
Progress on standardization and automation in

software development on W7X

Georg Kühner
1
, Torsten Bluhm

1
, Peter Heimann

2
, Christine Hennig

1
, Hugo Kroiss

2
, Jon

Krom
1
,

Heike Laqua
1
, Marc Lewerentz

1
, Josef Maier

2
, Jörg Schacht

1
, Anett Spring

1
,

Andreas Werner
1
, Manfred Zilker

2

1

Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, D-17491 Greifswald

e-mail: kuehner@ipp.mpg.de, phone: +49 3834 88 2511, fax: +49 3834 88 2509
2

Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching

For a complex experiment like W7X being subject to changes all along its projected life-

time the advantages of a formalized software development method have already been stated

(1). Quality standards like ISO/IEC-12207 provide a guideline for structuring of development

work and improving process and product quality. A considerable number of tools has

emerged supporting and automating parts of development work.

On W7X progress has been made during the last years in exploiting the benefit of auto-

mation and management during software development:

- Continuous build, integration and automated test of software artefacts

o Syntax checks and code quality metrics

o Documentation generation

o Feedback for developers by temporal statistics

- Versioned repository for build products (libraries, executables)

- Separate snapshot and release repositories and automatic deployment

- Semi-Automatic provisioning of applications

- Feedback from testers and feature requests by ticket system

This toolset is working efficiently and allows the team to concentrate on development.

The activity there is presently focused on increasing the quality of the existing software to

become a dependable product. Testing of single functions and qualities must be simplified. So

a restructuring is underway which relies more on small, individually testable components with

standardized interfaces providing the capability to construct arbitrary function aggregates for

dedicated tests of quality attributes as availability, reliability, performance.

A further activity is on improving the development cycle. The use of release cycles has

already provided favourable concentration of work and predictability of delivery times. How-

ever, the demand has risen, to react quickly on priority changes from W7X-project manage-

ment. So a more agile development cycle is being prepared relying on smaller working pack-

ages, shorter release cycles and an associated release plan giving the software development

responsible the possibility to react on a shorter time scale.

mailto:kuehner@ipp.mpg.de

Keywords: W7-X; Software Development; Quality Management; Standardization; ISO/IEC 15504;

1. Introduction
The stellarator W7-X (2) is a large, com-

plex and long living (~20 years) nuclear

fusion experiment. Several 'generations' of

scientists will do research on W7X and

need support of their work by correspond-

ingly long living software. The same ap-

plies to engineers and technicians being

responsible for the operation and mainte-

nance of the machine.

Industrial development projects of compa-

rable size usually rely on quality standards

to achieve high product quality by apply-

ing high development process quality. The

expected benefit is a solution tailored to

the customer’s requirements as well as the

minimization of effort and risk for the pro-

vider (3).

In fact quality management is practised in

magnetic fusion research but astonishingly

there has been hardly any activity up to

now to standardize processes, domain

models, terminology and consequently the

architecture of CoDa-software (Control

and Data acquisition) from a general

viewpoint. There are many individual de-

velopments for the same problem compris-

ing, too, applications for experiment prepa-

ration and data analysis and visualization.

1.1. W7X-context:

The general quality standard for W7X ma-

chine construction is based on ISO9001

(4). For CoDa-software development the

standard ISO/IEC-15504 (5) has been

adopted as a basis. Part 5 of this standard

provides an exemplar development process

model requiring a minimum set of activi-

ties to be ‘performed’ in order to achieve

quality level 1 on a 0-5 scale.

ENG Engineering processes

SPL Supply processes

OPE Operation processes

MAN Management processes

PIM Process improvement

REU Reuse processes

SUP Support processes
Table 1: Process groups of ISO/IEC 15504-5

(selected)

Groups of processes most relevant for the

current development are listed in Table 1.

The further discussion in this paper is

based on the terminology of this standard

and process improvement (PIM) is the

general subject. Chapter 2 addresses intro-

duction of processes for requirements

analysis and architectural design in the

engineering group. Chapter 3 motivates

improvement and automation within sev-

eral process groups. Chapter 4 introduces

the adopted management process. Chapter

5 describes the current development cycle

highlighting the relevant processes accord-

ing to table 1. A sketch of the main experi-

ences and some conclusions for fusion

research are given in the closing chapters.

