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The superconducting stellarator Wendelstein 7-X (W7-X) is a fusion device, which is capable of steady state 

operation. Furthermore W7-X is a very complex technical system. To cope with these requirements a modular and 

strongly hierarchical component-based control and data acquisition system has been designed.  

The behavior of W7-X is characterized by thousands of technical parameters of the participating components. 

The intended sequential change of those parameters during an experiment is defined in an experiment program. 

Planning such an experiment program is a crucial and complex task. To reduce the complexity an abstract, more 

physics-oriented high-level layer has been introduced earlier. The so-called high-level (physics) parameters are 

used to encapsulate technical details. 

This contribution will focus on the extension of this layer to a high-level component model. It completely 

describes the behavior of a component for a certain period of time. It allows not only defining simple value ranges 

but also complex dependencies between physics parameters. This can be: dependencies within components, 

dependencies between components or temporal dependencies. 

Component models can now be analyzed to generate various views of an experiment. A first implementation of 

such an analyze process is already finished. A graphical preview of a planned discharge can be generated from a 

chronological sequence of component models. This allows physicists to survey complex planned experiment 

programs at a glance. 
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1. Introduction 

The superconducting stellarator Wendelstein 7-X 

(W7-X) is a highly complex technical system. To cope 

with this complexity three basic design decisions have 

been made for the W7-X segment control system. A 

project – component hierarchy has been implemented 

[1]. 

The behavior of W7-X is characterized by thousands 

of technical parameters of the participating components. 

The intended sequential change of those parameters 

during an experiment is kept in so called (low-level) 

segments. Segments are the elementary temporal parts to 

define an experiment program from. A detailed 

description of the segment control concepts is given in 

[2]. 

Planning an experiment program is a crucial and 

complex task. To reduce the complexity an abstract, 

more physics-oriented high-level layer has been 

introduced earlier [3]. The so-called high-level (physics) 

parameters are used to encapsulate technical details. In 

high-level segments the high-level behavior (also called 

high-level task) of the components is described using 

high-level parameters for a certain period of time. Via 

transformation functions the high-level segments can be 

transformed to low-level segments, which can be 

executed by the participating components. 

This contribution will focus on the so-called high-

level model layer. It adds a component model instance 

on top of each high-level component task.  

2. Motivation 



 

Experiments are executed using low-level segments 

and parameters. The executability of the low-level 

segments is checked short before and during the 

experiment [4]. 

Because it is very complex to plan an experiment 

using low-level segments and parameters this is done on 

the abstract high-level layer. But planning experiments is 

even on this layer a challenging task. During the 

planning process arises the question: Will the currently 

planned experiment be feasible?  

This has to be checked already at planning time on 

the high-level layer. But how could one create a most 

likely feasible experiment program? 

The feasibility is determined by certain constraints 

which have to be complied. These constraints can arise 

from (1) technical dependencies such as limits, 

resources, transitions, etc. or from (2) logical / temporal 

dependencies, which could be preparation phases, a 

calibration before use of a diagnostic, a post processing, 

etc. 

To use those dependencies to assure the feasibility of 

an experiment program they (1) must be known, (2) must 

be possible to be formulated in mathematical terms and 

(3) must be possible to be automatically evaluated. 

2.1 Case study 

The subsequently described concepts will be 

illustrated using a case study. The behavior of the 

component gas inlet at the CoDaC prototype WEGA is 

determined by several high-level parameters. The gas 

inlet has 2 valves with different maximal gas flows. 

They could be opened or closed. For each opened valve 

a gas type must be chosen. The maximal gas flow 

depends on the chosen gas type. The valves allow a 

higher maximal gas flow for certain gas types. 

Furthermore the desired actual gas flow has to be set.  

3. Component Model Framework 

Component Models are an abstract, high-level 

description of a component of a project, such as 

Wendelstein 7-X or our CoDaC prototype WEGA. They 

add the high-level knowledge of dependencies and 

constraints. This knowledge is successively gained by 

experimenting or is already known, e.g. from technical 

properties.  

The only information available from the high-level 

parameters of the component task is their value and 

static predefined limits. The component models of 

course allow keeping the values for the high-level 

parameters also. Those values can be constrained, not 

only by simple limits, but by complex value ranges. 

Those value ranges can dynamically change, because 

they could be affected by a dependency. 

Furthermore stateful parameters are introduced. They 

allow defining replacement values for certain states. 

