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Abstract

Plasma control experiments require enormous computational power to solve large problems with critical time con-
straints. For tokamak control, the non-linear and constrained Grad-Shafranov equation needs to be solved in real-time
with a cycle time of less than 1 ms. A new algorithm for the solution of this equation based on discrete sine transforms
and a tridiagonal solver rather than the commonly used cyclic reduction algorithm is presented. Input signals from
magnetic probes and flux loops are the constraints for the equation that must be continuously solved to calculate the
magnetic equilibrium. A number of novel mathematical ideas were introduced and several generally applicable nu-
merical strategies were developed using LabVIEW graphical dataflow programming to meet the critical timing goals.
Benchmarks on CPUs are reported. Furthermore, the design of a MIMO controller to demonstrate the possibilities of
tokamak position and shape control using graphical dataflow programming is discussed.
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1. INTRODUCTION

Nuclear fusion requires the interaction of several con-
trol systems. The control parts that deal directly with the
plasma are the magnetic control system and the internal
control system. The former is responsible for dealing
with global plasma properties such as plasma current,
position and shape while the latter focuses on disruption
mitigation or the stabilization of MHD modes. We only
address a specific aspect of shape control in the paper
leveraging a highly efficient Grad-Shafranov solver.

The magnetic equilibrium for a tokamak is described
by the Grad-Shafranov equation :
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∂Z2 = −µ0Rj(R,Z), (1)

where ψ is the poloidal flux function, j is the current
density, R is the radial component and Z is the axial
component ( see figure 1 ). This problem is commonly
solved by a cyclic reduction algorithm [1, 2, 3]. A
magnetic equilibrium for discharges with plasma cur-
rent is reconstructed on a 33 x 65 grid using 40 mag-
netic probes and 18 flux loop difference signals. The
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right hand side current density term is calculated by a
weighted least squares fit to the measurements which
yields coefficients for the basis current density profiles
[2, 3, 4]. Three basis current density profiles were cho-
sen in the first round of development and found to ad-
equately fit the experimental magnetic probe and flux
loop measurements [5]. The currents from the poloidal
field coils are also needed to compute the value of ψ on
the spatial grid.

Plasma shape control using the isoflux method is typ-
ically done with the aid of a collection of PID con-
trollers. The plasma shape in DIII-D was reconstructed
using real-time magnetic probe measurements and rep-
resented by certain points along the shape. PID con-
trollers maintain well-defined locations (setpoints) for
all those points, one PID controller per setpoint [2]. A
MIMO (multiple input and output) controller that re-
places the independent PID controllers is presented and
initial benchmarks are provided. It is worth noting that
the the MIMO controller is redesigned in-the-loop with-
out significant performance degradations. This work
complements the normalized coprime factorization de-
sign MIMO controller in operation on DIII-D [6, 7].

The entire project leveraged LabVIEW’s capability
to run in a strict real-time setting and its effectiveness
as a development tool. LabVIEW’s graphical dataflow
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Figure 1: The cross section of the ASDEX Upgrade tokamak showing
the flux surfaces of the magnetic equilibrium (red dotted lines) and
plasma separatrix (red solid line).

paradigm makes developers more efficient by offering
an intuitive diagram-model approach with convenient
probe-based debugging and built-in measurement visu-
alization. A major benefit of programming graphically
is that it allows engineers and scientists to produce mod-
ular real-time algorithms and applications.

2. REAL TIME GRAD-SHAFRANOV SOLVER

A spectral-based method commonly used to solve the
Poisson equation in cylindrical coordinates was adapted
to solve the Grad-Shafranov equation in an unbounded
domain. Our approach is to use multi-channel discrete
sine transforms (DST) along the Z-axis and a tridiag-
onal solver [8, 9] as an alternative to the cyclic reduc-
tion algorithm to solve the Grad-Shafranov equation for
poloidal flux, ψ. This algorithm has been parallelized
and benchmarks as a function of grid size on different
CPUs have been reported [10].

2.1. Spectral Method on Bounded Domain
A uniform mesh with constant spacing dR and dZ in

the R and Z directions is assumed. The grid points are
labeled from 0 to NZ − 1 and 0 to NR − 1, where NZ is
the number of grid points in the Z direction, and NR is
the number of points in the R direction. The five point
difference equation with index i in the R direction and
index j in the Z direction can be written as :

ψi+1, j − 2ψi, j + ψi−1, j

dR2 −
1
Ri

ψi+1, j − ψi−1, j

2dR

+
ψi, j+1 − 2ψi, j + ψi, j−1

dZ2 = −µoRiji, j (2)

Introducing the discrete sine transform of ψ and j :

φi,k =

NZ−2∑
j=1

ψi, jsin
(
π jk

NZ − 1

)
(3)

