Excitation of Geodesic Acoustic Modes by External Fields
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It is planned to use external magnetic perturbations at acoustic frequencies at the DIII-D tokamak
to attempt to drive Geodesic Acoustic Modes (GAM) to modify the turbulent transport. We show
that this might not only be possible — despite the well-known electrostatic nature of the GAMs — but
a viable and efficient method to generate GAMs in magnetically confined plasmas, by developing
an elegant analytic method, which allows to couple numerical dynamic equilibrium calculations
to massively parallel non-Boussinesq turbulence code runs and yields practical estimates of the

effectivity of the method.

Beneficial flows Pressure-gradient driven turbulence
in the outer regions of magnetically confined toroidal
plasmas drive sheared flows which in turn act to regulate
and mediate the saturated state of turbulence and turbu-
lent transport. These turbulence driven global poloidal
flows tangential to the iso-pressure surfaces are a focus
of research on magnetic plasma confinement experiments
[1], since on one hand they generally reduce turbulent
convection by shearing vortices apart, and on the other
they are an example of spontaneous structure formation
in turbulence [2]. Geodesic acoustic modes (GAM), the
oscillating flavor of these flows, have been the first to be
experimentally confirmed [3] owing to the fact that oscil-
lations are easier to detect than random fluctuations such
as the already very early conjectured stationary zonal
flows. From the cornucopia of literature on the suppres-
sion of convective turbulence by shear flows it appears
the fusion problem (largely the achievement of good heat
insulation, i.e., confinement) could be facilitated greatly
if only the flows could be made strong enough, preferably
by external means and not in reliance on the turbulence
itself. Unfortunately, injection of momentum into the
plasma is generally quite inefficient as the ratio of the
power to the momentum injection rate is given by the
phase- or particle velocity of the applied waves or par-
ticle beams, respectively — both tend to be rather high
(Z Alfven-speed or multiples of the thermal velocity).
Here again the oscillatory property of the GAMs could
prove advantageous since in principle they can be gen-
erated without momentum input by exploiting the phe-
nomenon of resonance with an oscillating perturbation of
the plasma equilibrium. Principal efficiency limitations
do not apply when using external magnetic perturbations
to do this. In contrast, modulating the pressure by pulsed
heating is inherently very inefficient as the power driving
the GAMs is a factor O(6T/T) (0T/T being the relative
temperature perturbation of the GAM) smaller than the
heating power, as this is the free energy deposited by the
heating [4].

The possibility to electromagnetically excite GAMs
may appear at first surprising since GAMs are known to
be electrostatic in flux tube turbulence studies. Yet, they

can interact with magnetic perturbations through global
geometry effects. Moreover, the concern that the highly
conducting plasma might screen the external magnetic
perturbation is unfounded here, since this would require
the plasma to be held in place by non-magnetic forces
(walls, pressure forces, inertia). In this letter, an elegant
framework is described which allows to study the GAM
generation by globally solving the perturbed magneto-
hydrodynamic (MHD) equilibrium equations and (quasi)
locally studying the evolution of the turbulence and the
resonantly excited GAMs.

Symmetry of perturbation and electromagnetic inter-
action with GAMs Poloidal flow oscillations arise in a
magnetized plasma torus since the magnetic field is in-
homogeneous on a magnetic surface o« 1/R (R is the
major radius), whereas the plasma pressure is constant.
Due to the frozen-in magnetic flux, the plasma is com-
pressed/expanded as sketched in fig. 1 through work
done by the poloidal motion, which causes a restoring
force. An oscillation of frequency wgan ~ 27¢s/R =
24/2vp/p/R results [5] (v ~ 4/3 is the adiabatic index,
¢s the sound speed, p pressure, p the mass density).

As toroidally symmetric (axisymmetric) modes, GAMs
only interact with axisymmetric external currents. Only
toroidal currents need be considered, since any poloidal
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FIG. 1. GAM pressure perturbation, associated poloidal
projection of magnetic drift and return currents (“Pfirsch-
Schlueter-current”), and external quadrupole current.



current loop not encircling the plasma column would
just produce a field internal to the loop and not af-
fect the plasma. Heuristically, an external quadrupole
(m = 2) toroidal current (fig. 1) would attract/repulse
the toroidal currents within an elliptic plasma column in
such a way as to cause a rotation (tilting force) of the
column, i.e., act as a source for the GAMs. The cur-
rent distribution should be up-down and left-right anti-
symmetric, since otherwise the plasma column is just de-
formed, not tilted. The corresponding perturbative mag-
netic field has left-right and up-down symmetry, since it
is a pseudo vector.

