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Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a
challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory,
especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require
close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling
of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and
machine protection recipes.

The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in
diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system
topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such
an environment. Moreover, the system is subject to real-time control constraints: response times must be
deterministic and adequately short.

Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose
core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the
parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed
workflow. The data-driven workflow as used in DCS is based on signals connecting process outputs and inputs.
These are implemented as real-time streams of data samples. Consequently, real-time signal management forms the
foundation of DCS. The paper explains the principal features such as tagged samples, signal groups, algorithmic
blocks and processes as well as scheduling schemes which allow DCS control applications to be defined as self-
contained modular building blocks glued together by a software framework.

By virtue of this sound foundation, DCS is a mature but still evolving system for reliable, distributed control of
an entire tokamak device coordinating and monitoring 20 diagnostic systems, 14 magnetic power supplies, 5
heating systems with a total power of more than 25 MW, 8 gas fuelling channels, a pellet injector and a killer gas
gun.
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1. Introduction

In the attempt to permit advanced but safe plasma operation, state information must be acquired, reconstructed and
computed in growing detail. Modern plasma control systems and the connected data acquisition and actuator systems
thus have to process an ever-increasing amount of data. Raw information is supplied by a variety of specialised
diagnostic systems either as analogue voltages or as digitised and pre-processed streams of data samples. Using these,
plasma control has to address many different goals: reference tracking and plant protection, state reconstruction and
output interlock, magnetic and kinetic control, manual and automatic scenario optimisation. Although all tasks are
strongly linked by plasma physical interrelations, control system architectures try to manage this complexity by
decoupling them as much as possible. Breaking down the control task into smaller, separable pieces results in a
parallelised system topology with a multitude of data streams connecting the various algorithms.

While such structures can be found in all major fusion devices [1, 2, 3], the workflow, i.e. the synchronisation of
algorithm execution and data streams is implemented with different philosophies. In the simplest case data streams are
treated like continuous analogue signals and algorithms just use the instantaneous value without any synchronisation.
Computational and network latencies inherent to digital signal processing as well as non-uniform data stream activities
e.g. due to diagnostic system operation windows are neglected. Managed workflows solve some of these shortcomings
by a pre-determined sequencing like in the MARTe framework developed at JET [4] or by a time-slot based pipelining
scheme as used by industrial applications with EtherCAT, Ethernet Powerlink or RTnet real-time network protocols [5,
6, 7]. On the other hand, in complex systems such as plasma control, managed workflows turn out to be inflexible since
any algorithmic modification changing the composition of data stream inputs requires a redesign of the execution
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Fig. 1: Block diagram for electron density usage

sequence. Alternatively, algorithm execution can be synchronised by data streams. This data-driven, and hence self-
organising workflow forms the foundation of the ASDEX Upgrade discharge control system DCS.

In the following sections we will show the effectiveness of this approach and the supplementary concepts necessary
to manage the complex data flows of a comprehensive plasma control system like DCS in an easy to handle and flexible
way. Some aspects of electron density usage in plasma control will serve as an illustrative example at various places.
Section 2 analyses analogies between block diagrams and data flows in a control system. Section 3 will compare
computation latency and algorithmic extensibility of the managed workflow and the data-driven approach. Section 4
shows how temporal stream inactivity and faulty data values are handled in a generic way by means of sample tags.
Finally, section 5 presents a synopsis of the ASDEX Upgrade sample and signal framework including built-in data
routing, transport and process synchronisation methods.

2. Block diagram analogies

Block diagrams are conveniently used in control system engineering to illustrate the dependencies between the
functional elements of a controlled system. They utilize only two basic elements: directed lines and blocks. In our case,
the lines represent data streams of signal samples and blocks stand for algorithms. Nevertheless, it is possible to model
very complex systems with this simple abstraction. There are even industrial products for control system simulation and
deployment whose user interface is based on block diagrams like the well-known Simulink [8] and LabView [9] signal
processing tools.

This raises the question, whether some paradigms of block diagrams could also be adopted for control system
design. Structuring in blocks and directed lines, allows the user to concentrate on the algorithmic part, while
administrative functions are separated or hidden from the user. In addition, blocks have a generic interface with other
blocks comprising just input and output ports connected to signals. Thus, signal exchange is the only means to link
algorithms. In addition, the connections between blocks are not part of the blocks themselves allowing blocks to be
encapsulated and re-used. The direction of signal lines defines a signal flow and imposes a constraint on the block
execution sequence. Modern control system frameworks like MARTe and ASDEX Upgrade DCS employ the same
simple principle. Generic Application Modules (MARTe GAMs) and Application Processes (DCS, see section 5)
correspond to blocks. In both cases they exchange information exclusively via signals.