Ji,k =

NZ−2∑
j=1

ji, jsin
(
π jk

NZ − 1

)
(4)

leads to the tridiagonal matrix equations :

βiφi+1,k − αkφi,k + γiφi−1,k = −µ0RidR2Ji,k (5)

where αk = 2 + 4S 2sin2
(

πk
2(NZ − 1)

)
, βi = 1−dR/(2Ri),

γi = 1 + dR/(2Ri) and S = dR/dZ.
The tridiagonal matrix equation is solved with a tridi-

agonal solver using an LU decomposition algorithm.
The LU decomposition generates two bidiagonal matri-
ces subsequently used in the iterative procedure to solve
the tridiagonal equations. By using LU decomposition,
operations are reduced by a factor of 2 compared to the
direct solver algorithm [11].

2.2. Solver on Unbounded Domain
The solver for the Grad-Shafranov equation in an un-

bounded domain is composed of two fast solver steps
[1]. The new algorithm reduces the computing time dra-
matically by utilizing the above spectral method at each
step.

In the first step of the solver, all grid boundaries are
set to zero. The right-hand side is set to the current dis-
tribution on the flux surfaces, as computed in the previ-
ous iteration by a weighted least squares fit to magnetic
probe and flux loop measurements. In this step, it is only
necessary to compute ψ at points neighboring the grid
boundary and a reduced inverse DST can be performed
to calculate these values. The columns of ψ inside the
boundary edge are :

ψi,k =
2

NZ − 1

NZ−2∑
j=1

φi, jsin
(
π jk

NZ − 1

)
(6)

where i = 1 and NR−2, and the rows inside the boundary
edge can be calculated in a similar fashion with k = 1
and NZ − 2. All these four edges can be computed us-
ing matrix-vector multiplication. This avoids the unnec-
essary computations performed by a traditional inverse
DST operation applied to the entire grid. The gradi-
ents in ψ normal to the grid boundary, (∂ψ/∂n)boundary,
are the inputs required for the next solver step. These
are the shielding currents that are necessary to force the
zero boundary condition of the first solver step. They
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are used to calculate the Green’s functions for ψ gener-
ated by a current hoop of radius a, carrying current I, for
each grid point with radial coordinate R, and a vertical
distance Z, on the boundary [1, 12, 13] :

ψ = µoI
√

(a + R)2 + Z2)((1−k2/2)K(k2)−E(k2))(7)

where k2 = 4aR/((a + R)2 + Z2)), K(k2) is the complete
elliptic integral of the first kind and E(k2) is the com-
plete elliptic integral of the second kind [14]. The actual
calculation of the resulting ψ on the boundary is per-
formed as a matrix multiplication with pre-calculated
coefficients times the vector of shielding currents.

The second step of the solver is carried out with
boundary conditions from the first solver step but with-
out current source terms on the right hand side of the
Grad-Shafranov equation. Because only the first and
last elements are nonzero, it is possible to use an opti-
mized DST to reduce the computation effort. The faster
DST is carried out by the BLAS function dger produc-
ing :

Di j = −
ψi,1sin

(
π j

NZ−1

)
+ ψi,NZ−2sin

(
π j(NZ−2)

NZ−1

)
dZ2

= −
ψi,1 − (−1) jψi,NZ−2

dZ2 sin
(

π j
NZ − 1

)
(8)

The DST of the boundary conditions at the inner
and outer radial positions are added to the first and last
columns. The tridiagonal solver is applied to this result
and is added to the result from the first solver step. The
solution of the Grad-Shafranov equation is then calcu-
lated by an inverse DST.

Under equivalent boundary conditions, an implemen-
tation based on the cyclic reduction algorithm computes
all elements on the grid in both solver steps. The Grad-
Shafranov solver algorithm described here achieves a
significant performance improvement in comparison to
cyclic reduction by employing two optimized DST im-
plementations. The first implementation exploits the
ability to avoid unnecessary calculations. The second
implementation exploits the fact that the right hand side
term is zero except at the boundary to greatly reduce the
number of operations.

The ψ generated by the external poloidal field coils
and passive stabilizing loop on the grid is also real-
ized as a matrix-vector multiplication using factors cal-
culated with Equation 7. The poloidal field coils and
passive stabilizing loop are simulated as a finite num-
ber of filaments, with each filament carrying an appli-
cable number of turns. Vacuum field shots with current
pulses successively in each of the poloidal field coils are
carried out to ensure that the best possible estimates of

the magnetic probe and flux loop positions and calibra-
tion factors of the integrators are used to reconstruct the
tokamak magnetic equilibrium with plasma current [5].
A steepest descent algorithm is available to optimize
the position and orientation of the probes, the integrator
time constants, the poloidal field coil current measure-
ments and the position of the poloidal field coils in order
to minimize the difference between measured and calcu-
lated probe response to these vacuum field discharges.