Case study: If a valve of the gas inlet is closed the 

corresponding parameters gas flow and gas type aren’t 

set. The actual values, which are of course 0 and 

undefined, used in the low-level task, are hitherto hidden 

in the transformation function (see Figure 1). To allow a 

generic analysis of the high-level behavior of a 

component this implicit knowledge must be made 

visible.  

The component model layer is built on top of the 

already existing high-level layer (Figure 1). 

 

Figure 1 Different layers at experiment planning time. 

4. Ingredients 

The high-level layer consists of a high-level 

descriptor for each component, high-level tasks and 

transformation functions. The descriptor holds the 

information of the used parameter types and their 

structuring. The corresponding tasks represent various 

sets of parameters with their actual values. 

The ingredients of the component model framework 

and activities between them are shown schematically in 

Figure 2. 



 

Figure 2 Ingredients of the component model framework

4.1 Component Model 

The equivalents to the descriptors on the high

layer are the component model classes 

layer. They are implemented as Java classes and follow 

the JavaBeans specification [5]. Each class contains a set 

of attributes specific for that component. The attribu

are the equivalent to the parameters from the descriptor, 

but could be constrained or stateful, as mentioned in 

chapter 3. Furthermore there are setter methods to 

change the value or state of the attributes. 

If the value, state or constraint of an attr

changed an event is fired.  

Case study: the component model class of the gas 

inlet has the attributes: magneticValveGI1

magneticValveGI2, gasTypeGI1 (stateful),

(stateful), gasFlowGI1 (stateful and constrained) and

gasFlowGI2 (stateful and constrained). 

determines the chosen valve of the gas inlet component.

4.2 Translator 

For each component a (component)

instance is created using the static information from the 

corresponding component model class and the parameter 

types and the structuring from the high-level component 

descriptor. 

Additionally some meta-information is stored in the 

descriptor which is read by the translator. This comprises 

of the component model framework

on the high-level 

on the model 

. They are implemented as Java classes and follow 

. Each class contains a set 

of attributes specific for that component. The attributes 

are the equivalent to the parameters from the descriptor, 

but could be constrained or stateful, as mentioned in 

chapter 3. Furthermore there are setter methods to 

of an attribute has 

Case study: the component model class of the gas 

magneticValveGI1, 

(stateful), gasTypeGI2 

(stateful and constrained) and 

 GI1 or GI2 

determines the chosen valve of the gas inlet component. 

(component) translator 

instance is created using the static information from the 

corresponding component model class and the parameter 

level component 

information is stored in the 

This comprises 

the corresponding component model, the available 

attributes and dependencies. Furthermore settings for the 

creation of views, e.g. a graphical preview for 

experiment programs (see [6]), by a generator (see 

following chapter) is found here. 

Case study: a list that keeps all attributes defined in 

the component model class of the gas inlet is generated.  

The main purpose of the component 

translate high-level component tasks to instances of the 

corresponding component model class. These instances 

contain the actual values, constraints and states of the 

attributes. 

Furthermore the translator creates dependency 

objects which are generated from the meta

of the high-level component descriptor. They listen to 

change events of their input variables and recalculate the 

output variable using the defined dependency function. 

Thus dependent attribute values, states and constraints 

are automatically updated. 

Case study: the translator for the gas inlet iterates 

over all high-level parameters of a given high

and calls the corresponding setter methods to set t

actual values and states (if available) for all model 

attributes. If the value of an attribute with a defined 

dependency is changed the output variable is updated.
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creates dependency 

objects which are generated from the meta-information 

level component descriptor. They listen to 

change events of their input variables and recalculate the 

output variable using the defined dependency function. 

attribute values, states and constraints 

the translator for the gas inlet iterates 

level parameters of a given high-level task 

and calls the corresponding setter methods to set the 

actual values and states (if available) for all model 

If the value of an attribute with a defined 

dependency is changed the output variable is updated.



 

 

Figure 3 Model types and handled dependencies (Overlay on experiment program in Xedit)

Fehler! Verweisquelle konnte nicht gefunden 
werden. shows instances of the three different model 

types which all have special translators. They are 

depicted as overlay on an experiment program structure 

in the experiment program editor Xedit. Each box in the 

background represents a task for one of the components 

on left side. A vertical aggregation of tasks is a segment. 

A component model instance reflects the task of a 

single component. The corresponding component 

translator handles all intra component dependencies. A 

project model instance is an aggregation of component 

model instances of a project, which is for example W7-X 

or WEGA. It can additionally define attributes on project 

level, e.g. which components must be mandatory 

available during this phase of the experiment and which 

are optional. The corresponding project translator 

handles inter component dependencies. The experiment 

model instances contain a matrix of component model 

instances inclusive the segment switches defined in an 

experiment program. The experiment translator handles 

logical / temporal dependencies. 

