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Abstract 

 

Carbon (C), beryllium (B) and tungsten (W) are potential candidates as Plasma Facing 

Materials (PFM) for the International Thermonuclear Experimental Reactor (ITER). 

During operation, co-deposited layers are formed from the eroded PFM, which will 

grow with time. At Max-Planck Institut für Plasmaphysik, the interaction between 

plasma and PFM (deuterium retention and erosion behavior) are still being 

investigated. Hence, amorphous metal-doped carbon films (a-C:Me, Me: W, Ti, Zr, 

V)  have been produced by dual magnetron sputtering and studied after heat treatment 

up to 1300K by X-Ray Diffraction (XRD), Extended X-ray Absorption Fine Structure 

(EXAFS) and X-Ray Photoelectron Spectroscopy (XPS). All doping metals, except 

for tungsten, showed clear carbide formation at 1300K using XRD.  

Basic information on the phase formation on a-C:W films of the three possible 

tungsten carbides in the non-thermal equilibrium W-C system is required. For this 

study, amorphous tungsten-doped carbon films (a-C:W) were produced by magnetron 

sputter deposition with tungsten concentration in the range of 6 to 30 at.%. The films 

were then annealed at various temperatures up to 2800K. Carbide phases formed after 

heat treatment and their crystallite sizes were investigated by XRD. In addition, the 

crystallite size distribution and sample morphology were determined by a Scanning 

Electron Microscope (SEM) on cross-section prepared by a focused Ion Beam (FIB). 

Phase identification of nanometer-sized crystallites was done at TU Warsaw with 

nano-diffraction in a Scanning Transmission Electron Microscope (STEM) as part of 

co-operation.  

Within the specimens, all three carbide phases, WC, W2C and WC1-x, were found by 

XRD as function of the two parameters, concentration and temperature. Within the 

lower concentrated specimens, WC1-x is the dominant carbide throughout the 

complete temperature range. W2C is dominant within the middle concentrated films 

and in the temperature range of 1450K to 2200K. WC becomes dominant for the 

higher concentrations and at 2500K for the middle concentrated specimens. Crystal 

sizes ranging from 2 nm up to 1μm were found for WC, whereas W2C and WC1-x 

crystals remain relative small (~15 nm). Special designed multi-layers were produced 
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by magnetron deposition and annealed to 2200K to investigate crystal size gradient as 

function of the tungsten concentration. The average crystal size within the specimen 

increases as the tungsten concentration increases within the specimen.  

 

The results from this investigation can be used to design specimen/coatings with 

desired specifications, i.e. carbide phase and crystallite size. Industrial applications 

with the results from this investigation remain unknown. 
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Zusammenfassung 

 

Für die Beschichtung (PFM) der ersten Wand des International Thermonuclear 

Experimental Reactor (ITER) sollen die Elemente Kohlenstoff (C), Beryllium (B) und 

Wolfram (W) verwendet werden. Während des Betriebes des Reaktors wird das 

Wandmaterial langsam erodiert und lagert sich an anderer Stelle als Mischmaterial wieder 

ab. Dies hat Einflüsse auf die Eigenschaften des Wandmaterials im Reaktor. Aufgrund 

dessen wird am Max-Planck Institut für Plasmaphysik seit einigen Jahren die 

Wechselwirkungen zwischen dem Plasma und der Reaktorwand untersucht. Dabei wird 

ein besonderes Augenmerkt auf das Rückhalte- bzw. Erosionsverhalten von Deuterium 

bzw. von Mischmaterialen gelegt. Um die Wechselwirkungen zu analysieren, wurden 

metalldotierte Kohlenstoffschichten (a-C:Me, Me: W, Ti, Zr, V) durch reaktives 

Magnetronzerstäuben hergestellt und anschließend bis auf 1300K aufgeheizt. Die 

Kristallstruktur der geheizten Proben wurde daraufhin mit XRD, NEXAFS und XPS 

untersucht. Allen verwendeten Metalle, ausschließlich Wolfram, bildeten Kristalle, die im 

XRD bei 1300 K deutlich erkennbar waren. 

Um dieses Verhalten zu erklären, werden allgemeingültige Grundlagen für die 

Phasenbildung der Wolframkarbid in a-C:W Schichten für ein nicht-thermodynamisches 

Gleichgewicht benötigt. Für diese Arbeit wurden amorphe, wolframdotierte 

Kohlenstoffschichten durch Magnetronzerstäuben mit einer Wolframkonzentration 

zwischen 6 und 30 at.% hergestellt und bis auf Temperaturen von 2800 K geheizt. Im 

Anschluss an den Heizprozess wurden die Proben mittels XRD auf ihre Kristallstruktur 

und -größe untersucht. Zusätzlich wurden die Kristallgrößenverteilung und die 

Oberflächenmorphologie im SEM analysiert. Dazu wurden Profilschnitte mit dem FIB 

erstellt. In Kooperation mit der Technischen Universität von Warschau wurden die 

Phasen der nanometergroßen Kristalle charakterisiert. 

Alle drei Karbidphasen, WC, W2C und WC1-x wurden in Abhängigkeit der 

Anlasstemperatur und Wolframkonzentration durch Röntgenbeugung detektiert. In den 

Proben, die eine niedrige Wolframkonzentration aufweisen, dominiert die WC1-x Phase. 

Die W2C Phase liegt hauptsächlich in den Proben mit mittlerem Wolframgehalt (10 bis 

18 at.%) bei einer Temperatur zwischen 1450 und 2200 K vor. Ab einer 
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Ausheiztemperatur von 2500 K dominiert die WC Phase. In den Proben mit hoher 

Wolframkonzentration bildet sich ausschließlich des WC Phase aus. Die Kristallgröße 

variiert in den unterschiedlichen Karbidphasen zwischen 2 nm und 1 μm. Mit der 

Untersuchung speziell gebildeter Multischichten wurde der Zusammenhang zwischen der 

Kristallgröße und der Wolframkonzentration bestätigt. Mit steigendem Wolframanteil 

nimmt die durchschnittliche Kristallgröße zu.  

Die Ergebnisse dieser Studie können für die Erstellung von Proben bzw. Beschichtungen 

mit definierten Eigenschaften (Karbidphasen,  Kristallgröße) genutzt werden. Aussagen 

über den industriellen Nutzen können jedoch nicht getroffen werden. 
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Chapter 1 
 

1. Introduction 

Supplying a growing world population with energy is one of the challenges mankind has 

to face in the next couple of decades. The International Energy Agency (IEA) estimates 

that the world’s primary energy demand will increase by 60% from 2002 to 2030. 80% of 

the total energy used then will come from fossil fuels (mainly oil and coal), while the 

remaining energy will come from nuclear power and renewable energy sources (e.g. 

wind, solar, geothermal, hydro) [1]. Although estimates show that enough resources are 

still found within Earth’s crust for another few decades, alternative energy sources have 

to be found.  

Besides depleting oil, coal and natural gas reserves, effects of global warming and natural 

disasters (e.g. Deep See Horizon and nuclear reactor Japan) will force us to change our 

energy production/consumption to reduce the emission of greenhouse gasses.  

Candidates to supply the world with energy are: geothermal, solar, nuclear fission and 

nuclear fusion. Due to disposal problem, military usage and safety issues (e.g. Japan) 

nuclear fission is not seen as a long term energy supply. If geothermal and solar are able 

to supply the world’s energy demand in the future is debatable, an alternative is seen in 

nuclear fusion.  
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1.1 Nuclear Fusion 

Nuclear fusion, the process that takes place in our suns core, is the process of melding 

lighter atoms in a heavier atom under great gravitational forces. Fusion uses the principle 

of mass deficit, where the protons and neutrons that are fused together each give up a 

little mass. The mass of the new formed nucleon is lighter as the initial sum of atoms that 

undergo fusion; the small loss of mass is converted in tremendous amount of energy.  

Scientists from around the world are trying to make fusion reactions possible here on 

earth, creating a safe and sustainable energy source. For laboratory fusion power, the 

following nuclear reactions are of interest.  

 

Table 1.1: List of possible fusion reactions with hydrogen isotopes and their products with kinetic energy. 

