A link between nonlinear self-organization and dissipation in drift-wave turbulence
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Structure formation and self-organization in two-dimensional drift-wave turbulence show up in
many different faces. Fluctuation data from a magnetized plasma are analyzed and three mechanisms
transferring kinetic energy to large-scale structures are identified. Beside the common vortex merger,
clustering of vortices constituting a large-scale strain field and vortex thinning, where due to the
interactions of vortices of different scales larger vortices are amplified by the smaller ones, are
observed. The vortex thinning mechanism appears to be the most efficient one to generate large scale
structures in drift-wave turbulence. Vortex merging as well as vortex clustering are accompanied by
strong energy transfer to small-scale noncoherent fluctuations (dissipation) balancing the negative
entropy generation due to the self-organization process.

PACS numbers:
I. INTRODUCTION

Due to the strong background magnetic field, the
dynamic of turbulence in fusion experiments is nearly
bounded to the plane perpendicular to the magnetic field
and therefore nearly two-dimensional. Two dimensional
turbulence is not just a dimensional reduced version of
three-dimensional turbulence because new conservation
laws arise giving two-dimensional turbulence its own phe-
nomenology. A review of recent developments in two-
dimensional turbulence can be found in Ref. [1]. Where
kinetic energy cannot be dissipated by viscosity in two di-
mensions it is transferred to larger scales in motion by the
inverse energy cascade [1]. The cascade is defined here as
a process whereby nonlinear interactions conservatively
transport energy in wavenumber space k. In recogni-
tion of the historical importance of the turbulent cascade,
nonlocal transfer in k-space which in general is not con-
sistent with the concept of a cascade is called nevertheless
(nonlocal) cascade, here. Commonly the physical mech-
anism behind the inverse energy cascade is understood
as a sequence of merging eddies of similar size produc-
ing larger and larger vortices. It depicts a local inverse
transfer for kinetic energy in k-space. Paret and Tabel-
ing found that this mechanism is not the only possibility
for an inverse energy transfer. Alternatively, the cascade
could be rather driven by a clustering mechanism involv-
ing same sign vortices [2]. Thus, as in three-dimensional
turbulence, 2D-turbulence is self-organized by aligning
vortices in a large-scale strain field and energy is trans-
ferred to larger scales by a clustering process. Another
mechanism called vortex thinning has been sugessted by
Chen et al. [3]. Here the interaction of structures of dif-
ferent scales is responsible for the inverse energy trans-
fer and the energy is transferred between non-contiguous
spectral ranges (which means also nonlocal in k-space)
[3].

In general turbulent flows contain both an organized

part (the coherent vortices) and a random part, where
the fluctuations are not organized by coherent vortices
[4]. Disturbances are growing leading to the formation
of vortical structures. Therefore, energy is transferred
from the mean field (background gradients, flows etc.)
to coherent energy which represents the energy in the
vortical structures. Due to vortex interactions the energy
is redistributed among different scales of motion, which
let the coherent part of the turbulence to be expected
to be responsible for the nonlinear energy transfer. Than
the entire turbulence would take part within the coherent
part of the turbulence and there would be no physical
need for random fluctuations to appear.

The self-organization of turbulence leads to a reduc-
tion of the degrees of freedom and therefore to a neg-
ative entropy generation whereas energy is transferred
to larger and larger scales. In three-dimensional turbu-
lence this is balanced by the direct cascade, where the
large coherent structures are getting smaller and smaller
due to vortex interaction and pass their energy finally to
the random field. By this mechanism the energy is dis-
sipated. The information necesarry for time reversal is
not lost, instead it is transferred to the smallest scales
in the system where it is invisible for practical purpose.
In two-dimensional turbulence the energy is transferred
to larger scales and a dissipation process like in three di-
mensions is not available. But also for two-dimensional
turbulence the energy must be dissipated and the energy
has to be transferred finally to the small-scale random
field. It appears reasonable to suggest that there is an
interaction between the coherent and the random part of
two-dimensional turbulence.