The product quality of W7X CoDa-

software is specified on the basis of the

ISO/IEC 25000 (6) family of standards

(See Table 2 for an overview).

Functional suitability

Performance efficiency

Compatibility

Usability

Reliability

Security

Maintainability

Portability
Table 2: Product quality model of ISO/IEC 25010

A significant part of software for W7X has

been developed in the Java programming

language (data acquisition, applications for

configuration, experiment preparation and

data browsing). Therefore the quality stan-

dards have been introduced in this field as

a start. First steps were taken mainly for

the engineering processes (software con-

struction, integration, testing) to standard-

ize and automate the software build proc-

ess (1).

Increasing demand of responsivity against

users, quality of system tests, testability in

general and traceability of architectural and

detailed design has governed the recent

development and gave rise to serious en-

hancements of standardization and automa-

tion in the engineering as well as the other

processes.

2. Top-down development
Quite some effort has been made to pursuit

a top-down development process appropri-

ate for large projects to derive dependable

requirements from a magnetic fusion spe-

cific domain model (7) and to develop an

appropriate software architecture which

fulfils quality requirements sufficiently and

minimizes the overall development and

maintenance effort. This work is still de-

veloping and is put into practice for cases

with high priority.

Requirements are collected in a manage-

ment system. For sub-projects simple re-

quirements lists are generated. Two promi-

nent recent examples concern infrastruc-

ture projects which usually have single

(simple) functional requirements:

 Communicate sensor data via an

appropriate network to storage.

 Store sensor data.

The corresponding quality attributes (per-

formance efficiency, reliability, maintain-

ability etc.) were specified making system-

atic use of the ISO:25000 standard.

From the requirements an appropriate

software subsystem architecture is devel-

oped. For architecture documentation on

W7X the arc42 (8) documentation tem-

plate has been adopted which covers the

necessary textual and model specifications.

An arc42 document can also be generated

from UML (9) models, where the layout

can be adapted to the W7X documentation

standard. This procedure has been used

successfully for (still internal) documenta-

tion of:

 A unified interface of data analysis

services (during experiment and

off-line; ->REU).

 An abstract communication model

for experiment control driven by

resource availability.

 A reviewed version of the

CoDaStation (Control and Data

acquisition station) to improve

testing capabilities of system

elements and arbitrary aggregates

and to provide independent tests of

quality attributes like stability,

latencies, etc.

3. Bottom-up development
Much of the software development so far

has been done in the bottom-up manner

typical for a research environment, an ac-

tivity which was driven mainly by the

evolving prototype- and lab-systems.

However, these initial designs and imple-

mentations represent solutions appropriate

for small experiments and shot based op-

eration.

In order to fulfil the quality attributes re-

quired for a large fusion experiment on the

long term the architecture must be im-

proved in order to reduce component sizes,

dependencies and complexity, simplify

interfaces, increase scalability, etc.

The existing CoDa-software is appropriate

for use in the commissioning phase of

W7X starting in 2014 which has increased

the demand on its reliability enormously

so that presently the focus in this area is on

consolidating of the existing.

Basic engineering and supporting work-

flows had been introduced as a start, e.g.

using SVN (10) for source code version-

ing, using Ant (11) for build standardiza-

tion and employing Hudson (12) for con-

tinuous integration. Work had begun to

provide separate environments for devel-

opment (“snapshot”) and release builds, to

provide stable operation conditions for

users in the labs. This has worked success-

fully for some time.

However, demands increased on

 Reliability of software for users.

 Maintainability of software for the

developers.

 Reduction of response times after

bug reports.

 Reduction of response times due to

changing priorities in the W7X

project plan.

 Management capabilities of the

development process itself,

especially planning and

measurement of working units.

As a consequence the engineering, support,

management, operation and supply proc-

esses had to be optimized, and even more

tool support and a higher degree of auto-

mation was required to increase productiv-

ity and product quality.