     
     
     
     

3 0

3 4

4 0

1.1 0.82 2.5

1.2 1 3

1.3 3.6 14.7

1.4 3.5 14.1

D D He MeV n MeV

D D T MeV p MeV

D He He MeV p MeV

D T He MeV n MeV

  

   

   

  

  

  

  

  
 

 

From the 4 reactions above, scientists have found that the most efficient fusion reaction to 

produce the ‘most’ energy at the ‘lowest’ temperatures on earth is equation 1.4 [2].  

The fuel that powers this fusion reaction consists of the hydrogen isotopes; Deuterium 

(D) and Tritium (T).  Deuterium, a harmless isotope found in water, can be found globally 

around the world. In every liter of water, 33 milligram of deuterium can be won through 

distillation; hence deuterium is seen as a virtual inexhaustible resource. Tritium, however, 

a radioactive isotope of hydrogen, cannot be won from water due to the scarceness 

(nearly zero). This would make extracting tritium from water difficult and very 

expensive. Other methods, to win tritium as fuel are being looked at. The most distinct 

way to win tritium is by breeding tritium by neutron capture through so called lithium 

blankets, which is been considered for the ITER reactor [2].  
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Even though the reaction (1.4) requires the ‘lowest’ fusion temperature, temperatures of 

150,000,000°C are still needed for this reaction to take place. The heat generated by the 

collision of the plasma particles within the vessel and ohmic heating do not suffice to 

reach high enough core temperatures. Two optional external heating methods are 

available, which will complement standard methods to reach high enough core 

temperatures. These methods are neutral beam injection and high-frequency 

electromagnetic waves [2]. With the external heating methods, high enough temperatures 

can be achieved, making fusion between the isotopes possible.  

The Iternational Thermonuclear Energy Reactor (ITER) is a large scientific experiment to 

illustrate the world that it is possible to produce commercial energy from nuclear fusion. 

Other fusion devices, Joint European Torus (JET) and ASDEX-Upgrade, both partners of 

ITER, have tested plasma properties and proven that fusion on earth is possible. JET was 

the first reactor to achieve fusion power in 1997; however the device required more 

energy than the reaction produced. ITER will be the first reactor where a net energy will 

be created, proving that it is possible to capture fusion energy for commercial usage. 

Capturing energy, ITER will test key technologies, as described above, for future 

reactors. Figure 1.1a is a cross-section of the ITER tokomak fusion reactor which is under 

construction in South France, Cadarache. Figure 1.1b shows a close-up of the plasma 

vessel with the Plasma Facing Material. 

  



Figure 1.
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1.2 Plasma Facing Material 

During operation, the PFM (Plasma Facing Material) has to withstand immense 

temperatures and pressures and degradation from particle impact. Carbon materials have 

been applied in many fusion reactors for optimal performance. Carbon materials, graphite 

and Carbon fibre reinforced Carbon (CFC) show strong mechanical properties, good 

thermodynamic properties and do not melt. Therefore, carbon materials were seen as the 

ideological choice as PFM. Unfortunately, carbon materials have three drawbacks.  

 

1. CFC shows strong chemical reactivity with hydrogen, leading to high erosion 

yields under hydrogen impact. This drastically reduces the lifetime of the wall 

components, which have to be replaced frequently [3, 4, 5].  

2. The possible threat of hydrogen retention, especially in the case with radioactive 

tritium will lead to safety concerns in the co-deposited layers. [3, 5] 

3. Over time neutron damage will change the physical properties of graphite making 

it brittle and break up. During operations this could lead to disasters. 

 

Another concern with carbon is plasma impurity. Since carbon is a low Z element, it is 

easily sputtered and ionized within the plasma. The ionization of carbon by the plasma 

reduces the core plasma temperature. 

To reduce plasma impurities, radiation loss of the plasma, and hydrogen retention, a 

mixture of carbon and metals have been considered [4]. Low Z elements, in the case of 

ITER; beryllium (Z=4) and carbon (Z=6), are foreseen for PFM, since they lead to lower 

cooling of the core plasma via radiation. Besides lower plasma cooling after being 

eroded, beryllium has the advantage of being a good oxygen getter. Low Z elements are 

easier eroded than high Z elements, reducing the lifetime of the wall components. To 

increase the lifetime of the wall components, high Z elements are used. In addition they 

are more durable against heat loads and particle bombardment [5]. The disadvantage of 

high Z elements is that they are more harmful for the core plasma via radiation, leading to 

cooling of the plasma.  
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1.3 Aim of Work  

Over the last years, chemical erosion by hydrogen impact of doped graphite as well as the 

re-erosion of deposited mixed films in fusion plasma devices have been studied in detail 

at IPP and other institutes. The investigation and result have led to the publications of 

several papers, thesis and dissertations (summarized in [6]).  

One of these publications that studied the erosion behavior of mixed layers and 

particularly the characterization of a-C:Me structures in detail was by Christoph 

Adelhelm [3]. In his work three different parameters were investigated: Metal type (Ti, V, 

Zr, W), metal concentration (<15%) and annealing temperatures up to 1300K. The choice 

of metals was mainly based on the material choice of ITER (W) and possible dopant 

elements on graphite (Zr, V, Ti). Low concentrations were used, as they already suppress 

the erosion behavior severely.  

Annealing these samples lead to the formation of TiC, ZrC and VC crystallites in case of 

Ti, Zr and V- doping, what was shown by multiple characterization techniques: XRD, 

XPS, EXAFS and NEXAFS. These findings correspond to the information from the phase 

diagram of Ti-C, Zr-C and V-C. However, characterizations up to 9.5% a-C:W film with 

XRD lead to no identification of possible crystallographic carbide, as only broad peaks 

could be observed in the diffractogram. NEXAFS spectra revealed W2C after annealing to 

1300K and XRD diffraction showed WC only after annealing to 1700K. The findings 

from these techniques contradict to the expected answers for the W-C phase diagram, see 

section 2.5. While Ti, Zr and V had built clear crystal structures up to temperatures of 

1300K, tungsten still had very small crystallites. In addition all three metals formed their 

stable thermodynamic equilibrium carbide phase, whereas tungsten was only found in a 

meta-stable thermodynamic carbide phase at 1300K. 

In this presented work, the investigation of carbide formation in doped a-C:W films will 

be done. a-C:W films were produced by magnetron sputtering, with a tungsten 

concentration between 6 at% and 30 at%. The samples were annealed inside a high 

temperature graphite oven at temperatures from 1300K up to 2800K. After heat treatment, 

the samples were investigated mainly using XRD. Other techniques as SEM, STEM and 

nano diffraction were also applied.  

This research will give a better understanding about the carbide formation of a-C:W 

films, and support the findings by Christoph Adelhelm [3].  
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Chapter 2 
  

In the following chapter, the methods used to produce and characterize the samples will 

be discussed: Magnetron sputtering, Rutherford-back scattering, SEM and nano-

diffraction and XRD. Since the XRD is the main examining method throughout this work, 

a more detailed description will be given than for the other methods. Besides these 

methods the W-C phase diagram will be illustrated to understand the formation of 

tungsten carbide in a thermodynamic equilibrium.  

 

2.1 Magnetron Sputter Deposition 

Magnetron Sputtering is a physical vapour deposition (PVD) method used to create thin 

films. Film production by PVD is important in modern industrial sectors, as it is applied 

to obtain hard, wear resistance coatings. PVD is done in a vacuum environment since it is 

based on the creation of a vapour by physical means and condensation on a desired 

material. During sputtering the vapour is created by ion impact on a cathode. Magnetron 

sputtering is widely used by industries as nearly all elements can be deposited, every 

composition/concentration can be achieved and the thickness of the coating to be 

controlled. 

Magnetron sputtering of materials is based on charged ions which bombard a target, 

acting as a cathode for the plasma discharge. Argon is by far the most widely used 

projectile for sputter deposition of thin films. Once an ion collides with the target, energy 

is transferred to the atomic nuclei. If the impact energy transferred to the surface atom is 

larger than the surface binding energy, an atom is ejected (sputtered) [7]. The ejected 

atom now deposits on specimen holder, where the samples are arranged, where it creates 

a thin film. More details on the underlying process leading to a sputtered atom surface can 

be found in [8].  