In previous investigations [5] in a toroidally confined
low-temperature plasma in the stellerator experiment
TJ-K [6] the energy transfer between turbulent vortices
of different scales has been investigated experimentally
by means of a two-field model, which is tailored to drift-
wave turbulence [7]. Potential fluctuations, from which



the turbulent E x B flow can be derived, have been
measured with a two-dimensional probe array. It has
been found that the energy and the enstrophy are trans-
ferred in oposite directions in k-space as expected for
two-dimensional fluid turbulence [5, 8]. The energy cas-
cades to larger scales with the capability of driving large-
scale flows. Nonlocal transfer has been shown to play
an important role in the inverse cascade and the results
supported the vortex thinning picture as proposed by
Chen et al. [3]. However, it has not been distinguished if
the energy has been contained in coherent structures as
eddies or noncoherent structures as random fluctuations
or large-scale strain fields. In this work the generation
mechanisms of large-scale turbulent structures as well as
the dissipation mechanisms in a close to two-dimensional
system will be investigated in detail considering the en-
ergy transfer between different scales of coherent and
noncoherent motion providing the possibility to distin-
guish the different mechanisms of large-scale turbulent
structure formation.

II. EXPERIMENTAL SETUP

The experimental conditions are in line with the as-
sumptions made for the Hasegawa-Wakatani model. The
ion temperature of TJ-K plasmas is less than 1 eV [9] and
the electron temperature is constant at about 7T, = 8 eV.
The working gas was helium at a neutral gas pressure of
p = 4-107° mbar. Plasma is generated by microwaves
at 2.45 GHz and 1.8 kW [10]. The line-averaged den-
sity was about 7 = 10’7 m™3 and the magnetic field
strength was B = 72 mT. The excellent accessibility for
probe arrays provides the unique possibility to measure
wavenumber spectra in 2D over long time series. Po-
tential fluctuations were measured with an 8 x 8 array
of Langmuir probes with a spatial resolution of 1cm.
Details on the diagnostic can be found in Ref. [11].
The floating potential fluctuations ¢~) are interpreted as
plasma potential fluctuations, which has been shown to
be valid for TJ-K plasmas [12]. All lengths are nor-
malised to the drift-scale parameter ps = y/(m;T.)/(eB)

and times to ps/cs. Here ¢ = \/T./m; is the sound
speed, m; the ion mass. The normalised fluctuations are
¢ — (Ln/ps)(ep/T.). A radially movable probe mea-
sured the equilibrium density n. and temperature profile
T.. ps is set from the equilibrium measurement to 1.2
cm and the density scale length L,, = n./Vn, is about
0.08 m and constant across the density gradient region.
From the deduced collisionality v and a typical parallel
wavenumber of & & 0.41 m~! [13], the adiabatic param-
eter is estimated to C' = kﬁ/y ~ 1. A similar discharge
as in Ref. [8] is analysed. More experimental details can
be found there.

III. COHERENT AND NONCOHERENT
STRUCTURES

The Reynolds decomposition, where the measure is de-
coposed in a mean and a fluctuating part, has been the
most applied statistical method to investigate turbulent
flows. To study coherent structures the Reynolds decom-
position can be extended to the triple decomposition [4]

o ={(p) +pc+pn (1)

where any quantity as the stream function ¢ here is
decomposed in its mean, the coherent and noncoherent
(random) contribution. There exist several definitions of
coherent structures in literature. Here we use an iden-
tification going back to Okubo and Weiss [14, 15]. The
Weiss number is tr((V®u)?) — (tr(V®u))? which is given
by

0= 3(0*~w?) (2)
where
02 = 040y — Oy0y)? + (Oys + 0uy)? (3)

is the rate of deformation (this is the symmetric part of
the stress tensor V®@u). The first term in Eq. (3) is called
stretching strain, it includes both elongation and com-
pression. The second term in Eq. (3) results due shear
effects and is called shear deformation, here. w = V2 is
the rotation called vorticity (this is the asymmetric part
of the stress tensor V ® u), and 0, = 9y, 0y = —0z¢
are the velocity components in the radial x and poloidal y
directions in slab geometry, respectively. ¢ is the stream
function, which is directly proportional to the plasma po-
tential ¢ assuming the F x B velocity as the dominant
velocity and the magnetic field B constant. When Q is
positive the motion is hyperbolic in character and when
negative, the motion is elliptical [15]. Hyperbolic motion
corresponds to strain or deformation dominated regions,
where elliptical regions are vorticity or rotation domi-
nated. Therefore as it has been proven by Weiss [15],
Q measures whether two particles will separate (Q > 0)
or not (Q < 0) when following the frozen streamlines.
In this way, a flow can be separated into structures and
fluctuation, and we identify non-separating trajectories
(Q < 0) as belonging to coherent structures [16].

