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Abstract

This thesis considers the linear-quadratic optimal control problem for differential-
algebraic equations. In this first part we present a complete theoretical analysis of this
problem. The basis is a new differential-algebraic version of the Kalman-Yakubovich-
Popov lemma. We derive equivalent criteria for the feasibility of the optimal control
problem and the solvability of a descriptor Lur’e equation. Moreover, we analyze the
relationship between this matrix equation and spectral properties of an associated
even matrix pencil. In particular, we show how to construct the solution by employing
certain deflating subspaces of the even matrix pencil. Another focus is the analysis
of the solution structure of the descriptor Lur’e equation. We formulate and prove
conditions for the existence of extremal and non-positive solutions. Finally, we discuss
certain applications of the new theory, for instance for the analysis of dissipative and
cyclo-dissipative systems and the factorization of rational functions.

Closely related to dissipative systems are systems with counterclockwise input/ out-
put dynamics. Similarly as for dissipative systems, we give a spectral characterization
in terms of an even matrix pencil. Moreover, we study the problem of enforcing this
property in case it has been lost during the modeling process.

Another focus of this thesis are robustness questions, i. e., we consider the influence
of perturbations on system properties like cyclo-dissipativity and stability. We derive
an algorithm for computing the distance of a cyclo-dissipative system to the set of
non-cyclo-dissipative systems. For this we investigate perturbations of an associated
even pencil. A particular difficulty in this context are possible perturbations of the
singular part or the defective infinite eigenvalues of the pencil.

We also consider the problem of computing the H∞-norm of large and sparse
descriptor systems. We present two methods to solve this problem. The first approach
is based on a relation to the complex H∞-radius of a transfer function. This allows
to use a pseudopole set approach. The method relies on the fast computation of the
extremal point of a given pseudopole set. This point can be efficiently approximated
by a sequence of rank-1 perturbations. The second approach turns to the classical
method for computing the H∞-norm via level-sets. We use a structure-preserving
iterative algorithm to compute the desired eigenvalues of the involved even matrix
pencils and present heuristics for determining appropriate shifts.





Zusammenfassung

Diese Arbeit betrachtet das linear-quadratische Optimalsteuerungsproblem für dif-
ferentiell-algebraische Gleichungen. Im ersten Teil präsentieren wir eine vollständige
theoretische Analyse dieses Problems. Die Grundlage bildet eine neue differentiell-
algebraische Version des Kalman-Yakubovich-Popov-Lemmas. Wir leiten äquivalente
Kriterien für die Zulässigkeit des Optimalsteuerungsproblems und der Lösbarkeit
einer Deskriptor-Lur’e-Gleichung her. Des weiteren analysieren wir den Zusammen-
hang zwischen dieser Matrixgleichung und den Spektraleigenschaften eines zugehö-
rigen geraden Matrixbüschels. Insbesondere zeigen wir, wie man die Lösung mithilfe
bestimmter invarianter Unterräume des geraden Matrixbüschels konstruieren kann.
Ein weiterer Schwerpunkt ist die Untersuchung der Lösungsstruktur der Deskriptor-
Lur’e-Gleichung. Wir formulieren und beweisen Bedingungen für die Existenz extre-
maler und nichtpositiver Lösungen. Abschließend diskutieren wir Anwendungen der
neuen Theorie, beispielsweise bei der Untersuchung dissipativer und zyklodissipativer
Systeme oder der Faktorisierung rationaler Funktionen.

Eng verwandt zu dissipativen Systemen sind Systeme mit gegen den Uhrzeigersinn
laufender Eingangs-/Ausgangsdynamik. Ähnlich wie bei dissipativen Systemen geben
wir eine spektrale Charakterisierung mittels eines geraden Matrixbüschels an. Wei-
terhin studieren wir das Problem der Erzwingung dieser Struktur für den Fall, daß
diese während des Modellierungsprozesses verloren wurde.

Ein weiterer Schwerpunkt dieser Arbeit sind Robustheitsfragen, d. h. wir betrach-
ten den Einfluß von Störungen auf Systemeigenschaften wie Zyklodissipativität und
Stabilität. Wir leiten einen Algorithmus zur Berechnung des Abstands eines zyklodis-
sipativen Systems zur Menge der nichtzyklodissipativen Systeme her. Dafür betrach-
ten wir die Störungstheorie eines zugehörigen geraden Matrixbüschels. Eine besondere
Schwierigkeit in diesem Zusammenhang stellen mögliche Störungen des Büschels im
singulären Teil oder der defektiven unendlichen Eigenwerte dar.

Wir betrachten außerdem das Problem der Berechnung der H∞-Norm für große,
dünnbesetzte Deskriptorsysteme. Wir stellen zwei Verfahren vor, um dieses Problem
zu lösen. Der erste Zugang basiert auf einem Zusammenhang zum komplexen H∞-
Radius einer Übertragungsfunktion. Dies erlaubt die Anwendung eines Ansatzes mit
Pseudopolmengen. Das Verfahren beruht auf der schnellen Berechung des extremalen
Punktes einers gegebenen Pseudopolmenge. Dieser Punkt kann effizient über eine Fol-
ge von Störungen vom Rang eins approximiert werden. Die zweite Methode geht auf
den klassischen Zugang zur Berechung der H∞-Norm mittels Niveaumengen zurück.
Wir verwenden einen iterativen strukturerhaltenden Algorithmus zur Berechnung
der gesuchten Eigenwerte der auftretenden geraden Matrixbüschel und präsentieren
Heuristiken zur Bestimmung geeigneter Shifts.
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1 Introduction

1.1 Motivation

The modeling of dynamical processes plays an increasingly important role in sci-
ence and engineering. Often, the resulting mathematical models are given by ordi-
nary differential equations. However, in many applications, the differential equa-
tions underlie additional hidden algebraic constraints that restrict the dynamics
of the system. Equations of this kind are called differential-algebraic equations
(DAEs) . Typically, these arise in the modeling of network structures such as elec-
trical circuits [Ria08, Rei10] or gas networks [GJH+13], where the algebraic con-
straints are induced by the network topology. However, there are also applications
in the treatment of semidiscretized partial differential equations such as the Navier-
Stokes equation [Wei96, BBSW13], or holonomically constrained mechanical systems
[RS88, ESF98, MS05]. The analysis and numerical treatment of DAEs as well as
their optimization and control has obtained a lot of attention in the past, see e. g.,
[GM86, KM06, LMT13, BCM12].

In this thesis we consider we consider DAEs in the control theoretic framework
which are also often called differential-algebraic systems, descriptor systems, or sin-
gular systems. In general, these are given by systems of the nonlinear equations

F (t, x(t), ẋ(t), u(t)) = 0, (1.1a)

y(t)−H(t, x(t), u(t)) = 0, (1.1b)

where F : I ×Dx×Dẋ×Du → Rn and H : I ×Dx×Du → Rp with an open interval
I ⊆ R, and open sets Dx,Dẋ ⊆ Rn, and Du ⊆ Rm. Here, the solution trajectory
x : I → Dx of (1.1a) is called the state of the system. Furthermore, u : I → Du
is an input control signal that can be designed under various aspects. In practice,
the state of the system is not completely known, but only a part of it is available
from measurements. Therefore, the output equation (1.1b) is introduced, where the
output signal y : I → Dy ⊆ Rp contains part of the state information.

The special feature of DAEs is that the local Jacobian of F with respect to ẋ(t)
may be singular. This means that F can in general not be equivalently rewritten as

ẋ(t) = f(t, x(t), u(t)),

1



1 Introduction

but additional algebraic equations may restrict the solution x(·) to a submanifold.
In general, this manifold is difficult to determine, in particular when the system
dimension is large.

To analyze the behavior of nonlinear DAEs, one typically linearizes along a solution
trajectory [Cam95]. This generally leads to a linear time-varying DAE of the form

E(t)ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t),

with matrix-valued functions E, A : I → Rn×n, B : I → Rn×m, C : I → Rp×n, and
D : I → Rp×m. If the problem is autonomous in the sense that F and H do not
explicitly depend on t, and the linearization is around a stationary solution, then one
usually obtains a linear time-invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t), (1.2a)

y(t) = Cx(t) +Du(t), (1.2b)

with E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Moreover, many processes
can be directly modeled as linear time-invariant systems of the form (1.2).

To illustrate this, we consider the holonomically constrained mass-spring-damper
system taken from [MS05] and illustrated in Figure 1.1. In this system, the i-th mass
mi is connected to the (i+1)-st mass by a spring with stiffness ki and a damper with
viscosity di, and also to the ground by a spring with stiffness κi and a damper with
viscosity δi, respectively. Additionally, the first mass is connected to the last one by
a rigid bar and it can be externally excited by the control u(·). The vibration of this
system can be described by a second order descriptor system

Mp̈(t) = Dṗ(t) +Kp(t)−GTλ(t) +B2u(t),

0 = Gp(t),
(1.3)

m1

ki−1 ki

di−1

k1

κg
di

κi

d1

δ1 δi δg

mi mg
u

κ1

kg−1

dg−1

Figure 1.1: Constrained mass-spring-damper system with g masses
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1.1 Motivation

where p : I → Rg is the position vector and λ : I → R is the Lagrange multiplier.
Moreover, M = diag(m1, . . . ,mg) ∈ Rg×g is the mass matrix,

D =


δ1 + d1 −d1

−d1 d1 + δ2 + d2 −d2

. . .
. . .

. . .

−dg−2 dg−2 + δg−1 + dg−1 −dg−1

−dg−1 dg−1 + δg

 ∈ Rg×g

is the damping matrix,

K =


κ1 + k1 −k1

−k1 k1 + κ2 + k2 −k2

. . .
. . .

. . .

−kg−2 kg−2 + κg−1 + kg−1 −kg−1

−kg−1 kg−1 + κg

 ∈ Rg×g

is the stiffness matrix, and G =
[
1 0 . . . 0 −1

]
∈ R1×g is the constraint matrix.

Since we excite the first mass only, we have B2 =
[
1 0 . . . 0

]T ∈ Rg×1. Now, we
introduce the velocity vector v : I → Rg which is given by v(t) = ṗ(t). By measuring
the position of the first mass, we finally obtain a linearized system of the form (1.2),
namely Ig 0 0

0 M 0
0 0 0

ṗ(t)v̇(t)

λ̇(t)

 =

 0 Ig 0
K D −GT

G 0 0

p(t)v(t)
λ(t)

+

 0
B2

0

u(t),

y(t) =
[
C1 0 0

]p(t)v(t)
λ(t)

 ,

(1.4)

with C1 =
[
1 0 . . . 0

]
∈ R1×g. Later, we will often use this system for illustra-

tional purposes.
In this thesis we consider questions that are related to the infinite time-horizon

linear-quadratic optimal control problem of minimizing∫ t1

t0

(
x(τ)
u(τ)

)T [
Q S
ST R

](
x(τ)
u(τ)

)
dτ (1.5)

with Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m subject to the DAE (1.2a)
with some initial and terminal conditions. Alternatively, if an output equation (1.2b)
is given, then we consider the optimal control problem of minimizing∫ t1

t0

(
y(τ)
u(τ)

)T
[
Q̃ S̃

S̃T R̃

](
y(τ)
u(τ)

)
dτ (1.6)
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1 Introduction

with Q̃ = Q̃T ∈ Rp×p, S̃ ∈ Rp×m, and R̃ = R̃T ∈ Rm×m subject to the system (1.2)
with some initial and terminal conditions.

Our goal is to determine an optimal control signal û(·) that for the infinite time-
horizon minimizes one of the two integrals above and satisfies the system dynamics
and the boundary values. In this way we steer the system from a given state to a
desired state with least possible costs. For systems with E = In, the reader might
immediately think of the algebraic Riccati equation [LR95]. However, this equation
has various shortcomings. For instance, it is not an appropriate tool for so-called
singular optimal control problems. Then one has to turn to Lur’e equations as
discussed in [Rei11]. Moreover, there exist generalizations of the algebraic Riccati
equation for DAEs but they pose certain unnatural conditions on the system. In this
work we close these gaps and present a complete linear-quadratic control theory for
DAEs.

In this work we also consider another interpretation of the integrals (1.5) and (1.6).
Namely, they might also be understood as the energy that is supplied to the system
in the time interval [t0, t1]. Loosely speaking, if one of the integrals above is non-
negative for all time intervals and all possible solution trajectories of the system,
then the system can only dissipate as much energy to its environment as energy that
has been supplied to the system before. For the physical process this means that
a part of the energy is transformed into, e. g., heat, electromagnetic radiation, or
an increase in entropy. This leads to the notions of dissipative and cyclo-dissipative
systems and naturally arises in manifold applications. The theory of dissipative and
cyclo-dissipative systems is closely related to the linear-quadratic optimal control
problem and will be studied in detail in this thesis.

Moreover, mechanical systems or electrical circuits where controls and measure-
ments are collocated, i. e., taken at the same position, then the system might have
a so-called counterclockwise input/output dynamics [PL10]. This property has some
relations to passive systems (a special case of dissipative systems) and will therefore
also be shortly studied in this work.

Another point of interest is concerned with the robustness of dynamical systems
under the influence of perturbations. For instance, if a physical process is cyclo-
dissipative, it is important to reflect this property in the structure of the mathe-
matical model. Otherwise, simulations could produce physically meaningless results.
However, due to modeling errors, introduced, e. g., by model order reduction, lin-
earizations, or uncertainties in the parameters of the system, it could easily happen
that the cyclo-dissipativity in the model structure is lost. In other words, a physically
cyclo-dissipative process is modeled by a non-cyclo-dissipative mathematical model.
Then, it is necessary to restore this structure by a post-processing procedure, typi-
cally known as dissipativity enforcement [BS13] (or passivity enforcement in certain
special cases, e. g., [GT04, GTU06]). On the other hand, even if the model is cyclo-
dissipative, it might be close to a non-cyclo-dissipative model. Then it is desirable
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to assess the robustness of cyclo-dissipativity with respect to perturbations of the
model. Therefore, we derive an algorithm that computes the cyclo-dissipativity ra-
dius, i. e., the distance of a cyclo-dissipative model to the set of non-cyclo-dissipative
models.

Besides cyclo-dissipativity, an important property of descriptor systems is stability.
When designing feedback laws one is in general not only interested in minimizing the
cost functionals (1.5) or (1.6), but also to make the system as stable as possible. More
precisely, the goal is to make stability of the closed-loop system as robust as possible
with respect to perturbations in the controller. In order to assess this robustness,
unstructured and structured stability radii were introduced [HP86a, HP86b, HP90].
It turns out that the structured stability radius is furthermore reciprocal to the H∞-
norm of a certain transfer function. The goal of robust control is now to determine
a controller that maximizes the structured stability radius or minimizes the corre-
sponding H∞-norm. In order to do this optimization it is necessary to be able to
compute this norm. However, up to now, there are only algorithms that are capa-
ble of dealing with small and dense problems due to computational complexity and
memory requirements. Therefore, in this thesis we develop two methods to overcome
this issue, so that we can also deal with large and sparse problems.

1.2 Structure of this Thesis

This thesis is structured as follows. In Chapter 2 we will introduce the basic theory
this work is based on. In particular, this includes an overview over the theory of ma-
trix pencils and an introduction of certain condensed forms. A particular focus will be
on even matrix pencils, their structured normal forms and structure-preserving meth-
ods to compute eigenvalues and deflating subspaces. Furthermore, we give a short
introduction into system theoretic aspects of DAEs. We review different controlla-
bility, stabilizability, observability, and detectability notions and discuss properties
of the zero dynamics. Moreover, we summarize the most important concepts from
frequency domain analysis and the theory of rational functions.

In Chapter 3 we study the linear-quadratic optimal control problem for DAEs.
We relate the feasibility of this problem to the solvability of a certain linear matrix
inequality, the so-called descriptor KYP inequality, and obtain a new differential-
algebraic version of the well-known Kalman-Yakubovich-Popov lemma. From this
we derive a generalized version of the Lure’ matrix equation for DAEs (the descrip-
tor Lur’e equation) and analyze its solution structure in detail. In particular, we
analyze conditions for the existence of stabilizing, anti-stabilizing, and extremal so-
lutions. Moreover, we show relations to even matrix pencils and derive conditions
for solvability of the descriptor Lur’e equation in terms of the spectral structure of
even matrix pencils. We also show how to construct a solution by means of the asso-
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ciated deflating subspaces. This result can be further employed to solve the spectral
factorization problem for the associated Popov function. A special emphasis of our
theory is the characterization of the existence of a nonpositive solution of the de-
scriptor KYP inequality with applications to the characterization of dissipativity of
dynamical systems. A further result is the application of our theory to construct
inner-outer factorizations and normalized coprime factorizations of general transfer
functions. These results have been obtained in a joint work with Timo Reis and will
be published in a sequence of forthcoming papers. The results of the first part of this
chapter have appeared as a preprint in

T. Reis, O. Rendel, and M. Voigt. The Kalman-Yakubovich-Popov in-
equality for differential-algebraic systems, Hamburger Beiträge zur ange-
wandten Mathematik 2014-27, Universität Hamburg, Fachbereich Math-
ematik, 2014.

In Chapter 4 we consider systems with counterclockwise input/output dynamics. In
frequency domain this leads to the concept of negative imaginary transfer functions.
Similarly as in the case of dissipative systems, we show that there is a characterization
of this property in terms of an even matrix pencil. Moreover, we discuss the problem
of enforcing negative imaginariness of a system which is necessary if this property
is theoretically satisfied but has been destroyed during the modeling process. The
results of this chapter are published in

P. Benner and M. Voigt. Spectral characterization and enforcement
of negative imaginariness for descriptor systems, Linear Algebra Appl.,
439(4):1104–1129, 2013.

Moreover, in the enforcement process we need to compute the eigenvectors corre-
sponding to the purely imaginary eigenvalues of a skew-Hamiltonian/Hamiltonian
matrix pencil. We introduce a new, structure-exploiting way to compute these. This
procedure is available in the technical report

P. Jiang and M. Voigt. MB04BV – A FORTRAN 77 subroutine to
compute the eigenvectors associated to the purely imaginary eigenval-
ues of skew-Hamiltonian/Hamiltonian matrix pencils, SLICOT Working
Note 2013-03, NICONET e.V., 2013. Available from http://slicot.

org/objects/software/reports/SLWN2013_3.pdf.

In Chapter 5 we turn to the problem of computing the complex cyclo-dissipativity
radius. For this purpose we make use of the characterization of cyclo-dissipativity in
terms of the spectrum of an even matrix pencil. To compute the cyclo-dissipativity
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radius we consider the perturbation theory of this pencil. A particular issue in this
context are possible perturbations of the singular part or the defective infinite eigen-
values which have to be treated separately. In the end the problem reduces to the
solution of an eigenvalue optimization problem. These results are subject of a forth-
coming article.

The problem of computing the H∞-norm for large-scale descriptor systems is dis-
cussed in Chapter 6. We propose two methods to achieve this. The first method
makes use of a relation of the H∞-norm to the complex H∞-radius. To compute it,
we consider so-called ε-pseudopole sets for a transfer function. Namely, we have to
find the value of ε for which the ε-pseudopole set touches the imaginary axis. The
method is based on a two-level iteration. In the inner iteration we construct a se-
quence of rank-1 perturbations that drives one of the poles of the original transfer
function to the rightmost pseudopole. In the outer iteration we vary ε by utilizing
Newton’s method. The results of this chapter are already published in

P. Benner and M. Voigt. A structured pseudospectral method for H∞-
norm computation of large-scale descriptor systems, Math. Control Sig-
nals Systems, 26(2):303–338 (2014).

The second method goes back to the original approach for computing the H∞-norm.
We discuss a way to modify it in a way that it is also suitable for large-scale com-
putations. In particular, we replace the dense eigensolvers by sparse methods and
discuss a heuristic to generate suitable shifts for it. This method is described and
compared with the first approach in

R. Lowe and M. Voigt. L∞-Norm computation for large-scale descriptor
systems using structured iterative eigensolvers, Preprint MPIMD/13-20,
Max Planck Institute Magdeburg, 2013. Available from http://www2.

mpi-magdeburg.mpg.de/preprints/2013/20/.

Finally, in Chapter 7 we summarize the results of this thesis and discuss possible
future research directions.

1.3 System Setup

In this thesis we perform a number of numerical experiments. These tests have been
performed on a 2.6.32-23-generic-pae Ubuntu machine with Intel R© CoreTM2 Duo
CPU with 3.00GHz and 2GB RAM. The algorithms have been implemented and
tested in MATLAB R© or FORTRAN. FORTRAN software has been compiled using
the gfortran compiler with option -O2. For testing purposes, mex files have been
written for calling FORTRAN codes from MATLAB. The following software libraries
and programs have been used:

7
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• MATLAB version 7.14.0.739 (R2012a);

• BLAS and LAPACK version 3.4.1;

• SLICOT version 4.5.
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2 Mathematical Preliminaries

In this chapter we introduce the main concepts this thesis is based on. First, we
discuss general matrix pencils, their properties and condensed forms. Then we turn
to the analysis of matrix pencils with particular structure, namely even and skew-
Hamiltonian/Hamiltonian pencils. Furthermore, we introduce differential-algebraic
control systems and give details about different concepts for controllability, stabiliz-
ability, observability, and detectability. Moreover, we discuss transfer functions of
such systems which arise when turning to the frequency domain. Finally, we give
details on the zero dynamics and its relations to the concept of outer systems.

2.1 Matrix Theoretic Preliminaries

2.1.1 General Matrix Pencils

Here we introduce some fundamentals and condensed forms for matrix pencils, i. e.,
first order matrix polynomials sE − A ∈ C[s]m×n with E, A ∈ Cm×n. To analyze
their properties, we introduce the Kronecker canonical form which is a canonical
representative of the class of pencils equivalent to sE −A as follows.

Definition 2.1.1 (Equivalence of pencils). [KM06, Chap. 2] Two pencils sE1−A1 ∈
C[s]m×n and sE2−A2 ∈ C[s]m×n are said to be equivalent if there exist Ul ∈ Glm(C)
and Ur ∈ Gln(C) such that

sE2 −A2 = Ul(sE1 −A1)Ur.

Theorem 2.1.2 (Kronecker canonical form (KCF)). [KM06, Thm. 2.3] Let sE −
A ∈ C[s]m×n be given. Then there exist Ul ∈ Glm(C) and Ur ∈ Gln(C) such that
Ul(sE − A)Ur = diag (C1(s), . . . , C`(s)), where each Cj(s), j = 1, . . . , `, is of one of
the following structures:

Type K1:


s− λj −1

. . .
. . .
. . . −1

s− λj

 ∈ C[s]kj×kj with λj ∈ C;

9
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Type K2:


−1 s

. . .
. . .
. . . s

−1

 ∈ C[s]kj×kj ;

Type K3:

−1 s
. . .

. . .

−1 s

 ∈ C[s]kj−1×kj ;

Type K4:


−1

s
. . .
. . . −1

s

 ∈ C[s]kj×kj−1.

The Kronecker canonical form is unique up to permutation of the blocks, i. e., kind,
size, and number of the blocks are invariants of the pencil sE −A.

Using the KCF we can define the following terms.

Definition 2.1.3 (Regularity, rank, eigenvalues, multiplicity, index). Consider a
pencil sE −A ∈ C[s]m×n.

a) The pencil sE − A is called regular if m = n and the characteristic polynomial
det(sE −A) is not the zero polynomial, otherwise it is called singular .

b) The rank of sE −A (over the field of rational functions) is given by

rankC(s)(sE −A) = max
λ∈C

rank(λE −A).

c) The numbers λj appearing in the blocks of type K1 in the KCF are called (gen-
eralized) finite eigenvalues of the pencil sE −A. Blocks of type K2 are said to be
corresponding to infinite eigenvalues .

d) Let sE − A have an eigenvalue λ ∈ C or an infinite eigenvalue represented by
blocks C1(s), . . . , Cp(s) of type K1 or K2, respectively with Cj(s) ∈ C[s]kj×kj for
j = 1, . . . , p. Then we call

i) the number
∑p

j=1 kj the algebraic multiplicity ;

ii) the number p the geometric multiplicity ;

iii) the numbers k1, . . . , kp the partial multiplicities

of the respective eigenvalue. The eigenvalue is called defective, if p 6= ∑p
j=1 kj ,

i. e., if there exists a kj > 1.
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e) The (Kronecker) index of sE−A is the size of the largest block of type K2 or K4
in the KCF [BR13, Def. 3.2]. If no such block exists, then the index is zero.