Depending on the material which has to be sputtered, a DC or RF voltage is applied to the 

cathode. In case of semiconductors, a DC power supply can be used. For isolators a RF or 

pulsed DC power supply must be used. Both DC and RF sputtering, where the plasma is 

simply created by a DC or RF discharge, suffer from low deposition rates, due to low 

argon ionization within the plasma.  
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The most important quantity for describing the deposition rates during sputtering process 

is the sputtering yield Y. The sputtering yield is defined as the average number of atoms 

removed from the surface of a solid per incident particle. The sputtering yield depends on 

the mass, the energy, and the impact angle of the incident particles; on the mass and the 

binding energy of the atoms in the solid as well as at the surface; and on the crystallinity 

and crystal orientation of the solid. 

One way to increase the sputtering rate for the target, i.e. the deposition rate at the 

sample, is by applying a magnetic field around the cathode, figure 2.1. The magnetic field 

traps electrons close to the target resulting from a DC or RF discharge. The electrons 

follow a helical path around the magnetic field lines, increasing the plasma density above 

the target. Denser plasma enhances the ionization of the argon gas, leading to higher 

sputter rates. Besides increasing deposition rates, the plasma can also be sustained at 

lower pressures.  

 

 

 
Figure 2.1: a) detailed illustration of the setup of a magnetron sputter device with magnetic field lines [20]. 

b) A photo of the inside of a dual magnetron device during deposition. The white and purple light comes 

from the plasma [21]. 

 

 

 

 

a) b
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Due to the high deposition rates reached by magnetron sputtering, some of the inert 

sputtering gas can remain trapped within the deposited layer. This is verified by a 

spectrum made with RBS (Rutherford Backscattering Spectroscopy), as shown in Figure 

2.2. Beside some Argon getting trapped within the layer, high deposition rates may result 

in high tension within the layer. This can result in the delaminating / pealing-off of the 

deposited layer.  

 

 

2.2 Rutherford Backscattering Spectroscopy (RBS) 

Rutherford Backscattering Spectroscopy is an Ion Beam Analysis (IBA) technique that 

provides information about the distribution of mass as a function of depth. RBS is the 

most precise and simple method to obtain information about absolute concentrations and 

composition of the film up to some ten of microns. Depth information is provided by the 

energy loss of the projectiles on their inward and outward paths through the sample. The 

technique is also extremely useful in profiling layered structures. For this purpose, a 

monochromatic MeV ion beam of light atoms (mostly 4He 0.4-4 MeV) is created by an 

accelerator and projected onto the samples surface. The number and energy distribution 

of backscattered particles is measured with a detector located at a distinct given angle. [9] 

The ratio of energy the before (E1) and after (E2) incident only depends on the mass of 

the projectile and the target mass (M1, M2) as well as on the scattering angle θ. The ratio, 

also known as the kinematical factor, is given in equation (2.1) and allows the target 

element to be identified [9]. 

 

 

21 22

2 1 1 2 1

1 1 2 1 2 1 2

cos cosE M M M M
K

E M M M M M M

                   

     (2.1) 
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Figure 2.2: Rutherford Back-Scattering, where projectile M1 with energy E1 hits target atom M2 scattering 

M1 at an angle θ with energy E2 [22]. 

 

 

This equation is only valid if the angle between incident/scattered directions δ is very 

small and at the outermost surface of the sample. At greater depths stopping power leads 

to depth information. Stopping power causes the projectiles to loss energy in form of 

excitation or ionization of target electrons, therefore changing the kinematic ratio and 

target atom. Without any knowledge about the composition of the sample, it is hard to 

determine the target atom. Stopping power is a statistic process resulting in straggling.  
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Figure 2.3 shows a spectrum of a 18% a-C:W film on a silicon substrate. The atomic mass 

difference of the target atoms lead to different peak positions within the spectrum. The 

different target atoms and their concentration as well as the general layer thickness of the 

film can be obtained by fitting a simulated spectrum to the measured data. SIMNRA 

(SIMulated Nuclear Reaction Analysis) is such a program capable of simulating spectra 

to the measured data and is used in this thesis [10]. In figure 2.3 two different simulated 

spectrums have been fitted to the measured data. A homogenous 18 at% W concentrated 

film is expressed by the red line, whereas the green line expresses a rough simulated fit to 

the measured data. As observed for the samples, the concentration in the lower layer is 

smaller than the surface concentration, due to start-up process of the sputter device. The 

specimens of the different production runs are named by their concentration levels at the 

surface, e.g. 18% a-C:W stands for 18 at% tungsten-doped amorphous carbon film. The 

lowering of the concentration as function of depth has to be kept in mind [7]. 

 

 

2.3 Microscopy 

2.3.1 Scanning Electron Microscopy (SEM) 

A scanning electron microscope is a microscope that uses electrons rather than light to 

image surfaces. Since electrons are used, SEM has to operate in a vacuum environment 

and the specimen must have a certain electrical conductivity. The electrons produced by 

an electron gun are focused using electromagnetic lenses. Deflector plates are used to 

scan the very narrow electron beam in x and y direction to allow scans in raster pattern. 

The electrons interact with the atoms of the sample, producing signals containing 

information about the sample’s surface. The signals produced after interactions include: 

secondary-electrons (SE), Backscattered electrons (BSE) and Energy Dispersive X-ray 

(EDX). The signal are captured by detectors and processed into an image.  
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There are many advantages to using a SEM compared to a standard light microscope:  

(i) A SEM has a large depth of focus as result of the very narrow electron beam, 

generating a characteristic three-dimensional image.  

(ii) SEM can produce high resolution images, allowing closely spaced features to 

be examined at high magnification. Nowadays commercial SEM reach 

resolutions in the nanometer range.  

(iii) Magnification levels can be varied by 6 orders of magnitude reaching viewing 

areas between 1 mm2 and 1 μm2 Magnifications from 10.000 to 500.000 times 

can be used in a SEM. This is useful for understanding the surface 

morphology and topography of a sample.  

(iv) SEM can deliver any information about the chemical composition of the 

sample. 

 

 

2.3.2 Focused Ion Beam (FIB) 

The Focused Ion Beam is a technique used for site-specific analysis, deposition and 

ablation of materials. ‘The FIB instrument consists of a vacuum system and chamber, a 

liquid metal ion source, an ion column, a sample stage, detectors, gas delivery system and 

a computer to run the instrument’ [11]. The FIB shows many similarities in forming the 

beam compared to a SEM. However a FIB uses an ion column instead of an electron 

column.  

‘The capabilities of the FIB for small probe sputtering are made possible by the liquid 

metal ion source (LMIS)’ [11]. The LMIS is a tungsten needle or spiral, where the liquid 

metal is contained. Tungsten is chosen due to its high melting point. From all metallic 

elements and alloy sources available, gallium (Ga) is the most commonly used LMIS in 

FIB instruments, as gallium has the lowest melting point of all metals and alloys. The 

molten Ga flows towards the tip of the tungsten needle. An electrical field, applied to the 

end of the tip causes gallium ion emission which are then accelerated through the ion 

column.  

Commercial FIB now possess both electron and ion column, hence a FIB may sometimes 

have been incorporated into an SEM (FIB/SEM), known as a dual-beam system. In the 

typical dual-beam column the electron column is mounted vertical and the ion column is 
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2.4 X-ray Diffraction (XRD) 

2.4.1 Setup 

X-ray diffraction is an analysing method with a wide field of applicability. In its early 

years the technique was only used for the determination of crystal structures. The method 

is nowadays used for the determination of chemical phase analysis, stress measurements, 

the study of phase equilibria, measurement of particle size and textures [12] 

X-ray diffraction uses the principle of elastic scattering (Thomson scattering) of x-ray 

radiation by electrons. In this process the ‘electron oscillate like a Hertz dipole at the 

frequency of the incoming x-ray beam and become a source of dipole radiation’ [12]. 

During this process the wavelength λ of the x-rays is conserved. Diffraction effects, 

explained by destructive and constructive interference, are observed on periodic 

structures, where the interatomic distances in crystals and molecules correspond to the 

wavelength of the x-rays. [13].  