Figure 1 shows an example block diagram for electron density reconstruction and usage in plasma control drawn
with the Simulink tool. Here, most of the blocks are subsystems containing again other blocks and signals, which
implement the detailed function. Electron density is a characteristic property of plasma scenarios and therefore
regulated to defined values by a feedback controller. It is measured by DCN laser interferometers, but the
reconstruction can be subject to fringe jumps caused by MHD mode activity or pellet injection. Using other information
sources like alternative laser interferometers, Bremsstrahlung and magnetic equilibrium information, such failures can
be detected and often corrected with some quality degradation. The reconstructed density also serves as an input for
wall-protection from overheating by NBI beams, and density profile reconstruction is needed for proper ECRH beam
guidance in NTM control schemes as the beam gets deflected by spatial density variations.
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In figure 1 three basic topological data stream patterns can be identified. The first one is a chain formed by
measurement, reconstruction, correction, feedback control and output to the gas inlet system, where the blocks should
be executed in sequence. The data-driven workflow would be a natural implementation of sequence chains.

Stream branches, where the same signal is fed into several blocks, are another pattern. Blocks on such branches, in
our example the feedback controller and the temperature model for NBI power interlock, both using the reconstructed
density, can execute in parallel.

Finally, algorithms frequently need a combination of several input data streams for processing. These streams might
originate from different sources with their individual sampling rates and operation windows such as the inputs to the
fringe jump correction block. Synchronising block execution with these inputs is a challenging task, which, however,
should be transparent to the algorithm.

The concepts found in block diagrams can serve as a sound basis to design a framework for plasma control. There
are, however, also facets in control system design outside the scope of block diagrams. Real-time aspects as well as
distributed deployment and the associated real-time networking are usually not in their main focus. Generally,
continuous stream activity is assumed, as well as good signal value quality. Efficient solutions of the above issues are
mandatory to obtain an applicable and powerful system.

3. Managed versus data-driven workflows

In managed workflows a dedicated managing instance, deterministically decides when which algorithm executes.
For procedural codes this instance is the sequence of source code statements. Higher-level programs might employ a
dispatcher process; a method that works also in distributed service oriented architectures [10]. Another example are
time-slot based processing pipelines which often occur in combination with isochronous fieldbus network protocols like
EtherCAT, Ethernet Powerlink or RTnet. All algorithms are processing in parallel. Each one is assigned a dedicated
time slot, where the outputs are propagated to follow-up algorithms. This technique is also known as Time Division
Multiple Access (TDMA).

Certainly, the determinism of the managed approach makes it interesting for real-time applications. On the
downside, each change in the algorithms also requires the assessment and adaption of the managing instance. In
complex systems with many parallel signal branches this can become a cumbersome exercise, which, unfortunately
occurs frequently in existing fusion experiments.

Data-driven workflows are more robust in this respect. In their context, blocks are associated with computational
processes or threads. Each block is ready for execution as soon as its input data have become available. It is up to the
operation system scheduler to assign CPU resources to these processes using standard techniques like semaphores,
priority and pre-emption. No additional program instance is required to trigger the start of execution and no user
intervention is necessary to re-order the sequence. The self-organising property of this approach also allows for a
seamless handover from one to the next process in a chain. The reserve time between the end of computation and the
start of the next control cycle is accumulated at the end of the process chain, better exploits the computational resources
and allows even to add new algorithms to the chain, as long as they require not more as the total reserve time.

Figure 2 shows the difference to a managed workflow based on pipelines assuming a simplified process chain
comprising input/output and control for electron density feedback. Both cases have been chosen such that the total
latency from input to output is the same. In the managed case, the control cycle frequency must be two times higher
than in the data-driven scenario to account for pipelining. Moreover, the reserve times are fragmented. Insertion of an
additional process without sacrificing latency would require a further reduction of the cycle time. The reduction must
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Fig. 3: Parameter, Sample and Signal class hierarchy in DCS

not exceed the shortest process reserve time. It is obvious, that this situation deteriorates with the pipeline depth. Hence,
the data-driven approach appears to be more robust and flexible. In combination with the concept of encapsulated
algorithms data-driven workflows also have the advantage that processes not bound to peripheral devices can freely be
deployed on any computational node of a distributed system for load balancing purposes.

The implementation of data-driven workflows is based on synchronisation methods for data samples. In a
distributed architecture data exchange is best organised via a shared memory with adaptors to real-time networks.
Especially well suited networks for this purpose is reflective shared memory technology but also Ethernet with UDP or
multi-cast protocol and also time-slot based products in combination with a shared memory layer like RTnet with
NETSHM can be employed [11], [12].

The DCS infrastructure offers a choice of methods from simple lookup over blocking wait to sample subscription.
As the majority of processes has more than one input and output signal, synchronisation efficiency can be boosted by
the formation of signal groups. In input signal groups the process execution is triggered only when the samples of all
group members have become available. Sophisticated policies are provided to handle mixed member data rates and
stream activity phases. Output signal groups allow simultaneous publishing of related outputs. This feature reduces the
operation system’s scheduling overhead and can also be used to define data packages sent over a network.