4. Project management (MAN)
CoDa-software project management so far

had long release cycles and lacked suffi-

cient control and communication with the

W7X project management. To improve

this situation an ‘Agile’ (13) project man-

agement process has been agreed which is

largely inspired by the ‘Scrum’ (14)

method and provides the following bene-

fits:

- risk reduction by short feedback cycles;

- quick reaction on changing priorities;

- product owner represents user’s needs;

- product owner manages product configu-

ration (i.e. prioritizes and filters requests

for iterations and product release);

- iteration progress visible for W7X man-

agement;

- team: daily progress discernible, daily

feedback, concentrated work.

The Redmine (15) multi project manage-

ment system which is now in use for soft-

ware development on W7X fortunately

provides support for agile development:

 For each product a backlog

(requirements for a milestone in the

project plan) is available.

 Iteration backlogs (requirements for

a single iteration).

 work breakdown of requirements

into single tasks and a time

estimation for each task.

About 2000 Tickets (bugs, features, tasks)

have been processed so far.

Fig. 1: “burn down chart” showing the remaining

working hours for three iterations each of three

weeks length.

The iteration cycle has been set to three

weeks. Fig. 1 displays the ‘burn down

chart’ for the first three iterations showing

up the stepwise resolution of the planned

tasks.

Each iteration is to produce a releasable

product (Fig. 2) which has a well defined

configuration represented by the backlog,

and which is subject to a quality assurance

process. At iteration start each requirement

has to specify an acceptance criterion for

successful completion. At iteration end all

tasks are checked for completion and the

requirements’ acceptance criterion are

tested and closed on success.

Actual releases to the end-users are agreed

per iteration and are communicated as

milestones to the W7X project plan.

Fig. 2: Release plan via sequence of iteration

backlogs.

5. Development cycle
Starting from the ISO/IEC 15504-5 exam-

ple process an efficient development cycle

was introduced to achieve rapid response

times in case of bug reports or feature re-

quests. Such a process is required inde-

pendently of the development method (top-

down or else) and provides a narrow cou-

pling between users and developers. The

following topics are marked with the cor-

responding process identifiers of ISO/IEC

15504-5 (where possible).

5.1. OPE.2 support

User feedback is given via the ticket sys-

tem of the W7X computer maintenance

group. On a daily basis the developer team

looks up tickets categorized as “CoDa” and

transfers them to the Redmine development

ticket system. At present more than 50

tickets have been collected this way.

5.2. SUP.9 problem resolution

Most bug reports, however, come from

testing by the developers themselves. The

bug relevance, the assignment to the proper

development (sub-)project and the solution

strategy are discussed by the team mem-

bers.

5.3. SUP.10 change requests

The product owner alone has the privilege

to transform a bug or feature request into a

change request by including it in the prod-

uct backlog. Bug fixes are agreed during

the daily meetings, feature requests are

agreed during the preparation of an itera-

tion (see Fig. 3). Both become tasks to be

resolved during the following development

(construction) step. The sequence of itera-

tions containing sets of requirements repre-

sents the release plan for a product (Fig. 2).

5.4. ENG.6 software construction

Java development is presently done purely

with the eclipse IDE. Detailed software

design is mostly a code centred process.

The design documentation in UML is done

by reverse engineering of existing code

which is a standard capability of present

day UML modelling tools.

Fig. 3: Problem ticket resolution process

Local developer builds use the standard

eclipse build (Ant based) as well as a

Maven (16) build supported by the Eclipse-

M2-plugin (17) (see below).

Several tools are used to ensure code qual-

ity and can be applied within eclipse:

- Checkstyle (18) checks javadoc (20)

statements, coding style and appropriate-

ness of special programming constructs.

- PMD (19) checks the java byte-code

structure.

- Findbugs (21) checks explicitly for dan-

gerous java constructs.

Since code quality checks have been intro-

duced lately the number of warnings is

generally high. Fortunately all tools are

configurable so that a smooth improvement

process can be defined to reduce the warn-

ings in several steps that can be arranged

appropriately into the iteration plan.

