5 keV launched in equatorial plane. In Figure 1
the evolution of the attenuation ellipse mentioned in Sec-
tion IT is plotted in blue line showing its rotation during
the LH beam propagation whereas the beam axis tra-
jectory is plotted in red line. A zoom-in of Figure 1(a)
from another point of view with respect to Figure 1(a)
is shown in Figure 1(b). Here, one case see not only the

evolution of the attenuation ellipse but also the direction
of the wave vector along the beam axis represented by
the green arrows pointing to the high field side and the
direction of the magnetic field represented by the black
arrows pointing basically opposite to the LH wave beam.
In this figure it appear clearly one of the main feature
of the LH wave, namely the fact that LH wave tends to
propagate parallel to the magnetic field (although, in this
specific case, in the opposite direction) and the wave vec-
tor tends to be perpendicular to the static magnetic field.
It is less clear to see in the figure that the LH wave is
backward wave (i.e. the phase and group velocities across
the magnetic field are oppositely directed) although this
is the case, in fact, there is a small projection of the wave
vector in the opposite direction of the beam axis which
corresponds to the direction of the group velocity. In
order to illustrate even better the LH wave beam, the
most common polidal and toroidal wave beam propaga-
tion, typically shown in literature, are shown in Figure
2(a) and 2(b), respectively. The light blue lines represent
the projections of the attenuation ellipses on the poloidal
and toroidal section, respectively and the red line is the
beam axis as shown in Figure 1.

Another feature of LHBEAM is the possibility to recon-
struct the wave electric field. Since LHBEAM is written
in Cartesian coordinates, it provides the Cartesian co-
ordinates of the electric field. In order to represent the
wave electric field in a similar way of the full-wave solvers
which typically consider only a single wave toroidal mode
number n,, we have performed a Fourier transform of
the electric field (which in the pWKB framework takes
naturally into account also the toroidal width of the an-
tenna) in the toroidal component ¢ and we have kept
the dominant component in n,-spectrum. A numerical
result of this procedure is shown in Figure 3 where it



FIG. 2. (a) Poloidal wave beam propagation and (b) toroidal wave beam propagation corresponding to Figure 1. The red
curve represents the beam axis and the light blue curves represent the projections of the attenuation ellipses on the poloidal

and toroidal section, respectively.

appears that the magnitude of the parallel (with respect
to the magnetic field) component of the complex elec-
tric field for T, o = 3 keV (figure 3(a)), Teo = 5 keV
(figure 3(b)) and T, o = 10 keV (figure 3(c)). The domi-
nant component of the n,-spectrum, for these cases, it is
found to be n, = —191. This number is slightly different
in comparison with the input parameter n, = —196 for
the corresponding case running TORIC-LH. This is due to
(i) the lack of any detailed antenna description in the
current version of LHBEAM with the consequence that we
cannot have the exact initial conditions with respect to
TORIC-LH; (ii) the numerical tolerances of the numerical
Fourier transform of the field. In fact, it is worth not-
ing that the n,-spectrum obtained from LHBEAM is well
peaked around the dominant component and such dif-
ference on the dominant component in n, is basically
negligible. From Figure 3, one can see, as expected, that
the parallel component of the electric field follows the
beam trajectory and its maximum lies on the beam axis
and decreases away from it.

B. Benchmark with GENRAY and TORIC-LH

In order to validate the pWKB code for LH wave,
LHBEAM, we need to compare this code with other in-
dependent codes. To compare carefully different codes
is not an easy task, in particular, when each code is
based on a different physical model and different kind
of approximations. Here, a code validation is presented
regarding the trajectory of the propagation and the evo-
lution of the parallel and perpendicular components of

the refractive index with the ray tracing code GENRAY?®

and absorbed power with both GENRAY and the full-wave
solver TORIC-LH?**. As mentioned in the previous sec-
tion, the ray tracing approximation is a particular case
of the pWKB method. In fact, the beam axis obeys to
the ray tracing equations (cf. equations (8)). There-
fore, we can compare directly the trajectory of the beam
axis calculated by LHBEAM with the trajectory of a sin-
gle ray calculated by the ray tracing code GENRAY to-
gether with the evolution of the refractive index along
the beam axis. A preliminary code validation has been
done in the work of Bertelli et al. 200827 by using an an-
alytical equilibrium with the ray tracing code C3P03%:36,
here we show two cases by using both a circular cross-
section equilibrium used in the previous subsection and
an Alcator C-Mod like equilibrium. Figure 4 shows the
poloidal (Figure 4(a)) and toroidal (Figure 4(b)) projec-
tions of the beam axis obtained by LHBEAM in full red
curve together with the trajectory of a single ray calcu-
lated by GENRAY in dashed blue curve assuming N| = 2.5
and parabolic plasma profiles with T, = 3 keV. It ap-
pears clearly a very good agreement between these two
independent codes, in fact, it is hard to distinguish the
two curves plotted. The same behavior appears also in
Figure 5 where the parallel (Figure 5(a)) and perpen-
dicular (Figure 5(b)) components (with respect to the
magnetic field) of the refractive index as a function of
the major radius, R, are plotted, respectively. With ref-
erence to the Alcator C-Mod like equilibrium, the same
really good agreement mentioned above appears in Fig-
ures 6 and 7 where again the beam axis trajectory and
the evolution of the refractive index (parallel and per-
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FIG. 3. Magnitude of the parallel component of the complex electric field for three different cases: Te,0 = 3 keV (figure (a)), 5
keV (figure (b)), 10 keV (figure (c)). n, = —191 is the toroidal wave number and its value corresponds to dominant component

of the spectrum.