Remark 2.1.4.

a) The finite eigenvalues of sE−A are exactly the values λ ∈ C satisfying rank(λE−
A) < rankC(s)(sE −A).

b) The pencil sE − A is regular if and only if there do not occur any blocks of type
K3 or K4 in its KCF.

c) If sE −A is regular, then the finite eigenvalues are the roots of the characteristic
polynomial det(sE −A).

d) If there are no blocks of types K3 and K4, then the KCF is also often called
Weierstraß canonical form.

In the following we will introduce a generalization of the concept of principal vectors
and Jordan chains to matrix pencils, see [Gan59, BT12].

Definition 2.1.5 (Kronecker chain). Assume that sE −A ∈ C[s]m×n is given.

a) A tuple (y1, . . . , yk) ∈ (Cn \ {0})k such that

λEy1 = Ay1, E(λy2 + y1) = Ay2, . . . , E(λyk + yk−1) = Ayk

is called a Kronecker chain associated to the eigenvalue λ ∈ C.

b) A tuple (y1, . . . , yk) ∈ (Cn \ {0})k such that

Ey1 = 0, Ey2 = Ay1, . . . , Eyk = Ayk−1

is called a Kronecker chain associated to an infinite eigenvalue.

c) A tuple (y1, . . . , yk) ∈ (Cn \ {0})k such that

Ey1 = 0, Ey2 = Ay1, . . . , Eyk = Ayk−1, Ayk = 0

is called a Kronecker chain associated to the singular part.

Remark 2.1.6.

a) In the above definition, the vector y1 in a) and b) is called an eigenvector to the
eigenvalue λ ∈ C or an infinite eigenvalue, respectively.

b) Definition 2.1.5 only introduces the concept of right Kronecker chains. Analo-
gously, one can introduce left Kronecker chains by looking for tuples of vectors
that fulfill analogous properties when being multiplied from the left.

11
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c) Kronecker chains associated to the singular part are called singular chains in
[BT12]. For ease of terminology, we also call these Kronecker chains. Note that
such Kronecker chains might be void, for instance for the singular pencil

s

[
0
0

]
−
[
1
0

]
∈ R[s]2×1.

Note, that even if sE − A ∈ R[s]m×n, the transformation matrices Ul and Ur that
lead to KCF will in general be complex. However, there exists an alternative where
also the transformation matrices are real.

Theorem 2.1.7 (Quasi-Kronecker form (QKF)). [BIT12, BT12, BT13] Let sE −
A ∈ R[s]m×n be given. Then there exist Ul ∈ Glm(R) and Ur ∈ Gln(R) such that
Ul(sE − A)Ur = diag (K1(s),K2(s),K3(s),K4(s)) ∈ R[s]m×n where the KCFs of
K1(s), . . . ,K4(s) have only blocks of types K1, . . . , K4, respectively.

Similarly as above, if the subpencils K3(s) and K4(s) are empty, the QKF is also
called quasi-Weierstraß form.

Even if the KCF displays the complete spectral information of the pencil, it can-
not generally be computed numerically, since the transformation matrices Ul and Ur

might be arbitrarily ill-conditioned. On the other hand, one can compute less con-
densed normal forms, that still reveal the Kronecker structure of a general matrix
pencil, for instance the GUPTRI form [DK87, DK93a, DK93b]. Its computation is
based on sequences of orthogonal or unitary matrix multiplications, singular value
decompositions and rank decisions. This method might also suffer from numerical
problems, for instance rank decisions are troublesome if there is no clear gap in the
small singular values close to the desired truncation tolerance. However, the trans-
formation matrices can be chosen to be orthogonal or unitary and therefore, one can
at least compute the Kronecker structure of a nearby “least generic” pencil within
a desired tolerance [EEK97, EEK99]. If sE − A is square and one is not interested
in the full Kronecker structure, but only in the eigenvalues, the generalized Schur
decomposition is an attractive alternative. This decomposition is summarized in the
next theorem, where we directly state the result for pencils with real coefficients.

Theorem 2.1.8 (Generalized real Schur decomposition). [GL96, Thm. 7.7.2] Let
sE − A ∈ R[s]n×n. Then there exist orthogonal matrices Q ∈ Rn×n and Z ∈ Rn×n
such that

QT(sE −A)Z =

sE11 −A11 . . . sE1k −A1k

. . .
...

sEkk −Akk

 ,
where sEii − Aii ∈ R[s]li×li with li ∈ {1, 2} for i = 1, . . . , k. Moreover, if li = 1,
then sEii −Aii corresponds to a real eigenvalue, an infinite eigenvalue or a singular
block, if li = 2, then it corresponds to a pair of complex conjugate eigenvalues.

12
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To compute the generalized Schur decompostion, one can use the well-known QZ
algorithm [GL96, Subsect. 7.7]. However, it should be noted, that in the case of a
singular pencil, the eigenvalues cannot be reliably computed, since arbitrarily small
round-off errors might change the Kronecker structure and can introduce and move
eigenvalues to arbitrary positions in the complex plane. In this case it is necessary
to extract the regular part of the pencil before, e. g., by transformation to GUPTRI
form.

The following concept generalizes the notion of invariant subspaces to matrix pen-
cils.

Definition 2.1.9 (Basis matrix, deflating subspace).

a) A matrix Y is called a basis matrix for a subspace Y ⊆ Cn if it has full column
rank and imY = Y.

b) A subspace Y ⊆ Cn is called (right) deflating subspace for the pencil sE − A ∈
C[s]m×n if, for a basis matrix Y ∈ Cn×k of Y, there exists some l ∈ N0, a matrix
Z ∈ Cm×l and a pencil sẼ − Ã ∈ C[s]l×k with rankC(s)

(
sẼ − Ã

)
= l, such that

(sE −A)Y = Z
(
sẼ − Ã

)
.

Remark 2.1.10.

a) Similarly as for invariant subspaces and Jordan chains in the matrix case, the
deflating subspaces can be spanned by the vectors of Kronecker chains.

b) In the literature, deflating subspaces corresponding to singular blocks of sE − A
are also often called reducing subspaces, see, e. g., [Doo83, DK87]. For ease of
terminology, we will also call them deflating subspaces.

An important property a deflating subspace might possess is E-neutrality. This
property is of particular importance in the context of even pencils, discussed in the
next subsection, but it can also be defined in more general terms.

Definition 2.1.11 (E-neutrality). [Rei11] Let a matrix E ∈ Cn×n be given. Then a
subspace Y ⊆ Cn is called

a) E-neutral if yH1 Ey2 = 0 for all y1, y2 ∈ Y;

b) maximally E-neutral if Y is E-neutral and every proper superspace YL ⊃ Y is not
E-neutral.

13



2 Mathematical Preliminaries

2.1.2 Even Matrix Pencils and their Condensed Forms

A particularly important role in this thesis is played by even matrix pencils. These
are pencils whose coefficients have special structure, and therefore, they allow for
structured condensed forms that we briefly introduce in this subsection.

Definition 2.1.12 (Even matrix pencil). A matrix pencil P (s) = sE −A ∈ C[s]n×n

is called even if P∼(s) = P (s), i. e., E = −EH and A = AH.

In general, a transformation to KCF does not preserve the evenness of an even
pencil. However, when restricting the class of allowable transformation matrices, it is
possible to find an even Kronecker-like form given in the next theorem. Note that the
following result was initially formulated for Hermitian matrix pencils sE − A (i. e.,
with E = EH and A = AH). In [Rei11] it has been reformulated for even pencils by
replacing E by iE and applying some permutations.

Theorem 2.1.13 (Even Kronecker canonical form (EKCF)). [Tho76, Rei11] Let
sE − A ∈ C[s]n×n be an even pencil. Then there exists a U ∈ Gln(C) such that
UH(sE −A)U = diag (D1(s), . . . ,D`(s)), where each Dj(s), j = 1, . . . , `, is of one of
the following structures:

Type E1:



−s+ µj −1
. . .

. . .

. . . −1
−s+ µj

s+ µj

−1
. . .
. . .

. . .

−1 s+ µj


∈ C[s]2kj×2kj

with µj ∈ C+;

Type E2: εj


1 −si− µj

...
...

1
...

−si− µj

 ∈ C[s]kj×kj with µj ∈ R, εj ∈ {−1, 1};

Type E3: εj


si 1

...
...

si
...

1

 ∈ C[s]kj×kj with εj ∈ {−1, 1};

14
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Type E4:



1 −s
. . .

. . .

1 −s
1

s
. . .
. . . 1

s


∈ C[s](2kj−1)×(2kj−1).

The numbers εj in the blocks of type E2 and E3 are called the sign-characteristics.
The even Kronecker canonical form is unique up to permutation of the blocks, i. e.,
kind, size, sign-characteristic, and number of the blocks are invariants of the pencil
sE − A.

Remark 2.1.14.

a) The structure of a block of type E1 shows that for even matrix pencils, finite
eigenvalues λ /∈ iR occur in pairs (λ,−λ).

b) Blocks of type E2 and E3 correspond to the purely imaginary and infinite eigen-
values, respectively. The additional sign parameter appears basically due to the
fact that for a fixed λ0 ∈ iR the congruence transformation with U preserves the
inertia of the Hermitian matrix λ0E − A.

c) Blocks of type E4 consist of a combination of blocks that are equivalent to those
of type K3 and K4.

d) Even if sE −A ∈ R[s]n×n, the transformation matrix U will generally be complex.
However, there exists an even Kronecker canonical form that also preserves the
realness of the coefficient matrices, see [Tho91].

Now we classify the inertia of the matrices Dj(iω) in dependence of the corre-
sponding parameters and ω ∈ R. This result will be of importance in the proofs of
Theorems 3.4.2 and 4.3.3.

Lemma 2.1.15 (Inertia of blocks in the EKCF). [CG89, Cle00]

a) If Dj(s) is of type E1, then for all ω ∈ R it holds that

In (Dj(iω)) = (kj , 0, kj) .

b) If Dj(s) is of type E2 and kj is even, then it holds that

In (Dj(iω)) =

{
(kj/2, 0, kj/2) , if µj 6= ω,

(kj/2− 1, 1, kj/2− 1) + In (εj) , if µj = ω.

15
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c) If Dj(s) is of type E2 and kj is odd, then it holds that

In (Dj(iω)) =

{
((kj − 1)/2, 0, (kj − 1)/2) + In (εj(ω − µj)) , if µj 6= ω,

((kj − 1)/2, 1, (kj − 1)/2) , if µj = ω.

d) If Dj(s) is of type E3 and kj is even, then for all ω ∈ R it holds that

In(Dj(iω)) = (kj/2, 0, kj/2) .

e) If Dj(s) is of type E3 and kj is odd, then for all ω ∈ R it holds that

In(Dj(iω)) = ((kj − 1)/2, 0, (kj − 1)/2) + In (εj) .

f) If Dj(s) is of type E4, then for all ω ∈ R it holds that

In(Dj(iω)) = (kj − 1, 1, kj − 1) .

Even if the EKCF reveals the full information of the structure of the pencil, it
cannot be computed numerically, because arbitrary small perturbations may change
the structural information and the transformation matrices may be unbounded, i. e.,
arbitrarily ill-conditioned.

For even pencils sE −A ∈ R[s]n×n, there exists a computationally attractive alter-
native, namely the even staircase form under orthogonal transformations. It allows
to check regularity and to determine the index within the usual limitations of rank
computations in finite precision arithmetic as described above for the general case.

Theorem 2.1.16. [BMX07] For every even pencil sE − A ∈ R[s]n×n, there exists a
real orthogonal matrix U ∈ Rn×n, such that

UTEU =

s1
...
...
sw
l

qw
...
...
q1



E1,1 . . . . . . E1,w E1,w+1 E1,w+2 . . . E1,2w 0
...

. . .
...

...
...

...
...

...
. . .

...
... Ew−1,w+2

...

−ET1,w · · · · · · Ew,w Ew,w+1 0

−ET1,w+1 . . . . . . −ETw,w+1 Ew+1,w+1

−ET1,w+2 · · · −ETw−1,w+2 0
...

...
...

−ET1,2w
...

0


,
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UTAU =

s1
...
...
sw
l

qw
...
...
q1



A1,1 · · · · · · A1,w A1,w+1 A1,w+2 . . . . . . A1,2w+1
...

. . .
...

...
...

...
...

. . .
...

...
...

...

AT
1,w . . . . . . Aw,w Aw,w+1 Aw,w+2

AT
1,w+1 . . . . . . AT

w,w+1 Aw+1,w+1

AT
1,w+2 . . . . . . AT

w,w+2
...

...
...

...

AT
1,2w+1


,

(2.1)

where q1 ≥ s1 ≥ q2 ≥ s2 ≥ . . . ≥ qw ≥ sw, l = dw+1 + rw+1, and for i = 1, . . . , w we
have Ei,i = −ETi,i, Ai,i = AT

i,i. Furthermore,

Ej,2w+1−j ∈ Rsj×qj+1 , 1 ≤ j ≤ w − 1,

Ew+1,w+1 =

[
∆ 0
0 0

]
, ∆ = −∆T ∈ Rdw+1×dw+1 ,

Aj,2w+2−j =
[
Γj 0

]
∈ Rsj×qj , Γj ∈ Rsj×sj , 1 ≤ j ≤ w,

Aw+1,w+1 =

[
Σ11 Σ12

Σ21 Σ22

]
, Σ11 ∈ Rdw+1×dw+1 , Σ22 ∈ Rrw+1×rw+1 ,

Aw+1,w+1 = AT
w+1,w+1,

and the blocks Σ22 and ∆ and Γj, j = 1, . . . , w (if they occur) are nonsingular.

FORTRAN 77 implementations for the computation of these and other related
structured staircase forms via a sequence of singular value decompositions have been
presented in [BM07]. Since the staircase form uses congruence transformations, all
the invariants of the EKCF are preserved. The recursive construction of the even
staircase form also generates a sequence of inertias {(π+,j , 0, π−,j)}w+1

j=1 of certain
ephemeral symmetric submatrices that appear during the construction and will be
returned by the even staircase algorithm [BMX07]. The following theorem shows that
the characteristic quantities describing the singular part and the eigenvalue infinity
of sE − A can be extracted from the even staircase form.

Theorem 2.1.17. Suppose that an even pencil sE − A has been reduced to the con-
densed form in Theorem 2.1.16 by the algorithm in [BMX07] with the inertia se-
quence {(π+,j , 0, π−,j)}w+1

j=1 , and rj = π+,j + π−,j. Then sE − A has the following
block structures associated to the singular part and the eigenvalue ∞ in the EKCF of
Theorem 2.1.13.
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a) For every j = 1, . . . , w, the pencil has sj − qj+1 − (rj+1 − rj) blocks of type
E3 and size 2j × 2j, among which 1

2 (sj − qj+1 − (rj+1 − rj)) blocks have posi-
tive sign-characteristic and 1

2 (sj − qj+1 − (rj+1 − rj)) blocks have negative sign-
characteristic. (Here we set qw+1 = 0.)

b) For every j = 1, . . . , w+1, the pencil has rj−rj−1 blocks of type E3 and size (2j−
1)× (2j − 1), among which π−,j − π−,j−1 blocks have positive sign-characteristic,
and π+,j − π+,j−1 blocks have negative sign-characteristic. (Here we set π+,0 =
π−,0 = r0 = 0.)

c) For every j = 1, . . . , w, the pencil has qj − sj blocks of type E4 and size (2j −
1)× (2j − 1).

Proof. The theorem is an adaption of [BMX07, Thm. 3.3] to the complex EKCF. The
proof can be carried out by identifying blocks from the real EKCF with those of the
complex one. Note that in contrast to [BMX07, Thm. 3.3], the sign-characteristics
of blocks corresponding to the infinite eigenvalues is changed.

From the above theorem, the following corollary is a direct consequence.

Corollary 2.1.18. [BMX07] Consider an even pencil and its staircase form (2.1).
Then the following statements hold.

a) The pencil is regular if and only if si = qi for i = 1, . . . , w.

b) The pencil is regular and of index at most one if and only if w = 0.

c) The subpencil sEw+1,w+1−Aw+1,w+1 ∈ R[s]l×l contains the regular part associated
to finite eigenvalues and blocks associated to the infinite eigenvalues of index at
most one.

d) The finite eigenvalues of the pencil are the eigenvalues of

s∆−
(
Σ11 − Σ12Σ−1

22 Σ21

)
.

e) For every eigenvalue λ0 ∈ iR, satisfying(
λ0∆−

(
Σ11 − Σ12Σ−1

22 Σ21

))
x0 = 0

for x0 ∈ Cdw+1 \ {0}, the sign-characteristic of λ0 is given by the sign of the real
number ixH0 ∆x0.
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Thus, once the staircase form has been computed, for the computation of eigen-
values and deflating subspaces one can restrict the methods to the middle regular
index one block of the staircase form. The appropriate numerical methods rely on a
transformation to a closely related skew-Hamiltonian/Hamiltonian pencil. At the mo-
ment, numerical algorithms for such pencils are better developed than those for even
pencils and therefore, we always turn an even eigenvalue problem to a related skew-
Hamiltonian/Hamiltonian one. The respective factorizations and numerical methods
are summarized in the next subsection.

2.1.3 Skew-Hamiltonian/Hamiltonian Matrix Pencils

In this subsection we analyze skew-Hamiltonian/Hamiltonian matrix pencils. Here,
we only consider the case of real coefficients, since these are of particular importance
for the results of this thesis. Pencils with complex coefficients can be treated as well,
but there are non-trivial differences in their numerical treatment compared to the
real case. In fact, the real case is much more involved. We consider the following
matrix structures.

Definition 2.1.19. [BBMX02] Let Jn :=

[
0 In
−In 0

]
be given.

a) A matrix H ∈ R2n×2n is Hamiltonian if (HJn)T = HJn.

b) A matrix S ∈ R2n×2n is skew-Hamiltonian if (SJn)T = −SJn.

c) A matrix pencil sS − H ∈ R[s]2n×2n is skew-Hamiltonian/Hamiltonian if S is
skew-Hamiltonian and H is Hamiltonian.

Even and skew-Hamiltonian/Hamiltonian pencils are closely related. Clearly, if
sS − H ∈ R[s]2n×2n is skew-Hamiltonian/Hamiltonian, then Jn(sS − H) is even.
However, the converse is not true, since the dimension of an even pencil can be odd.
In this case one must inflate or deflate the pencil by one dimension to introduce or
remove one of the infinite eigenvalues. We usually inflate the pencil and incorporate
one additional infinite eigenvalue. If sE −A ∈ R[s]n×n with odd n is an even pencil,
then

J(n+1)/2

[
sE − A 0

0 1

]
is skew-Hamiltonian/Hamiltonian with an additional infinite eigenvalue. Due to these
relations it is clear that the finite eigenvalues of skew-Hamiltonian/Hamiltonian pen-
cils have the same spectral symmetry as even pencils. This means that in the real
case they appear in quadruples (λ,−λ, λ,−λ) if λ /∈ R ∪ iR, and otherwise in pairs
(λ,−λ). Moreover, the concept of sign-characteristics for purely imaginary and infi-
nite eigenvalues can be transfered into the skew-Hamiltonian/Hamiltonian context.
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For the computation of the eigenvalues and deflating subspaces of skew-Hamiltoni-
an/Hamiltonian pencils sS −H ∈ R[s]2n×2n we could in general use the standard QZ
algorithm. However, this algorithm does not exploit the structural properties of the
pencil. Furthermore, the spectral symmetry is destroyed by unstructured round-off
errors. Luckily, there exist structured equivalence transformations that preserve the
skew-Hamiltonian/Hamiltonian structure and the spectral symmetry. These allow
the development of algorithms which are faster, more accurate, and more robust
than the QZ algorithm. The basic ideas are present in the following paragraphs.

We make use of Jn-congruence transformations of the form

sS̃ − H̃ := JnQTJ T
n (sS −H)Q

with Q ∈ Gl2n(R) which preserve the skew-Hamiltonian/Hamiltonian structure. In
general we would hope that we can compute an orthogonal matrix Q ∈ R2n×2n such
that

JnQTJ T
n (sS −H)Q =

[
sS11 −H11 sS12 −H12

0 sST11 +HT
11

]
is in skew-Hamiltonian/Hamiltonian Schur form, i. e., the subpencil sS11 − H11 ∈
R[s]n×n is in generalized real Schur form. Unfortunately, not every skew-Hamil-
tonian/Hamiltonian pencil admits such a Schur form, since certain simple purely
imaginary eigenvalues, or multiple purely imaginary eigenvalues with even algebraic
multiplicity, but uniform sign-characteristic, cannot be represented in this struc-
ture. An embedding into a pencil of the double size solves this issue as follows, see
[BBMX99].

We introduce the orthogonal matrices

Yn :=

√
2

2

[
I2n I2n

−I2n I2n

]
, Pn =


In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 , Xn = YnPn, (2.2)

and define the 4n× 4n pencil

sBS − BH := XT
n

[
sS −H 0

0 sS +H

]
Xn. (2.3)

It can be easily observed that sBS −BH is again real skew-Hamiltonian/Hamiltonian
with the same eigenvalues (now with double algebraic, geometric, and partial multi-
plicities, but with appropriate mixed sign-characteristic) as the pencil sS − H. To
compute the eigenvalues of sBS − BH one uses the generalized symplectic URV de-
composition of sS −H, formulated in the next theorem.
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Theorem 2.1.20 (Generalized symplectic URV decomposition). [BBMX99] Let sS−
H ∈ R[s]2n×2n be a skew-Hamiltonian/Hamiltonian pencil. Then there exist orthog-
onal matrices Q1, Q2 ∈ R2n×2n such that

QT
1 SJnQ1J T

n =

[
S11 S12

0 ST
11

]
,

JnQT
2J T

n SQ2 =

[
T11 T12

0 TT
11

]
,

QT
1HQ2 =

[
H11 H12

0 H22

]
,

(2.4)

where S12 and T12 are skew-symmetric and the formal matrix product S−1
11 H11T

−1
11 H

T
22

is in real periodic Schur form [BGD92, HL94, Kre01].

Efficient implementations of algorithms for computing this and related factoriza-
tions are available in the FORTRAN 77 library SLICOT1, see also [BSV13a, BSV13b]
for more technical details. Applying this result to the specially structured pencil
sBS − BH, we can compute an orthogonal matrix Q ∈ R4n×4n such that

J2nQTJ T
2n(sBS−BH)Q = s


S11 0 S12 0
0 T11 0 T12

0 0 ST
11 0

0 0 0 TT
11

−


0 H11 0 H12

−HT
22 0 HT

12 0

0 0 0 H22

0 0 −HT
11 0


with Q = PT

n

[
JnQ1J T

n 0
0 Q2

]
Pn.

Note that for these computations we never explicitly construct the embedded pen-
cils. It is sufficient to compute the necessary parts of the matrices in (2.4).

The eigenvalues of sS − H can then be computed as ±i
√
λj where the λj , j =

1, . . . , n, are the eigenvalues of S−1
11 H11T

−1
11 H

T
22 which can be determined by eval-

uating the entries on the 1 × 1 and 2 × 2 diagonal blocks of the matrices only. In
particular, the finite, purely imaginary eigenvalues correspond to the 1× 1 diagonal
blocks of this formal matrix product. Provided that the pairwise distance of the sim-
ple, finite, purely imaginary eigenvalues with mixed sign-characteristics is sufficiently
large, they can be computed in a robust way without any error in the real part. This
property of the algorithm plays an essential role for many of the applications that
we will consider in subsequent sections. For an illustration see Figure 2.1 where the
eigenvalues computed by the standard QZ algorithm as well as those computed by
the structure-preserving method are depicted.

1http://slicot.org
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Figure 2.1: Computed eigenvalues of a skew-Hamiltonian/Hamiltonian pencil with
only purely imaginary eigenvalues resulting from a linearized gyroscopic
system

2.2 System Theoretic Basics

In this subsection we discuss the system theoretic preliminaries of this work. Here we
mainly discuss systems given by real matrices. However, all of the following consid-
erations can be extended to systems given by complex matrices in a straightforward
way.

2.2.1 Descriptor Systems, Behaviors, and Stability

In this thesis we consider differential-algebraic equations of the form

Eẋ(t) = Ax(t) (2.5)

where sE − A ∈ R[s]n×n is regular. The set of these systems is denoted by Σn and
we write (E,A) ∈ Σn. Moreover, a trajectory x : R→ Rn is said to be a solution of
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(2.5) if and only if it belongs to the behavior of (2.5), defined by

B(E,A) :=
{
x ∈ L2

loc(R,Rn) : Eẋ ∈ L2
loc(R,Rn) and x solves (2.5)

for almost all t ∈ R
}
.