The Bragg equation (2.2) describes the relation between the lattice plane distance d and 

the incident angle θ of x-ray wavelength λ (e.g. 0.154 nm for Cu Kα).  

 

2d sin n                  (2.2) 

Figure 2.6a illustrates that constructive interference only occurs when the phase shift of 

2d sin  between two incoming x-rays is an n fold of the incident wavelength.  

 

A frequently used technique for measuring Bragg reflection is the θ/2θ configuration. 

Here the XRD diffraction pattern is obtained by changing the x-ray incident angle by θ, 

while the scattering angle is moved by 2θ.  

The main difficulty with diffractometers is dealing with a divergent beam emitted by an 

x-ray tube. Controlling the x-ray beam bundles in θ/2θ diffractometers is performed by 

slits and apertures as traditional lenses and other refractive elements used for visible light 

do not work on x-ray radiation. The most frequently setup using slits and aperture is the 

so-called Bragg-Brentano or parafocusing mode. Figure 2.6.b illustrates a schematic setup 

of a θ/2θ diffraction in Bragg-Brentano geometry. Important with Bragg-Brentano 

geometry is that source and detector both are located on the goniometer circle. The x-ray 

bundles are only focused in the Bragg-Brentano geometry when the goniometer circle 

intersects the focusing circle. For constant focusing the sample need to be bended so that 
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for every angle, the focusing circle intersect the goniometer circle. [13] Unfortunately the 

radius of the focusing circle varies with different scattering angle. 

 

 
Figure 2.6: a) derivation of the Bragg-equation, showing the relation between the lattice distance d and 

incident angle θ [13]. b) The Bragg-Brentano measurement setup used for x-ray diffraction. True focusing 

is only possible at the intersection of the focusing circle and goniometer circle. All other positions are in 

parafocusing mode [13]. 

 

Another commonly setup used for determining crystal structure is Grazing Incidence 

Diffraction (GID), applied on thinner films [13]. Due to high penetration depths of x-ray 

radiation (few microns), the majority of the diffraction comes from the substrate and not 

from the phases present in thin films. The combination of low diffracted signal and high 

background make it very difficult to identify carbide phases present. To increase the path 

length of the incident X-ray beam through the film small incident angles are used, so that 

conventional structure identification can be done. The increased path length increases the 

intensity from the film and lowering that of the substrate. Besides small incident angles, 

the x-ray radiation will need to be nearly parallel for GID. To achieve parallel radiation, a 

multilayer is used with a parabolic mirror (Göbel Mirror) inside. The multilayer also has 

the advantage of filtering the Cu Kβ radiation. Horizontal and vertical slits are used on the 

multilayer to collimate the x-ray beam. The nearly parallel beam is diffracted and enters a 

GID attachment with several slits, a vertical plate arrangement which allows complete 

parallel x-rays to pass while absorbing converging and diverging diffracted x-rays. This 

slightly reduces the intensity measured on the detector side. A disadvantage using thin 

plate arrangement is the wide instrumental peak. Nonetheless, it is the fastest method due 

to high intensities for obtaining crystal structure data. 

a b



‐ 17 ‐ 

2.4.2 Crystal size 

XRD is primarily used to determine the carbide phases within a film, but it also allows 

determination of the crystal size. The average crystallite size D within the film can be 

calculated by applying the Scherrer equation (2.3) [13]. The Scherrer equation correlates 

the width of the peak and the dimension of the crystallites, with β2θ being the FWHM of 

the diffracted peak, θ0 the diffraction angle and λ the incident wavelength.  

 

2 0

0.93
D

cos


 

                     (2.3) 

 

The Scherrer equation assumes that peak-broadening is caused by mono-dispersed cube 

shaped very small crystallites. However other factors, such as strains, shape distribution 

and crystal shape, also contribute to peak-broadening, making the calculated values for 

the crystal sizes too small. For example, the values for mono-dispersed spherical 

crystallites are 1/1.0747 too small when calculated with the Scherrer equation.  

The Scherrer equation is limited in calculating the crystal size by the width of the peak. 

The crystal sizes can range from very small crystallites (~5nm) up to large crystals 

(~200nm). The crystal sizes were calculated using GID and Bragg-Brentano 

configuration. For the larger crystals Bragg-Brentano is used due to higher intensity, 

however due to instrumental peak-broadening it is impossible to distinguish the actual 

width above a certain sizes. 

The crystal sizes calculated with the Scherrer equation should be considered to be a rough 

estimate, since many factors influence peak broadening and, therefore, the crystal size. 

Nonetheless, the growth process of crystal sizes after annealing can easily be observed 

with the Scherrer equation and change in peak widths. 
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2.4.3 Textures 

Each grain normally has a crystallographic orientation different from that of it neighbor 

grain. Within an ideal sample, the orientation of all the grains may be randomly 

distributed in relation to a reference grain. Nevertheless, in the most real specimen the 

grain order in a preferred orientation, e.g. by the growing process, mechanical treatment 

or by aligning in groups inside a powder, known as texture. From the XRD diffractogram, 

the presence of textures can be assumed by comparing the height of the diffraction peaks 

with those from a database (e.g. ICDD WINPDF), see section 2.4.4. Big differences tend 

to be a sign of textures. 

The standard XRD diffraction patterns are measured with a θ/2θ setup, where the lattice 

planes are orientated parallel to the film surface. In order to determine orientation 

distribution (texture), all grains within the sample must be measured. This is done by 

rotating the sample around the azimuth angle  0 360   
 

and the tilt angle 

 0 90     for a fixed incident angle θ and reflection angle 2θ. The results from 

texture measurements are displayed within a pole figure [13].  In this work only a 

comparison to the PDF file results were done in order to obtain an indication for texture 

of the carbide grains. 

 

 

 

2.4.4 ICDD database 

WINPDF (Windows Powder Diffraction File) is an International Centre for Diffraction 

Data (ICDD) database file used for peak identification for individual crystal phases [14]. 

As constructive interference depends on the distance between the lattice planes, i.e. the 

crystal structures, and reflection power of the atoms, i.e. the arrangement of the atoms in 

the unit cell, the reflected diffraction peaks are unique for each material. Within the 

WINPDF file, data about the reflected diffraction peaks along with corresponding miller 

indices of any material combination measured, as well as theoretical diffraction peaks of 

texture free, i.e. ideal powder, have been stored. In addition to the diffraction angles, the 

relative diffracted intensity for each peak is given. Any irregular intensity distribution in 

the pattern might be a sign for texture. The used PDF’s in this thesis are: 4-806, 25-1047 

for WC, 35-776 for W2C, 20-1316 for WC1-x and 20-1324 for WO3. 
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2.5 W-C phase Diagram 

Within the W-C phase-diagram (figure 2.8), three different kinds of carbides (Figure 2.9) 

can be formed in an eutectic system depending on the C-composition. These three 

carbides are: 

 The hexagonal stoichiometric monocarbide WC.  

 The cubic carbide WC1-x. 

 The hexagonal close packed W2C.  

From these phases, WC is thermodynamically the more favorable carbide around room 

temperatures. The reason is that the bonding enthalpy fG  of WC is lower than that of 

WC1-x and W2C [15]. The other carbides, WC1-x and W2C, are thermodynamically stable 

around respectively 1300K to 2800K at tungsten concentrations of approximately 50 at% 

and 70 at%.  

 

Figure 2.8: Detailed W-C phase diagram [17]. Modified by S. Jong 
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Table 2.1 shows the eutectic composition for each carbide phase as function of the carbon 

composition. From the W-C diagram and table, only WC and C are expected at Carbon 

concentrations higher than 60 at%. A sample containing 22 at.% tungsten or less which is 

then annealed up to temperatures of 2800K would only contain WC and C.  

 

 

Table 2.1: Information about the carbide phases found in the W-C phase diagram dependent on the carbon 

concentration. The Pearson symbol for each carbon phase is shown, along with the space group symbol.  