pendicular components) are plotted. Therefore LHBEAM
and GENRAY have really similar results in terms of the
trajectory and the evolution of the refractive index dur-
ing the beam propagation although they have two differ-
ent interpolation method of the experimental equilibrium
data. Finally, in order to increase further our confidence
in the LHBEAM calculations an additional comparison re-
garding the power density profile is shown in Figure 8
with, besides GENRAY, a full wave code TORIC-LH. Specif-
ically, Figure 8 shows the power density as a function
of the square root of the normalized poloidal flux, py.
Three cases are shown for different central electron tem-
perature, namely, T, o = 3 keV (red curves), T, o = 5 keV
(green curves) and T, o = 10 keV (black curves) by using

circular cross-section equilibrium and parabolic profiles
described above. Solid, dashed and dashed-dotted lines
correspond to LHBEAM, TORIC-LH and GENRAY results, re-
spectively. From Figure 8, it appears a good agreement
among codes. In particular, for Tc o = 5,10 keV, the re-
sults are very similar. It is worth noting that the 7. o = 3
keV case would require to take into account a reflection
at the wall because the power is not fully absorbed in
a single pass therefore T, = 3 keV case corresponds to
a limit case for LHBEAM. Despite the fact that reflections
are not yet treated in LHBEAM, the agreement between
the pWKB approximation and the full-wave approach is
quite good. Slightly differences appear between LHBEAM
and TORIC-LH, in particular, in the range p, 2 1.8 be-
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FIG. 5. Parallel (a) and perpendicular component of the refractive intex as a function of R, corresponding to the case of Figure
4, calculated by LHBEAM (full red curve) and GENRAY?® (dashed blue curve).

cause of the missing small amount absorbed power after
the reflection of the LH wave beam at the wall. The dif-
ferences with GENRAY might occur due to the lack of the
ray tracing model to describe in details some wave effects
such as diffraction effect. However, for the strong absorp-
tion regime, the location of the peak of the power density
and its profiles are in very good agreement among codes.
In particular, the fact that for T, ¢ = 5,10 keV the agree-
ment between the pWKB technique and the ray tracing
approximation is quite good, it might mean that, for the
strong absorption regime, the diffraction effect in the real
space (in other words, the spatial broadening) for the ab-
sorbed power might not play a significant role. On the
other hand, the consequences of the spectral broadening
in the absorption has to be still investigated both in the
weak and strong absorption and it can help to solve a still

open issue such as, the so called, “spectral gap problem”.
A separate work on this topic will be addressed.

V. SUMMARY AND DISCUSSION

In this paper the numerical application of the pWKB
method to the LH wave propagation has been addressed.
In particular, the main pWKB equations have been pre-
sented together with their physical interpretation and a
description of LHBEAM, a numerical code based on this
model for LH beam wave, has been provided. A 3D re-
construction of the LH wave Gaussian beam has been
done together with a reconstruction of the electric field.
Unlike the electric field obtained from a full-wave solver
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Alcator C-Mod like equilibrium and the initial value of N = 5

are assumed.

which typically makes use of a single wave toroidal num-
ber, the electric field based on the pWKB approximation
takes into account, naturally, the whole n,-spectrum, in
other words, the finite size of the antenna, not only in the
poloidal but also in the toroidal direction. However, in
this work has been shown only the dominant component
of the of the n,-spectrum for the electric field, in fact,
the ne-spectrum is found to be really peaked around this
dominant component.

A detailed validation of LHBEAM has been also pre-
sented. In particular, a comparison with the ray tracing
code GENRAY with reference to the trajectory of the beam
axis and the evolution of the refractive index has been
analyzed for both a circular-cross section with parabolic
plasma profiles and an Alcator C-Mod like equilibrium
and plasma profiles. A really good agreement in both
cases is found. In addition, a comparison of the power
density profile with GENRAY and the full-wave solver
TORIC-LH has been studied showing again a good agree-
ment among codes. In this work it has been considered
only the strong absorption regime (also called the single
pass absorption regime) in order to avoid the cut-offs and
reflections which need a specific analysis and treatment
in the pWKB framework. For the very strong absorp-
tion cases (Te,0 = 5,10 keV analyzed in the previous sec-
tion), the results obtained from pWKB approximation,
ray-tracing and full-wave approach are very similar sug-
gesting that the spatial broadening of the beam due to
the diffraction effect might be not so significant for the
calculations of the absorbed power. In a limit case for
the strong absorption regime (T¢ o = 3 keV), the pWKB
seems to be more accurate than the ray-tracing method
although the lack of reflection treatment in the current
version of LHBEAM. This is, in fact, a promising result.

Still it remains to investigate the effect of spectral

broadening in the absorbed power due to the diffrac-
tion effect both in the weak and strong absorption to-
gether with a specific treatment of the caustics and cut-
offs which are expected to be important in order to have
an accurate model, in particular, in the weak absorp-
tion regime. These topics are subject of a future work.
One the other side, the agreement between LHBEAM and
TORIC-LH presented in this work it seems to go in the
direction that the pWKB technique can capture part of
the physics described in the full-wave solver. It is im-
portant, in fact, to mention that the application of the
pWKB technique requires much less computation time
and resources with respect to the full-wave approach and
it could be really convenient to have an accurate reduced
model that executes much faster the LH propagation and
absorption calculations.
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