From a more precise electromagnetic view point, the
electric field E., = 0;A., induced by the external per-
turbation of the vector potential A., is performing work
on the toroidal current jgap associated with the GAMs,
essentially the perturbation of the Pfirsch-Schlueter cur-
rent caused by the pressure perturbations as sketched in
fig. 1. Since these currents have dominant quadrupole
symmetry, a quadrupole external current and induced
electric field is preferable

Energy conservation implies that said electric work is
balanced by the induced electric field due to the GAM
integrated over the external current. The interaction is
hence due to the weak O(w/a) long range stray fields of
the GAM (w is the radial width of the oscillating region,
a the minor plasma radius). In a strictly local flux tube
scheme, customary in tokamak turbulence simulations,
the radial width of the return current loop of the GAMs
is assumed infinitely small, resulting in the neglect of
the long range field. Therefore in this framework GAMs
cannot be driven by long range magnetic fields and seem
purely electrostatic.

Structure of dynamic equilibrium perturbation A
quantitative analysis of the resonance requires a global
computation for the long range field — so far possible
only in MHD — and a more refined plasma description
for the turbulence at the resonance. The central uni-
fying idea is to compute the former disregarding inertia
and account for the unbalanced inertial forces due to the
plasma displacement on the right hand side of the turbu-
lence equations, which are the only GAM source terms
in magnetic coordinates.

The (axisymmetric) equilibrium field can be written as

Ay =V,

where By, A, are the toroidal components of magnetic
field and vector potential, ¢ is the toroidal angle and
the poloidal flux function. Force balance, j x B = Vp,
then implies p = p(¢), F = F(¢) and turns into the Grad
Shafranov equation [6]

B =B, +VxAy, B, =FV¢ (1)

RV -R72VY + (F2) )2+ p'R* + jyea R=0, (2)

where the external perturbation current density jg ez,
whose Lorentz force does not enter the balance, has

been made explicit. Restricting the discussion for brevity
to the interaction of an up-down symmetric equilibrium
with an antisymmetric external current — a good approxi-
mation to typical plasma equilibria and linearizing in the
perturbation v results in

R*V-R™2V&y + ((F?)" )2+ p"R*)5¢ + js.ec R =0, (3)

since then the flux functions F(v), p(¢)) are unperturbed
due to conserved area/volume enclosed by the flux sur-
faces. The term —((F?2)”/2 + p” R?), which is essentially
proportional to the radial gradient of the toroidal current,
quantifies the effects from the presence of the plasma (in
contrast to a vaccuum) on the flux perturbation. Since it
is negative (hollow current profiles excepted), the plasma
usually acts as a paramagnet, amplifying the external
fields, basically due to the attraction of parallel currents.

The displacement written as a sum of radial (perpen-
dicular to the flux surface), poloidal and parallel (to B)
components § = &qq + &por + &) follows from the conser-
vation of ¥, p, F' in the co-moving frame, in other words
the three continuity equations

(a) 0p+€&- V=0, (b

(C) A [<£Tad + gpol)/Rg] = Oa

which are just ordinary differential equations in the
poloidal angle once v is known. The inertial forces
—p0:€& perpendicular and parallel to the magnetic field
can be inserted as the divergence of the ion polarization
drift current and a parallel momentum source into cus-
tomary fluid or gyrokinetic plasma turbulence codes.

The poloidal displacement amplitude of (4), aug-
mented by the resonance quality factor, can serve as an
estimate for the GAM amplitude as it is the dominant
component for the generation of poloidal rotation. At
this point the potentially greatly facilitating effects of the
presence of a depression or a null (X-point, saddle point
of 1) in the magnetic field become apparent. First, due to
eq. (4a) the radial displacement amplitude increases in-
versely proportional to the poloidal field By, = |V¥¢|/R,
as visible close to the “X” on top in the displacement field
shown in fig. 2. Inserting all definitions, the maximum
radial shift is roughly

V-£=0,
(4)

a5Bmd

~ 3
2Bpol,min

|€rad,maz| = ‘ (V) min

(5)

since roughly
aR
6¢ = %apol(swdlpol = %RéBraddlpol ~ 7aBrada (6)

where Opo = B]jolprol -V is the poloidal derivative, I,
the poloidal arc-length, and the factor 1/2 stems from
the m = 2 structure of the perturbation.