Unit tests are performed using junit (22),

test coverage is done by Cobertura (23).

Improvement of test coverage and trace-

ability of tests to requirements needs still

some work.

5.5. ENG.7 software integration

It focuses build standardization, continuous

(automatic) builds and build artefact man-

agement.

The first approach had used the Ant build

system and the continuous integration sys-

tem Hudson for build automation and re-

port generation. The generated jar-files

(Java archive) were deployed into a single

directory of the file system.

A radically new approach was pursued to

reduce the drawbacks of this process.

5.6. Build standardization:

The Ant build system was replaced by the

Maven system which uses a process model

configured in a “pom.xml” file and pro-

vides many functions (like javadoc, junit,

etc.) as a standard. The main task when

setting up a new build project is manage-

ment of dependencies to existing artefacts

(jar-files). Maven stores build artefacts in a

repository which is used, too, as intermedi-

ate storage for required open source soft-

ware artefacts that are available via a

worldwide central repository.

Additional functions like code quality

checks, code metrics, statistics, report out-

put can easily be introduced as plug-ins

and made available as a standard ‘mas-

ter-pom.xml’ for all active development

projects.

It required quite some effort to introduce

the Maven system. A big refactoring effort

was necessary to resolve cyclic dependen-

cies between java sub-projects as name

spaces were distributed over several jar-

files. Some effort was necessary to provide

a standard project layout for the 23 java

projects existing on W7X. Some effort is

still necessary to make the structure of

name spaces and java projects and artefacts

compliant to the OSGi (24) conventions.

Presently the Maven builds are easy ad-

ministrable, the plug-in documentation on

the internet is sufficient for proper configu-

ration.

5.7. Continuous builds:

Automatic integration builds (snapshots)

are performed by the Hudson system. The

configuration of builds is rather simple as

the Hudson system exploits the contents of

the Maven ‘pom.xml’ file. Thus even the

dependencies are reused to control the re-

build of java projects depending on a

newly built sub-project. Thus the snapshot

build of software products is fully auto-

matic when a change has been checked in

into the SVN versioning system.

The output of all plug-in functions (junit,

code metrics, etc.) is condensed in a stan-

dard web-page allowing to navigate

quickly to all kinds of reports, correspond-

ing warning messages and source code

regions. History graphs allow to follow the

trend of error messages, number of tests,

etc.

The Hudson system provides, too, a possi-

bility for release builds which have to be

started by hand as a release number has to

be specified. This number is used to tag

code versions in SVN and produced arte-

facts. Maven release builds require all sub-

project dependencies to be in a released

(i.e. stable) state. The release process is

functional since some time and has become

a routine activity. The separate release and

deployment process has provided a stable

operation basis for users in the labs.

Release building applies not only to code

but also to databases schemas. This has not

been taken sufficiently into account so far.

Thus going back to an older release com-

prising an earlier schema version is hardly

feasible as it would require a doubling of

the complete database system.

Fig. 4: The W7X build, deployment and

provisioning system.

5.8. Artefact management:

For management of Maven build artefacts

(jar-files) the repository system Nexus (25)

has been introduced which is a proxy to the

central one on the internet and thus pro-

vides independence of the availability of

internet resources. Three repositories have

been prepared to administrate snapshot,

release and 3
rd

 party products. The reposi-

tory structure is being changed to reflect

the java-namespace and project structure.

5.9. SPL.2 product release

According to the W7X project plan stable

software products are released to the gen-

eral users at the WEGA (26) test-bed and

in the labs.

5.10. ENG.11 software installa-

tion

Once the software is built it is stored on a

deployment server from where it can be

provided to the corresponding end users.

There are three provisioning cases:

 The software on the data

acquisition computers is updated

by the rsync (27) mechanism.

 Java swing graphical applications

(configuration and program

editors) are installed and updated

by the java web-start mechanism.

 Eclipse RCP (rich client platform)

applications must still be installed

manually as the deployment and

update process are based on the

Equinox-p2 (28) provisioning

system which has not yet put into

operation.