 

W-C crystal structure data   
          

Phase Composition at.% C Pearson symbol 
          

W 0-1 cI2 
γ-W2C 25.5-34 hP3 
β-W

2
C 29.5-33 oP12 

W
2
C 29.5-32.5 hP3 

WC
1-x

  37.1-50 cF8 
WC 49-50 hP2 
C 100 hP4 

          
          
 

 

 

 
Figure 2.9: Crystal structures of WC1-x, W2C and WC [3]. 

 

Common fcc cubic  type structure. 
In the WC

1-x 
structure few carbon 

atoms are missing. 

•

Hexagonal closed packed 
W

2
C structure 

Hexagonal stoichiometric 
monocarbide WC structure 



‐ 22 ‐ 

However, there have been reports about meta-stability in the system in both 

concentration- and temperature-driven non equilibrium transitions. For instance, the 

meta-stable WC1−x and W2C are formed as kinetic products from rapid cooling of WC. 

Since the sample are created by dual magnetron deposition, a non-equilibrium transitions, 

WC1−x and W2C can be obtained directly after sputtering or after heat treatment, as result 

of kinematic hindering [16].  
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Chapter 3 
 

3.1 Experimental 

Two different type of substrate materials, both with a dimension: 12x15 mm2 were used 

to study the carbide formation of a-C:W films: 

 

1. Polished single crystal Silicon Wafer (100). 

2. Pyrolytic graphite cut parallel to basal planes and polished with diamond paste. 

Both substrates were chosen for the good adhesion of the deposition and little influence 

during heat treatment. Before deposition, all samples were ultrasonically cleaned in 

isopropanol for 5 min. After cleaning in bath all samples were washed again with 

isopropanol, to remove any particle attached to the surface and avoid drying of 

isopropanol with these particles.  

After cleaning the samples were placed onto a round sample holder, which could be 

placed in the sputtering device. The samples are located onto the sample holder as seen in 

figure 3.1. In the middle of the holder is a unbroken polymer-silicon coated wafer. The 

samples are placed equally dispersed around the silicon wafer in longitudinal direction, 

due to the gradient in deposition rate, hence; all samples are the same. The edge of one 

silicon substrate was covered with a tape to protect it from deposition. The thickness of 

the films could be measured afterwards with a profilometer after removing the tape. The 

film material was attained as a powder by inserting the coated wafer into acetone to solve 

the polymer.  

The sample holder is placed onto a rotating disk within the sputtering device, guarantying 

uniform thickness and composition. The chamber was pumped overnight with a turbo 

molecular vacuum pump to a base pressure of 68.4 10 Pa .  

 



‐ 24 ‐ 

 

Figure 3.1: Sample holder after deposition, showing specimen arrangment. in the centre a coated silicon 

wafer around which equally disperced samples. On the right, a silicon sample where part of the sample has 

been taped, to determine deposited thickness.  

 

 
 

3.2 Deposition 

Two multi magnetron sputtering devices were used for depositing a-C:W films at IPP: 

Denton Vacuum Discovery-18 Deposition System “Denton” and Leybold Unnex 450 C 

“Leybold”. The power at the graphite cathode was supplied using a RF generator in the 

Denton device (fixed at 500W) and DC in the Leybold device (fixed at 600W). The 

power at the tungsten cathode, supplied using DC, was varied between 2W and 20W, 

depending on the concentration desired in both devices. Using DC in Leybold allowed 

twice as much power on the C cathode as using the RF generator, increasing deposition 

rate. In both devices Argon (99.999%) was used as sputtering gas.  

Before deposition, the substrates were cleaned through etching for 120s at 100W using 

argon plasma. Etching removes the oxide layers present on the silicon substrates and 

enhances the adhesion. After etching, the targets are cleaned from oxide layers for 100s 

with closed shutters, preventing any particles falling on the substrates. After cleaning, the 

deposition process could begin. Liquid Nitrogen (LN2) was used in the Denton device to 

reduce oxygen concentrations. No LN2 was used during deposition in Leybold 
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The tungsten concentration of each deposition run was determined by Rutherford Back-

scattering Spectroscopy (chapter 2.2) using 4He at 4MeV with a tandem accelerated in 

IPP. Besides the tungsten concentration, the concentration impurities of argon ( 3 .%at ) 

and oxygen ( 3 .%at ) were also measured. From the RBS spectra, tungsten 

concentrations from 6-30 at.% W were determined. The average film thickness was 

determined using the Alphastep 200 profilometer on the edge between the uncoated and 

coated area of the taped substrate. In table 3.1 a summary of samples deposited with 

concentration, carbon and tungsten power, argon flow, pre-deposition pressure, 

deposition time and thickness is shown.  

 
 
Table 3.1: A overview of sputtered samples sorted by concentrations. The tungsten concentration displayed 
in the table represents the concentration of the first 100 nm of the film below the surface. 
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7%  WS84  Leybold  600 8  90 2.5 450  930  

9%  WS83  Leybold  600 6  90 0.13 1420  2550 

10%  WS86  Denton  500 10 20 3.8 800  3000 

12%  WS88  Denton  500 12 20 3.7  500  2200 

14%  WS87  Denton  500 15 20 8.4 750  3300 

18%  WS80  Leybold  600 15 90 0.16 1440  3200 

22%  WS85  Leybold  500 20 90 2.3 1400  3340 
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After deposition, the specimens were annealed to specific temperatures: 1450K, 1800K, 

2200K, 2500K and 2800K in a graphite high temperature oven (type: Labmaster very 

high temperature furnace, Thermal Technology Inc.) for 1h in an Argon or Helium 

atmosphere.  For heat treatment lower than 1450K, samples were annealed for 1h in a 

self-made high vacuum oven (MOMO). Table 3.2 illustrate which film has received 

which heat treatment and was investigated by SEM. 

 
 
Table 3.2: Overview of the samples who have received heat-treatment (X) and have been investigated by 
SEM (XXX). 
 
Concentration 

W 
1100K  1300K 1450K 1800K  2200K  2500K 2800K 

6%     X X X X X 

7%     X X X X   

9%     XXX X XXX XXX XXX 

10%     X X X X   

12% XXX   X X X X   

14% X X X X XXX X   

18% XXX X XXX XXX XXX XXX XXX 

22% XXX X XXX X X X   
  

 

The crystallographic phase within the annealed a-C:W films, were examined by XRD 

diffraction. Carbide phases were identified by comparing peak positions within the XRD 

diffractogram with data from ICDD PDF. Figure 2.7 shows a diffractogram of a θ/2θ scan 

of a 22% a-C:W film annealed to 2200K. All XRD measurements were made with a 

Seifert XRD 3003 PTS diffractometer, using Cu Kα radiation. Details about the carbide 

phases observed in the diffractograms can be found in chapter 4, section 4.1.1. 
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Chapter 4 

 
4.1 Carbide characterization  

4.1.1 XRD Characterization  

For the evaluation of the XRD data, all diffractograms from an annealing series have been 

added in a diagram for better observations of peak trends. Data regarding tungsten carbide 

phases from the WINPDF-file, have also been added into the diagram, making peak 

allocation faster and easier. Phase characterization, crystal size measurements and 

textures were investigated using θ/2θ Bragg-Brentano configuration and in several cases 

(thin films) multi-layer/GID. The following section contains a detailed description about 

analyzing XRD diffractograms from all heated series. The data from the XRD 

diffractograms have been summarized inside an XRD tableau found in section 4.2 for a 

better overview. 

The XRD spectrum for the annealing series of 6% a-C:W is shown in figure 4.1. This is 

the only series measured with the multilayer\GID configuration due to the thickness and 

tungsten concentration of the deposited film. In addition the diffractogram of the initial 

(unheated) sample has been added to act as a comparison for all other diffractograms. The 

initial samples of all other annealing series are similar to the 6% a-C:W, hence the initial 

samples have not been added into the diffractograms. For temperatures lower than 2200K, 

no clear carbide phases can be allocated as only broad peaks can be found. However, 

compared to the initial sample, few changes can be observed. A broad peak from 35° to 

42° can be seen, illustrating that crystal formation has taken place. The amounts of 

crystallites formed are too small to be noticed. At 1800K, a small shoulder of the peak 

appears at 37°, indicating a possible appearance of WC1-x. Heat treatment to 2200K leads 

to broad clear WC1-x peaks at 37° and 43°, whereas there is no sign of the other carbide. 