Second, the equation for the incompressibility of the

toroidal magnetic field (4c) implies that the divergence
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FIG. 2. Linear displacement and flux surface perturbation
visualized for hypothetical quadrupole perturbation current
I = 90kA) for DIII-D plasma configuration from discharge
#119527, including the effect of screening currents in the lim-
iter structures (not shown). Gray: unperturbed separatrix.
Red/blue toroidal loops: position of positive/negative per-
turbation current relative to the plasma current. Red/blue
shells: volume traversed by positive/negative radial displace-
ment of flux surfaces. Yellow arrows in cross section: poloidal
displacement component. White arrows: total displacement
tangential to flux surfaces. Flux surfaces are repulsed by neg-
ative currents. The radial displacement is particularly strong
close to magnetic nulls and to the perturbation current. The
resulting poloidal displacement according to the incompress-
ibility condition (4c) is amplified by the nozzle effect of close
flux surface spacing at the midplane. For the outermost shown
flux surface displacement 0 Bpor ~ 25mT, |rqd,maz| ~ 4.8cm
|€pot| ~ 13cm, nozzle effect max(|Vi|)/min(|Vip|) ~ 2.9 — the
displacement diverges at the separatrix.

induced by the radial displacement is balanced by the
poloidal shift

€pol % V- eTad Bpol maz @ érad
=B S BT ]~ : -V 7
vl pol Pl Bpol,min 2 R? ’ ( )

which yields another factor proportional to the ratio of
local to minimum poloidal field, assuming the dominant
radial divergences are placed beneficially at the field min-
ima. Simply speaking, this effect results because the
toroidal flux compressed by the shift of neighboring flux

surfaces in the vicinity of a magnetic minimum has to
“squeeze” through the tighter space between the same
flux surfaces at higher poloidal field as indicated, e.g., by
the large poloidal displacement components at inboard
midplane compared to the radial flux surface shifts in
fig. 2). We estimate |V - (&,0q/R?)| ~ 2&,04/(aR?), where
the (conservative) factor 2 is again due to m = 2, and
obtain

Bpol,maacf Bpol mamdBrad
T —pos,had 7T ad

a~a
Bpol,min 2B2

pol,min

(®)
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Interaction of turbulence and external induced GAMs
To describe the induced resonance layer within a turbu-
lence simulation it is essential to retain the radial vari-
ation of the GAM frequency throughout the computa-
tional domain, i.e., use a “nonlocal” simulation and not
rely on the Boussinesq (flux tube, local) approximation.
(In a strictly local framework the whole system oscillates
in lockstep, without shearing action on the turbulence.)

Fig. 3 shows the characteristic features in an exem-
plary electrostatic turbulence run with the NLET code
[7] for the reference parameters o = 0.1,¢, = 0.05,7; =
1,7 =1, = 3,8 = 1 at the middle of domain (r = 0).
The externally induced poloidal displacement was Lg/2,
(Lo is the ballooning scale length). Typical ballooning
scale lengths in a tokamak edge are 0.3cm [8]. The res-
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FIG. 3. GAM excitation in a turbulent nonlocal resistive
ballooning scenario in a thin shell at the edge of a circular
tokamak discharge; (a) flux surface averaged poloidal flow ve-
locity with resonance, (b) shearing of turbulence fluctuations,
top: cut from outboard midplane, bottom: steepening of ion
temperature profile.



onance layer is discernible in the flow profiles (fig. 3a)
from the amplitude peaking and the characteristic radial
phase variation. The quality factor at the resonance is
found to be @ ~ 25 (i.e., the externally induced displace-
ment is amplified by a factor @ at the resonance). The
sharpness of the resonance depends on the linear and tur-
bulence mediated damping and radial interaction of the
GAMs [9, 10].

Here, the peaking and phase variation lead to a strong
flow shear at the resonance, and concomitant partial
suppression of the turbulence. The partial turbulence
quench together with the ensuing profile steepening is
followed by a subsequent sharpening of the GAM reso-
nance, which results in a thresholding behavior (fig. 3b)
in the forcing and something akin to a transport barrier.