Note that B(E,A) contains all continuously differentiable trajectories, but furthermore
includes solutions with jumps in the algebraic variables.

The first property that we consider is stability. Unlike in the ODE case, there are
various definitions. We only focus on the following concept which is called stability
in the behavioral sense in [BR13]. We use a modified definition of [BR13].

Definition 2.2.1 (Stability). The system (E,A) ∈ Σn is called

a) polynomially bounded if for all x ∈ B(E,A), there exists some p(s) ∈ R[s] and
M ≥ 0 such that

‖x(τ)‖2 ≤M |p(τ)| for almost all τ ∈ R;

b) asymptotically stable if for all x ∈ B(E,A) holds

lim
t→∞

ess sup
τ>t

‖x(τ)‖2 = 0.

Proposition 2.2.2 (Algebraic characterizations for asymptotic stability). [BR13].
The system (E,A) ∈ Σn is polynomially bounded if and only if Λ(E,A) ⊂ C−. It is
asymptotically stable if and only if Λ(E,A) ⊂ C−

The main focus of this thesis are differential-algebraic equations that can be con-
trolled by an input signal, i. e., we consider equations of the form

Eẋ(t) = Ax(t) +Bu(t), (2.6)

where (E,A) ∈ Σn and B ∈ Rn×m. We will also often use the term descriptor system.
The set of these systems is denoted by Σn,m and we write (E,A,B) ∈ Σn,m. The
function u : R→ Rm is called input of the system; we call x(t) ∈ Rn the (generalized)
state of (E,A,B) at time t ∈ R. The set of solution trajectories (x, u) : R→ Rn×Rm
induces the behavior of (2.6):

B(E,A,B) :=
{

(x, u) ∈ L2
loc(R,Rn)× L2

loc(R,Rm) : Eẋ ∈ L2
loc(R,Rn)

and (x, u) solves (2.6) for almost all t ∈ R
}
.

Moreover, we define the behavior with initial differential variable

B(E,A,B)(x0) :=
{

(x, u) ∈ B(E,A,B) : Ex(0) = Ex0

}
. (2.7)
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Often, the complete state information is not available. Then, besides the system
dynamics (2.6), an additional output equation is introduced which reflects the infor-
mation that can be retrieved via measurements. This leads to a differential-algebraic
control system of the form

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)
(2.8)

with (E,A,B) ∈ Σn,m and given C ∈ Rp×n, D ∈ Rp×m. The class of such systems is
denoted by Σn,m,p and we write (E,A,B,C,D) ∈ Σn,m,p. The function y : R → Rn
is then called output of the system. Finally, the set of solution trajectories (x, u, y) :
R→ Rn × Rm × Rp is given by the behavior

B(E,A,B,C,D) :=
{

(x, u, y) ∈ L2
loc(R,Rn)× L2

loc(R,Rm)× L2
loc(R,Rp) :

Eẋ ∈ L2
loc(R,Rn) and (x, u, y) solves (2.8) for almost all t ∈ R

}
.

Again, we define the behavior with initial differential variable by

B(E,A,B,C,D)(x0) :=
{

(x, u, y) ∈ B(E,A,B,C,D) : Ex(0) = Ex0

}
.

Note that when D = 0, we sometimes omit the last argument in (E,A,B,C,D) ∈
Σn,m,p and write (E,A,B,C) ∈ Σn,m,p instead. It is important to note that the latter
should not be misunderstood as a standard state-space system (In, A,B,C,D) ∈
Σn,m,p.

2.2.2 Controllability, Stabilizability, Observability, and Detectability

In this subsection we present some concepts for controllability, stabilizability, observ-
ability, and detectability of descriptor systems (2.8). Hereby, the main focus will be
on controllability and stabilizability concepts. For brevity, the corresponding observ-
ability and detectability notions will be introduced by duality. The main difficulty
in this context is the existence of several different ways to define controllability at
infinity which are also not uniformly treated in the literature. In [BR13, Ber13], a
well-structured overview and comparison of these concepts is given which we will
stick to.

First we consider controllability and observability concepts. Even if an output
equation may be given, these are only properties of the state equation given by
(E,A,B) ∈ Σn,m. Since the matrices E, A, B do not depend on time, we can
assume w. l. o. g. that the initial time is zero. If this is not the case we can apply a
shift-operator to move the initial value to time t = 0, see [BR13].

We need the following two spaces, defined in [BR13]:
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a) the space of consistent initial values

V :=
{
x0 ∈ Rn : ∃(x, u) ∈ B(E,A,B) with ẋ ∈ L2

loc(R,Rn) and x(0) = x0

}
; (2.9)

b) the space of consistent initial differential variables

Vdiff :=
{
x0 ∈ Rn : B(E,A,B)(x0) 6= ∅

}
. (2.10)

Definition 2.2.3 (Controllability and stabilizability concepts). [Ber13, Def. 3.1.5]
Let the system (E,A,B) ∈ Σn,m with the spaces V as in (2.9) and Vdiff as in (2.10)
be given. Then the system (E,A,B) is called

a) behaviorally stabilizable

:⇔ ∀(x, u) ∈ B(E,A,B) ∃(x̃, ũ) ∈ B(E,A,B) with (x, u)|(−∞,0) = (x̃, ũ)|(−∞,0)

and lim
t→∞

ess sup
τ>t

‖(x(τ), u(τ))‖2 = 0;

b) behaviorally anti-stabilizable

:⇔ ∀(x, u) ∈ B(E,A,B) ∃(x̃, ũ) ∈ B(E,A,B) with (x, u)|(0,∞) = (x̃, ũ)|(0,∞)

and lim
t→−∞

ess sup
τ<t

‖(x(τ), u(τ))‖2 = 0;

c) behaviorally controllable

:⇔ ∀(x1, u1), (x2, u2) ∈ B(E,A,B) ∃T > 0, (x, u) ∈ B(E,A,B) with

(x(t), u(t)) =

{
(x1(t), u1(t)), if t < 0,

(x2(t), u2(t)), if t > T ;

d) impulse controllable

:⇔ ∀x0 ∈ Rn : B(E,A,B)(x0) 6= ∅ ⇔ Vdiff = Rn;

e) controllable at infinity

:⇔ ∀x0 ∈ Rn ∃(x, u) ∈ B(E,A,B) with ẋ ∈ L2
loc(R,Rn) and x(0) = x0

⇔ V = Rn;

f) strongly stabilizable

:⇔ ∀x0 ∈ Rn ∃(x, u) ∈ B(E,A,B)(x0) with lim
t→∞

Ex(t) = 0;
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g) strongly anti-stabilizable

:⇔ ∀x0 ∈ Rn ∃(x, u) ∈ B(E,A,B)(x0) with lim
t→−∞

Ex(t) = 0;

h) strongly controllable

:⇔ ∀x0, x1 ∈ Rn ∃T > 0, (x, u) ∈ B(E,A,B)(x0) with Ex(T ) = Ex1;

i) completely stabilizable

:⇔ ∀x0 ∈ Rn ∃(x, u) ∈ B(E,A,B) with ẋ ∈ L2
loc(R,Rn), x(0) = x0 and

lim
t→∞

x(t) = 0;

j) completely anti-stabilizable

:⇔ ∀x0 ∈ Rn ∃(x, u) ∈ B(E,A,B) with ẋ ∈ L2
loc(R,Rn), x(0) = x0 and

lim
t→−∞

x(t) = 0;

k) completely controllable

:⇔ ∀x0, x1 ∈ Rn ∃T > 0, (x, u) ∈ B(E,A,B) with ẋ ∈ L2
loc(R,Rn), x(0) = x0 and

x(T ) = x1.

Remark 2.2.4. Note that in some of the definitions we need the additional requirement
that ẋ ∈ L2

loc(R,Rn). This is necessary in order to make x(·) continuous and to allow
function evaluations as discussed in [Ber13].

Remark 2.2.5 (Stabilizability and anti-stabilizability). From [BR13, p. 8], we have
(x(·), u(·)) ∈ B(E,A,B) if and only if the reflected trajectory (x(−·), u(−·)) is in
the behavior of the backward system (−E,A,B). As a consequence, (E,A,B) is
behaviorally stabilizable (strongly stabilizable, completely stabilizable) if and only
if (−E,A,B) is behaviorally anti-stabilizable (strongly anti-stabilizable, completely
anti-stabilizable).

In order to check the above mentioned properties, there exist algebraic characteri-
zations in terms of the matrices E, A, and B. These are summarized in the following
proposition.

Proposition 2.2.6 (Equivalent algebraic conditions). Let (E,A,B) ∈ Σn,m be given
with r = rankE. Let S∞ ∈ Rn×n−r be a matrix with imS∞ = kerE. Then the
system (E,A,B) is
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a) behaviorally stabilizable if and only if rank
[
λE −A B

]
= n for all λ ∈ C+;

b) behaviorally anti-stabilizable if and only if rank
[
λE −A B

]
= n for all λ ∈ C−;

c) behaviorally controllable if and only if rank
[
λE −A B

]
= n for all λ ∈ C;

d) impulse controllable if and only if rank
[
E AS∞ B

]
= n;

e) controllable at infinity if and only if rank
[
E B

]
= n;

f) strongly stabilizable (strongly anti-stabilizable, strongly controllable) if and only
if it is behaviorally stabilizable (behaviorally anti-stabilizable, behaviorally control-
lable) and impulse controllable;

g) completely stabilizable (completely anti-stabilizable, completely controllable) if and
only if it is behaviorally stabilizable (behaviorally anti-stabilizable, behaviorally con-
trollable) and controllable at infinity.

The above properties are further invariant under input, state, and feedback equiv-
alence. That is, (E,A,B) has one of the properties in a)–g) if and only if for
W, T ∈ Gln(R), V ∈ Glm(R), and F ∈ Rm×n, the control system

(EF , AF , BF ) := (WET,W (A+BF )T,WBV )

has the respective property [BR13].

Proof. The statements about stabilizability and controllability have been proven in
a more general fashion in [BR13]. The results for the anti-stabilizability concepts
follow from the relation to stabilizability, see Remark 2.2.5.

We further define a concept that is defined by a purely linear algebraic condition
and does not have an interpretation in terms of the behavior B(E,A,B). It generalizes
the concept of sign-controllability for systems governed by ordinary differential equa-
tions [Sch91b, Sch91a, CALM97]. This concept will be later used as an assumption
for the differential-algebraic KYP lemma, see 3.3.1.

Definition 2.2.7 (Sign-controllability). The system (E,A,B) ∈ Σn,m is called

a) behaviorally sign-controllable if for all λ ∈ C it holds that rank
[
λE −A B

]
= n

or rank
[
−λE −A B

]
= n;

b) strongly sign-controllable if it is behaviorally sign-controllable and impulse con-
trollable;

c) completely sign-controllable if it is behaviorally sign-controllable and controllable
at infinity.
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Now we briefly introduce the associated notions of observability and detectability
of a system (E,A,B,C,D) ∈ Σn,m,p. As they do not play a very prominent role in
this thesis we only introduce them as controllability and stabilizability concepts for
the dual system

(
ET, AT, CT, BT, DT

)
∈ Σn,p,m, in other words we consider control-

lability and stabilizability of
(
ET, AT, CT

)
∈ Σn,p.

Definition 2.2.8 (Observability and detectability concepts). The descriptor system
(E,A,B,C,D) ∈ Σn,m,p is called

a) behaviorally detectable :⇔
(
ET, AT, CT

)
is behaviorally stabilizable;

b) behaviorally anti-detectable :⇔
(
ET, AT, CT

)
is behaviorally anti-stabilizable;

c) behaviorally observable :⇔
(
ET, AT, CT

)
is behaviorally controllable;

d) impulse observable :⇔
(
ET, AT, CT

)
is impulse controllable;

e) observable at infinity :⇔
(
ET, AT, CT

)
is controllable at infinity;

f) strongly detectable (strongly anti-detectable, strongly observable) :⇔(
ET, AT, CT

)
is strongly stabilizable (strongly anti-stabilizable, strongly control-

lable);

g) completely detectable (completely anti-detectable, completely observable) :⇔(
ET, AT, CT

)
is completely stabilizable (completely anti-stabilizable, completely

controllable).

Definition 2.2.9 (Uncontrollable/unobservable mode). The number λ ∈ C is called
an uncontrollable mode of the system (E,A,B,C,D) ∈ Σn,m,p if rank

[
λE −A B

]
<

n. Moreover, it is called an unobservable mode if rank
[
λET −AT CT

]
< n.

2.2.3 Frequency Domain Analysis

In applications it is often useful to consider a dynamical system in the frequency
domain, in particular if one is interested in the influence of the inputs on the outputs
of the system.

Laplace Transformation and Transfer Functions

A function f : [0,∞) → Rn is called exponentially bounded if there exist numbers
M and α such that ‖f(t)‖2 ≤ Meαt for all t ≥ 0. The value α is called a bounding
exponent [TSH01, p. 32].
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Definition 2.2.10 (Laplace transformation). [TSH01, p. 32] Let f : [0,∞) → Rn
be exponentially bounded with bounding exponent α. Then

L{f} (s) :=

∫ ∞
0

f(τ)e−sτdτ

for Re (s) > α is called the Laplace transform of f . The process of forming the
Laplace transform is called Laplace transformation.

It can be shown that the integral converges uniformly in a domain of the form
Re (s) ≥ β for all β > α.

Moreover, the following two fundamental properties hold.

Theorem 2.2.11. [TSH01, Thm. 2.19] Let f, g, h : [0,∞) → Rn be given. Then
the following two statements hold true:

a) The Laplace transformation is linear, i. e., if f and g are exponentially bounded,
then h := γf + δg is also exponentially bounded and

L{h} = γL{f}+ δL{g}

holds for all γ, δ ∈ C.

b) If f ∈ C1
pw([0,∞),Rn) and ḟ is exponentially bounded, then f is exponentially

bounded and
L
{
ḟ
}

(s) = sL{f}(s)− f(0).

Now we apply the Laplace transformation to a system (E,A,B,C,D) ∈ Σn,m,p.
Assume that each of the Laplace transforms X(s) := L{x}(s), U(s) := L{u}(s), and
Y (s) := L{y}(s) exists. By using Theorem 2.2.11, we obtain the Laplace transformed
system

sEX(s)− Ex(0) = AX(s) +BU(s),

Y (s) = CX(s) +DU(s).

Under the assumption that sE − A ∈ R[s]n×n is regular and Ex(0) = 0, we obtain
the relation

Y (s) =
(
C(sE −A)−1B +D

)
U(s).

This leads to the following definitions.

Definition 2.2.12 (Transfer function). The function

G(s) := C(sE −A)−1B +D ∈ R(s)p×m

is called the transfer function of the system (E,A,B,C,D) ∈ Σn,m,p.
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The transfer function is a direct relation between the inputs and the outputs in
the frequency domain and therefore, it plays an important role for the analysis of the
behavior of the system. When evaluating for s = iω, then ω can be interpreted as
a frequency (scaled by 1/2π). Note that G(s) can be formally defined without the
requirement on X, U , Y to exist.

It is also possible to relate a dynamical system of the form (2.8) to a given transfer
function G(s) ∈ R(s)p×m which is, however, not unique. This leads to the following
definitions.

Definition 2.2.13 ((Minimal) realization). [OV00, VLK81] Assume that the system
(E,A,B,C,D) ∈ Σn,m,p has the transfer function G(s) ∈ R(s)p×m. Then we say
that (E,A,B,C,D) is a realization of G(s). A realization (E,A,B,C,D) ∈ Σn,m,p

is called

a) weakly minimal, if it is completely controllable and completely observable;

b) minimal, if it is weakly minimal and does not contain nondynamic modes, i. e.,

A · kerE ⊆ imA.

Remark 2.2.14.

a) If a realization (E,A,B,C,D) ∈ Σn,m,p of a transfer function G(s) ∈ R(s)p×m

is minimal, then its state space dimension n is minimal among all realizations of
G(s).

b) Realizations are not unique. If (E,A,B,C,D) ∈ Σn,m,p is a realization of G(s),
then for any two matrices W, T ∈ Gln(R), the system

(WET,WAT,WB,CT,D) ∈ Σn,m,p

is also a realization of G(s). Transformations of the above kind are also called
(generalized) state-space transformations.

Polynomial and Rational Matrices

Since transfer functions are rational, we present some fundamental theory on this
class of functions.

Definition 2.2.15 (Unimodular matrix, monic/coprime polynomials).

a) A polynomial matrix U(s) ∈ R[s]n×n is called unimodular , if it is a unit in the
ring R[s]n×n.
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b) A polynomial p(s) ∈ R[s] is called monic if its leading coefficient is one.

c) Two polynomials p(s), q(s) ∈ R[s] are called coprime if their greatest common
divisor is 1.

Matrices with rational entries can, via multiplication with suitable unimodular
matrices, be transformed to Smith-McMillan form, described in the next theorem.

Theorem 2.2.16 (Smith-McMillan form). [Kai80, Chap. 6] For G(s) ∈ R(s)p×m

there exist unimodular matrices U(s) ∈ R[s]p×p and V (s) ∈ R[s]m×m, such that

U−1(s)G(s)V −1(s) = diag

(
ε1(s)

ψ1(s)
, . . . ,

εr(s)

ψr(s)
, 0, . . . , 0

)
(2.11)

for some monic and coprime polynomials εj(s), ψj(s) ∈ R[s] such that εj(s) divides
εj+1(s) and ψj+1(s) divides ψj(s) for j = 1, . . . , r − 1.

The Smith-McMillan form can be utilized to define poles and zeros of rational
matrices, as well as outer, inner, and co-inner rational functions.

Definition 2.2.17 (Poles, zeros, inner function, co-inner function, outer function).
Let G(s) ∈ R(s)p×m with Smith-McMillan form (2.11) be given. Then λ ∈ C is called

a) a zero of G(s) if εr(λ) = 0;

b) a pole of G(s) if ψ1(λ) = 0.

The sets of zeros and poles of G(s) are denoted by Z(G) and P(G), respectively.
Moreover, by [Gre88], the rational matrix G(s) is called

a) outer if r = p and Z(G) ⊂ C−;

b) inner if P(G) ⊂ C− and G∼(s)G(s) = Im;

c) co-inner if P(G) ⊂ C− and G(s)G∼(s) = Ip.

Remark 2.2.18.

a) The zeros of G(s) are also called the transmission zeros of an associated realization
(E,A,B,C,D) ∈ Σn,m,p, see, e. g., [BIR12].

b) Rational functions with no zeros in C+ are called minimum phase in [Ilc93]. Min-
imum phase functions with full row rank over the field R(s) are outer.

c) Rational functions with G∼(s)G(s) = Im are called all-pass [TSH01]. All-pass
functions are unitary-valued on the imaginary axis. Any inner function is all-
pass.
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d) A rational function G(s) is co-inner if and only if GH(s) is inner.

The following properties of rational functions will play an important role in the
characterization of transfer functions.

Definition 2.2.19 (Stability, properness). Let G(s) ∈ R(s)p×m be given. We say
that G(s) is stable if all its poles are located in C−. Moreover, we call G(s)

a) strictly proper if limω→∞ ‖G(iω)‖2 = 0;

b) proper if limω→∞ ‖G(iω)‖2 <∞;

c) improper if limω→∞ ‖G(iω)‖2 =∞.

Rational function can be additively decomposed into a strictly proper and poly-
nomial part as follows [Sty06]. Assume that G(s) ∈ R(s)p×m has a realization
(E,A,B,C,D) ∈ Σn,m,p. Let W, T ∈ Gln(R) be transformation matrices leading
to QWF, i. e., let

(WET,WAT,WB,CT,D) =

([
Ir 0
0 E22

]
,

[
A11 0
0 In−r

]
,

[
B1

B2

]
,
[
C1 C2

]
, D

)
,

(2.12)
where A11 ∈ Rr×r, and E22 ∈ Rn−r×n−r is nilpotent with index of nilpotency ν.
Moreover, we have B1 ∈ Rr×m, B2 ∈ Rn−r×m, C1 ∈ Rp×r, and C2 ∈ Rp×n−r. Then
we can write

G(s) = Gsp(s) +Gpoly(s) (2.13)

with the strictly proper part

Gsp(s) = C1(sIr −A11)−1B1,

and the polynomial part

Gpoly(s) = C2(sE22 − In−r)−1B2 +D =

ν−1∑
j=0

Mjs
j ∈ R[s]p×m,

where

M0 : = D − C2B2,

Mj : = −C2E
j
22B2, j = 1, . . . , ν − 1,

are the Markov parameters.
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Some Rational Function Spaces

In many applications of systems and control such as model order reduction or robust
control, it is necessary to quantify the size of a dynamical system or the distance
between two of them [Sty06]. This can be done by turning to the frequency domain
and considering certain spaces of transfer functions and the induced norms. In the
following we introduce the most important rational function spaces that we need in
this thesis. Note that many of the concepts can also be generalized to non-rational
functions, however this will not play a role in this work.

Definition 2.2.20 (Some rational function spaces). [Sty06] Let G(s) = Gsp(s) +
Gpoly(s) ∈ R(s)p×m be a decomposition as in (2.13). We define the following spaces
and the associated norms:

a) the inner product space

RHp×m2 :=

{
G(s) ∈ R(s)p×m : P(G) ⊂ C− and

∫ ∞
−∞
‖G(iω)‖2F dω <∞

}
with H2-norm

‖G‖H2
:=

(
1

2π

∫ ∞
−∞
‖G(iω)‖2F dω

)1/2

;

b) the normed space

RHLp×m2 :=
{
G(s) ∈ R(s)p×m : Gsp ∈ RHp×m2

}
with HL2-norm

‖G‖HL2 :=

(
‖Gsp‖H2

+
1

2π

∫ 2π

0

∥∥Gpoly(eiω)
∥∥2

F
dω

)1/2

;

c) the normed space

RHp×m∞ :=

{
G(s) ∈ R(s)p×m : P(G) ⊂ C− and sup

λ∈C+

‖G(λ)‖2 <∞
}

with H∞-norm
‖G‖H∞ := sup

λ∈C+

‖G(λ)‖2 ;

d) the normed space

RLp×m∞ :=

{
G(s) ∈ R(s)p×m : P(G) ∩ iR = ∅ and sup

ω∈R
‖G(iω)‖2 <∞

}
with L∞-norm

‖G‖L∞ := sup
ω∈R
‖G(iω)‖2 .

33



2 Mathematical Preliminaries

2.2.4 Zero Dynamics and Outer Systems

An important concept for later sections are the zero dynamics of differential-algebraic
systems.

Definition 2.2.21 (Zero dynamics). [BI84, Ber13]

a) The zero dynamics of (E,A,B,C,D) ∈ Σn,m,p is defined as the set of trajectories
resulting in a trivial output, i. e.,

ZD(E,A,B,C,D) :=
{

(x, u) ∈ L2
loc(R,Rn)× L2

loc(R,Rm) : (x, u, 0) ∈ B(E,A,B,C,D)

}
.

b) The set of zero dynamics with initial differential variable Ex0 is

ZD(E,A,B,C,D)(x0) := ZD(E,A,B,C,D) ∩B(E,A,B)(x0).

c) The set of consistent initial differential variables for the zero dynamics is

Wdiff :=
{
x0 ∈ Rn : ZD(E,A,B,C,D)(x0) 6= ∅

}
. (2.14)

The following are particularly important properties of the zero dynamics.

Definition 2.2.22 (Stability, stabilizability, autonomy of zero dynamics). [Ber13,
IR14] Let the system (E,A,B,C,D) ∈ Σn,m,p with the space Wdiff as in (2.14) be
given. Then the zero dynamics of ZD(E,A,B,C,D) are called

a) polynomially bounded if for all (x, u) ∈ ZD(E,A,B,C,D), there exists some p(s) ∈
R[s] and M ≥ 0 such that

‖(x(τ), u(τ))‖2 ≤M · |p(τ)| for almost all τ ∈ R;

b) asymptotically stable if for all ZD(E,A,B,C,D) it holds that

lim
t→∞

ess sup
τ>t

‖(x(τ), u(τ))‖2 = 0;

c) strongly asymptotically stable if it is asymptotically stable and Wdiff = Rn;

d) polynomially stabilizable if for all x0 ∈ Wdiff , there exist some p(s) ∈ R[s], M ≥ 0
and some (x, u) ∈ ZD(E,A,B,C,D)(x0) such that

‖(x(τ), u(τ))‖2 ≤M · |p(τ)| for almost all τ ∈ R;

e) stabilizable if for all x0 ∈ Wdiff , there exists a (x, u) ∈ ZD(E,A,B,C,D)(x0) with

lim
t→∞

ess sup
τ>t

‖(x(τ), u(τ))‖2 = 0;
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f) strongly stabilizable if it is stabilizable and Wdiff = Rn;

g) autonomous if for all x0 ∈ Rn, the set ZD(E,A,B,C,D)(x0) has at most one element.