If we use the stream function the Weiss number Q re-
duces to

Q = (9:0y9)* — (0290)(9y). (4)

The first term is always positive and it is exactly one
half of the stretching strain (first term in Eq. (3)). The
stretching or compression always tries to decorrelate the
turbulence in the sense that it increases the Weiss num-
ber Q which might result in a transition from a coher-
ent structure (Q < 0) to an open-streamline vorticity
concentration (Q > 0). This is called straining-out. It



appears as the second term of Eq. (4) and means that
the circular motion is stabilizing the turbulent structure.
But the second term does not only result from the vor-
ticity, it comes from the shear deformation (second term
in Eq. (3)) and the vorticity in the same amount. For a
negative Weiss number Q < 0 the vorticity must compen-
sate the stretching deformation by the term (92¢)(82¢),
which also results in a stabilizing contribution in the same
amount from the shearing deformations. This means, as
long as the turbulent structure remains as a structure
(Q < 0), the shear is stabilizing.

In literature turbulent structures appear in a different
terminology, they are for example called vortices, eddies,
blobs or filaments and these terms are used interchange-
able. However, there are sophisticated differences be-
tween them. We used the following definitions: vortices
are concentrations of vorticity. Therefore all structures
observed here are vortices. Eddies exhibit closed stream-
lines. Therefore coherent structures with @ < 0 are de-
fined as eddies here. Filaments and sheet-like vortices
exhibit non-closed streamlines with @ > 0, which are
both noncoherent. The difference between filaments and
sheet-like structures is given by their extent in direction
parallel to the magnetic field. Filaments are finite struc-
tures, sheet-like vortices are infinite. From the measure-
ments presented here they cannot be distinguished. As
in general drift-waves exhibit finite parallel wavenumber
they correspond to filaments but only if the fluctuations
are noncoherent. Noncoherent structures with Q@ > 0 are
defined as filaments, here. This definition is in line with
the definitions in Refs. [17-19]. It should not be confused
with the definition the blob community [20] use.

IV. SPECTRAL ENERGY TRANSFER

A simple model to describe £ x B flow and density
perturbations for collisional drift waves is constituted by
the Hasegawa-Wakatani equations [21, 22]. The direction
of the energy and enstrophy transfer of the Hasegawa-
Wakatani turbulence has been shown analytically by
Gang et al. [23] to be in the same direction as in two-
dimensional fluid turbulence. The diagnostic to calcu-
late the energy transfer from the measurements is that
of Camargo et al. [7]. It is an expansion for drift-wave
turbulence of an energy transfer diagnostic originally de-
veloped for fluid turbulence by Domaradzki [24].

In a Fourier decomposition in terms of wavenumbers k,
waves (or modes) can interact that satisfy the constraint
k = k1 + ka. The time evolution of the kinetic energy
EV4 of the coherent (¢ = c¢) or noncoherent (¢ = n)
potential fluctuation field can be separated in linear and
nonlinear terms, whereas the nonlinear terms have our
main attention:

AEV (k)

5 = linear terms + Z VTS (k + ki) (5)

ki

Here )7, TV9"%(k + k1) is the nonlinear transfer func-
tion which describes the nonlinear energy transfer to or
from the mode k by the interaction with the modes k;
and ko = k—k;. The spectral transfer of the fluid kinetic
energy from mode k; to mode k is given by [7, 25]

TVqrs(k — kl) = *2(kmk1y*k1mky)kgRe <¢1*{q¢k1r¢k25> )

(6)
where ¢,7,s € {c,n} denote the coherent and non-
coherent potential field, respectively. The bispectrum

(Dtatrirdicas )

waves k, ki and kg are phase-locked over some time.
Therefore these waves have to be coherently coupled.
The distinction between coherent and noncoherent fluc-
tuating fields distinguishes between elliptical (closed) and
hyperbolical (open) streamline configuarations. It does
not give any information about the coherency of the cou-
pling process between these modes. There is a difference
between coherent structures and coherent nonlinear cou-
pling. The asterisk denotes the complex conjugate and
Re is the real part of a complex number. The factor
kykiy—kizky = b(kxky) is intrinsically two dimensional
and follows from the nonlinearity. Here b is the unit vec-
tor in direction of the magnetic field. Thus a two dimen-
sional treatment of the estimation of the energy trans-
fer is essentially necessary and a 1D adaptation be taken
with great caution. In the following analysis the ensemble
average (-) of these equations is taken. The method has
been tested successfully on Hasegawa- Wakatani simula-
tions [5] and it was used for the investigations of the dual
cascade [5] and turbulence zonal flow interactions [26] on
TJ-K. In difference to the previous investigations [5, 26]
the method is applied to the potential field, decomposed
in coherent and noncoherent structures to investigate the
nonlinear interaction of both fields.