A small peak around 48° is found, indicating the presence of WC, however no signs of 

other WC peaks around 31° and 35° were found. Heat treatment to 2500K leads to clear 

WC1-x formation. The peaks around 37° and 43° have become narrower and no sign of 

WC and W2C carbide phase can be found. The peak around 48° is still there. Within the 

2800K, narrow high WC1-x peaks can be found around 37° and 43° alongside with WC 
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peaks which have appeared around 31°, 35° and 48°. Within all samples of 6% a-C:W, no 

W2C phase was found. For the 2800K annealed specimen large peaks around 32-34° and 

42° can be found, belonging to WO3, which has apparently been formed during the heat 

cycle. As it turned out that a leak within the oven allowed oxygen to enter the purged 

chamber and react with the tungsten within the sample. Comparing peak intensities of 

WC peaks, indicate that a possible texture is present. The peak around 31° is higher than 

that of 36°, while the ICDD powder file suggest that the intensity of the 36° is higher. 

Further research has to be done to confirm texture suspicion.  
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Figure 4.1: XRD diffractograms of the annealing serie of the 6% a-C:W samples.  

 

Crystal sizes of 11 nm were measured within the 2500K specimen. For the 2800K, crystal 

sizes of 107 nm were measured for WC1-x and >200 nm for WC. For both specimens, 

Bragg-Brentano setup was used for crystal size determination, i.e. narrow peaks can only 

be measured using this setup.  
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In the concentration series 6% and 7% a small peak around 48° could be found in the 

lower heated (1800K-2200K) specimen. At first it was believed that this peak came from 

the reflection of WC carbide. However, since no other WC carbide diffraction was found 

within the diffractogram, the peak diffraction had to come from something else. The 

diffractogram of an un-deposited graphite sample showed that the small peak belonged to 

graphite. In all other diffractograms, a small peak around 48° will be ignored until a clear 

WC diffraction can be allocated. 

Annealing samples containing 7% and 9% a-C:W, figures 4.2 and 4.3 show identical 

diffractograms and carbide formation to the 6% a-C:W annealing series. These samples 

have been measured using θ/2θ Bragg-Brentano configuration to obtain a better 

resolution for determining peak broadening by crystallite size. No clear carbide allocation 

can be done at temperatures below 2200K. At 2200K a small shoulder around 35° could 

be found in both samples, an indication for the presence of W2C. In the 2500K specimens, 

WC1-x has become the more dominant carbide. In the 7% 2500K diffractogram, small 

peaks around 34,5° and 39° can be observed, representing W2C carbide. For the 9% 

2500K a small peak can be noticed around 36°, a sign for WC. Unfortunately, the WC 

peak around 48° cannot be used, given that the UC graphite substrate also has a peak 

around the same position.  For the 9% a-C:W 2800K sample WC and WC1-x can be 

noticed. Crystal sizes of 10 nm can be measured within both 2500K specimens, whereas 

crystal sizes within the 9% 2800K are 104 nm for WC1-x and >200 nm for WC. Both 

samples show no sign of texture of any kind. 
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Figure 4.2: XRD diffractograms of the annealing serie of the 7% a-C:W samples. 
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Figure 4.3: XRD diffractograms of the annealing serie of the 9% a-C:W samples. 
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The XRD diffractogram of a 10% a-C:W looks different to that of the 6%, 7% and 9% a-

C:W, figure 4.4. For temperature up to 1800K, a large broad peak can be found around 

35°- 40°, meaning small crystallites are there. Hence all three carbide have diffraction 

peaks in this range, therefore no assumption about individual crystal carbides can be 

made. The broad peak shows two shoulders, one on each side. The shoulder on the left 

side is found around 35°, an indication for W2C, where the shoulder on the right side can 

be found near 39°, another indication for W2C. Although all anomalies indicate the 

presents of W2C, small amounts of WC and WC1-x might be present. Annealing to 2200K 

clearly leads to the formation of W2C peaks at 34°, 38° and 39°. A small shoulder of the 

39° peak can be noticed, indicating the presence of WC1-x. In the 2500K specimen large 

peaks appear which were not present in the lower annealed samples belonging to WC, 

while the WC1-x strongly increase in intensity. A close observation shows that the 

intensity of the W2C peaks has declined, meaning that the W2C is slowly disappearing. 

Crystal measurement for the 2500K sample show that the WC1-x crystals are 10 nm big, 

WC crystals 27 nm, and W2C are smaller than 5 nm. Unfortunately no 2800K sample is 

available, hence no conclusion can be drawn whether W2C has completely disappeared or 

is still present.  
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Figure 4.4: XRD diffractograms of the annealing serie of the 10% a-C:W samples. 
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In the 12% a-C:W, figure 4.5, no clear carbide formation is observed at 1450K. At 1800K 

small narrow WC peaks, can be found around 31° and 35°. A large broad peak can be 

observed from 35° - 40° with 2 peaks on the shoulder. These peaks indicate the presence 

of W2C. In the 2200K clear W2C peaks can be noticed around 38° and 39°, whereas the 

shape of the WC peaks has not changed. At 2500K, high and narrow WC peaks can be 

found around 31°, 35° and 48°, a sign for large crystals within this specimen. The 

intensity of the W2C peaks seem to decrease compared to the 2200K specimen. A peak on 

the shoulder around 43° can be seen, which is clearly a sign of WC1-x. Unfortunately, no 

annealing to 2800K was done, therefore no conclusion about the disappearing of W2C 

and appearing of WC1-x can be made. Crystal sizes of 8 nm for W2C and 30 nm for WC 

were measured for the 1800K specimen. Both average crystal sizes have increased for the 

2200K specimen: 12 nm for W2C and 42 nm for WC. Crystal measurements for the 

2500K show that average crystal sizes for WC1-x are 11 nm big, W2C are  smaller than 5 

nm and WC are 35 nm. 
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Figure 4.5: XRD diffractograms of the annealing serie of the 12% a-C:W samples. 
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In the 14% a-C:W, figure 4.6, clear W2C carbide formation around 37° and 39° is seen at 

1450K. In addition small peaks appear near 31° and 36°, an indication for WC. At 1800K 

and 2200K, clear narrow WC carbide peaks can be seen alongside W2C. The 2500K 

specimen only contains WC, as no signs of W2C peaks are found. W2C has completely 

disappeared. For the first time, WC is the only phase found within a sample. In all lower 

tungsten concentrated samples, WC was found alongside W2C or WC1-x and was 

recessive compared to W2C and WC1-x. 

Crystal sizes of 8 nm can be measured for W2C at 1450K and 1800K. At 2200K, 16 nm 

crystals for W2C are measured. The WC peak in the 1450K specimen, indicate that the 

WC crystals are very small (< 5nm). At 1800K, the WC crystals have grown to an 

average size of 19 nm. At 2200K, 62 nm crystal are measured, while in the 2500K, actual 

crystal size (>100 nm) could not be measured due to instrumental broadening. 
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Figure 4.6: XRD diffractograms of the annealing serie of the 14% a-C:W samples. 

 

 



‐ 34 ‐ 

The 18%, figure 4.7, contains a mixture of W2C and WC, where the ratio WC to W2C is 

increased to WC for temperatures up to 2200K. At 2500K, the majority of W2C has 

disappeared, and large WC peaks are observed. The peak around 37° in the 2500K 

indicates that W2C is still present; however none of the other W2C diffraction peaks can 

be noticed with the spectrum. Even if small quantities of W2C are left, due to the strong 

tungsten gradient within the sample, no clear explanation can be given to why only the 

37° peak appears within the spectrum. Therefore this artifact will be disregarded during 

evaluations in this work.  
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Figure 4.7: XRD diffractograms of the annealing serie of the 18% a-C:W samples. 

 

The 22% a-C:W sample, figure 4.8, shows two particular interesting features. As initially 

suspected, the only carbide found within the heat series of 1450K up to 2800K is WC. 