Many properties of the zero dynamics can be characterized by the location of the
invariant zeros which will be introduced in the next definition.

Definition 2.2.23 (Rosenbrock pencil, invariant zero). [IR14] The Rosenbrock pencil
of the system (E,A,B,C,D) ∈ Σn,m,p is given by

R(s) =

[
−sE +A B

C D

]
∈ R[s]n+p×n+m.

The finite eigenvalues of the Rosenbrock pencil are called the invariant zeros of the
system (E,A,B,C,D).

Proposition 2.2.24 (Zero dynamics and invariant zeros). [IR14] Let the system
(E,A,B,C,D) ∈ Σn,m,p with Rosenbrock pencil R(s) be given. Then ZD(E,A,B,C,D)

is

a) polynomially bounded if and only if rankR(λ) = n+m ∀λ ∈ C+;

b) asymptotically stable if and only if rankR(λ) = n+m ∀λ ∈ C+;

c) strongly asymptotically stable if and only if it is asymptotically stable and the index
of R(s) is at most one;

d) polynomially stabilizable if and only if (E,A,B,C,D) has no invariant zeros in
C+;

e) stabilizable if and only if (E,A,B,C,D) has no invariant zeros in C+;

f) strongly stabilizable if and only if it is stabilizable and the index of R(s) is at most
one;

g) autonomous if and only if rankR(s)R(s) = n+m.

There are also further equivalences with respect to stability, namely ZD(E,A,B,C,D) is

h) polynomially bounded if and only if it is autonomous and polynomially stabilizable;

i) asymptotically stable if and only if it is autonomous and stabilizable.

Furthermore, note that a square system (E,A,B,C,D) ∈ Σn,m,m is strongly asymp-
totically stable if and only if R(λ) ∈ Gln+m(C) for all λ ∈ C+.

The following result states that invariant zeros are uncontrollable or unobservable
modes or transmission zeros.
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Proposition 2.2.25. Let a system (E,A,B,C,D) ∈ Σn,m,p with transfer function
G(s) ∈ R(s)p×m be given. Then the following holds true:

a) If λ ∈ C is a transmission zero of (E,A,B,C,D), then it is an invariant zero of
(E,A,B,C,D).

b) If λ ∈ C is an invariant zero of (E,A,B,C,D), then at least one of the following
statements holds true:

i) λ is a transmission zero of (E,A,B,C,D);

ii) λ is an uncontrollable mode of (E,A,B,C,D);

iii) λ is an unobservable mode of (E,A,B,C,D).

Proof. This statement is a special case of a theorem for systems described by poly-
nomial matrices in [Ros73].

Moreover, the following results connects the rank of the transfer function with the
rank of the associated Rosenbrock pencil.

Lemma 2.2.26. Let a system (E,A,B,C,D) ∈ Σn,m,p with transfer function G(s) =
C(sE −A)−1B +D ∈ R(s)p×m and Rosenbrock pencil R(s) ∈ R[s]n+p×n+m be given.
Then

rankR(s)R(s) = n+ rankR(s)G(s).

In particular, R(s) is a regular pencil if and only if G(s) ∈ Glm(R(s)).

Proof. This statement follows from[
In 0

C(sE −A)−1 Ip

] [
−sE +A B

C D

]
=

[
−sE +A B

0 G(s)

]
.

The zero dynamics is closely related to the concept of outer systems, defined below.

Definition 2.2.27 (Outer system). [IR14] The system (E,A,B,C,D) ∈ Σn,m,p is
called outer if it does not contain invariant zeros in C+ and the Rosenbrock pencil
has full row rank over the field R(s). Equivalently, it holds that

rankR(λ) = n+ p ∀λ ∈ C+.

The following theorem summarizes the relation between outer systems and outer
rational functions.
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Theorem 2.2.28 (Outer systems and outer transfer functions). [IR14, Thm. 3.3]
Let (E,A,B,C,D) ∈ Σn,m,p with transfer function G(s) ∈ R(s)p×m be given. Then
the following statements hold true:

a) If (E,A,B,C,D) is an outer system, then G(s) is an outer transfer function.

b) If G(s) is an outer transfer function and (E,A,B,C,D) is strongly stabilizable
and strongly detectable, then (E,A,B,C,D) is an outer system.

We finally discuss a crucial property of outer systems. Namely, for any outer
and strongly stabilizable system and initial value, there exists a sequence of square
integrable inputs such that the corresponding output sequence tends to zero in L2.
In Chapter 3, we will show that an infimizing sequence in a linear-quadratic optimal
control problem can be expressed as a sequence of controls for an outer system such
that the corresponding output sequence tends to zero. The following two propositions
make this precise. Moreover, the results of Proposition 2.2.24 will lead to existence
and uniqueness results for the optimal control.

Proposition 2.2.29. [IR14] Let (E,A,B,C,D) ∈ Σn,m,p be outer and strongly
stabilizable and assume that x0 ∈ Rn. Then there exists a sequence (uk(·))k∈N in
L2([0,∞),Rm) with the following properties:

a) For all k ∈ N, there exists a (xk, uk, yk) ∈ B(E,A,B,C,D)(x0) with limt→∞Exk(t) =
0.

b) The sequence (yk(·))k∈N tends to zero in L2([0,∞),Rp).

Proposition 2.2.30. [IR14] Let (E,A,B,C,D) ∈ Σn,m,p be strongly stabilizable.
Assume that for all x0 ∈ Rn there exists a sequence (uk(·))k∈N in L2([0,∞),Rm) with
the following properties:

a) For all k ∈ N, there exists a (xk, uk, yk) ∈ B(E,A,B,C,D)(x0) with limt→∞Exk(t) =
0.

b) The sequence (yk(·))k∈N tends to zero in L2([0,∞),Rp).

Then there exists some matrix U ∈ Kl×p with orthonormal columns such that the
system (E,A,B,UC,UD) is outer and further for all (x, u, y) ∈ B(E,A,B,C,D), there
exists some (x, u, ỹ) ∈ B(E,A,B,UC,UD) such that

‖y(t)‖ = ‖ỹ(t)‖ for almost all t ≥ 0.
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3 Linear-Quadratic Control Theory for
Differential-Algebraic Equations

3.1 Introduction

In this chapter we will study the infinite time horizon linear-quadratic optimal control
problem

Minimize

J (x, u) :=

∫ ∞
0

(
x(τ)
u(τ)

)T [
Q S
ST R

](
x(τ)
u(τ)

)
dτ (3.1)

subject to (x, u) ∈ B(E,A,B)(x0) with limt→∞Ex(t) = 0.

Here, Q = QT ∈ Rn×n, S ∈ Rn×m and R = RT ∈ Rm×m are given matrices. The
main questions we want to answer are the following:

• Is this optimal control problem feasible, i. e., is optimal value function

V +(Ex0) := inf
{
J (x, u) : (x, u) ∈ B(E,A,B)(x0) and lim

t→∞
Ex(t) = 0

}
bounded from below for all x0 ∈ Rn?

• If the optimal control problem is feasible, does there exist an optimal control
(x∗, u∗) ∈ B(E,A,B)(x0) with V +(Ex0) = J (x∗, u∗)?

• If an optimal control exists, is it unique?

Linear-quadratic optimal control problems (3.1) can be analyzed by means of var-
ious algebraic structures. The first concept we study to answer the above questions
is the Popov function given by

Φ(s) =

[
(sE −A)−1B

Im

]∼ [
Q S
ST R

] [
(sE −A)−1B

Im

]
∈ R(s)m×m. (3.2)

Note that Φ(iω) is Hermitian for all ω ∈ R with iω /∈ Λ(E,A). The feasibility of
the optimal control problem is related to the pointwise positive semidefiniteness of
Φ(i·) : {ω ∈ R : iω /∈ Λ(E,A)} → Cm×m.
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In the case of ordinary differential equations (that is, E = In), this property can be
assessed by the famous Kalman-Yakubovich-Popov lemma, see, e. g., [Kal63, Yak62,
Pop62, And67] and [Ran96] and references therein. More precisely, under certain
assumptions related to controllability, the pointwise positive semidefiniteness of Φ(i·)
is equivalent to the solvability of the Kalman-Yakubovich-Popov (KYP) inequality,
namely there exists a P ∈ Rn×n such that[

ATP + PA+Q PB + S
BTP + ST R

]
≥ 0, P = PT. (3.3)

There are several attempts to generalize this lemma to differential-algebraic equa-
tions, e. g., in [Mas06]. However, this paper only treats the case where sE − A is
regular and of index at most one. Recently, in [Brü11b, Brü11a], the KYP lemma
has been generalized to behavioral systems. This theory is then also applied to de-
scriptor systems under the assumption of complete controllability. There the point-
wise positive semidefiniteness of Φ(i·) is related to the solvability of the linear matrix
inequality[

ATP1 + PT
1 A+Q ATP2 + PT

1 B + S
BTP1 + PT

2 A+ ST BTP2 + PT
2 B +R

]
≥ 0, ETP1 = PT

1 E, ETP2 = 0,

for a pair (P1, P2) ∈ Rn×n × Rn×n. Other authors generalize a certain modification
of this lemma, namely the positive real lemma with particular choices of Q, S, and
R. This is done for instance in [FJ04]. However, strong artificial assumptions on the
Markov parameters are made in order to prove the main result. These assumptions
are dropped in [CF07] by considering a linear matrix inequality related to (3.3) on a
certain subspace. We employ a similar idea to present a new, more general version of
the KYP lemma for differential-algebraic systems, namely we relate pointwise positive
semidefiniteness of Φ(i·) to the solvability of the descriptor KYP inequality . That is,
there exists some P ∈ Rn×n, such that[

ATP + PTA+Q PTB + S
BTP + ST R

]
≥Vsys 0, ETP = PTE, (3.4)

where

Vsys :=

{(
x
u

)
∈ Rn+m : Ax+Bu ∈ imE

}
(3.5)

is the system space of (E,A,B). Note that for impulse controllable systems, Vsys is
the smallest subspace of Rn+m in which the solution trajectories (x, u) ∈ B(E,A,B)

pointwisely evolve, i. e., it is the smallest subspace with(
x(t)
u(t)

)
∈ Vsys for all (x, u) ∈ B(E,A,B) and almost all t ∈ R.
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3 Linear-Quadratic Control Theory for Differential-Algebraic Equations

Note further that for non-impulse controllable systems, the solution trajectories
evolve in an even smaller subspace. However, for ease of terminology and since
our focus is on impulse controllable systems, we also use the definition of the systems
space as in (3.5) for non-impulse controllable systems. However, this slightly differs
from the notion used in [RRV14].

In order to solve the optimal control problem one employs algebraic matrix equa-
tions that can be derived from the KYP inequality. If one considers ODEs with
R > 0, then one directly obtains the algebraic Riccati equation [Wil71, LR95]

ATX +XA−
(
XB + S

)
R−1

(
BTX + ST

)
+Q = 0, X = XT. (3.6)

Solvability criteria and solutions of (3.6) can be given in terms of spectral information
of the Hamiltonian matrix

AH =

[
A−BR−1S −BR−1BT

STR−1S −Q −
(
A−BR−1S

)T
]
∈ R2n×2n. (3.7)

A well-known sufficient solvability criterion for (3.6) is the absence of purely imagi-
nary eigenvalues of AH , see [LR95]. Then the solutions of (3.6) can be constructed
via the invariant subspaces of (3.7). Difficulties in the characterization of solvabil-
ity of (3.6) arise when purely imaginary eigenvalues are present. Then the spectral
structure of AH has to be studied in more detail, in particular the sign-characteristics
of the purely imaginary eigenvalues.

Another fundamental difficulty arises when the matrix R is not invertible. Then
neither the ARE (3.6) nor the associated Hamiltonian matrix can be formulated.
Under the assumption that[

Q S
ST R

]
=

[
CT

DT

] [
C D

]
≥ 0, (3.8)

this problem was first rigorously studied in [HS83] with a special focus on the system
structure. In particular, it was pointed out, that in contrast to an optimal control
problem with R > 0, optimal controls might not exist for piecewise continuous inputs
u(·) and thus the use of impulsive inputs was suggested. Mathematically, this is
reflected by distributions. Due to these observations optimal control problems with
singular R are also called singular , otherwise they are called regular . Further results
were later obtained by [Gee89]. There, it is for instance shown that for the case that
E = In, the optimal value function is quadratic and can be characterized by the
maximal and rank-minimizing solution of the KYP inequality (3.3). In this context,
“rank-minimizing” refers to the minimization of the rank of the left-hand side of
(3.3). Moreover, in [Gee89], the optimal control problem is relaxed in the sense
that also nonzero terminal conditions are admitted. If one assumes the condition
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limt→∞ infxT ∈T ‖x(t)− xT ‖2 = 0 with an arbitrary subspace T ⊆ Rn, then the
corresponding optimal costs are still quadratic and can be expressed by a rank-
minimizing solution of the KYP inequality (3.3).

Further contributions are given in [Rei11], where also the quite restrictive assump-
tion (3.8) is dropped. Instead of the ARE one considers the so-called Lur’e equation[

ATX +XA+Q XB + S
BTX + ST R

]
=

[
KT

LT

] [
K L

]
, X = XT, (3.9)

which has to be solved for (X,K,L) ∈ Rn×n×Rq×n×Rq×m with q as small as possible.
To obtain solvabilility criteria and construct solutions we replace the Hamiltonian
matrix by the even matrix pencil

sE − A =

 0 −sIn +A B
sIn +AT Q S
BT ST R

 ∈ R[s]2n+m×2n+m. (3.10)

Similarly as for the generalized Riccati equation, a sufficient condition for the solvabil-
ity of the Lur’e equation is the absence of purely imaginary and higher-order infinite
eigenvalues of the even matrix pencil sE −A. However, if there are such eigenvalues,
the solvability criteria become much more involved. Then, we have to consider the
eigenstructure of sE −A in more detail. In [Rei11] this is done by evaluating its even
Kronecker canonical form. It can also be shown, that the solution of (3.9) can be
constructed via the deflating subspaces of (3.10). A pencil structure similar to (3.10)
has also already been considered in [IOW99]. However, some of the special struc-
tural features of even matrix pencils, in particular the sign-characteristics of purely
imaginary and infinite eigenvalues have not been exploited. So in contrast to [Rei11],
where equivalent conditions for the solvability of the Lur’e equation in terms of the
spectral structure of (3.10) are derived, [IOW99] only gives necessary conditions.

On the other hand, there are also generalizations of the ARE to descriptor systems.
In [Meh91], a generalized ARE of the form

ATXE + ETXA−
(
ETXB + S

)
R−1

(
BTXE + ST

)
+Q = 0, X = XT, (3.11)

is considered. In [Meh91] it has been shown how to construct stabilizing solutions of
this equation for systems that are strongly stabilizable. Then the main idea consists
of a feedback regularization of the system (E,A,B), an approach we will also make
use of in this thesis. However, in general, the relationship between the solutions of
the generalized ARE (3.11) and the optimal control problem (3.1) is hidden or even
lost. For instance, in [BL87] it is pointed out, that (3.11) might not have a solution,
even if (3.1) is feasible.

Moreover, a strong focus of [Meh91] is the treatment of two-point boundary value
problems resulting from an application of Pontryagin’s maximum principle. These
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attain the form

E ż(t) = Az(t), P1z(0) = 0, lim
t→∞
P2z(t) = 0, (3.12)

where

sE − A =

 0 −sE +A B
sET +AT Q S

BT ST R

 ∈ R[s]2n+m×2n+m, (3.13)

and P1, P2 ∈ R2n+m×2n+m. For many of these considerations essential assumptions
are (3.8) and the regularity of sE − A, in particular for the numerical solution of
the boundary value problem (3.12) and the associated generalized ARE (3.11) via
deflating subspaces of sE − A.

An alternative for generalizing the algebraic Riccati equation to DAEs is the ap-
proach of [KTK99, KK02] which studies a generalized ARE of the form

ATX +XTA−
(
XTB + S

)
R−1

(
BTX + ST

)
+Q = 0, ETX = XTE, (3.14)

however, an unnatural side condition, namely the solvability of an algebraic quadratic
equation is necessary to guarantee the existence of a stabilizing solution.

Even more interesting is the case where both E and R are singular. Note that
for DAEs it is much more involved to decide whether the optimal control problem
under consideration is regular or singular. In particular, the condition R > 0 is
neither sufficient nor necessary for regularity of the optimal control problem. This
also suggests that the invertibility of R is a rather artificial condition. We refer to
[Gee93] for a detailed discussion. This problem was already previously considered
in [Gee94], even for nonsquare and non-regular descriptor systems, however still an
assumption analogous to (3.8) and impulse controllability is assumed. In [Gee94]
existence and uniqueness results for the optimal control are derived which are related
to zero dynamics of a particular linear system. Moreover, the optimal controls derived
there are related to the solutions P ∈ Rn×n of the linear matrix inequality[

ATPE + ETPA+Q ETPB + S
BTPE + ST R

]
≥ 0, P = PT,

however the rank-minimization property for the optimal P is lost.
In this thesis we choose a different approach, namely by generalizing the results in

[Rei11]. We introduce a new type of algebraic matrix equation, namely, the descriptor
Lur’e equation[

ATX +XTA+Q XTB + S
BTX + ST R

]
=Vsys

[
KT

LT

] [
K L

]
, ETX = XTE, (3.15)

that has be solved for (X,K,L) ∈ Rn×n×Rq×n×Rq×m where Vsys is as in (3.5) and
q is as small as possible.
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The structure of the solution set of this matrix equation is furthermore investigated.
In contrast to [Gee94], with P = X, solutions of (3.15) are rank-minimizing solutions
of (3.4), i. e., with a basis matrix MVsys of Vsys it holds that

MT
Vsys

[
ATP + PTA+Q PTB + S

BTP + ST R

]
MVsys

has minimal rank among all solutions of the descriptor KYP inequality (3.4). We
show that, under some conditions related to controllability of (2.6), there exist stabi-
lizing and anti-stabilizing solutions that are simultaneously extremal solutions, where
“extremal” has to be understood in terms of definiteness of ETX.

The foundation of all these considerations will be the eigenstructure of the associ-
ated even matrix pencil (3.13). We generalize the results from [Rei11] and show that
certain solutions of the descriptor Lur’e equation can be constructed from deflating
subspaces of this pencil.

In this work, we will drop most of the restrictions of the previously mentioned
approaches. For instance, we neither assume a property related to (3.8) nor the
regularity of sE − A. We will mainly assume that sE − A is regular and that the
system (2.6) is impulse controllable. No assumptions on the index of the differential-
algebraic equation are made. Note, that when (E,A,B) ∈ Σn,m is not impulse
controllable, we can recover the impulse controllable subsystem, for instance by a
staircase reduction of the triple (E,A,B), see [BGMN94]. Moreover, in Section 3.12
we briefly describe a way to approach non-impulse controllable systems directly using
the so-called feedback equivalence form of a system [RRV14].

The solutions of the descriptor Lur’e equations will further be shown to define a
spectral factorization of the Popov function. That is, we can construct some W (s) ∈
R(s)q×m such that

Φ(s) = W∼(s)W (s). (3.16)

In particular, the matrix function W (s) will be outer, if it is constructed from the
stabilizing solution of the descriptor Lur’e equation (3.15).

A special emphasis will be placed on the characterization whether the descrip-
tor KYP inequality (3.4) has a nonpositive solution. That is, (3.4) holds with
ETP = PTE ≤ 0. We show that, in this case, an optimal control problem is fea-
sible which is stronger than (3.1). We will present consequences for the analysis of
dissipativity of differential-algebraic systems. In particular, important special cases
such as contractivity and passivity will be treated. The descriptor KYP inequality
(3.4) and the characterization of nonpositivity of solutions will result in differential-
algebraic versions of the bounded real lemma and positive real lemma, which are both
well-known for ODEs, see, e. g., [AV73].

As a further application of our presented theory, we show that normalized coprime
factorizations [MG89, Var98] and inner-outer factorizations [Gre88] of general trans-
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fer functions G(s) ∈ R(s)p×m can be constructed with the theory that is developed
in this chapter.

To complete the discussion we point towards some generalizations into the direction
of time-varying and nonlinear differential-algebraic equations. In [KM04], linear-
quadratic optimal control problems for time varying DAEs and time-varying weights
Q, S, and R in the cost functional are treated. Then, a time-varying boundary
value problem similar to (3.12) is constructed. Necessary and sufficient conditions
for feasibility of the optimal control problems are derived via an inherent Hamiltonian
ODE system which is obtained by applying appropriate projection operators to the
boundary value problem. We also refer to [Bac03, Bac06] where the special case of a
DAE of index two is considered.

A different approach for time-varying optimal control problems is chosen in [KM11].
There, one considers two optimality boundary value problems similar to (3.12),
one constructed from the original system and another one based on a so-called
strangeness-free formulation of the DAE system. Then the solvability conditions
and solutions of both boundary value problems are studied and they are related to
each other. Moreover, in the recent works [KMS14, MS14], structured global con-
densed forms for the optimality system (analogous to the even staircase form (2.1))
are derived which allow to analyze its properties.

Finally, optimal control problems subject to nonlinear differential-algebraic equa-
tions are discussed, e. g., in [KM01, KMR01, KM08] by analyzing local linearizations
of the nonlinear DAE which usually result in a time-varying linear DAE and allow
the application of the previously mentioned techniques.

This chapter is structured as follows. In Section 3.2 we introduce some basic state
and feedback transformations of the system (2.6) and their influence on the above in-
troduced objects. In Section 3.3 we formulate the Kalman-Yakubovich-Popov lemma
for differential-algebraic equations in which we relate the nonnegativity of the Popov
function on iR to the existence of a solution of the descriptor KYP inequality. In Sec-
tion 3.4 we consider associated even matrix pencils and descriptor Lur’e equations. In
particular, we show that there is a one-to-one correspondence between the solutions of
the descriptor Lur’e equation and certain deflating subspaces of the even matrix pen-
cil. In Section 3.5 we consider stabilizing, anti-stabilizing, and extremal solutions. In
particular, we show that the stabilizing solution corresponds to a semistable deflating
subspace of the associated even matrix pencil. The spectral factorization problem
is treated thereafter in Section 3.6. We prove that the stabilizing solution defines
a spectral factorization in which the spectral factor is an outer transfer function.
The problem of existence of nonpositive solutions of the descriptor KYP inequality
is treated in Section 3.7. We will introduce the so-called modified Popov function.
Some criteria for the existence on nonpositive solutions will be formulated by means
of this function.

Whereas Sections 3.3–3.7 are of purely linear algebraic nature, we turn to the
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linear-quadratic optimal control problem in Section 3.8. We prove that a stabilizing
solution of the descriptor KYP inequality exists if and only if the optimal control
problem (3.1) is feasible for all x0 ∈ Rn. Furthermore, if a solution of the descrip-
tor KYP inequality exists, then the system further satisfies a certain dissipation
inequality. The latter results will be used in Section 3.9 to formulate equivalent
criteria for dissipativity and cyclo-dissipativity of systems. In particular, this gives
rise to differential-algebraic versions of the bounded real lemma and the positive real
lemma. In Sections 3.10 and 3.11 we further apply our results to construct realiza-
tions of inner-outer factorizations and normalized coprime factorizations by means of
the solutions of the descriptor Lur’e equations. Finally, in Section 3.12 we summarize
the results and discuss open problems as well as possible extensions of our theory.

3.2 State and Feedback Transformations

Here we develop several auxiliary results which are based on transformations of the
form

E ∈ Rn×n,
A ∈ Rn×n,
B ∈ Rn×m,

Q = QT ∈ Rn×n,
S ∈ Rm×n,

R = RT ∈ Rm×m

 
W,T ∈ Gln(R),
V ∈ Glm(R),
F ∈ Rm×n

EF = WET,

AF = W (A+BF )T,

BF = WBV,

QF = TT(Q+ SF + FTST + FTRF )T,

SF = TT(S + FTR)V,

RF = V TRV

(3.17)

For a differential-algebraic system (2.6), W describes a transformation of the equa-
tions, T a transformation of the state x(·), V a transformation of the input u(·),
and F describes a feedback action. It is not difficult to see that a transformation of
the form (3.17) is a group action and therefore defines an equivalence relation. In
particular, we have reversibility of any transformation.