4. Handling exceptions with sample tags

So far, data streams were considered to be continuous and the transported values were all assumed to be valid. In the
reality of plasma control systems these conditions do not always apply. In the introduced example, where electron
density is used for NBI interlock, the process chain passes through many stages. At any stage problems such as fringe
jumps, absence of plasma, division by zero or network interruption may arise. The workflow must be perpetuated in all
these cases and the protective function should be guaranteed. This can be accomplished by a local event handling
strategy: if it is not possible to repair the fault, the process adds a tag to the output sample data so that subsequent
consumer processes can adapt their processing algorithm appropriately. Tag values must be globally defined so that
they can be interpreted by any kind of algorithm. The ASDEX Upgrade DCS utilises two types of tags, a quality tag,
whose value ranges from GOOD over CORRECTED to INVALID, and a stream activity tag informing recipients,
whether further samples may be expected. If the stream activity is set to STOPPED, the synchronisation methods of
consuming processes will no longer wait for further samples. Local event handling is an extremely powerful mechanism
to deal with exceptional situations. However, due to the separation principle, decisions in the processes are taken based
on the limited scope of the individual functionality. For optimal overall response the control system must be
supplemented with central global event handler processes.
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5. DCS signal framework

The object oriented DCS framework defines a hierarchy of classes for data stream processing. Figures 3 and 4 show
a simplified logical view of this hierarchy. The class diagram in Figure 3 focuses on signal handling and parameters.
While parameters hold constant values, the Sample class forms the payload of all data streams. Samples represent
snapshots of a variable quantity. This quantity can be a scalar, vector, or matrix value of an elementary data type. As
already explained in the previous section the value is accompanied by a quality and an activity tag for event propagation
and handling. A timestamp is attached as sample identifier. It is essential for signal synchronisation, especially in
groups with mixed sampling periods.

All sample streams are conveyed via the Sample Buffer. This is a virtual global shared memory of Samples for all
signals. Local instances on each computation node managed by a SignalAgent store the samples in ring-buffers and
transparently transfer them to other local processes as well as to processes on remote nodes connected via real-time
networks. Thus, each process has access to any signal. The DCS framework sets up the network transfer automatically
based on configuration data.

The task of the Signal class is the administration of sample streams. It holds the name and type attributes of a signal
as well as the connection data to the Sample Buffer. The signal class comes in two variants as InputSignal with sample
query and synchronisation methods and as OutputSignal equipped with sample publication functions. As outlined in
section 3, signal collections are important for efficiency. For this purpose DCS furnishes Input- and
OutputSignalGroups which have to register at the SignalAgent to obtain access to the SampleBuffer.

Blocks can be realised in various ways as illustrated by figure 4. The DCS Object class forms the frame for low-
level algorithms. It comprises input and output signal groups and a generic interface for configuration and execution.
DCS Objects are customised building derived classes, which add algorithms and required parameters. Like blocks built
from subsystems, complex DCS Object descendants can be comprise various subobjects. The DCS framework contains
block-library like collections of DCS Object descendants for filters, feedback controllers and signal monitors.

The Process classes are executable threads to run algorithms. They are built from signals, signal groups, parameters
and, DCS objects. Processes implementing control algorithms belong to the ApplicationProcess category. Similarly,
AdministrationProcess category processes offer infrastructure services, like sample buffer administration, control cycle
generation, log message forwarding, system self-monitoring and network transport. While each of theses processes has
its individual composition of signals, parameters and DCS Objects, the Process base class offers general administration
services like configuration and initialisation of the composite parts.



Finally, all these class definitions and administrative services are part of DCS Infrastructure, which provides further
basic definitions, as well as elements for process instantiation, and configuration.

6. Conclusion

Although, ASDEX Upgrade currently is the only fusion plasma experiment with a control system that rigorously
implements a data-driven workflow, this approach has demonstrated its capability to master a full-blown complex
system since years. About 20 versatile control processes, 12 real-time diagnostic and 8 actuator systems are connected
exchanging 800 signals with a 1 millisecond control cycle period.

This success has been made possible by just a few fundamental principles. Sample tags are used to mark sample
quality and stream activity. The powerful concept of an abstract representation of the system state enforces provident
algorithm definition considering exceptional cases. Sample tags form the fundament of a local event handling strategy
and are an essential component for a self-organising workflow. Signal groups provide coherence of interrelated signals
and increase the efficiency of process synchronisation. Finally, a data-driven workflow helps in designing a
modularised system with generic application blocks and provides high flexibility for amending and extending the
system.

Future development of the ASDEX Upgrade control system will put special emphasis on optimising the access to
the sample buffer as a shared resource in a multi-core processor architecture, in advanced sample query methods
including time interpolation and in extending general purpose DCS Object libraries.
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