A flux matrix compression has been implemented to
make the 33x65 values of ψ available to diagnostics on
the real-time network that have only a UDP connection.
The algorithm constructs 253 coefficients from discrete
cosine transforms of the flux matrix.

3. MIMO CONTROLLER

MIMO controllers for tokamaks are discussed in sev-
eral papers. One approach is to obtain a linear model
of the system around the operating point and design a
controller based on this operating point and repeating
this process for any operating point [15] . In this ap-
proach one starts with the linear model as Mẋ + Px = u,
where M, P and u are defined in [15] (equations 2.11
and 2.13). Then the system is cast in the standard state-
space model form ẋ = Ax + Bu where the state space
vector, x , is defined by :

x =
[

Is − Io
s , (z − zo)Io

p , (R − Ro)Io
p, Ip − Io

p

]
(9)

where R is the radial and z is the axial value of the
plasma axis, Ip is the plasma current and Is are currents
in the poloidal field coils and passive stabilising coils.
The set point values have the superscript o.

A candidate controller design is based on a Linear
Quadratic Regutalor (LQR). To verify the feasibility of
redesigning the controller on-the-fly to compensate for
changes on the operating point, the following experi-
ment was performed :
1. Choose Na and Nb sizes (Na,Nb ≤ 10 for now).
2. Let M and P be N-by-N matrices. N = 2Na + Nb + 1.
3. Calculate A = −M−1P, B = M−1.
4. Assume C = Identity (everything is measured).
???????? second state equation not mentioned
5. Compute an LQR with freely available design goals
(for example avoiding coil voltage limits or minimising
power consumption ).
6. Generate K.??????? a LabVIEW output related to
setting u / controller gains (reference to CD Toolkit vi
used!) ?????
The benchmark results with different sizes are listed in
the next section.
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4. IMPLEMENTATION AND BENCHMARKS

A Dell T5500 (2xXeon 5677 quad core CPUs) with
LabVIEW RT 2011 is used by the magnetics diagnos-
tic on ASDEX Upgrade for the data acquisition of 220
channels sampled at 10 kHz. The cycle time bench-
marks for the real time Grad-Shafranov solver using
magnetic probes with 58 constraints and 3 basis cur-
rent functions was 0.49 ms on 4 cores. Extending the
solver to include 10 MSE constraints with 6 basis cur-
rent functions increases the cycle time to 0.80 ms on 4
cores. In the latter benchmark, both solutions are calcu-
lated in parallel, as it is a control system requirement
that the flux matrix from the equilibrium reconstruc-
tion with magnetic probes only is immediately available
when MSE measurements are no longer possible.

The achieved cycle time for the Grad-Shafranov
solver is therefore satisfactory for the real-time process-
ing requirements of neoclassical tearing mode stabiliza-
tion experiments where the cycle time of the discharge
control system is 1.3 ms [16]. It should be noted that
these benchmarks are for a single cycle iteration for the
PDE solution. A detailed comparison of real-time mag-
netic equilibrium reconstruction with well converged
solutions from offline calculations show that the small
differences found for relatively steady state conditions
are not relevant for practical discharge control [2].

The benchmarks for redesigning MIMO controllers
described before are displayed in Table 1.

# of points (Na) # of coils (Nb) LQR re-design [ms]
10 10 4
10 6 3
9 6 2.6
8 6 2.2
7 6 1.8
6 6 1.4

Table 1: Times in msec for redesigning MIMO controllers depending
on the number of points that represent the shape and depending on the
number of coils (actuators).

It should be noted that all of these benchmark times
are in the low millisecond range. This enables a real-
time MIMO controller design to adjust to highly non-
linear situations.

5. SUMMARY

A real-time Grad-Shafranov solver on unbounded do-
main based on a spectral method rather than cyclic re-
duction has been realized. The resulting tridiagonal

equations are solved with a specially developed subrou-
tine based on LU factorization. This tridiagonal solver
reduces the number of operations with respect to the it-
erative direct solver by pre-calculating the reciprocal of
the diagonal elements. A reduced inverse DST is re-
quired in the first solver step as only the relevant terms
for those neighbors of the grid boundary need be calcu-
lated. A simplified DST can used for the second solver
step where only the first and last elements are non-zero.
In this way the full inverse DST of the first solver step is
omitted and the DST of the second solver step without
current source terms can be calculated with a smaller
number of operations. The real-time Grad-Shafranov
solver cycle time of 0.49 ms on the delivered Dell T5500
platform satisfies the ASDEX Upgrade real-time pro-
cessing requirements.

The MIMO controller approach can greatly increase
the control power of a closed loop system. Furthermore,
the ability to redesign the controller in just a few mil-
liseconds means that it can effectively adapt to highly
nonlinear situations.
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