Lemma 3.2.1 (Feedback regularization). Let (E,A,B) ∈ Σn,m be given. Then with
r = rankE, there exist W, T ∈ Gln(R), F ∈ Rm×n such that

W (sE − (A+BF ))T =

[
sIr −A11 0

0 −In−r

]
,

if and only if (E,A,B) is impulse controllable.

Proof. According to [BGMN92, Cor. 7 and p. 59], there exists some F ∈ Rm×n such
that sE − (A + BF ) is regular and of index at most one, if and only if (E,A,B) is
impulse controllable. A transformation W (sE − (A+BF ))T to QWF then leads to
the desired result.
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Lemma 3.2.1 allows, in case of impulse controllability, a transformation of type
(3.17) to matrices of the form

sEF −AF =

[
sIr −A11 0

0 −In−r

]
, BF =

[
B1

B2

]
,

QF =

[
Q11 Q12

QT
12 Q22

]
, SF =

[
S1

S2

]
, RF = R,

(3.18)

where A11, Q11 ∈ Rr×r, B1, S1 ∈ Rr×m, B2, S2 ∈ Rn−r×m, Q12 ∈ Rr×n−r, and Q22 ∈
Rn−r×n−r. We now show how the associated matrix pencil, the KYP matrix, and the
optimal control problem behave under feedback, state, and input transformations.

Proposition 3.2.2. Let (E,A,B) ∈ Σn,m with the system space Vsys be given and let
Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Further, assume that F ∈ Rm×n,
W, T ∈ Gln(R) and V ∈ Glm(R) are given and let EF , AF , BF , QF , SF , RF be
defined as in (3.17) such that (EF , AF , BF ) ∈ Σn,m with the system space Vsys,F .
Then the following statements hold:

a) The two Popov functions Φ(s), ΦF (s) ∈ R(s)m×m with

Φ(s) =

[
(sE −A)−1B

Im

]∼ [
Q S
ST R

] [
(sE −A)−1B

Im

]
,

ΦF (s) =

[
(sEF −AF )−1BF

Im

]∼ [
QF SF
ST
F RF

] [
(sEF −AF )−1BF

Im

]
are related via

ΦF (s) = Θ∼F (s)Φ(s)ΘF (s) with ΘF (s) := V + FT (sEF −AF )−1BF .

In particular, Φ(iω) ≥ 0 holds for all iω 6∈ Λ(E,A) if and only if ΦF (iω) ≥ 0 holds
for all iω 6∈ Λ(EF , AF ).

b) For P ∈ Rn×n and PF = W−TPT it holds that ETP = PTE if and only if
ET
FPF = PT

F EF . Furthermore, it holds that[
AT
FPF + PT

FAF +QF PT
FBF + SF

BT
FPF + ST

F RF

]
=

[
TT TTFT

0 V T

]
·
[
ATP + PTA+Q PTB + S

BTP + ST R

]
·
[
T 0
FT V

]
,

and the system spaces

Vsys =

{(
x
u

)
∈ Rn+m : Ax+Bu ∈ imE

}
,

Vsys,F =

{(
x
u

)
∈ Rn+m : AFx+BFu ∈ imEF

}
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are related by

Vsys =

[
T 0
FT V

]
· Vsys,F .

In particular, it holds that ET
FPF > (≥, <,≤) 0 if and only if ETP > (≥, <,≤) 0

and, moreover, [
ATP + PTA+Q PTB + S

BTP + ST R

]
≥Vsys 0,

⇔
[
AT
FPF + PT

FAF +QF PT
FBF + SF

BT
FPF + ST

F RF

]
≥Vsys,F 0.

c) The triple (X,K,L) solves the descriptor Lur’e equation[
ATX +XTA+Q XTB + S

BTX + ST R

]
=Vsys

[
KT

LT

] [
K L

]
, ETX = XTE, (3.19)

if and only if
(XF ,KF , LF ) = (W−TXT,KT + LFT,LV )

solves[
AT
FXF +XT

FAF +QF XT
FBF + SF

BT
FXF + ST

F RF

]
=Vsys,F

[
KT
F

LT
F

] [
KF LF

]
,

ET
FXF = XT

FEF . (3.20)

Moreover, (X,K,L) is a stabilizing (anti-stabilizing) solution of (3.19) if and only
if the triple (XF ,KF , LF ) is a stabilizing (anti-stabilizing) solution of (3.20), see
Definition 3.5.1.

d) The even matrix pencils sE − A, sEF −AF ∈ R[s]2n+m×2n+m with

sE − A =

 0 −sE +A B
sET +AT Q S

BT ST R

 ,
sEF −AF =

 0 −sEF +AF BF
sET

F +AT
F QF SF

BT
F ST

F RF


are related via

sEF −AF = UT(sE − A)U,

where

U =

WT 0 0
0 T 0
0 FT V

 .
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e) It holds that (x, u) ∈ B(E,A,B) if and only if (xF , uF ) := (T−1x, V −1(u − Fx)) ∈
B(EF ,AF ,BF ). Furthermore, for all t0, t1 ∈ R ∪ {−∞,∞} it holds that∫ t1

t0

(
x(τ)
u(τ)

)T [
Q S
ST R

](
x(τ)
u(τ)

)
dτ =

∫ t1

t0

(
xF (τ)
uF (τ)

)T [
QF SF
ST
F RF

](
xF (τ)
uF (τ)

)
dτ.

Proof. We only proof statement a), b)–e) follow from simple algebraic manipulations.
Define G := λE − A and GF := λEF − AF for a fixed λ 6∈ Λ(E,A) ∪ Λ(EF , AF ) ∪
Λ(−E,A) ∪ Λ(−EF , AF ). By applying the Sherman-Morrison-Woodbury identity
[GL96, p. 50] we obtain

TG−1
F BF = (G−BF )−1BV

=
(
G−1 +G−1BF (G−BF )−1

)
BV

= G−1B(V + F (G−BF )−1BV )

= G−1BΘF (λ).

(3.21)

Then we have

ΦF (s) =

[
(sEF −AF )−1BF

Im

]∼ [
QF SF
ST
F RF

] [
(sEF −AF )−1BF

Im

]
=

[
(sEF −AF )−1BF

Im

]∼ [
TT TTFT

0 V T

] [
Q S
ST R

] [
T 0
FT V

]
·
[
(sEF −AF )−1BF

Im

]
= Θ∼F (s)Φ(s)ΘF (s),

where the latter relation follows from (3.21). In particular, we have shown that
Φ(iω) ≥ 0 for all iω 6∈ Λ(E,A) ∪ Λ(EF , AF ) is equivalent to ΦF (iω) ≥ 0 for all iω 6∈
Λ(E,A)∪Λ(EF , AF ). The result now follows from the continuity of Φ(s) and ΦF (s)
in a neighborhood of points iω 6∈ Λ(E,A) and iω 6∈ Λ(EF , AF ), respectively.

3.3 Kalman-Yakubovich-Popov Lemma

In this section we present a differential-algebraic version of the Kalman-Yakubovich-
Popov (KYP) lemma. Thereby we equivalently characterize the positive semidefi-
niteness of the Popov function on the imaginary axis by the solvability of a linear
matrix inequality.

The main result of this section is presented below, see also [RRV14, Thm 4.1].
We will later present some facts on the structure of the solution set of the occurring
linear matrix inequality.
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3.3 Kalman-Yakubovich-Popov Lemma

Theorem 3.3.1 (KYP lemma for differential-algebraic systems). Let (E,A,B) ∈
Σn,m with the system space Vsys be given, and let Q = QT ∈ Rn×n, S ∈ Rn×m, and
R = RT ∈ Rm×m. Then the following statements hold true:

a) Assume that there exists some P ∈ Rn×n such that

[
ATP + PTA+Q PTB + S

BTP + ST R

]
≥Vsys 0, ETP = PTE. (3.22)

Then it holds that

Φ(iω) ≥ 0 ∀ω ∈ R with iω /∈ Λ(E,A). (3.23)

b) Assume that at least one of the following two assumptions holds true:

i) (E,A,B) is strongly sign-controllable and the Popov function (3.2) satisfies

rankR(s) Φ(s) = m;

ii) (E,A,B) is strongly controllable.

Further, assume that the Popov function fulfills (3.23). Then there exists some
P ∈ Rn×n that solves the linear matrix inequality (3.22).

Proof. First, we prove statement a). For all λ ∈ C \ Λ(E,A) it holds that

[
A B

] [(λE −A)−1B
Im

]
= A(λE −A)−1B +B

= (A+ λE −A)(λE −A)−1B

= λE(λE −A)−1B ∈ imE.

Therefore, we have

im

[
(λE −A)−1B

Im

]
⊆ Vsys ∀λ ∈ C \ Λ(E,A). (3.24)
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Let P ∈ Rn×n such that (3.22) is fulfilled. Then we obtain that[
(sE −A)−1B

Im

]∼ [
ATP + PTA PTB

BTP 0

] [
(sE −A)−1B

Im

]
= BT

(
− sET −AT

)−1(
ATP + PTA

)(
sE −A

)−1
B

+BT
(
− sET −AT

)−1
PTB +BTP

(
sE −A

)−1
B

= BT
(
− sET −AT)−1

((
sET +AT

)
P + PT

(
− sE +A

)) (
sE −A

)−1
B

+BT
(
− sET −AT

)−1
PTB +BTP

(
sE −A

)−1
B

= −BTP
(
sE −A

)−1
B −BT

(
− sET −AT

)−1
PTB

+BT
(
− sET −AT

)−1
PTB +BTP

(
sE −A

)−1
B

= 0.

(3.25)

This gives rise to the fact that for all ω ∈ R with iω /∈ Λ(E,A) it holds that

Φ(iω) =

[
(iωE −A)−1B

Im

]H [
Q S
ST R

] [
(iωE −A)−1B

Im

]
(3.22)&(3.24)

≥ −
[
(iωE −A)−1B

Im

]H [
ATP + PTA PTB

BTP 0

] [
(iωE −A)−1B

Im

]
(3.25)

= 0.

(3.26)

Now we prove statement b). This part is based on feedback and the KYP lemma
for ODE systems, i. e., Theorem 3.3.1 holds for E = In, see, e. g., [CALM97]. Note
that for ODE systems, impulse controllability is trivially fulfilled, the space Vsys is
not anymore a proper subspace of Rn+m and, moreover, the equation ETP = PTE
is equivalent to P being symmetric.

Let r = rankE and assume that i) or ii) holds true. By Lemma 3.2.1 and Propo-
sition 3.2.2 a) and b), it suffices to prove the statement for the case where

sE −A =

[
sIr −A11 0

0 −In−r

]
, B =

[
B1

B2

]
, Q =

[
Q11 Q12

QT
12 Q22

]
, S =

[
S1

S2

]
,

and A11, Q11 ∈ Rr×r, B1, S1 ∈ Rr×m, B2, S2 ∈ Rn−r×m, Q12 ∈ Rr×n−r, and Q22 ∈
Rn−r×n−r. Now we can observe the following facts:

1) The system (E,A,B) is strongly sign-controllable (strongly controllable) if and
only if (Ir, A11, B1) is strongly sign-controllable (strongly controllable), respec-
tively.
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2) We may rewrite the Popov function as

Φ(s) =

[
(sE −A)−1B

Im

]∼ [
Q S
ST R

] [
(sE −A)−1B

Im

]

=

(sIr −A11)−1B1

−B2

Im

∼ Q11 Q12 S1

QT
12 Q22 S2

ST
1 ST

2 R

(sIr −A11)−1B1

−B2

Im


=

[
(sIr −A11)−1B1

Im

]∼ [
Q11 S1 −Q12B2

ST
1 −BT

2 Q
T
12 BT

2 Q22B2 −BT
2 S2 − ST

2 B2 +R

]
·
[
(sIr −A11)−1B1

Im

]
.

3) A basis matrix for Vsys is given by

MVsys :=

Ir 0
0 −B2

0 In−r

 . (3.27)

In particular, we obtain from 1) and 2) that assumptions i) and ii) are fulfilled by
the sextuple (E,A,B,Q, S,R) if and only if(

Ir, A11, B1, Q11, S1 −Q12B2, B
T
2 Q22B2 −BT

2 S2 − ST
2 B2 +R

)
has the respective property. Assuming that (3.23) holds true, the KYP lemma for
ODE systems implies that there exists a symmetric P11 ∈ Kr×r, such that[

AT
11P11 + P11A11 +Q11 P11B1 + S1 −Q12B2

BT
1 P11 + ST

1 −BT
2 Q

T
12 BT

2 Q22B2 −BT
2 S2 − ST

2 B2 +R

]
≥ 0. (3.28)

Defining

P =

[
P11 0
0 0

]
∈ Rn×n,

we obtain ETP = PTE. Assume that x ∈ Rn, u ∈ Rm such that(
x
u

)
∈ Vsys.

and partition

x =

(
x1

x2

)
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with x1 ∈ Rr and x2 ∈ Rn−r. Now the structure of Vsys given by (3.27) implies
x2 = −B2u. Therefore, it holds that(

x
u

)T [
ATP + PTA+Q PTB + S

BTP + ST R

](
x
u

)

=

 x1

−B2u
u

T AT
11P11 + P11A11 +Q11 Q12 P11B1 + S1

QT
12 Q22 S2

BT
1 P11 + ST

1 ST
2 R

 x1

−B2u
u


=

(
x1

u

)T [
AT

11P11 + P11A11 +Q11 P11B1 + S1 −Q12B2

BT
1 P11 + ST

1 −BT
2 Q

T
12 BT

2 Q22B2 −BT
2 S2 − ST

2 B2 +R

](
x1

u

)
≥ 0.

Remark 3.3.2.

a) We obtain from Theorem 3.3.1 that, in the case where at least one of the assump-
tions i) or ii) is fulfilled, the feasibility of the linear matrix inequality (3.22) is
equivalent to the nonnegativity property (3.23) of the Popov function.

b) If the Popov function fulfills (3.23), then the linear matrix inequality (3.22) might
have an empty solution set. Counter-examples exist already in the ODE case, see
[Sch91b, p. 88]. Further, note that impulse controllability (which is included in i)
and ii)) has to be assumed. As a counter-example, consider the matrices

E =

[
1 0
0 0

]
, A =

[
0 1
1 0

]
, B = S =

[
0
0

]
, Q =

[
0 0
0 −1

]
, R = 1.

The system (E,A,B) is not impulse controllable. The Popov function is constant
one, i. e., Φ(s) = 1. In particular, (3.23) is fulfilled. The space Vsys reads

Vsys =


 0
x2

u

 : x2, u ∈ R

 .

Now assume that P ∈ R2×2 solves (3.22). By ETP = PTE, we can infer that
there exist p11, p21, p22 ∈ R with

P =

[
p11 0
p21 p22

]
.

Then we have[
ATP + PTA+Q PTB + S

BTP + ST R

]
=

 2p21 p11 + p22 0
p11 + p22 −1 0

0 0 1

 .
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However, it holds that

vT
[
ATP + PTA+Q PTB + S

BTP + ST R

]
v = −1 6≥ 0 for v =

0
1
0

 ∈ Vsys.

Consequently, the linear matrix inequality (3.22) does not have any solutions.

3.4 Even Matrix Pencils and Descriptor Lur’e Equations

With the matrices as in the previous section, we now consider the even matrix pencil

sE − A =

 0 −sE +A B
sET +AT Q S

BT ST R

 ∈ R[s]2n+m×2n+m. (3.29)

This section is devoted to the analysis of relations between sE−A, the semidefiniteness
of Φ(s) on iR\Λ(E,A), the solution, and the solution structure of the descriptor Lur’e
equation (3.15). In particular, we show that their solutions can be constructed by
using deflating subspaces of sE − A.

The following theorem relates the eigenstructure of sE −A to the positive semidefi-
niteness of the Popov function Φ(s) on iR\Λ(E,A). Note that this result generalizes
[Rei11, Thm. 3.1] in two ways: First, the differential-algebraic case is considered in-
stead of only the standard case E = In. Second, neither condition i) nor ii) from
Theorem 3.3.1 has to be presumed. Instead we employ the weaker condition of ab-
sence of uncontrollable modes on the imaginary axis. First, we present an auxiliary
lemma.

Lemma 3.4.1. For all ω ∈ R with det(iωE − A) 6= 0 it holds that

U(iω)H(iωE − A)U(iω) =

 0 −iωE +A 0
iωET +AT Q 0

0 0 Φ(iω)



with U(iω) =

In 0
(
iωET +AT

)−1 (
Q(−iωE +A)−1B − S

)
0 In −(−iωE +A)−1B
0 0 Im

.

Proof. The fact can be verified by simple matrix calculations.

Theorem 3.4.2. Let the control system (E,A,B) ∈ Σn,m be given. Further, let
Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Assume that (E,A,B) has no
uncontrollable modes on the imaginary axis. Further, let sE − A as in (3.29) be the
associated even matrix pencil, and Φ(s) be the Popov function as in (3.2). Define
r = rankE and q = rankR(s) Φ(s). Then the following statements are equivalent:
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a) For all ω ∈ R with iω /∈ Λ(E,A) it holds that Φ(iω) ≥ 0.

b) The EKCF of sE − A has the following structure:

i) All blocks of type E2 have even size and negative sign-characteristic.

ii) There exist exactly 2(n− r) + q blocks of type E3.

iii) There exist q blocks of type E3 with odd size and positive sign-characteristic.

iv) The remaining 2(n − r) blocks of type E3 are either of even size; or of
odd size and the number of odd-sized blocks with positive and negative sign-
characteristic is equal.

v) There exist exactly m− q blocks of type E4.

c) The EKCF of sE − A has the following structure:

i’) All blocks of type E2 have even size.

• The properties b) ii)–v) are valid.

Proof. The absence of uncontrollable modes on the imaginary axis implies that there
exists some feedback that removes all imaginary modes. By Proposition 3.2.2 a) and
c), it is therefore no loss of generality to assume that iω /∈ Λ(E,A) for all ω ∈ R and,
consequently, the Popov function has no poles on the imaginary axis.

We show that a) implies b): By rankR(s) Φ(s) = q we can conclude that there exists
some function a : R→ N0 with finite support, such that for all ω ∈ R, it holds that

In(Φ(iω)) = (q − a(ω),m− q + a(ω), 0).

By applying Lemma 3.4.1, Sylvester’s law of inertia [GL96, p. 403] and, by the
absence of purely imaginary eigenvalues of sE −A, we obtain

In

([
0 −iωE +A

iωET +AT Q

])
= (n, 0, n) ∀ω ∈ R, (3.30)

and thus we deduce that

In(iωE − A) = (n+ q − a(ω),m− q + a(ω), n). (3.31)

Sylvester’s law of inertia further implies that the inertia of iωE − A coincides with
that of the EKCF of sE − A at iω. The strategy of the proof consists of analyzing
which combination of blocks of an EKCF generates such an inertia pattern. Identified
blocks will then be removed to further consider the remaining subpencil.

First, we see from Lemma 3.4.1 that sE − A ∈ R[s]2n+m×2n+m, rankR(s)(sE −
A) = 2n + q and rank E = 2r. From that we conclude that the EKCF has exactly
m − q blocks of type E4, i. e., v) holds true. By removing these blocks and using
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Lemma 2.1.15 f), we obtain a pencil in EKCF, denoted by sE1−A1 ∈ C[s]2n1+q×2n1+q,
with rank E1 = 2n1 − 2(n− r) and

In(iωE1 −A1) = (n1 + q − a(ω), a(ω), n1).

Using again Lemma 2.1.15, we conclude that sE1 − A1 has exactly q blocks of type
E3 with positive sign-characteristic and odd size. In other words, iii) holds true.

We remove these blocks and denote the emerging pencil by sE2−A2 ∈ C[s]2n2×2n2 .
This pencil fulfills rank E1 = 2n2 − 2(n− r) and

In(iωE2 −A2) = (n2 − a(ω), a(ω), n2).

By Lemma 2.1.15, this structure reveals that all blocks of type E2 have even size and
negative sign-characteristic. This shows statement i).

Removing these blocks, we obtain a pencil sE3 −A3 ∈ C[s]2n3×2n3 with rank E1 =
2n3 − 2(n− r) and

In(iωE3 −A3) = (n3, 0, n3).

From the rank deficiency of E3 we can conclude that sE3 −A3 has 2(n− r) blocks of
type E3, hence the number of blocks of type E3 in the EKCF of sE−A is 2(n−r)+q.
Thus, ii) holds true.

The inertial properties of iωE3 −A3 give rise to the fact that the number of odd-
sized blocks of type E3 with positive sign-characteristic is equal to the number of
odd-sized blocks of type E3 with negative sign-characteristic. This shows iv).

The proof that b) implies c) is trivial.
Now we show that c) implies a): Assume that the EKCF of the associated pencil

sE −A has the properties i’) and ii)–v). Then Lemma 2.1.15 implies that there exist
functions a, b : R→ N0 with finite support and

In(iωE − A) = (n+ q − a(ω),m− q + a(ω) + b(ω), n− b(ω)).

In particular, the quantity
∑

ω∈R b(ω) is the number of even-sized blocks of type E2
with positive sign-characteristic.

Since we have, without loss of generality, assumed that Λ(E,A) ∩ iR = ∅, the
relation (3.30) holds. Sylvester’s law of inertia together with Lemma 3.4.1 then
implies

In(Φ(iω)) = (q − a(ω),m− q + a(ω) + b(ω),−b(ω)) ∀ω ∈ R. (3.32)

Assume that b is not the constant zero function. Then for an ω with b(ω) > 0, the
number of negative eigenvalues of Φ(iω) would be negative which is a contradiction.

Consequently, b ≡ 0, and (3.32) implies that Φ(s) is pointwise positive semidefinite
on the imaginary axis. In other words, a) is satisfied.
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Remark 3.4.3 (Spectral structure for impulse controllable systems). If the system
(E,A,B) is impulse controllable, we can make a more precise statement about the
spectral structure of sE−A. In this case we can reduce the system to the form (3.18).
Then instead of sE − A we consider the reduced even matrix pencil

sÊ − Â := 0 −sIr +A11 B1

sIr +AT
11 Q11 −Q12B2 + S1

BT
1 −BT

2 Q
T
12 + ST

1 BT
2 Q22B2 −BT

2 S2 − ST
2 B2 +R

 ∈ R[s]2r+m×2r+m.

(3.33)

Then Theorem 3.4.2 yields that Φ(iω) ≥ 0 for all iω /∈ Λ(E,A) is equivalent to the
EKCF of sÊ − Â having the following structure:

• All blocks of type E2 have even size and negative sign-characteristic.

• There exist exactly q blocks of type E3 with odd size and positive sign-charac-
teristic.

• There exist exactly m− q blocks of type E4.

Since sE − A has 2(n− r) more rows and columns and also 2(n− r) more blocks of
type E3, statement iv) of Theorem 3.4.2 can be replaced by

iv’) The remaining 2(n−r) blocks of type E3 are all of size 1×1, and n−r of them
have positive sign-characteristic and n− r have negative sign-characteristic.

Example 3.4.4. To illustrate the results of Theorem 3.4.2 and Remark 3.4.3 consider
the matrices

E =

[
1 0
0 0

]
, A =

[
1 0
0 1

]
, B = S =

[
0
0

]
, Q =

[
0 0
0 0

]
, R = 1.

The system (E,A,B) ∈ Σ2,1 is impulse controllable and the associated Popov func-
tion is Φ(s) = 1. Using the notation of Theorem 3.4.2, we have n = 2 and m = r =
q = 1. Let sE −A ∈ R[s]5×5 be the associated even matrix pencil as in (3.29). With

U =


1 0 0 0 0
0 0 1√

2
− 1√

2
0

0 1 0 0 0
0 0 1√

2
1√
2

0

0 0 0 0 1

 ,
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the pencil sE − A is transformed to EKCF, i. e.,

UH(sE − A)U =


0 −s+ 1 0 0 0

s+ 1 0 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1

 . (3.34)

Indeed, the right-hand side of (3.34) contains one block of type E1, no blocks of
type E2, but 2(n − r) + q = 3 blocks of type E3 of size 1 × 1 (two with positive
sign-characteristic and one with negative sign-characteristic) and m − q = 0 blocks
of type E4. All this is in agreement with Theorem 3.4.2 and Remark 3.4.3.