only exhibits a finite value if all three

V. TOTAL ENERGY TRANSFER

The data analysis procedure is as follows. First the
Weiss number Q(¢(z,y)) is calculated using Eq. (3) at
every point in time. Then the potential field is decom-
posed in coherent and noncoherent structures, where

ouan) ={ 76 350 (7a)

0 Q<0
On(T,y) = { d(z,y), Q>0

Afterward both potential fields are Fourier transformed
into the two-dimensional wave number space and the
energy transfer functions are estimated according to
Eq. (6). The results are summarized in Fig. 1. Large-
scale coherent structures (k < 2.5) are driven by coher-
ent structures (Y-, TV > 0 and Y, TV > 0).

Also Y, TV and Y7, TV result from the same

(7b)
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FIG. 1: Energy transfer into coherent 7V°"* (a) and nonco-
herent TV (b) potential fluctuations. The solid black lines
depict the total energy transfer 3. TV and 3  TV"".

coupling (two coherent and one noncoherent structures),
they distinguish the source of the energy transfer into
the coherent field. Both show the energy transfer into
the coherent field, but Zkl TVeer gives the energy com-
ing from the coherent field and Zkl TVere gives the en-
ergy from the noncoherent (random) field. The energy
in the large scale coherent fluctuations (3, TV < 0
for k < 2.5) is transferred directly to the random fluctu-
ations (3, TV™¢ > 0 for k > 2.5). It appears as the
main drive of random fluctuations at small scales and
consequently represents dissipation. A large-scale strain
field is generated (3, TV"" > 0 with k < 2.5) which
is in turn balanced by a direct energy cascade of nonco-
herent fluctuations >, TV™¢ as in three-dimensions.
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FIG. 2: Kinetic energy transfer between coherent structures.
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FIG. 3: Schmatics of the vortex thinning process. A smaller
eddy in the shear of a larger one (a) is elongated and tilted

(b). Finally the smaller eddy is subject to a straining-out
process.

In the next three sections the energy transfer will be
investigated and discussed in more detail. The results
will be shown as in Refs. [5, 7]. T(k « ki) forms a
four-dimensional quantity depending on (ky, ky, k12, k1y),
with the constraint k = ki + ks. Hence, for a graphi-
cal representation, sums of all contributions at given |k
and |k1| have been taken and divided by the number of
contributions.

VI. VORTEX THINNING

Figure 2 shows the kinetic energy transfer into or from
the coherent field in the k-k; plane. As the interac-
tions are among coherent structures it depicts the en-
ergy transfer between different scales of eddies. Nonlin-
ear interactions in general conservatively transport en-
ergy in wavenumber space k and TV (k <« k;) =
—TV74%(ky < k). Insofar no cross-field transfer is in-
volved and the energy transfer is restricted to interac-
tion within a subfield as TV or TV"™" the energy
should be conserved. The energy conservation is reflected
in the antisymmetric behavior around the line given by
k = ki1, the energy transfer is as expected conservative.
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FIG. 4: Kinetic energy transfer between noncoherent struc-
tures.

Compared to the energy transfer including noncoherent
fluctuations (Figs. 4, 5 and 8) the energy transfer be-
tween eddies is strongest in amplitude and therefore ed-
dies dominate the total energy transfer. As seen in a
previous investigation [5] the energy is dominated by en-
ergy transfer from the smallest scales (k > 4) into larger
scales (k < 4) by nonlocal interactions (arrow (A) in
Fig.2 ).

Figure 3 shows an artist view of this process. Due to
the shear induced by the larger eddy the smaller one will
be tilted and elongated [27] (3b). Since the circulation
of an eddy is conserved, the velocity around the eddy is
lowered and its energy is reduced [3, 28]. At the same
time, the velocity of the eddy is now mainly directed such,
that it reinforces the large-scale strain [3, 28]. Thus en-
ergy is transferred from the smaller structure into the
larger one by an elongation and tilting (and thinning)
of the smaller structure. This process is effective, if the
scales of the interacting structures are clearly different
resulting in the pronounced nonlocality of this process in
k-space. In the case of large-scale shear flows appearing
as the larger structure (as zonal flows) the process is most
effective [26, 29-32]. Recently, this process has been di-
rectly observed in configuration space with fast imaging
[33]. As the nonlocal inverse kinetic energy transfer takes
place as the dominant mechanism (Fig. 1) for interaction
among eddies and does not include noncoherent fluctua-
tions, this explanation is further supported.