The diffractograms show high narrow peaks, indicating large crystallites. The second 

feature is the peaks around 43°. These sharp peaks cannot be found within the WINPDF 

database, and are therefore un-allocatable. It could be suggested, that this peak belongs to 

an unknown WC crystal phase. the peak is also observed within the 14% 2500K series. In 

addition the peak intensity is only 1% of the intensity of the 37° peak, therefore only 
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observable for thick layers and if no WC1-x phase is present. It was believed that 

annealing this series to lower temperatures 1100K – 1300K might show the formation of 

the other carbides. Unfortunately, the spectrum of the 1100K and 1300K sample showed 

no signal only broad peak. These samples were amorphous. 
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Figure 4.8: XRD diffractograms of the annealing serie of the 22% a-C:W samples. 
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4.2 XRD and SEM Tableau 

All the data from section 4.1, XRD, SEM and nano-diffraction have been summarized 

into two tableaus. The results from the XRD-diffractograms; carbide phases and crystal 

sizes have been summarized into the first tableau (4.12). The results from SEM and nano-

diffraction have been summarized in the second tableau. Both tableaus have the same 

layout, where the sample is expressed by temperature, x-axis, and tungsten concentration, 

y-axis.  

To express specific information colors have been added. Yellow, blue and green represent 

the carbides WC, W2C and WC1-x, respectively. Besides these colors, white, dark grey 

and violet are used: white is used to symbolize samples that have not yet been annealed 

nor researched. Dark grey is used for initial samples and for annealed samples which have 

a diffractogram very similar to initial ones. Violet is used for samples which have small 

crystallites, but which are too small for interpolation. These samples however differ from 

the initial samples. In some samples a combination of violet and a carbide color can be 

observed. These samples still have broad peaks, small crystallites, but tend to shift 

towards a single phase. it is assumed that the majority of the crystallites belong to this 

carbide, however other carbides might still be present. 
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4.2.1 XRD Phase analysis 

When looking at the XRD tableau generally, we suspected for the thermo dynamic phase 

diagram (figure 2.8) the entire tableau to be in yellow (WC). As discussed in section 2.5 

the only carbide phase that exists within samples with a tungsten concentration of 6%-

25%, annealed to temperatures from room temperature up to 2800K is WC. However, 

WC is only mainly found within the higher concentrated and annealed films. Besides the 

suspected WC, also W2C and WC1-x can be found within the lower concentrated films. 

WC1-x is observed in the low concentrated a-C:W films, whereas W2C is present in the 

intermediate concentrated a-C:W films. Besides the presence of all three carbides within 

the tableau, most of the samples contain a mixture of two carbides. From all specimen 

containing a mixture of crystallites, WC is always one of them. Only the low concentrated 

samples contain a mixture of WC and WC1-x after heat treatment to 2800K. All other 

samples contain a mixture of WC and W2C. Unlike with WC1-x, these mixed samples only 

appear after heat treatment from 1450K up to 2200K. Above 2200K, no more W2C is 

present, only WC.  

The disappearing of W2C can be explained by the fact that W2C is a transit-phase for WC 

as is discussed in the thesis of Jens Luthin. Both carbides have a hexagonal structure and 

WC is thermodynamically the most stable carbide. However, this does not define the 

formation of W2C, whose building enthalpy is higher than that of WC. In addition, the 

transport of tungsten necessary to build W2C requires more energy than that of carbon. 

The formation of WC1-x in the lower concentrated films 6-9 at.% W is very remarkable. 

WC1-x is known to be thermodynamically stable around temperatures of 1500K-2800K 

and at tungsten concentration levels of 50-62.9 at.% (figure 2.8). However in our case, 

WC1-x can be found around concentration levels of 6-10% and from 2200K up to 2800K. 

Nevertheless, since XRD is our primary characterization method, it could be possible that 

WC1-x exists at lower temperatures but is not detected. The formation of WC1-x seems 

strange due to the redundant amount of carbon present and that the building enthalpy of 

WC is lower, making it more thermodynamically stable. This would make a combination 

of both carbides more reasonable than just finding WC1-x in the annealed samples. In the 

2800K samples, both WC and WC1-x can be spotted. Another interesting fact is that 

within the annealed samples of 1100K and 1300K, no clear carbide formation was found. 

The mobility in atoms in these films seems to be too low at these temperatures. 
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Comparing the crystallite sizes of the W2C phase in all samples shows that the maximum 

crystal size does not exceed 20 nm. All samples which contain W2C have small crystal 

sizes, meaning that W2C can be considered to be meta-stable, in non-thermodynamic 

state. The maximum size of WC1-x crystals are larger than 60 nm, whereas the maximum 

size of WC crystals cannot be determined using XRD-methods, but are larger than 

100nm. 

 

 

XRD Tableau (next page): The elements within the XRD Tableau have been divided into two sections. The 

left section, illustrates which carbide can be observed within the sample. Furthermore, it tells about the 

abundance of each carbide phase by comparing their peak intensities by the area fraction. The right section, 

divided into 3 rows where each row represents one of three carbides, gives us information about the grain 

sizes. The height of the row informs us about the average crystal size of the respective carbide within the 

sample calculated with the Scherrer equation (2.3). In the left upper corner of the tableau, a color index for 

is shown. On the right side of the Tableau two lines illustrate where which grain size is found.  The grain 

sizes scale is divided into following sizes (from bottom to top): < 5,  5, 10, 20, 30, 40, 50, 60, 70, 80, 100 

and 200 nm.  At the bottom of each row, the average crystal size is given for better comparison. No textures 

were interpreted from any diffractogram during this research.  

 

SEM tableau (page 45): The elements in SEM/STEM tableau are also divided into two sections. The left 

section contains information acquired from nano-diffraction in Warsaw and gives us information about the 

carbide phases located within the sample as well as abundance. From the lamella, small crystallites were 

randomly chosen on which then nano-diffraction was performed. The right section is a schematic drawing 

of crystal sizes and size distribution acquired from SEM. The height of each row is a rough estimate 

symbolizing the quantity of crystals numbers in that size range in the sample. Both scales have been plotted 

in a roughly logarithmic scale, so that all sizes can be plotted. The scale used for the crystal sizes (from left 

to right) is divided into: 1, 2, 5, 7, 10, 20, 50, 100, 200, 500, 1000 and 2000nm. In the left upper corner a 

color index is illustrated. Two lines near the 2500K 18% sample, demonstrate where the next range begins.  
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Figure 4.12: XRD tableau. Figure caption is on the previous page 
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Figure 4.13: SEM & nano-diffraction tableau. Figure caption is on the previous page 
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4.2.2 SEM 

SEM cross-sections show that the crystal sizes grow with increasing temperatures for the 

9% and 18% a-C:W films. In addition to observing crystal growth, crystal size 

distribution is given and fast crystal size comparison to other samples and to the XRD 

findings (4.12) is allowed by the SEM tableau (4.13). In general the crystal sizes 

measured by XRD correspond to the findings of SEM. With SEM also crystal sizes above 

the detection limit of XRD, bounded instrumental broadening, are determined. XRD 

limitation indicated that the crystal sizes were larger than 100 nm, whereas SEM found 

crystal sizes of 1 μm. Besides crystal size limitation, the XRD cannot distinguish 

binomial crystal distribution properly as seen in the 9% a-C:W 2800K. It must be noted 

that the crystal sizes and distribution in the SEM tableau are a rough schematic drawing, 

as realistic image analysis cannot be done or is difficult.  

Furthermore, the SEM tableau reveals increasing crystal sizes with increasing 

concentration at specific temperatures. At a certain temperature and tungsten 

concentration this rapid crystal growth is noticeable.  At 2200K the 18% a-C:W film 

(figure 4.10b) shows that the crystal size depends on the tungsten concentration (14-18 

at.%). To confirm that this crystal size gradient was result from a concentration gradient 

found within the sample (figure 2.3), special designed multi-layers were produced by 

magnetron sputtering. These multi-layers, each layer with a different tungsten 

concentration, should confirm that the crystal size gradient within the 18% a-C:W sample 

was caused by the concentration differences and exclude other factors (e.g. oxygen, 

substrate). 
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4.2.3 Nano-diffraction 

Although nano-diffraction initially only acted for comparison to the results from XRD, 

the results show some interesting new findings. Within the 9% a-C:W sample, a mixture 

of both W2C and WC1-x is found in the 1450K, 2200K and 2500K. Within the 2800K a 

mixture of WC1-x and WC is found. These findings are in contradict to the XRD findings, 

which concluded that within the 2200K and 2500K only WC1-x is present. In addition, the 

XRD diffractogram of 1450K showed no clear crystal morphology, except wide peaks, 

meaning no conclusion about the carbide phases could be made. With nano-diffraction, 

phase identification of W2C, WC1-x and WC crystallites of nm size could be done. 