In the following we use the so far developed results on even matrix pencils to study
solutions of the descriptor Lur’e equation[

ATX +XTA+Q XTB + S
BTX + ST R

]
=Vsys

[
KT

LT

] [
K L

]
, ETX = XTE. (3.35)

Obviously, P = X is a solution of the descriptor KYP inequality (3.22). However,
solutions of the descriptor Lur’e equation are special in the following sense.

Definition 3.4.5 (Solution of a descriptor Lur’e equation). [RRV14, Sect. 5] A triple
(X,K,L) ∈ Rn×n × Rq×n × Rq×n is called solution of the descriptor Lur’e equation
(3.35), if it fulfills (3.35) and

rankR(s)

[
−sE +A B

K L

]
= n+ q. (3.36)

Remark 3.4.6. If E = In, then Vsys = Rn+m and the descriptor Lur’e equation (3.35)
reduces to a standard Lur’e equation of the form (3.9) [Rei11] with

rankR(s)

[
−sIn +A B

K L

]
= n+ q.

If, further, R > 0, then L ∈ Glm(R). In this case, the unknowns K and L in the
descriptor Lur’e equation can be eliminated, such that an algebraic Riccati equation

ATX +XA+Q− (XB + S)R−1(XB + S)T = 0

is obtained.

Now we highlight a correspondence between solutions of the descriptor Lur’e equa-
tions and certain deflating subspaces of the associated even matrix pencil. For the
corresponding theorem and its proof, we need the following two lemmas. The first
one states relations between solutions of the descriptor Lur’e equation to solutions of
a certain standard Lur’e equation, see also [RRV14, Lem. 5.4].
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Lemma 3.4.7. Let (E,A,B) ∈ Σn,m with the system space Vsys be impulse control-
lable and assume that Q = QT ∈ Rn×n, S ∈ Rn×m, R = RT ∈ Rm×m are given. Let
W, T ∈ Gln(R) and F ∈ Rm×n be given such that

sEF −AF = W (sE − (A+BF ))T =

[
sIr −A11 0

0 −In−r

]
, BF = WB =

[
B1

B2

]
,

(3.37)
and let

QF = TT
(
Q+ SF + FTST + FTRF

)
T =

[
Q11 Q12

QT
12 Q22

]
,

SF = TT
(
S + FTR

)
=

[
S1

S2

]
, RF = R

(3.38)

be accordingly partitioned. Then the following statements hold true:

a) If (X,K,L) ∈ Rn×n×Rq×n×Rq×m is a solution of the descriptor Lur’e equation
(3.35), then for

XF = W−TXT =

[
X11 0
X21 X22

]
, KF = (K + LF )T =

[
K1 K2

]
, (3.39)

partitioned according to the block structure of (3.37), it holds that[
AT

11X11 +X11A11 +Q11 X11B1 + S1 −Q12B2

BT
1 X11 + ST

1 −BT
2 Q

T
12 BT

2 Q22B2 −BT
2 S2 − ST

2 B2 +R

]
=

[
KT

1

(L−K2B2)T

] [
K1 L−K2B2

]
, X11 = XT

11 (3.40)

with

rankR(s)

[
−sIr +A11 B1

K1 L−K2B2

]
= r + q. (3.41)

b) If (X11,K1, L1) ∈ Rr×r × Rq×r × Rq×m solves the Lur’e equation[
AT

11X11 +X11A11 +Q11 X11B1 + S1 −Q12B2

BT
1 X11 + ST

1 −BT
2 Q

T
12 BT

2 Q22B2 −BT
2 S2 − ST

2 B2 +R

]
=

[
KT

1

LT
1

] [
K1 L1

]
, X11 = XT

11, (3.42)

then for

X = WT

[
X11 0

0 0

]
T−1, K =

[
K1 0

]
T−1 − L1F, L = L1,

the triple (X,K,L) ∈ Rn×n × Rq×n × Rq×m solves the descriptor Lur’e equation
(3.35).
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Proof. First we show a): With the basis matrix MVsys of the space Vsys ⊆ Rn+m as
in (3.27), the relation

MT
Vsys

[
ATX +XTA+Q XTB + S

BTX + ST R

]
MVsys = MT

Vsys

[
KT

LT

] [
K L

]
MVsys (3.43)

directly yields (3.40). Furthermore, from

n+ q = rankR(s)

[
−sE +A B

K L

]
= rankR(s)

[
W 0
0 Iq

] [
−sE +A B

K L

] [
T 0
FT Im

]

= rankR(s)

−sIr +A11 0 B1

0 In−r B2

K1 K2 L

Ir 0 0
0 −B2 In−r
0 Im 0


= rankR(s)

−sIr +A11 B1 0
0 0 In−r
K1 L−K2B2 K2


= n− r + rankR(s)

[
−sIr +A11 B1

K1 L−K2B2

]
,

(3.44)

we directly obtain (3.41).
Next, we show b): Assume that (X11,K1, L1) is a solution of the Lur’e equation

(3.42). Assume further that (X,K,L) is not a solution of the descriptor Lur’e equa-
tion (3.35). If we have[

ATX +XTA+Q XTB + S
BTX + ST R

]
6=Vsys

[
KT

LT

] [
K L

]
, (3.45)

then (3.43) is not satisfied which, by a simple calculation, is a contradiction to (3.42).
On the other hand, if (X,K,L) does not satisfy (3.36), we obtain

n+ q = rankR(s)

[
−sIr +A11 B1

K1 L1

]
+ n− r

= rankR(s)

[
W−1 0

0 Iq

]−sIr +A11 0 B1

0 In−r B2

K1 0 L1

[T−1 0
−F Im

]

= rankR(s)

[
−sE +A B

K L

]
6= n+ q,

which is a contradiction as well. Thus (X,K,L) is indeed a solution of the descriptor
Lur’e equation (3.35).
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The next technical lemma is the basis for an alternative formulation of the descrip-
tor Lur’e equation.

Lemma 3.4.8. Let A ∈ Rn×n be symmetric and assume that an m-dimensional
subspace V ⊆ Rn is given. Then the following statements hold true:

a) If there exist matrices R1 ∈ Rk×n, R2 ∈ Rn−m×n with kerR2 = V, and a signature
matrix Σ22 ∈ Rn−m×n−m (that is a diagonal matrix with only −1, 0, and +1 on
the diagonal) such that

A = RT
1R1 +RT

2 Σ22R2,

then it holds that A =V RT
1R1.

b) If A =V RT
1R1 for R1 ∈ Rk×n, then there exist matrices R̃1 ∈ Rk×n, R̃2 ∈

Rn−m×n with ker R̃2 = V, and a signature matrix Σ̃22 ∈ Rn−m×n−m such that

A = R̃T
1 R̃1 + R̃T

2 Σ̃22R̃2.

Proof. Statement a) is trivial, since for all v ∈ V it holds that vTAv = vTRT
1R1v.

Now we show b): By the assumptions there exists a matrix R2 ∈ Rn−m×n with
kerR2 = V such that

A =
[
RT

1 RT
2

] [ Ik Σ12

ΣT
12 Σ22

] [
R1

R2

]
with Σ12 ∈ Rk×n−m and Σ22 ∈ Rn−m×n−m. Moreover, it holds that[

Ik Σ12

ΣT
12 Σ22

]
=

[
Ik 0

ΣT
12 In−m

] [
Ik 0
0 Σ22 − ΣT

12Σ12

] [
Ik Σ12

0 In−m

]
.

By Sylvester’s law of inertia there exists a matrix H ∈ Gln−m(R) such that Σ22 −
ΣT

12Σ12 = HTΣ̃22H with a signature matrix Σ̃22. Thus the claim holds true for

R̃1 = R1 + Σ12R2, R̃2 = HR2. (3.46)

Lemma 3.4.8 suggests that the descriptor Lur’e equation (3.35) has a solution
(X,K,L) if and only if with r = rankE, the alternative descriptor Lur’e equation

[
ATX +XTA+Q XTB + S

BTX + ST R

]
=

[
K̃T

L̃T

] [
K̃ L̃

]
+

[
HT

JT

]
Σ
[
H J

]
,

ETX = XTE (3.47)
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is solved by
(
X, K̃, L̃,H, J,Σ

)
∈ Rn×n×Rq×n×Rq×m×Rn−r×n×Rn−r×m×Rn−r×n−r,

where ker
[
H J

]
= Vsys, Σ is a signature matrix, and

rankR(s)

[−sE +A B

K̃ L̃

]
= n+ q.

Now we state the main theorem of this section, see also [RRV14, Thm. 6.2] for a
similar result.

Theorem 3.4.9. Assume that (E,A,B) ∈ Σn,m with the system space Vsys and
r = rankE are given and let the even matrix pencil sE − A be as in (3.29) and the
Popov function Φ(s) ∈ R(s)m×m be as in (3.2) with q = rankR(s) Φ(s). Consider the
following two statements:

1) The descriptor Lur’e equation (3.35) is solvable.

2) It holds that Φ(iω) ≥ 0 for all iω ∈ iR\Λ(E,A) and there exist Yµ, Yx ∈ Rn×n+m,
Yu ∈ Rm×n+m, Zµ, Zx ∈ Rn×n+q, Zu ∈ Rm×n+q such that for

Y =

YµYx
Yu

 , Z =

ZµZx
Zu

 , (3.48)

the following holds true:

i) the space imY is n+m-dimensional and E-neutral;

ii) Vsys ⊆ im

[
Yx
Yu

]
;

iii) rankEYx = r;

iv) there exist Ẽ , Ã ∈ Rn+q×n+m with rankR(s)

(
sẼ − Ã

)
= n+ q, such that

(sE − A)Y = Z
(
sẼ − Ã

)
. (3.49)

Then the following implications hold:

a) Statement 1) implies 2).

b) If (E,A,B) is impulse controllable, then 2) implies 1).

In the case where 2) holds true, then there exists a matrix Y that fulfills 2) with
rankYx = n. Moreover, there exists a matrix Y −x ∈ Rn+m×n with YxY

−
x = In such

that

X = YµY
−
x . (3.50)
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Proof. First we prove a): Since the descriptor Lur’e equation (3.35) is solvable, also
the alternative descriptor Lur’e equation (3.47) has a solution

(
X, K̃, L̃,H, J,Σ

)
. As

a preliminary observation, we have

ker
[
H J

]
= Vsys = kerTT

∞
[
A B

]
,

where T∞ ∈ Rn×n−r with imT∞ = kerET. Therefore, there exists some M ∈
Gln−r(R) with [

H J
]

= MTT
∞
[
A B

]
. (3.51)

Therefore, a solution of the alternative descriptor Lur’e equation fulfills 0 −sE +A B
sET +AT Q S

BT ST R

X 0
In 0
0 Im


=

 In 0

−XT +HTΣMTT
∞ K̃T

JTΣMTT
∞ L̃T

[−sE +A B

K̃ L̃

]
. (3.52)

Using (3.36), we see from (3.52) that solutions of the alternative descriptor Lur’e
equation define deflating subspaces of the associated even matrix pencil. The equation
ETX = XTE further implies that this deflating subspace is E-neutral.

Now we prove b) which is more difficult. Since (E,A,B) is impulse control-
lable, there exist W, T ∈ Gln(R) and F ∈ Rm×n such that EF , AF , BF , as well
as QF , SF , RF are in the form (3.37) and (3.38), respectively. Moreover, let XF and
KF be as in (3.39).

Now we define the matrices

U :=

WT 0 0
0 T 0
0 FT Im

 , Û :=


Ir 0 0 0 0
0 −QT

12 Q22B2 − S2 −1
2Q22 In−r

0 Ir 0 0 0
0 0 −B2 In−r 0
0 0 Im 0 0


and obtain

sÊF − ÂF := ÛTUT(sE − A)UÛ

=


0 −sIr +A11 B1 0 0

sIr +AT
11 Q11 −Q12B2 + S1 0 0

BT
1 −BT

2 Q
T
12 + ST

1 BT
2 Q22B2 −BT

2 S2 − ST
2 B2 +R 0 0

0 0 0 0 In−r
0 0 0 In−r 0

 .
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Furthermore, by setting

U−1Yµ =:

[
Yµ,1
Yµ,2

]
, U−1Yx =:

[
Yx,1
Yx,2

]
, U−1Yu =: Yu,1

partitioned according to the block structure in (3.37) and (3.38), we obtain

ŶF := Û−1U−1Y =


Ir 0 0 0 0
0 0 In−r 0 0
0 0 0 0 Im
0 0 0 In−r B2

0 Ir QT
12

1
2Q22 −1

2Q22B2 + S2



Yµ,1
Yµ,2
Yx,1
Yx,2
Yu,1

 =


Yµ,1
Yx,1
Yu,1
Ŷµ,2
Ŷx,2

 .
(3.53)

Finally, by setting ẐF := ÛTUTZ and using Proposition 3.2.2 d) we obtain
(
sÊF −

ÂF
)
ŶF = ẐF

(
sẼ − Ã

)
, where we assume w. l. o. g. that sẼ − Ã is in KCF.

Since im ŶF is ÊF -neutral, the space im

[
Yµ,1
Yx,1

]
is

[
0 −Ir
Ir 0

]
-neutral and thus its

dimension is at most r. On the other hand, by Proposition 3.2.2 b) we have

Vsys,F ⊆ im

Yx,1Yx,2
Yu,1

 with Vsys,F =

[
T−1 0
−F Im

]
Vsys.

Since dimVsys,F = r +m, it follows that rank

[
Yx,1
Yu,1

]
= r +m. By property iii) in 2)

we have rankYx,1 = r. This yields rank
[
Y T
µ,1 Y T

x,1 Y T
u,1

]T
= r +m. Moreover, due

to the block-diagonal structure of sÊF − ÂF , it holds that rank

[
Ŷµ,2
Ŷx,2

]
= n− r.

From these facts it follows that there exists a matrix V ∈ Gln+m(R) such that


Yµ,1
Yx,1
Yu,1
Ŷµ,2
Ŷx,2

V =


X11 0 0
In1 0 0
0 Im 0

0 0 Ỹµ,2
0 0 Ỹx,2

 , (3.54)

where rank

[
Ỹµ,2
Ỹx,2

]
= n− r.

Now we can make use of this theorem for ODE systems [Rei11, Thm. 11], i. e.,
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there exist K1 ∈ Kq×r and L1 ∈ Kq×m such that 0 −sIr +A11 B1

sIr +AT
11 Q11 −Q12B2 + S1

BT
1 −BT

2 Q
T
12 + ST

1 BT
2 Q22B2 −BT

2 S2 − ST
2 B2 +R

X11 0
Ir 0
0 Im


=

 Ir 0
−X11 KT

1

0 LT
1

[−sIr +A11 B1

K1 L1

]
, (3.55)

where

rankR(s)

[
−sIr +A11 B1

K1 L1

]
= r + q.

Thus (X11,K1, L1) solves the Lur’e equation (3.42). Then, by Lemma 3.4.7 b), we
obtain a solution of the descriptor Lur’e equation (3.35).

If Statement 2) holds true, we obtain from (3.52) that we can choose Yx and Yu such

that

[
Yx
Yu

]
is invertible. Hence, with

[
Y −x Y −u

]
:=

[
Yx
Yu

]−1

, we obtain a representation

for X as in (3.50).

Remark 3.4.10. If (X,K,L) solves the descriptor Lur’e equation (3.35), then we can
choose Y and Z in (3.49) such that

sẼ − Ã =

[
−sE +A B

K L

]
.

This can be seen from (3.52). Moreover, by (3.46), for a tuple
(
X, K̃, L̃,H, J,Σ

)
solving the alternative descriptor Lur’e equation, there exists a Σ12 ∈ Rn×m such
that [

K̃ L̃
]

=
[
K L

]
+ Σ12

[
H J

]
.

Together with (3.51) this yields[−sE +A B

K̃ L̃

]
=

[
−sE +A B
K + Σ12H L+ Σ12J

]
=

[
−sE +A B

K + Σ12MTT
∞(−sE +A) L+ Σ12MTT

∞B

]
=

[
In 0

Σ12MTT
∞ Im

] [
−sE +A B

K L

]
.

Theorem 3.4.11. Assume that (E,A,B) ∈ Σn,m with the system space Vsys is im-
pulse controllable and let the descriptor Lur’e equation (3.35) with associated even
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matrix pencil sE − A as in (3.29) be given. Furthermore, assume that the descrip-
tor KYP inequality (3.22) is feasible. Let an n + m-dimensional E-neutral space

imY with Y as in (3.48) be given such that Vsys ⊆ im

[
Yx
Yu

]
and (3.49) holds for some

Z ∈ R2n+m×n+q, Ẽ , Ã ∈ Rn+q×n+m. If for all finite eigenvalues λ of the pencil sẼ−Ã,
the number −λ is not an uncontrollable mode of (E,A,B), then rankEYx = r.

Proof. We consider again the subspace relation (3.55). Since all assumptions of
[Rei11, Thm. 14] are fulfilled, the result immediately follows.

Note that Theorem 3.4.2 requires that Φ(iω) ≥ 0 for all ω ∈ R with iω /∈ Λ(E,A),
whereas in Theorem 3.4.11 we assume that that the descriptor KYP inequality (3.22)
is feasible to ensure rankEYx = r. However, this condition is, by Theorem 3.3.1,
slightly stronger than the nonnegativity of Φ(s) on iR \ Λ(E,A).

In the sequel of this section we discuss how to construct E-neutral deflating sub-
spaces with the properties of Theorem 3.4.9. First, we consider the case of a single
block D(s) as in Theorem 2.1.13.

Lemma 3.4.12. Consider a block D(s) = sE −A from Theorem 2.1.13. Then im Y
is an E-neutral deflating subspace of D(s) with

D(s)Y = ZD̃(s)

and an associated block D̃(s) equivalent to a block from Theorem 2.1.2 as summarized
in Table 3.1.

Proof. The proof can be carried out by direct calculation.

Finally, the next lemma shows that the deflating subspaces might not be unique
if sẼ − Ã can be constructed such that its KCF contains multiple blocks D̃(s) from
Theorem 2.1.2 of the same kind an size.

Lemma 3.4.13. Let the even matrix pencil sE − A as in (3.29) be given. Assume
that for all j ∈

{
1, . . . , ˜̀} it holds that

(sE − A)Yj = ZjD̃(s),

where imYj are E-neutral deflating subspaces with Yj ∈ C2n+m×k1, Zj ∈ C2n+m×k2,

and D̃(s) ∈ C[s]k2×k1 as in Theorem 2.1.2. Moreover, assume that imYi∩imYj = {0}
for all 1 ≤ i, j ≤ ˜̀with i 6= j. Then also

im

 ˜̀∑
j=1

αjYj


is an E-neutral deflating subspace for all 0 6= (α1, . . . , α˜̀) ∈ R˜̀

.
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Proof. The statement follows from

(sE − A)

˜̀∑
j=1

αjYj =

˜̀∑
j=1

αjZjD̃(s),

and the fact that imYi ∩ imYj = {0} for all 1 ≤ i, j ≤ ˜̀with i 6= j.

In the next remark we will make some comments on uniqueness of solutions and
the solution structure of the descriptor Lur’e equation.

Remark 3.4.14. Assume that (E,A,B) ∈ Σn,m is impulse controllable.

a) To fulfill the inclusion Vsys ⊆ im

[
Yx
Yu

]
, it is necessary to construct a maximally Ê-

neutral deflating subspace im
[
Y T
µ,1 Y T

x,1 Y T
u,1

]T
of the reduced even pencil sÊ−Â

in (3.33) (see also (3.55)), for instance as in [Rei11, Thm. 13].

b) There is a certain freedom for the choice of Ŷµ,2 and Ŷx,2 in (3.53). This can be

most easily seen in (3.54), since any (n − r)-dimensional subspace im

[
Ỹµ,2
Ỹx,2

]
⊆

R2(n−r) can be generated by appropriately choosing Ỹµ,2 and Ỹx,2. This freedom
also directly follows from Lemma 3.4.13. From Table 3.1, we can choose 2(n −
r) linearly independent vectors v1, . . . , v2(n−r) that span a deflating subspace

corresponding to a single block D̃(s) = 1. However, for the construction of Ỹµ,2
and Ỹx,2, we only need a set of n− r linearly independent vectors of the form

yi =

2(n−r)∑
j=1

α
(i)
j vj .

c) There is further freedom in choosing the deflating subspaces for the blocks of type
E1, following from Table 3.1. In order to guarantee rankEYx = r, we have to
construct the subspace according to type #2 from Table 3.1 if λ is an uncontrol-
lable mode and according to type #1 from Table 3.1 if −λ is an uncontrollable
mode of (E,A,B). This criterion implicitly contains strong sign-controllability of
(E,A,B) [Rei11]. In particular, in case of a solvable descriptor Lur’e equation, an
E-neutral subspace Y of dimension n+m as in Theorem 3.4.9 can be constructed
such that rankEYx = r, if the triple (E,A,B) is strongly controllable.

d) Let the assumptions of Theorem 3.4.11 be satisfied. Then the following two state-
ments are equivalent:
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i) The matrix ETX can only attain a finite number of distinct values, where
(X,K,L) is a solution of the descriptor Lur’e equation.

ii) The EKCF of the pencil sE−A has no multiple blocks of type E1 correspond-
ing to the same parameter µ ∈ C+.

If the EKCF of the pencil sE − A has multiple blocks of type E1 corresponding
to the same parameter µ ∈ C+, we can construct an infinite amount of other
E-neutral deflating subspaces corresponding to the eigenvalues µ and −µ by ap-
propriately mixing subspaces of types #1 and #2 in Table 3.1 corresponding to
different blocks. Otherwise, the number of possible values of ETX is at most
2r, since for every block of the KCF of sẼ − Ã of type K1 a maximal deflating
subspace can be either chosen according to type #1 or #2 in Table 3.1. See also
[Wil71, Rem. 18] for a related observation in the ODE case. Note that for real
problems, the eigenvalues of sẼ −Ã appear in complex conjugate pairs. So in fact,
there might be even less real solutions, since the deflating subspaces must then
also be picked in such pairs.

Finally, in the next remark, we present some examples illustrating the result of
Theorem 3.4.9.

Remark 3.4.15.

(a) Even if all properties of statement 2) of Theorem 3.4.9 are fulfilled, the invert-

ibility of

[
Yx
Yu

]
cannot be guaranteed for an arbitrary choice of Y . To see this

consider the following simple example. Choose

E =

[
1 0
0 0

]
, A =

[
1 0
0 1

]
, B = S =

[
0
0

]
, Q =

[
0 0
0 0

]
, R = 1.

The system (E,A,B) ∈ Σ2,1 is impulse controllable. With X =

[
x11 0
x21 x22

]
we

have [
ATX +XTA+Q XTB + S

BTX + ST R

]
=

2x11 x21 0
x21 2x22 0
0 0 1


which is positive definite, e. g., for x11 = x22 = 1 and x21 = 0. Furthermore,

0 0 −s+ 1 0 0
0 0 0 1 0

s+ 1 0 0 0 0
0 1 0 0 0
0 0 0 0 1




0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 1


−s+ 1 0 0

0 1 0
0 0 1

 ,
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i. e., rank

[
Yx
Yu

]
= 3 = n+m. On the other hand, we also have


0 0 −s+ 1 0 0
0 0 0 1 0

s+ 1 0 0 0 0
0 1 0 0 0
0 0 0 0 1




0 0 0
0 1 0
1 0 0
0 0 0
0 0 1

 =


1 0 0
0 0 0
0 0 0
0 1 0
0 0 1


−s+ 1 0 0

0 1 0
0 0 1

 ,

i. e., rank

[
Yx
Yu

]
= 2 < n+m, and therefore, no solution can be constructed from

this deflating subspace.

(b) It is also important to note that the requirement of impulse controllability is

essential for the existence of a Y with

[
Yx
Yu

]
∈ Gln+m(R). As a counter-example

consider the matrices

E =

[
1 0
0 0

]
, A =

[
0 1
1 0

]
, B = S =

[
0
0

]
, Q =

[
0 0
0 0

]
, R = 1.