4.3 Generator / View 

Generators allow analyzing information from the 

component model instances and the corresponding 

translators generically to produce different views. Here 

is where the benefit from the component model 

framework emerges. At WEGA a graphical preview 

generator (see Figure 4), an automatic segment and task 

name generator and a constraints checker are already in 

use. Because of their generic nature these generators can 

be used at W7-X without modification. 

Case study: for the view depicted in Figure 4 the 

attributes gasFlowGI1 and gasFlowGI2 have been 

selected in the meta-information defined in the 

descriptor. The valve 1 is closed during the complete 

experiment. This means that no value is set for 

gasFlowGI1. It is in state NOT_SET. Therefore it is 

automatically removed from the experiment preview to 

maximize the clarity of the graphical preview. Only the 

time course (green curve) of gasFlowGI2 is shown 

(beside other characteristic values for the planned 

experiment). The course of the values is determined by 

analyzing the values from all component model 

instances over the complete span of the experiment. An 

in-depth description of the graphical preview can be 

found in [6]. 

 

Figure 4 Rendering of a graphical preview in Xedit (more detailed information in [6]): characteristic values over time for a 

planned experiment is shown; 

5. Dependencies Dependencies are defined by a set of input variables, 

one output variable and a dependency function. Input 
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variables could be any values, states or constraints of 

model attributes. They are used as input parameters of 

the dependency function, which is currently 

implemented in Java. But using a script language here 

would allow changing a dependency function without 

the need to re-deploy it. The result of the dependency 

function is written to the output variable, which again 

could be any attribute value, state or constraint. 

5.1 Intra component dependencies 

Dependencies between attribute values, states or 

constraints of a single component are called intra 

component dependencies. They are already routinely 

used at the CoDaC prototype WEGA.  

Case study: A simple example is the upper limit of 

the gas flow which depends on a certain calibration 

factor of the chosen gas type and the maximal flow of 

the chosen valve. 

5.2 Inter component dependencies 

Dependencies between attribute values, states or 

constraints of different components of a project are 

called inter component dependencies. First 

implementations for some examples at WEGA are 

currently in process.  

Case study: A simple example is a dependency 

between the wavelength of the component SOPRA 

Echelle Spectrometer and the gas type at the gas inlet. A 

more complex one is the requirement of a minimal gas 

flow if the plasma heating is active. It depends on the 

heating scenarios such as Magnetron only, Gyrotron X2 

and OXB and the chosen gas type, typically Helium, 

Argon or Deuterium. 

5.3 logical / temporal dependencies 

Dependencies that require a certain order of tasks or 

segments are called logical / temporal dependencies. 

Their expected quantity for long-term discharges is very 

high. For multi-experiment discharges it will increase 

even further, because a certain state of the components 

might be required before the start of the next experiment 

within the discharge. The concepts for this type of 

dependencies are still in development. 

Case study: a very simple, but very important 

experiment wide dependency is that it is not allowed to 

set different gas types for the same valve. It is simply 

technically impossible to do this at the WEGA. Running 

such an experiment will always fail. Consistently the 

attributes gasTypeGI1 and gasTypeGI2 should be 

attributes of the experiment model. This will be 

implemented as soon as the conceptional design for 

experiment models and logical / temporal dependencies 

is finished. 

One could easily find other examples for logical / 

temporal dependencies. E.g. a laser that has to be 

calibrated before it is ready for use. The maximal 

duration of use could be a few minutes before it has to 

get calibrated again. 

6. Conclusion and Outlook 

Component models support the creation of feasible 

experiment programs already at experiment planning 

time. They are easily upgradeable with the growing 

knowledge about the physical and technical constraints 

and dependencies. By analyzing component models by 

generators various views of an experiment can be 

generated. Thus it is possible to compile and present 

crucial information to the experiment planner at a 

glance. 

The implementation of inter component 

dependencies is currently under development and will be 

available for use soon. 

The next step will be the differentiation between hard 

and soft constraints. At the moment all defined 

constraints are hard constraints. They prevent the 

creation of illegal experiment programs, which would 

fail or would knowingly damage the experimental 

machine. On the other hand there are a lot of soft 

constraints. They should warn the experiment planner 

that the usual value ranges are left. But soft constraints 

don’t prevent experimenters from experimenting. They 

only mark extraordinary value ranges.  
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