Power requirements The intrinsically required power
to generate the GAMs is rather modest for parameters
typical for the outer regions of DIII-D or ASDEX Up-
grade tokamak discharges. According to the definition of
the resonance quality factor @) the power lost by GAM
damping is Poay = wgamEcan/Q. The energy stored
in the GAM oscillation is Egay = mw%AMd2/2, where
d ~ &poi@ is the resonance-amplified displacement ampli-
tude, m = 4m2aRwnm; the oscillating plasma mass, w
the width of the GAM resonance layer, n the ion density
and m; the ion mass. For circular slender plasma, the
GAM frequency is wgam = v27¢s/R, ¢s = /2T /m;.
Inserting typical tokamak edge values T' ~ 200eV n ~
10""m~3, R ~ 1.5m, a ~ 0.5m, and assuming the width
and displacement of the GAMs to be relevant to the tur-
bulence, w, d ~ 2cm, and deuterium as medium results in
weam ~ 175krad/s, Egay = md*w2 4,,/2 ~ 0.09J and
Poayv = Egapwean/Q ~ 0.7kW for @ ~ 20. For re-
alistic tokamak experiments the power requirements are
about an order of magnitude smaller, since the observed
waam is reduced compared to the value for a circular
plasma by about a factor of two [5, 11].

Another loss term results from screening currents in
conducting structures of the vessel. With the above pa-
rameters as reference, the resistive magnetic skin depth
A = 1/\/powo ~ 2mm for the specific conductivity
of steel o ~ 1.5-105S/m. The power flux density
into the wall is then pyo = )\wa,/uo, according to
the Poynting theorem. Using eq. (8) it is also possi-
ble to estimate the required external perturbation field
as 5Bpol ~ (Bpol,min/Bpol,mam)z(d/aQ)Bpol ~ OO7H’1T,
where By, ~ aB/(qR) is a reference poloidal field, ¢ ~ 3
is the safety factor measuring the pitch of the field lines,
B ~ 2T, and R ~ 1.5m. The ratio Bpoi,min/Bpot,maz ~ 2
in the outer plasma region for standard divertor dis-
charges. Approximating the inner surface of the vessel
by a torus with radii A = 1m and R = 1.5m, a negligible
total power of Py = pwandm?AR ~ T0W results. How-
ever, different from the intrinsic losses, this effect depends
quadratically on the magnitude of the required perturba-
tion field, quartically on the poloidal field depression and

may thus be orders of magnitude larger. Fortunately, it
depends on details of the distribution of magnetic field
and conducting structures, which can be used for op-
timization, e.g., by using good conductors close to the
perturbation coils to screen less conducting structures.

Conclusions In short the analysis of GAMs generated
by external magnetic fields can be split into a global
MHD equilibrium problem for the magnetic perturba-
tions and a quasi-local turbulence problem for the reso-
nant layer, which are coupled by inertial forces. Using
this idea the required power is estimated to be rather
modest for the amplitudes of interest. In contrast, drive
schemes based on pulsed external heating or particle or
wave momentum are hampered by an inherently very low
ratio of free energy or momentum to injected heat.

To achieve GAM amplitudes sufficient to significantly
affect the turbulence certainly requires an optimally-
configured and dedicated setup, which to our knowl-
edge presently is nowhere installed. (Remarkably, even
when not sufficient to suppress the turbulence, raising the
GAM amplitude may lower the LH transition threshold
[12].) However, a first demonstration to measure plasma
acoustic resonance spectra may be possible using exist-
ing positioning or instability control coils provided they
can be driven at the GAM frequency. Within Torkil
Jensen Award run time on DIII-D the ELM (edge lo-
calized modes) suppression coils (internal, or I-coils) will
be used to resonantly excite the GAMs. Switched to
n = 0 configuration they can produce a field of 0.02mT
at TkHz yielding a displacement of ~ 6mm under good
conditions with the above estimates, while GAM ampli-
tudes ~ 2mm are detectable by spectroscopic imaging
and Doppler measurements [13, 14]. The parameters
could even be chosen more favorably, e.g., by lowering
the equilibrium magnetic field and the GAM frequency.

The optimal conditions for GAM generation can be
found by solving eqns. (3,4) for varying plasma shapes,
coil and passive conductor positions. Apart from maxi-
mizing the displacement at given flux perturbation, the
perturbation itself may also be amplified via the second
(“un-screening”) term in eq. (3). For example elongating
the plasma column increases the sensitivity to changes
of the vertical magnetic forces (up to the vertical dis-
placement instability). Higher order shaping (indenta-
tion) can convert the amplified vertical shift into the de-
sired poloidal displacement.

All things considered, generating GAMs by external
fields seems to be an efficient, viable method with po-
tentially far reaching impact, which would allow for the
first time to influence poloidal rotation on the fine radial
scales relevant to the turbulence.
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