Again we have X =

[
x11 0
x21 x22

]
and

[
ATX +XTA+Q XTB + S

BTX + ST R

]
=

 2x21 x11 + x22 0
x11 + x22 0 0

0 0 1

 ,
which is positive semidefinite, e. g., for x11 = x22 = 0 and x21 = 1. However, we
have 

0 0 −s 1 0
0 0 1 0 0
s 1 0 0 0
1 0 0 0 0
0 0 0 0 1




0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

 =


0 1 0
0 0 0
1 0 0
0 0 0
0 0 1


1 0 0

0 1 0
0 0 1

 ,

i. e., rank

[
Yx
Yu

]
= 2 < n+m. Since in our case, sE−A has only infinite eigenvalues,

there is also no way to make

[
Yx
Yu

]
invertible since otherwise the right-hand side

would not be independent of s.
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3.5 Stabilizing, Anti-Stabilizing, and Extremal Solutions

Here we focus on particular solutions of the descriptor Lur’e equation and KYP
inequality. We define stabilizing and anti-stabilizing solutions. We prove that these
are extremal in the sense of definiteness.

Definition 3.5.1 (Stabilizing and anti-stabilizing solutions). [RRV14, Def. 5.1] Let
(E,A,B) ∈ Σn,m with the system space Vsys, and Q = QT ∈ Rn×n, S ∈ Rn×m, and
R = RT ∈ Rm×m be given. A solution (X,K,L) of the descriptor Lur’e equation
(3.35) is called

a) stabilizing, if

rank

[
−λE +A B

K L

]
= n+ q ∀λ ∈ C+; (3.56)

b) anti-stabilizing, if

rank

[
−λE +A B

K L

]
= n+ q ∀λ ∈ C−. (3.57)

Remark 3.5.2 (Stabilizing and anti-stabilizing solutions). A solution (X,K,L) is sta-
bilizing if and only if the system (E,A,B,K,L) ∈ Σn,m,q is outer. Analogously,
(X,K,L) is anti-stabilizing if and only if the system (−E,A,B,K,L) ∈ Σn,m,q is
outer.

Now we state a result on the existence of stabilizing and anti-stabilizing solutions
of a descriptor Lur’e equation, see also [RRV14, Thm. 5.3].

Theorem 3.5.3 (Existence of stabilizing and anti-stabilizing solutions). Let a system
(E,A,B) ∈ Σn,m with the system space Vsys, and Q = QT ∈ Rn×n, S ∈ Rn×m, and
R = RT ∈ Rm×m be given. Assume that the descriptor KYP inequality (3.22) is
solvable.

a) If (E,A,B) is strongly stabilizable, then the descriptor Lur’e equation (3.35) has
a stabilizing solution.

b) If (E,A,B) is strongly anti-stabilizable, then the descriptor Lur’e equation (3.35)
has an anti-stabilizing solution.

Proof. Since statement b) follows from a) by turning to the backward system, we only
prove the first statement. Since the descriptor KYP inequality (3.22) is solvable,
by the KYP lemma (Theorem 3.3.1), the associated Popov function Φ(s) fulfills
Φ(iω) ≥ 0 for all ω ∈ R with iω 6∈ Λ(E,A). Furthermore, since (E,A,B) is strongly
stabilizable, (E,A,B) has no uncontrollable modes on the imaginary axis. Thus by
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Theorem 3.4.2 and Remark 3.4.3, the EKCF of the corresponding even matrix pencil
sE − A has the structure as in Remark 3.4.3. By picking a deflating subspace of
sE − A according to type #2 in Table 3.1 for all blocks of type E1 and applying
Theorem 3.4.11 and Theorem 3.4.9, we finally obtain a stabilizing solution of the
descriptor Lur’e equation (3.35).

In the following theorem we will show that the stabilizing and anti-stabilizing so-
lution of the descriptor Lur’e equation are extremal solutions in terms of definiteness
of ETX, see also [RRV14, Thm. 5.5].

Theorem 3.5.4. Let (E,A,B) ∈ Σn,m with the system space Vsys be impulse control-
lable, and let Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m be given. Assume
that (X,K,L) solves the descriptor Lur’e equation (3.35) and P ∈ Rn×n solves the
descriptor KYP inequality (3.22).

a) If (X,K,L) is a stabilizing solution, then

ETX ≥ ETP.

b) If (X,K,L) is an anti-stabilizing solution, then

ETX ≤ ETP.

Furthermore, if (X,K,L) and
(
X̃, K̃, L̃

)
are stabilizing (anti-stabilizing) solutions,

then

ETX = ETX̃. (3.58)

Proof. Statement b) follows from a) by turning to the backward system. Therefore,
we only prove a): Since (E,A,B) is impulse controllable, there exist W, T ∈ Gln(R)
and F ∈ Rm×n such that EF , AF , BF as well as QF , SF , RF are in the form (3.37)
and (3.38), respectively. Moreover, assume that XF and KF are given as in (3.39)
and let

PF = W−TPT =

[
P11 0
P21 P22

]
be accordingly partitioned. From Lemma 3.4.7 a) it follows that (3.40) is satisfied.
By an argumentation analogous to (3.44), we obtain that

n+ q = rank

[
−λE +A B

K L

]
= rank

[
−λIr +A11 B1

K1 L−K2B2

]
+ n− r ∀λ ∈ C+,

i. e., (X11,K1, L−K2B2) is a stabilizing solution of the Lur’e equation (3.40). From
the proof of Theorem 3.3.1 we further see, that P11 solves the KYP inequality (3.28).
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Now the corresponding maximality result for ODE systems in [Rei11, Thm. 15]
yields X11 ≥ P11. Finally, this results in

ETX = T−TET
FXFT

−1 = T−T
[
X11 0

0 0

]
T−1

≥ T−T
[
P11 0
0 0

]
T−1 = T−TET

FPFT
−1 = ETP.

It remains to prove the uniqueness statement in (3.58). Therefore, assume that
(X,K,L) and

(
X̃, K̃, L̃

)
are stabilizing solutions of the descriptor Lur’e equation.

Then, since X̃ also solves the descriptor KYP inequality, we obtain from the previ-
ously shown result that ETX ≥ ETX̃. Further, by reversing the roles of X and X̃,
we can conclude ETX̃ ≥ ETX. Altogether, this yields ETX = ETX̃.

3.6 Spectral Factorization

In this section the connection of the so far presented theory to spectral factorization
of the Popov function will be presented. This factorization appears to play an im-
portant role in filtering theory and linear-quadratic optimal control as pointed out
in Section 3.8 of this chapter. Early results on this factorization are given, e. g.,
in [Wie49, You61, And69, Wil71]. The most general approach known up to now is
presented in [OV00]. There, a computational method for the spectral factorization
of arbitrary Popov functions with (3.8) is discussed. This procedure relies on a se-
quence of reductions of the Popov function which are based on transformations of
a certain Rosenbrock pencil to filter out a weakly minimal subsystem for which an
algebraic Riccati equation is solved. The solution of this Riccati equation is then
used to construct realizations of the spectral factors. In this work, however, we use
a direct approach which instantly relates a spectral factorization to the solution of a
descriptor KYP inequality without a restriction like (3.8).

Definition 3.6.1 (Spectral factorization). A spectral factorization of a Popov func-
tion Φ(s) ∈ R(s)m×m is a representation

Φ(s) = W∼(s)W (s) (3.59)

for some W (s) ∈ R(s)l×m. The rational function W (s) ∈ R(s)l×m is then called a
spectral factor of Φ(s). A realization of a spectral factor is called a spectral factor
system.

Remark 3.6.2. In the literature such as [Wil71, OV00], a spectral factorization is
often referred to as a decomposition of the form (3.59), where the spectral factor
W (s) is outer. In this work we call any factorization of the form (3.59) a spectral
factorization.
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Obviously, a necessary condition for the existence of a spectral factorization is that
Φ(s) is Hermitian and attains positive semidefinite values on the imaginary axis. We
will now show that each solution of the descriptor KYP inequality (3.22) induces a
spectral factorization, see also [RRV14].

Theorem 3.6.3. Let (E,A,B) ∈ Σn,m with the system space Vsys be given and
assume that Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Assume that
P ∈ Rn×n solves the descriptor KYP inequality (3.22). Let K ∈ Rl×n and L ∈ Rl×m
with [

ATP + PTA+Q PTB + S
BTP + ST R

]
=Vsys

[
KT

LT

] [
K L

]
(3.60)

be given. Then (E,A,B,K,L) ∈ Σn,m,l is a spectral factor system for the Popov
function Φ(s) ∈ R(s)m×m as in (3.2) and the associated spectral factor is given by

W (s) = K(sE −A)−1B + L. (3.61)

In particular, the following statements hold true:

a) If P = X, where (X,K,L) is a stabilizing solution of the descriptor Lur’e equation
(3.35), then W (s) is outer.

b) If P = X, where (X,K,L) is an anti-stabilizing solution of the descriptor Lur’e
equation (3.35), then W (−s) is outer.

Proof. Using (3.24), the result follows from

Φ(s) =

[
(sE −A)−1B

Im

]∼ [
Q S
ST R

] [
(sE −A)−1B

Im

]
(3.60)

=

[
(sE −A)−1B

Im

]∼ [
KT

LT

] [
K L

] [(sE −A)−1B
Im

]
−
[
(sE −A)−1B

Im

]∼ [
ATP + PTA PTB

BTP 0

] [
(sE −A)−1B

Im

]
(3.25)

=

([
K L

] [(sE −A)−1B
Im

])∼([
K L

] [(sE −A)−1B
Im

])
= W∼(s)W (s).

The statements on the spectral factors corresponding to the stabilizing and anti-
stabilizing solutions follow from Proposition 2.2.25.

It follows from the spectral factorization that for K ∈ Rl×n, L ∈ Rl×m with (3.60)
it holds that l ≥ q = rankR(s) Φ(s). In the following we show that we even have
l = rankR(s) Φ(s) for P = X, where (X,K,L) is a solution of the descriptor Lur’e
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equation (3.35). As a consequence, the descriptor Lur’e equation can be seen as a
descriptor KYP inequality in which the rank of the left hand side is minimized. In
particular, we have q ≤ m.

Theorem 3.6.4. Let (E,A,B) ∈ Σn,m with the system space Vsys be given, and
assume that Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Let Φ(s) ∈ R(s)m×m

be the Popov function (3.2), and let q = rankR(s) Φ(s). If (X,K,L) is a solution of
the descriptor Lur’e equation (3.35), then K ∈ Rq×n and L ∈ Kq×m.

Proof. Let W (s) be defined as in (3.61). It follows from Theorem 3.6.3 that for all
ω ∈ R with iω /∈ Λ(E,A) it holds that

Φ(iω) = WH(iω)W (iω),

hence rankR(s)W (s) = q.
On the other hand, Lemma 2.2.26 gives

rankR(s)

[
−sE +A B

K L

]
= n+ q.

From the definition of the solution of a descriptor Lur’e equation, see Definition 3.4.6,
we now directly get K ∈ Rq×n and L ∈ Rq×m.

3.7 Nonpositive Solutions

In this section we investigate the existence of solutions of the descriptor KYP in-
equality with ETP ≤ 0. Such solutions are referred to as nonpositive solutions. The
existence of nonpositive solutions will be of great importance for linear-quadratic op-
timal control (see Section 3.8) and the analysis of dissipative systems (see Section 3.9).
Criteria will be given in terms of the modified Popov function

Ψ : C \ Λ(E,A)→ Cm×m (3.62a)

with

Ψ(λ) =

[
(λE −A)−1B

Im

]H [
Q S
ST R

] [
(λE −A)−1B

Im

]
. (3.62b)

Note that the modified Popov function coincides with the Popov function on the
imaginary axis. Moreover, note that in general, the modified Popov function is in
general neither rational nor meromorphic. The latter fact can be seen by a simple
example. Let λ = γ + iδ and consider

Ψ(λ) = (λ− 1)−H · (λ− 1)−1

=
(
|λ|2 − λ− λ+ 1

)−1

=
(
γ2 + δ2 − 2γ + 1

)−1
.
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Obviously, there exist infinitely many non-isolated pairs (γ, δ) ∈ R2 for which γ2 +
δ2 − 2γ + 1 = 0, so Ψ(·) cannot be meromorphic.

First we show that the nonnegativity of Ψ(·) in the right complex half-plane is
necessary for the existence of a nonpositive solution.

Theorem 3.7.1. Let (E,A,B) ∈ Σn,m with the system space Vsys be given and
assume that Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Assume that
P ∈ Rn×n is a nonpositive solution of the descriptor KYP inequality (3.22). Then
the modified Popov function (3.62) fulfills

Ψ(λ) ≥ 0 ∀λ ∈ C+ \ Λ(E,A). (3.63)

Proof. The statement holds true since, analogous to (3.25), for all λ ∈ C \ Λ(E,A)
we have[

(λE −A)−1B
Im

]H [
ATP + PTA PTB

BTP 0

] [
(λE −A)−1B

Im

]
= 2 Re(λ) ·BT

(
λET −AT

)−1
ETP

(
λE −A

)−1
B.

The descriptor KYP inequality and (3.24) now yield the inequality

Ψ(λ) ≥ −2 Re(λ) ·BT
(
λET −AT

)−1
ETP

(
λE −A

)−1
B ∀λ ∈ C \ Λ(E,A).

Now plugging in some λ ∈ C+ \ Λ(E,A) and using that ETP ≤ 0, we obtain the
desired result.

We now show that, under an additional assumption, the nonnegativity of the mod-
ified Popov function also implies the existence of a nonpositive solution. For this we
need the following two lemmas.

Lemma 3.7.2. Let (E,A,B,C,D) ∈ Σn,m,p be strongly stabilizable and strongly
detectable. Furthermore, assume that the transfer function G(s) = C(sE −A)−1B +
D ∈ RHp×m∞ . Then the index of sE − A is at most one. Furthermore, all finite
eigenvalues of sE −A are in C−.

Proof. Since generalized state-space transformations preserve strong stabilizability
and strong detectability, we can w. l. o. g. assume that sE −A is given in QWF, i. e.,

sE −A =

[
sIr −A11 0

0 sE22 − In−r

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
,

where E22 ∈ Rn−r×n−r is nilpotent, B1 ∈ Rr×m, B2 ∈ Rn−r×m, C1 ∈ Rp×r, and
C2 ∈ Rp×n−r. As in (2.13) we have a decomposition

G(s) = Gsp(s) +Gpoly(s)
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with the strictly proper part Gsp(s) and the polynomial part Gpoly(s).

The assumption that G ∈ RHp×m∞ then implies Gsp(s) = C1(sIr − A11)−1B1 ∈
RHp×m∞ . Strong stabilizability and strong detectability of (E,A,B,C,D) imply sta-
bilizability and detectability of (Ir, A11, B1, C1, D). Then [BIR12, Lem. 8.3] implies
that Λ(A11) ⊂ C−, hence Λ(E,A) ⊂ C−.

It remains to show that the index ν ∈ N0 of sE − A is at most one: Assume that
ν > 1. Then Eν22 = 0 and Eν−1

22 6= 0. The properness of G(s) implies

C2E22B2 = . . . = C2E
ν−1
22 B2 = 0.

By using Proposition 2.2.6, impulse controllability and impulse observability lead to

ker

[
ET

22

BT
2

]
∩ imET

22 = {0}, and (3.64a)

ker

[
E22

C2

]
∩ imE22 = {0}. (3.64b)

By C2E
ν−1
22 B2 = 0 and E22(Eν−1

22 B2) = 0, (3.64b) gives Eν−1
22 B2 = 0. Hence, we have

BT
2

(
ET

22

)ν−1
= 0 and E22

(
ET

22

)ν−1
= 0. Therefore, (3.64a) gives Eν−1

22 = 0 which is
a contradiction.

Lemma 3.7.3.

a) Let two systems (E,A,B,C1, D1) ∈ Σn,m,m, (E,A,B,C2, D2) ∈ Σn,m,p with trans-
fer functions G1(s) = C1(sE − A)−1B + D1 ∈ Glm(R(s)), G2(s) = C2(sE −
A)−1B +D2 ∈ R(s)p×m be given. Then the transfer function of the system

(Ee, Ae, Be, Ce) :=

([
E 0
0 0

]
,

[
A B
C1 D1

]
,

[
0
−Im

]
,
[
C2 D2

])
∈ Σn+m,m,p

is

Ge(s) = G2(s)G−1
1 (s).

b) Let two systems (E,A,B1, C,D1) ∈ Σn,p,m, (E,A,B2, C,D2) ∈ Σn,p,p with trans-
fer functions G1(s) = C(sE−A)−1B1+D1 ∈ R(s)p×m, G2(s) = C(sE−A)−1B2+
D2 ∈ Glp(R(s)) be given. Then the transfer function of the system

(Ee, Ae, Be, Ce) :=

([
E 0
0 0

]
,

[
A B2

C D2

]
,

[
B1

D1

]
,
[
0 −Ip

])
∈ Σn+p,m,p

is

Ge(s) = G−1
2 (s)G1(s).
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Proof. First we prove a): It can be verified that

[
sE −A −B
−C1 −D1

]−1

=

[
(sE −A)−1 − (sE −A)−1BG−1

1 (s)C1(sE −A)−1 −(sE −A)−1BG−1
1 (s)

−G−1
1 (s)C1(sE −A)−1 −G−1

1 (s)

]
,

and therefore, it holds that

Ge(s) = Ce(sEe −Ae)
−1Be

=
[
C2 D2

] [(sE −A)−1BG−1
1 (s)

G−1
1 (s)

]
= C2(sE −A)−1BG−1

1 (s) +D2G
−1
1 (s)

= G2(s)G−1
1 (s).

Statement b) can be proven similarly by checking that

[
sE −A −B2

−C −D2

]−1

=

[
(sE −A)−1 − (sE −A)−1B2G

−1
2 (s)C(sE −A)−1 −(sE −A)−1B2G

−1
2 (s)

−G−1
2 (s)C(sE −A)−1 −G−1

2 (s)

]
,

and thus

Ge(s) = Ce(sEe −Ae)
−1Be

=
[
G−1

2 (s)C(sE −A)−1 G−1
2 (s)

] [B1

D1

]
= G−1

2 (s)C(sE −A)−1B1 +G−1
2 (s)D1

= G−1
2 (s)G1(s).

Theorem 3.7.4. Let (E,A,B) ∈ Σn,m with the system space Vsys be given and
assume that Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Assume that
the modified Popov function (3.62) is nonnegative, i. e., (3.63) holds true. Further,
assume that at least one of the following two assumptions holds true:

a) (E,A,B) is strongly stabilizable and the Popov function (3.2) satisfies

rankR(s) Φ(s) = m;
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b) (E,A,B) is strongly controllable.

Let C1 ∈ Rm×n, C2 ∈ Rp2×n, D1 ∈ Rm×m, and D2 ∈ Rp2×m be given such that[
Q S
ST R

]
=Vsys

[
CT

1 C1 CT
1 D1

DT
1 C1 DT

1D1

]
−
[
CT

2 C2 CT
2 D2

DT
2 C2 DT

2D2

]
, (3.65)

and
G1(s) := C1(sE −A)−1B +D1 ∈ Glm(R(s)). (3.66)

Then the solution set of the descriptor KYP inequality (3.22) is nonempty. Further-
more, the following holds true:

a) There exists a nonpositive solution of the descriptor KYP inequality (3.22).

b) If, furthermore, the system([
E 0
0 0

]
,

[
A B
C1 D1

]
,

[
0
−Im

]
,
[
C2 D2

])
∈ Σn+m,m,p2 (3.67)

is strongly detectable, then all solutions of the descriptor KYP inequality (3.22)
are nonpositive.

Proof. The proof is divided into two main steps. In the first step we prove the result
for a special case. In the second step we show how one can reduce the general problem
to this special case by an appropriate transformation.
Step 1: We show that Theorem 3.7.4 holds true under the additional assumption that
C1 = 0 and D1 = Im:
Step 1.1: We show that, under the additional assumption that the index of sE − A
is at most one and Λ(E,A) ⊂ C−, the solution set of the descriptor KYP inequality
(3.22) is nonempty. Moreover, all its solutions are nonpositive:

Since the modified Popov function and the Popov function coincide on iR, we
obtain

Φ(iω) = Ψ(iω) ≥ 0 ∀ω ∈ R with iω /∈ Λ(E,A).

Then, by Theorem 3.3.1, the descriptor KYP inequality (3.22) has a solution P ∈
Rn×n.

By the additional assumption on sE −A, there exist W, T ∈ Gln(R) with

W (sE −A)T =

[
sIr −A11 0

0 −In−r

]
, A11 ∈ Rr×r, Λ(A11) ⊂ C−.

Since P and C2 can be accordingly transformed, and, in particular, nonpositivity is
preserved under this transformation (see Proposition 3.2.2), we see that it is no loss
of generality to assume that W = T = In.
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3.7 Nonpositive Solutions

Then ETP = PTE implies that any solution P of the descriptor KYP inequality
(3.22) fulfills

P =

[
P11 0
P21 P22

]
,

where P11 ∈ Rr×r is symmetric. By an accordant partition

C2 =
[
C21 C22

]
,

we obtain from the descriptor KYP inequality that

AT
11P11 + P11A11 − CT

21C21 ≥ 0.

In particular, there exists some Q11 ≥ 0 with AT
11P11 + P11A11 = Q11. By Λ(A11) ⊂

C−, we obtain from [ZDG96, Lem. 3.18] that the matrix P11 can be expressed by the
integral

P11 = −
∫ ∞

0
eA

T
11τQ11eA11τdτ ≤ 0,

and hence we obtain

ETP =

[
P11 0
0 0

]
≤ 0.

Step 1.2: We prove that statement b) holds true:
The assumptions C1 = 0 and D1 = Im imply that

rank

−λE +A B
C1 D1

C2 D2

 = rank

−λE +A B
0 Im
C2 D2

 = m+ rank

[
λE −A
C2

]
∀λ ∈ C.

Consequently, the condition that the system (3.67) is strongly detectable is equivalent
to strong detectability of (E,A,B,C2). Furthermore, the assumption C1 = 0 and
D1 = Im implies G1(s) = Im. The latter gives that, for G2(s) := C2(sE − A)−1B +
D2 ∈ R(s)p2×m and all λ ∈ C+ \ Λ(E,A) it holds that

Ψ(λ) = Im −GH
2 (λ)G2(λ) ≥ 0.

As a consequence, G2 ∈ RHp×m∞ . Using that (E,A,B,C2) is strongly detectable,
we can use Lemma 3.7.2 to infer that the index of sE − A is at most one, and all
finite eigenvalues of sE − A are in C−. Then assertion b) follows from the findings
in Step 1.1.
Step 1.3: We prove that statement a) holds true:

By the Kalman decomposition for observability [Dai89, Sect. 2.5], we may w. l. o. g.
assume that

sE −A =

[
sE11 −A11 0
sE21 −A21 sE22 −A22

]
, B =

[
B1

B2

]
, C2 =

[
C21 0

]
, (3.68)
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where (E11, A11, B1, C21) ∈ Σr,m,p2 is completely observable (and therefore, strongly
detectable). Then we have G2(s) = C21(sE11 −A11)−1B1 +D2. By the assumptions
and Theorem 3.3.1, there exists some solution P11 ∈ Rr×r of the descriptor KYP
inequality

[
AT

11P11 + PT
11A11 − CT

21C21 PT
11B1 − CT

21D2

BT
1 P11 −DT

2 C21 Im −DT
2D2.

]
≥Vsys,1 0,

where

Vsys,1 =

{(
x1

u

)
∈ Rr+m : A11x1 +B1u ∈ imE11

}
. (3.69)

Since (E,A,B,C2, D2) is strongly stabilizable and strongly detectable, we can make
use of the results of Step 1.2 to see that ET

11P11 ≤ 0.

By the block triangular structure of E, A, and B, we obtain that

Vsys ⊆ Ṽsys :=


x1

x2

u

 ∈ Rn+m :

(
x1

u

)
∈ Vsys,1

 .

Now define

P =

[
P11 0
0 0

]
∈ Rn×n.

Then we have ETP = PTE ≤ 0, and

[
ATP + PTA− CT

2 C2 PTB − CT
2 D2

BTP −DT
2 C2 Im −DT

2D2.

]

=

AT
11P11 + PT

11A11 − CT
21C21 0 PT

11B1 − CT
21D2

0 0 0
BT

1 P11 −DT
2 C21 0 Im −DT

2D2.

 ≥Ṽsys 0.

Hence, by (3.69), we see that P solves the descriptor KYP inequality (3.22).