Besides phase analysis, crystal size analysis of very small crystallites (1-5 nm) can be 

done. 

Besides the 9% a-C:W film, nano diffraction was also done on samples from 18% a-C:W 

and 22% a-C:W. The findings from the 22% a-C:W support the XRD findings as only 

WC was found. Besides phase identification on nm-levels, bright and dark field imaging 

illustrate that within the 22% W sample, clearly WC and graphite has formed. The 

findings done on the 18% a-C:W film were surprising. Within the 1450K and 2200K, all 

three carbide phases: WC, W2C and WC1-x were found, figure 4.16 and 4.17. Within the 

1450K sample, the majority of the crystals are W2C, whereas a few are WC and WC1-x.  
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Fig. 4.15. STEM images in bright field mode (a,c) and in Z-contrast (b,d) together with typical electron 

diffractograms of WC1-x (e) and W2C (f) of 9% W film annealed at 1450K [18]. 

 

Fig. 4.16. STEM images in BF mode (a,c) and in Z-contrast (b,d) together with typical electron 

diffractograms of WC1-x (e) W2C (f) and WC (g) of 18% W film annealed at 1450K [18]. 
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In the 2200K, the majority of the crystals belong to WC, whereas the amount of W2C has 

reduced. The amount of WC1-x found in both samples does not vary much during both 

heat intervals. The small amount of WC1-x found clarifies the reason WC1-x is not found 

within the XRD diffractogram. Within the 2800K sample, both W2C and WC1-x have 

disappeared and changed into WC. 

 

 

Fig. 4.17. STEM images in BF mode (a,c) and in Z-contrast (b,d) together with typical electron 

diffractograms of WC1-x (e) W2C (f) and WC (g) of 18% W film annealed at 2200K [18]. 

 

The reason for the appearance of all three carbide may be the result of a concentration 

gradient found within the sample (figure 4.10b). Further research is still done on this 

sample. A hypothesis is that the WC1-x is found in the lower concentrated part of the 

sample, in the middle a mixture of W2C and WC could be found, whereas at top only WC 

may be found. 
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Chapter 5 
Conclusion  

The study in carbide formation of a-C:W films in an non-thermal equilibrium state have 

been investigated using XRD, SEM/STEM and nano-diffraction. Within the a-C:W films 

all three carbides depending on two parameters (concentration and temperature) are 

observed, although only the stable thermodynamic phase WC is expected. From all 

carbides, WC1-x is the only and dominant phase at temperatures of 2200K up to 2800K 

within the lower concentrated films (<10 at.%) (figure 5.1). In the middle concentrated 

films (10-18 at.%) in the range of 1450K up to 2200K, W2C is the most common carbide. 

Only in the higher concentrated films and annealed samples WC begins to become the 

dominant phase. The presence of WC in the annealed samples is not surprising due to the 

W-C phase diagram. However, the presence of WC1-x and W2C are astonishing, as they 

are not stable below 2789K respectively 1323K. Surprise 

In the majority of the samples a mixture of two carbides can be observed, whereas in only 

a small number of samples all three carbides can be detected. A few samples contain a 

mixture of WC and WC1-x. The majority of the samples consist out of a mixture between 

W2C and WC, respectively WC and WC1-x. W2C is never observed in large quantities 

within any sample. The average crystal size of W2C never exceeds 20 nm, indicating that 

W2C and perhaps WC1-x might be transit phase to form WC, as discussed by Jens Luthin 

[15]. XRD confirms that the 2500K sample of respectively 10% and 12% a-C:W films 

show diffraction pattern of all three carbides within a single diffractogram. At higher 

temperatures the WC1-x phase might increase, whereas the W2C phase will decrease. 

Nevertheless, WC1-x can be observed alone without the presence of any other carbide in 

the 6 at.% 2500K sample. Its crystal sizes increase at higher temperature with a maximum 

average size of ~100 nm.  

Grain sizes do not only increase as function of temperature but also as function of 

concentration. The special designed multi-layer annealed to 2200K clearly proves that the 

crystal sizes depend on the tungsten concentration in a sample. In addition the multi-layer 

shows that at a certain concentration (around ~19 at.%) a rapid increase in size occurs. In 

addition the rate of crystal size growth depends on the type of carbide as seen within the 

6 at.% and 9at.% sample.  
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Figure 5.1: summary Tableau 
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To understand the formation of the cubic WC1-x and hexagonal W2C and this unusual 

behavior a hypothesis has been made: during deposition, both carbon and tungsten atoms 

are distributed randomly throughout the sputter chamber and on the substrate. Depending 

on the crystal structure, each atom has around 8-12 neighbors. In samples containing low 

tungsten concentrations (< 9 at.%), it is unlikely to find two tungsten atoms alongside 

each other. This means, that almost every tungsten atoms is surrounded by a carbon atom. 

Therefore, the formation of WC1-x and W2C in the lower concentrated specimen seems 

illogical. At higher concentrations (~ 22 at.%) each crystal cell should consist out of a 

minimum of two tungsten atoms. Thus the formation of W2C and WC1-x would be 

expected.  

Throughout the deposition run, the substrate temperatures do not reach high enough 

temperatures for crystalline structures to form. Only during heat treatment do the 

temperatures suffice for crystalline structures to form.  Here, the carbon atoms diffuse 

through the deposited layer, as the process of transporting carbon atoms requires less 

thermal energy than that of tungsten. Meanwhile the tungsten atoms begin to bond with 

their neighboring carbon atoms. Depending on the amount of tungsten and carbon atoms 

in the area, WC1-x or W2C is formed. As higher temperatures are reached, tungsten atoms 

also begin to diffuse and bond with the carbon atoms; hence more WC1-x and W2C is 

created. In lower concentrated films, the amount of W2C is too little to be detected by 

XRD since the crystals remain very small. At concentrations of 14 at.% and higher no 

more WC1-x is formed and only W2C is formed.  As temperatures and concentration 

increase, the amount of WC increases as well. Due to the maximal crystal size of W2C it 

confirms that W2C can change its crystal structure easily and rapidly into hexagonal WC. 

Why the formation of W2C is preferred above WC is unknown, however for the stable 

WC to be formed in a non-thermodynamic equilibrium it is believed that is has to surpass 

the meta-stable W2C. Whether WC1-x will change into WC remains unknown, hence 

further investigation will be needed to understand the carbide formation in a non-

thermodynamic equilibrium state.  
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Chapter 6 

Outlook 

Even though this investigation has contributed in the study of carbide formation in a-C:W 

films in a non-equilibrium system, further investigations regarding both temperature and 

concentration parameter are needed. These investigations should then reveal if the system 

will change into its thermal equilibrium state, i.e. WC becomes the dominant phase at 

higher temperatures. Furthermore, it may explain why the carbide formation of high 

concentrated films takes place earlier at lower temperatures.  

A continuing cooperation with Warsaw Technical University, for nano-diffraction on 

samples, might reveal information about the formation of tungsten carbide crystallites, 

especially in the multi-layer sample. Secondly, nano-diffraction will complete the SEM 

tableau giving more information about carbide formation on atomic scale. Besides nano-

diffraction, cross-sections on other samples will contribute in completing the SEM 

tableau. Finally, more special designed multi-layer may contribute in further research in 

crystal size gradient.  

Further research and experience will allow production of special designed layers in the 

future. Materials containing, meta-stable W2C, WC1-x, stable WC or a mixture of both 

will be used for Industrial applications. Besides carbide phases, the crystal sizes for each 

carbide can be controlled as well. No industrial applications are known for the moment, 

but might change in course of time.  
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