Interactions between random fluctuations are shown
in Fig. 4. The transfer is about an order of magnitude
lower and furthermore does not show a preferred direc-
tion. The interaction among noncoherent fluctuations
is therefore random and does not yield to coherence in
the nonlinear coupling and subsequently to no signifi-
cant intermodal energy transfer. This supports the work
by Bruneau [17] where it is shown that in neutral 2D
fluids eddies are responsible for the inverse energy trans-
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FIG. 5: Kinetic energy transfer between two coherent and
one noncoherent structure. Within this process the energy is
transferred between the two coherent structures (a), from the
noncoherent into the coherent (b) and from the coherent into
the noncoherent fluctuations (c).

fer. However, the conclusion that noncoherent structures
do not significantly participate in the nonlinear coupling
process is misleading as we will see in the following two
sections.



FIG. 6: Artist view of the vortex merger process.
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FIG. 7: Schematic streamline configuration of a vortex
merger.

VII. VORTEX MERGER

To investigate the interaction of the coherent and
noncoherent field two cases can be distinguished. In
the first two coherent modes couple with a noncoher-
ent mode. In the second two noncoherent modes cou-
ple with one coherent mode. The first case is shown in
the Fig. 5. The energy transfer between different coher-
ent scales TV°"(k < k;) in the presence of noncoher-
ent scales is inverse and local as shown by the arrows
(B1) and (B2) in Fig. 5a. The energy is conservative as
seen by the asymmetry around the k& = k; line due to
TVeen(k < ky) = —TV¢"(ky < k). The common vor-
tex merger is representative of a local event by merging
two (corotating) eddies of the same size to an eddy of
nearly twice the size. However, one would assume this
process is taking place within interaction among only co-
herent structures (Fig. 2). To understand why this pro-
cess is observed here as a cross-field transfer a closer look
on the anatomy of the flow field of vortex mergers [19]
can reveal some insight.

The vortex merging process consists of three phases
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FIG. 8: Kinetic energy transfer between one coherent and
two noncoherent structures. Within this process the energy
is transferred from the coherent into the noncoherent (b) and
from the noncoherent into the coherent fluctuations (c¢) and
between the two noncoherent structures (c).

[18, 19]. In the first phase the vortex cores grow by vis-
cous diffusion where the distance between the vortices
stays constant (Fig. 6a and b). If the vortex cores reach
a critical size the distance decreases by convection and
a formation of filaments occurs (Fig. 6b and c). This
is the heart of the vortex merging process and these fil-
aments are noncoherent structures. In the last phase
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FIG. 9: Schematics of the vortex clustering process. A ran-
dom spatial distribution of vortices (a) self-organize, where
concentrations of same-sign vortices appear as larger nonco-
herent structures (b).
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the vorticity maxima are reduced by diffusion (Fig. 6d).
Furthermore, the appearance of the noncoherent struc-
ture in the vortex merging process can be understood
by considering the streamline configuration of the vortex
merger [18, 19] as depicted in Fig. 7. The flow consists
of two inner core regions (these are the two eddies), the
exchange band and two outer recirculation regions. Vor-
ticity which enters the recirculation bands leads to the
formation of these filaments. Vorticity from one eddy
can enter the exchange band. The exchange band con-
stitutes a filamentary structure. The vorticity within the
exchange-band can be absorbed into the other eddy. In
any case the vortex merger process is an interaction of a
coherent structure (one of the inner cores) with a nonco-
herent structure (the exchange band or the recirculation
region). Vortex merging has to transfer energy in the
noncoherent field and is therefore directly linked to the
transfer of noncoherent energy 7V "¢(k < k).