The first two cases cover the main activi-

ties necessary for experiment and lab-setup

operations. The complete build, deploy-

ment and provisioning system infrastruc-

ture is shown in Fig. 4.

6. Experiences
The largest progress has been achieved in

the build and deployment process. For us-

ers and developers there is a process with-

out gaps from requirements to a usable

product within less than two hours (process

time without development time). All proc-

ess steps are optimized such, that there is

no need for cumbersome intermediate op-

erations. The process is accepted and prac-

tised routinely. A significant part of time

can now be used for stepwise improvement

of code quality and construction of integra-

tion tests.

The agile management has made develop-

ment discernible for developers and the

W7X project management and increased

the developers’ awareness of the strategic

goals. So this approach has shown its ad-

vantages and will be continued.

Work is continuing to increase the general

software quality concerning detailed and

architectural design, requirements trace-

ability, testability, etc. This has become

necessary as quality management has been

introduced only in an advanced state of

development.

7. Conclusion
For W7X software development the use of

development standards has already shown

enormous benefits. Adopting the quality

level 1 (“performing”) of ISO/IEC15504-5

provides the basis for detailed planning

and prioritizing of software multi-projects

in the context of a large system project

(and subordinate multi-projects). Future

experiments should start with quality man-

agement for software development from

the very beginning.

Furthermore the fusion community needs

a domain and process model capable of

representing common sense domain

knowledge as a basis for construction of

appropriate software architectures. This is

a necessary condition for acquiring the

capability to delegate the development of

software components to the industry

(which is the usual procedure in machine

construction).

 References
1. Kühner, Georg. Employing Industrial

Standards in Software Engineering for

W7X. : Fusion Engineering and Design,

2009. pp. 1130-1135. Vol. 84.

2. F. Wagner, The Wendelstein 7-X

Project: Europhys. News, 1995. Vol. 26,

pp. 3-5.

3. For an introduction see e.g.:

Sommerville, I. Software Engineering.

Amsterdam : Addison-Wesley Longman,

2006.

4. ISO 9001:2008. [Online]

http://www.iso.org/iso/home.htm.

5. ISO/IEC 15504 (SPICE). (Part 5 has

been taken from the older standard

ISO/IEC 12207). [Online]

http://www.iso.org/iso/home.htm.

6. ISO/IEC 25000 (SQuaRE). [Online]

http://www.iso.org/iso/home.htm.

7. Evans, Eric, Domain Driven Design :

Addison-Wesley, 2004.

8. arc42. Software architecture

documentation template. [Online]

http://www.arc42.de/.

9. Unified Modelling Language. [Online]

http://www.omg.org/ , http://www.uml.org.

10. Subversion. [Online]

http://subversion.tigris.org/.

11. Ant. [Online] http://ant.apache.org/.

12. Hudson. [Online] http://hudson-ci.org/.

13. Agile Manifesto. [Online]

http://agilemanifesto.org.

14. Scrum. [Online]

http://en.wikipedia.org/wiki/Scrum.

15. Redmine. [Online]

http://www.redmine.org/.

16. Maven. [Online]

http://maven.apache.org/.

17. Eclipse-M2. [Online]

http://m2eclipse.sonatype.org/.

18. Checkstyle. [Online]

http://checkstyle.sourceforge.net/.

19. Javadoc. [Online]

http://java.sun.com/j2se/javadoc/.

20. PMD. [Online]

http://pmd.sourceforge.net/.

21. Findbugs. [Online]

http://findbugs.sourceforge.net/.

22. Junit. [Online] http://www.junit.org/.

23. Cobertura. [Online]

http://cobertura.sourceforge.net/.

24. OSGi Alliance. [Online]

http://www.osgi.org/.

25. Nexus. [Online]

http://nexus.sonatype.org/.

26. Schacht, J. and al. Stellarator WEGA

as a test-bed for the WENDELSTEIN 7-X

control system concepts. s.l. : Fusion

Engineering and Design, 83 (2008) 228-

235.

27. rsync. [Online]

http://de.wikipedia.org/wiki/Rsync.

28. Equinox-P2. [Online]

http://wiki.eclipse.org/Equinox/p2.