But before we have a look on this, let us consider the
transfer from or into the coherent field TV ¢(k < k;)
first. As seen in Fig. 5b energy in the coherent field
at large scales is lost to noncoherent structures at small
scales ((C1) and (C2)), which could be the filamentary
structure in the exchange band or the filaments in the
outer recirculation region. Furthermore, coherent struc-
tures gain energy from noncoherent structures at small
but similar scales (the red region (C3) in TV¢"¢). This
process displays the alignment of random vortices giving
them a preferred direction which in turn increases the
coherent vortices at larger scale. However, this mech-
anism is not as important as the vortex merger. The
energy transfer in Fig. 5b is not asymmetric around the
line £ = ki, however, the process is still conservative.
Because it is a cross-field transfer 7V¢"¢ has to be stud-
ied together with TV"c¢. Considering TV"*“(k < k)
in Fig. bc the balance comes out likewise. Due to the
interactions of two coherent and one noncoherent struc-
ture the noncoherent field is strongly driven by coherent
fluctuations at large scales. Because all these observa-
tions are related to the same three-wave coupling pro-
cess the local inverse energy cascade of coherent struc-
tures is directly bound to a transfer of large-scale coher-

ent energy to small-scale noncoherent energy. Therefore
coherent energy is transferred to larger coherent scales
and to small noncoherent structures. Even though large
coherent structures are formed the overall process just
transfers energy from small-scale coherent into small-
scale noncoherent structures using the coherent field as
an interim energy reservoir. The transfer of energy into
the noncoherent field can be seen as dissipation and an
increase in entropy. Therefore vortex merging not only
decreases it also partially increases the entropy.

VIII. VORTEX CLUSTER

Just by the superposition of the vorticity field (as
shown in Fig. 9a) cluster of same-sign vorticies consti-
tutes a large-scale strain field, which can interact with
other structures. A cluster does not exhibit closed
streamlines and is therefore a large-scale noncoherent
structure consisting of small-scale coherent structures
(eddies). The self-organization into a cluster should tran-
fer energy from the small-scale coherent into the large-
scale noncoherent field. The coupling between two nonco-
herent and one coherent mode is shown in Fig. 8. As seen
in Fig. 8a coherent fluctuations at smaller scales transfer
energy into the large-scale noncoherent field (D1). This
large-scale noncoherent structure is not an eddy but it
constitutes a strain field. The constant energy supply
by eddies at multiple smaller scales let suggest that this
large-scale strain field is indeed a cluster. As the pro-
cess investigated in the last section also the energetic
interactions between the noncoherent and coherent field
are directly coupling to other interactions. Therefore as
energy is transferred from small-scale coherent to large-
scale noncoherent fluctuations (Fig. 8a) there must be
a loss of coherent energy at small scales to noncoherent
fluctuations as seen in Fig. 8b. Also here a cascade within
the noncoherent energy is involved (Fig. 8c). Here kinetic
energy is transferred from large to small scales. Left to
themselves without energy supply from the coherent field
the vortex cluster cannot suistain itself. This is a result
of the rather weak self-rotation, remember the vorticity is
smaller than the strain as @ > 0, and therefore the eddies
within the vortex cluster will diffuse out of the cluster and
the cluster is splitting up in smaller and smaller ones. In
summary, coherent energy is transferred to larger nonco-
herent scales and to small noncoherent structures. Even
though large noncoherent structures are formed the over-
all process transfers energy from small-scale coherent into
small-scale noncoherent structures as in the case of the
vortex merger. Therefore vortex clustering increases the
entropy.

IX. CONCLUSION

The linear drive in two-dimensional turbulence pro-
vides a constant source of coherent kinetic energy into



the system. Since the kinetic energy in two-dimensional
turbulence cannot be dissipated as in three dimensions,
the turbulence has to find a way to transfer the coherent
energy into the noncoherent field. The cross-field kinetic
energy transfer between the different scales of coherent
and noncoherent motion in two-dimensional drift-wave
turbulence in a confined magnetized plasma has been in-
vestigated. It has been shown that large-scale turbulent
structures are generated by vortex merging, thinning and
clustering. The process of vortex merging constitutes
an inverse cascade process of coherent energy, which is
accompanied by a transfer from large-scale coherent to
small-scale noncoherent energy (negative coherence pro-
duction at large scales). Large-scale strain fields can be

generated by an alignment of coherent structures, where
energy is transferred from small-scale coherent to large-
scale noncoherent fluctuations. This negative coherence
production at small scales is coupled to a direct cascade
of noncoherent energy resulting in dissipation. It is there-
fore convenient for two-dimensional turbulent systems
or it is even required that large-scale turbulent struc-
tures are generated due to vortex merging and clustering
to transfer energy from the coherent into the noncoher-
ent field as a way to dissipate coherent energy. Nonlo-
cal energy transfer by vortex thinning appear to be the
strongest process in structure formation in drift-wave tur-
bulence.
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