Step 2: We prove the theorem for the general case:

Step 2.1: First we show statement a):

Define the rational function

G2(s) := C2(sE −A)−1B +D2 ∈ R(s)p2×m.
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3.7 Nonpositive Solutions

Using (3.24), we obtain that the modified Popov function fulfills

Ψ(λ) =

[
(λE −A)−1B

Im

]H [
Q S
ST R

] [
(λE −A)−1B

Im

]
=

[
(λE −A)−1B

Im

]H [
CT

1 C1 CT
1 D1

DT
1 C1 DT

1D1

] [
(λE −A)−1B

Im

]
−
[
(λE −A)−1B

Im

]H [
CT

2 C2 CT
2 D2

DT
2 C2 DT

2D2

] [
(λE −A)−1B

Im

]
= GH

1 (λ)G1(λ)−GH
2 (λ)G2(λ).

In particular, the function Ge(s) = G2(s)G−1
1 (s) ∈ R(s)p2×m fulfills

Im −GH
e (λ)Ge(λ) ≥ 0 (3.70)

for all λ ∈ C+ \ Λ(E,A) which are no transmission zeros of (E,A,B,C1, D1). Now
define the system

(Ee, Ae, Be, Ce) :=

([
E 0
0 0

]
,

[
A B
C1 D1

]
,

[
0
−Im

]
,
[
C2 D2

])
∈ Σn+m,m,p2 . (3.71)

Then by Lemma 2.2.26 the pencil sEe − Ae is regular. Further, by Lemma 3.7.3 we
obtain

Ce(sEe −Ae)
−1Be = G2(s)G−1

1 (s) = Ge(s).

The structure of Ee, Ae, and Be yields

rank
[
λEe −Ae Be

]
= rank

[
λE −A B

]
+m ∀λ ∈ C.

Hence, strong stabilizability of (E,A,B) implies strong stabilizability of (Ee, Ae, Be).
Now consider the descriptor KYP inequality[

AT
e Pe + PT

e Ae +Qe PT
e Be + Se

BT
e Pe + ST

e Re

]
≥Vsys,e 0, ET

e Pe = PT
e Ee (3.72)

with

Qe = −
[
CT

2 C2 CT
2 D2

DT
2 C2 DT

2D2

]
, Se = 0, Re = Im,

and

Vsys,e =

{(
xe

u

)
∈ Rn+2m : Aexe +Beu ∈ imEe

}
.
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The modified Popov function associated to the descriptor KYP inequality (3.72) then
reads Ψe(λ) = Im −GH

e (λ)Ge(λ). By (3.70) and the results from Step 1, there exists
a nonpositive solution Pe ∈ Rn+m×n+m of (3.72). Partition

Pe =

[
P Pe,12

Pe,21 Pe,22

]
with P ∈ Rn×n. The equation ET

e Pe = PT
e Ee ≤ 0 gives rise to ETP = PTE ≤ 0

and ETPe,12 = 0. It suffices for the desired statement a) to prove that P solves the
original descriptor KYP inequality (3.22).

By definition of Vsys,e, Ee, Ae and Be, we have

Vsys,e =


xu
z

 ∈ Rn+2m :

(
x
u

)
∈ Vsys and z = C1x+D1u

 .

Thus, the matrix

Te :=

In 0
0 Im
C1 D1


fulfills TeVsys = Vsys,e. Further, the relation PT

e,12E = 0 implies[
0 ATPe,12

PT
e,12A PT

e,12B +BTPe,12

]
=Vsys 0.

Thereby, we obtain

0 ≤VsysTT
e

[
AT

e Pe + PT
e Ae +Qe PT

e Be + Se

BT
e Pe + ST

e Re

]
Te

=Vsys

[
ATP + PTA+ CT

1 C1 − CT
2 C2 PTB + CT

1 D1 − CT
2 D2 +ATPe,12

BTP +DT
1 C1 −DT

2 C2 + PT
e,12A DT

1D1 −DT
2D2 + PT

e,12B +BTPe,12

]
=Vsys

[
ATP + PTA+Q PTB + S

BTP + ST R

]
+

[
0 ATPe,12

PT
e,12A PT

e,12B +BTPe,12

]
=Vsys

[
ATP + PTA+Q PTB + S

BTP + ST R

]
.

Step 2.2: We show statement b):
It remains to show that all solutions of the descriptor KYP inequality are non-

positive, if the system (3.67) is strongly detectable. This, however, follows directly
from [

−λEe +Ae

Ce

]
=

−λE +A B
C1 D1

C2 D2

 ∀λ ∈ C.
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Now let P ∈ Rn×n be a solution of the descriptor KYP inequality (3.22). Then

Pe =

[
P 0
0 0

]
solves the descriptor KYP inequality (3.72). Using the results of Step 1, we obtain
that

ET
e Pe =

[
ETP 0

0 0

]
≤ 0,

and therefore, ETP ≤ 0. This completes the proof.

Remark 3.7.5.

a) It follows from Sylvester’s law of inertia [GL96, p. 403] that a decomposition (3.65)
always exists. The only restriction we face is the invertibility of G1(s) ∈ R(s)m×m.

b) For controllable systems governed by ordinary differential equations, it has been
initially claimed by Willems in his seminal article [Wil71] that positivity of the
modified Popov function is also sufficient for the existence of a nonpositive solu-
tion, see also [Tre89, Tre99]. The same author disproved this claim by giving a
counterexample in an erratum [Wil74] shortly after that. This article also con-
tains statement a) of Theorem 3.7.4 for controllable systems governed by ordinary
differential equations (without a proof). Further note that a similar problem has
been considered for image representations of behaviors in [WT98].

Finally in this section, we investigate a further case where the descriptor KYP
inequality a nonpositive solution. Namely, we will show that nonpositive solutions
exist if [

Q S
ST R

]
≥Vsys 0. (3.73)

This is by far simpler to prove than the case treated in Theorem 3.7.4.

Proposition 3.7.6. Let (E,A,B) ∈ Σn,m with the system space Vsys be given and
assume that Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Let (3.73) be
satisfied. Then the descriptor KYP inequality (3.22) has a nonpositive solution.

Proof. This is a simple consequence of that fact that P = 0 is already a solution of
the descriptor KYP inequality.
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3.8 Linear-Quadratic Optimal Control

In this section we discuss the main application of the so far developed theory, namely
the linear-quadratic optimal control problem. This section is divided into two parts.
The first part deals with optimal control problems with zero terminal conditions, i. e.,
we look for controls that stabilize (or anti-stabilize) the system while minimizing a
certain cost functional. These problems will be directly related to stabilizing and
anti-stabilizing solutions of associated descriptor Lur’e equations. The second part
will be devoted to optimal control problems with free terminal conditions. These
are much more involved and could yet not be solved completely. However, there are
some relations to nonpositive solutions of the descriptor KYP inequality that will be
pointed out.

3.8.1 Optimal Control with Zero Terminal Condition

For an interval [t0, t1] ⊆ R ∪ {−∞,∞} and matrices Q = QT ∈ Rn×n, S ∈ Rn×m,
and R = RT ∈ Rm×m, consider the cost functional

J (x, u, t0, t1) =

∫ t1

t0

(
x(τ)
u(τ)

)T [
Q S
ST R

](
x(τ)
u(τ)

)
dτ. (3.74)

Let (E,A,B) ∈ Σn,m and x0 ∈ Rn be given. Recall from (2.7) that B(E,A,B)(x0)
is the set of (x, u) ∈ B(E,A,B) with Ex(0) = Ex0. First we consider two opti-
mal control problems, namely the respective minimization of the cost functional on
the negative and positive time horizon with constraints (x, u) ∈ B(E,A,B)(x0) and
limt→±∞Ex(t) = 0. These are given by

a) V +(Ex0) = inf
{
J (x, u, 0,∞) : (x, u) ∈ B(E,A,B)(x0) and lim

t→∞
Ex(t) = 0

}
,

(3.75)

b) V −(Ex0) = − inf
{
J (x, u,−∞, 0) : (x, u) ∈ B(E,A,B)(x0) and lim

t→−∞
Ex(t) = 0

}
.

(3.76)

We aim to characterize finiteness of V +(Ex0) and V −(Ex0) for all x0 ∈ Rn. Note
that strong stabilizability and strong anti-stabilizability of (E,A,B) are, respectively,
equivalent to the fact that for all x0 ∈ Rn, the sets{

(x, u) ∈ B(E,A,B)(x0) : lim
t→∞

Ex(t) = 0
}
, and{

(x, u) ∈ B(E,A,B)(x0) : lim
t→−∞

Ex(t) = 0
}
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3.8 Linear-Quadratic Optimal Control

are nonempty. Consequently, strong stabilizability and strong anti-stabilizability of
(E,A,B) are, respectively, equivalent to V +(Ex0) <∞ and V −(Ex0) > −∞ for all
x0 ∈ Rn.

To present equivalent criteria for the cost functional and the system, we consider
a class of dissipation functions V : imE → R. That is, V is continuous, V (0) = 0,
and it satisfies the dissipation inequality

J (x, u, t0, t1) + V (Ex(t1)) ≥ V (Ex(t0)) ∀(x, u) ∈ B(E,A,B), t0, t1 ∈ R with t0 ≤ t1.
(3.77)

Assume moreover that V is differentiable. Then the inequality is equivalent to

(
x(t)
u(t)

)T [
Q S
ST R

](
x(t)
u(t)

)
≥ −∇V (Ex(t))Eẋ(t) = −∇V (Ex(t))(Ax(t) +Bu(t))

∀(x, u) ∈ B(E,A,B) and almost all t ∈ R, (3.78)

where ∇V (Ex(t)) ∈ R1×n is the gradient of V in Ex(t).

For quadratic dissipation functions we can make the ansatz

V (Ex0) = xT0P
TEx0, (3.79)

where P ∈ Rn×n is a matrix with PTE = ETP (the latter property makes V (Ex0)
well-defined). Using that

(∇V (Ex0))z = 2xT0P
Tz ∀z ∈ Rn,

the dissipation inequality (3.78) is now equivalent to the property that for all (x, u) ∈
B(E,A,B) it holds that

(
x(t)
u(t)

)T [
ATP + PTA+Q PTB + S

BTP + ST R

](
x(t)
u(t)

)
≥ 0 for almost all t ∈ R.

The relation to the descriptor KYP inequality (3.22) is then based on the fact that
(x, u) ∈ B(E,A,B) pointwisely evolves in Vsys almost everywhere. In particular, each
solution of the descriptor KYP inequality induces a dissipation function via (3.79).
This and the relation to linear-quadratic optimal control will be made more precise
throughout this section.

In the following we show that, under the assumption of impulse controllability, the
existence of stabilizing and anti-stabilizing solutions of the descriptor Lur’e equation
is an equivalent criterion for the finiteness of V + and V −, respectively. We also refer
to [IR14] for a similar consideration in the ODE case. For the proof we make use of
the following two auxiliary results.
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Lemma 3.8.1. Let (E,A,B) ∈ Σn,m. Assume that the index of sE − A is at most
one, and Λ(E,A) ⊂ C−. Then for all x0 ∈ Rn and u ∈ L2([0,∞),Rm), the following
holds true:

a) there exists some unique (x, u) ∈ B(E,A,B)(x0);

b) this trajectory fulfills limt→∞Ex(t) = 0.

Proof. Since for all W, T ∈ Gln(R) it holds that

(x, u) ∈ B(E,A,B)(x0)⇔
(
T−1x, u

)
∈ B(WET,WAT,WB)

(
T−1x0

)
,

we can assume that

sE −A =

[
sIr −A11 0

0 −In−r

]
, B =

[
B1

B2

]
,

where B1 ∈ Rr×m, B2 ∈ Rn−r×m and A11 ∈ Rr×r with Λ(A11) ⊂ C−. Partition

T−1x(t) =

(
x1(t)
x2(t)

)
, T−1x0 =

(
x10

x20

)
according to the block structure of W (sE − A)T . Then the result follows from the
fact that the solution of the ordinary differential equation ẋ1(t) = A11x1(t) +B1u(t),
x1(0) = x10 is unique. Thus

T−1x(t) =

(
eA11tx10 +

∫ t
0 eA11(t−τ)B1u(τ)dτ
−B2u(t)

)
is unique and tends to zero since Λ(A11) ⊂ C− and u ∈ L2([0,∞),Rm).

Lemma 3.8.2. Let (E,A,B) ∈ Σn,m be impulse controllable. Let (x0, u0) ∈ Rn×Rm
be such that Ax0 +Bu0 ∈ imE. Then there exists some infinitely often differentiable
(x, u) ∈ B(E,A,B) with x(0) = x0 and u(0) = u0.

Proof. By Lemma 3.2.1 and Proposition 3.2.2 a) and c) it suffices to show the state-
ment for

sE −A =

[
sIr −A11 0

0 −In−r

]
, B =

[
B1

B2

]
,

where B1 ∈ Rr×m, B2 ∈ Rn−r×m. Then the structure of E, A, and B gives rise to
the existence of some x01 ∈ Rr with

x0 =

(
x01

−B2u0

)
.
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Now define

u(t) = u0, x(t) =

(
eA11tx10 +

∫ t
0 eA11(t−τ)B1u0dτ
−B2u0

)
.

Then the trajectory (x, u) has the desired properties.

Theorem 3.8.3. Let (E,A,B) ∈ Σn,m with the system space Vsys be given and
assume that Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Let the cost
functional J be defined as in (3.74), and let the function V + : imE → R be defined
as in (3.75). Then the following two assertions are equivalent:

a) V +(Ex0) ∈ R for all x0 ∈ Rn.

b) The system (E,A,B) is impulse controllable, has no uncontrollable modes on the
imaginary axis, and the descriptor Lur’e equation (3.35) has a stabilizing solution
(X,K,L).

In the case where the above statements are valid, we have:

i) V +(Ex0) = xT0X
TEx0 for all x0 ∈ Rn.

ii) For all x0 ∈ Rn and (x, u) ∈ B(E,A,B)(x0) such that limt→∞Ex(t) = 0 and
J (x, u, 0,∞) ∈ R it holds that

J (x, u, 0,∞) = V +(Ex0) +

∫ ∞
0
‖Kx(τ) + Lu(τ)‖22dτ. (3.80)

Proof. We first show that b) implies a), i), and ii):

Assume that (E,A,B) is impulse controllable, and (X,K,L) is a stabilizing solu-
tion of the descriptor Lur’e equation (3.35). Then, since

n+ q = rank

[
−λE +A B

K L

]
= rank

[
−λE +A B

]
+ q ∀λ ∈ C+,

and (E,A,B) has no uncontrollable modes on the imaginary axis, we obtain that
(E,A,B) is strongly stabilizable. Let x0 ∈ Rn and (x, u) ∈ B(E,A,B)(x0) be such
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that limt→∞Ex(t) = 0 and J (x, u, 0,∞) <∞. Then we obtain

xT0X
TEx0 = −

∫ ∞
0

d

dτ
x(τ)TXTEx(τ)dτ

= −
∫ ∞

0
ẋ(τ)TETXx(τ) + x(τ)TXTEẋ(τ)dτ

= −
∫ ∞

0
(Ax(τ) +Bu(τ))TXx(τ) + x(τ)TXT(Ax(τ) +Bu(τ))dτ

=

∫ ∞
0

(
x(τ)
u(τ)

)T [−ATX −XTA −XTB
−BTX 0

](
x(τ)
u(τ)

)
dτ

=

∫ ∞
0

(
x(τ)
u(τ)

)T([
Q S
ST R

]
−
[
KTK KTL
LTK LTL

])(
x(τ)
u(τ)

)
dτ

= J (x, u, 0,∞)−
∫ ∞

0
‖Kx(τ) + Lu(τ)‖22 dτ.

This yields
xT0X

TEx0 + ‖Kx+ Lu‖2L2([0,∞),Rq) = J (x, u, 0,∞). (3.81)

This leads to

xT0X
TEx0 ≤ J (x, u, 0,∞) ∀(x, u) ∈ B(E,A,B)(x0) with lim

t→∞
Ex(t) = 0,

and thus
xT0X

TEx0 ≤ V +(Ex0) ∀x0 ∈ Rn. (3.82)

This inequality together with strong stabilizability of (E,A,B) implies that a) holds
true. Now we prove that i) and ii) are valid:

In view of (3.81) and (3.82), it suffices to prove that x0X
TEx0 ≥ V +(Ex0) for

all x0 ∈ Rn. Since the triple (X,K,L) is a stabilizing solution of the descriptor
Lur’e equation (3.35), the system (E,A,B,K,L) ∈ Σn,m,q is outer according to
Definition 2.2.27. Proposition 2.2.29 then implies that there exists some sequence
(uk(·))k∈N in L2([0,∞),Rm) such that

1) for all k ∈ N, there exists a (xk, uk, yk) ∈ B(E,A,B,K,L)(x0) with limt→∞Exk(t) =
0;

2) the sequence (Kxk(·) + Luk(·))k∈N tends to zero in L2([0,∞),Rq).

Therefore, we obtain

V +(Ex0) ≤ lim
k→∞

J (xk, uk, 0,∞)

= xT0X
TEx0 + lim

k→∞
‖Kxk + Luk‖2L2([0,∞),Rq)

= xT0X
TEx0.
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This, together with (3.82) yields statement i) and thus with (3.81) we obtain state-
ment ii).

Now we show that a) implies b):

The assumption that V +(Ex0) < ∞ for all x0 ∈ Rn implies that (E,A,B) is
strongly stabilizable. In particular, it is impulse controllable. Using Lemma 3.2.1,
we obtain that there exist W, T ∈ Gln(R), F ∈ Rm×n such that the index of W (sE−
(A + BF )T is at most one, and further, Λ(WET,W (A + BF )T ) ⊂ C−. Hence, by
Proposition 3.2.2 c) and e), we can w. l. o. g. assume that Λ(E,A) ⊂ C−, and the
index of sE −A is bounded from above by one.

For our proof we first show that V + is a quadratic functional. For this part we face
several technical difficulties. First, in Step 1, we restrict our considerations to square-
integrable solution trajectories and consider an accordingly modified functional Ṽ +.
Due to the restriction of the behavior, the cost functional J (·, ·, 0,∞) is homogeneous
and fulfills the parallelogram identity. From these properties we can show that Ṽ +

is quadratic. In Steps 2 and 3 we show that the restrictions of the behavior have
no influence the costs, in other words, we prove that V + = Ṽ + and hence, V + is
quadratic as well, i. e., V +(Ex0) = xT0E

TY Ex0 with a symmetric Y ∈ Rn×n for all
x0 ∈ Rn. In Step 4 we show how this representation of V + can be used to construct
a solution of the descriptor KYP inequality. Finally, in Step 5, we show that this
solution even defines a stabilizing solution of the descriptor Lur’e equation by making
use of the previously introduced theory of outer systems.

Step 1: We consider the functional

Ṽ +(Ex0) = inf
{
J (x, u, 0,∞) :

(x, u) ∈ B(E,A,B)(x0) ∩
(
L2([0,∞),Rn)× L2([0,∞),Rm)

)}
,

and show that there exists some symmetric Y ∈ Rn×n with Ṽ +(Ex0) = xT0E
TY Ex0

for all x0 ∈ Rn:

First note that, by construction of Ṽ +, we have Ṽ +(Ex0) ≥ V +(Ex0) for all
x0 ∈ Rn. Further, by Λ(E,A) ⊂ C− and the index of sE −A being not greater than
one, we obtain that Ṽ +(Ex0) <∞ for all x0 ∈ Rn.

The assumptions on sE − A together with Lemma 3.8.1 imply that for all u ∈
L2([0,∞),Rm), there exists a unique (x, u) ∈ B(E,A,B)(x0). This trajectory moreover
fulfills

x ∈ L2([0,∞),Rn) and lim
t→∞

Ex(t) = 0.

The functional Ṽ + hence reads

Ṽ +(Ex0) = inf
{
J (x, u, 0,∞) : (x, u) ∈ B(E,A,B)(x0) with u ∈ L2([0,∞),Rm)

}
.
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By simple calculations, we obtain that for all λ ∈ R and (x, u), (x1, u1), (x2, u2) ∈
B(E,A,B) with u, u1, u2 ∈ L2([0,∞),Rm) it holds that

2J (x1, u1, 0,∞) + 2J (x2, u2, 0,∞) = J (x1 + x2, u1 + u2, 0,∞)

+ J (x1 − x2, u1 − u2, 0,∞),

J (λx, λu, 0,∞) = λ2J (x, u, 0,∞).

(3.83)

Now we prove that Ṽ + is a quadratic functional:

We have Ṽ +(0) = 0, since J (0, 0, 0,∞) = 0. Further, the existence of (x, u) ∈
B(E,A,B)(0) with J (x, u, 0,∞) < 0 would imply, by taking scalar multiples of (x, u),

that Ṽ +(0) = −∞. This means that Ṽ +(E(0 · x0)) = 0 = 0 · Ṽ +(Ex0). On the other
hand, for all λ ∈ R \ {0}, x0 ∈ Rn, and ε > 0, the definition of Ṽ + implies that there
exists a trajectory (x, u) ∈ B(E,A,B)(x0) with u ∈ L2([0,∞),Rm) and

J (x, u, 0,∞) ≤ Ṽ +(Ex0) +
ε

λ2
,

and hence it holds that

Ṽ +(E(λx0)) ≤ J (λx, λu, 0,∞)

= λ2J (x, u, 0,∞)

≤ λ2
(
Ṽ +(Ex0) +

ε

λ2

)
= λ2Ṽ +(Ex0) + ε.

Since the above inequality holds for all ε > 0 it follows that

Ṽ +(E(λx0)) ≤ λ2Ṽ +(Ex0). (3.84)

The reverse inequality follows from (3.84) and

Ṽ +(Ex0) = Ṽ +

(
E

(
1

λ
· λx0

))
≤ 1

λ2
Ṽ +(E(λx0)).

Assuming that x01, x02 ∈ Rn and ε > 0, the definition of Ṽ + implies that there
exist (x1, u1) ∈ B(E,A,B)(x01), (x2, u2) ∈ B(E,A,B)(x02) with u1, u2 ∈ L2([0,∞),Rm)
and

J (x1, u1, 0,∞) ≤ Ṽ +(Ex01) +
ε

4
,

J (x2, u2, 0,∞) ≤ Ṽ +(Ex02) +
ε

4
.
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Then, by using (3.83), we obtain

Ṽ + (E(x01 + x02)) + Ṽ + (E(x01 − x02))

≤ J (x1 + x2, u1 + u2, 0,∞) + J (x1 − x2, u1 − u2, 0,∞)

= 2J (x1, u1, 0,∞) + 2J (x2, u2, 0,∞)

≤ 2Ṽ +(Ex01) + 2Ṽ +(Ex02) + ε.

Since the above inequality holds for all ε > 0 we get

Ṽ + (E(x01 + x02)) + Ṽ + (E(x01 − x02)) ≤ 2Ṽ +(Ex01) + 2Ṽ +(Ex02). (3.85)

The reverse inequality follows from (3.85) as follows: For

x̃01 =
1

2
(x01 + x02), x̃02 =

1

2
(x01 − x02) (3.86)

it holds that x̃01 + x̃02 = x01, x̃01 − x̃02 = x02. Then we obtain

2Ṽ +(Ex01) + 2Ṽ +(Ex02) = 2Ṽ +(E(x̃01 + x̃02)) + 2Ṽ +(E(x̃01 − x̃02))

≤ 4Ṽ +(Ex̃01) + 4Ṽ +(Ex̃02)

= 4Ṽ +

(
E

(
1

2
(x01 + x02)

))
+ 4Ṽ +

(
E

(
1

2
(x01 − x02)

))
= Ṽ +(E(x01 + x02)) + Ṽ +(E(x01 − x02)).

Altogether, we can conclude that Ṽ + is again quadratic, i. e., for all x01, x02, x0 ∈ Rn
and λ ∈ R it holds that

2Ṽ +(Ex01) + 2Ṽ +(Ex02) = Ṽ +(E(x01 + x02)) + Ṽ +(E(x01 − x02)),

Ṽ +(E(λx0)) = λ2Ṽ +(Ex0).

This gives rise to the existence of some symmetric Y ∈ Rn×n with

Ṽ +(Ex0) = (Ex0)TY (Ex0) ∀x0 ∈ Rn.

Step 2: We prove that Ṽ + is a dissipation function, i. e., it fulfills the dissipation
inequality (3.77):

Assume that t ≥ 0 and (x, u) ∈ B(E,A,B)(x0). By definition of Ṽ +, there exists
some (x̃, ũ) ∈ B(E,A,B)(x(t)) with (x̃, ũ) ∈ L2([0,∞),Rn)× L2([0,∞),Rm) and

J (x̃, ũ, 0,∞) ≤ Ṽ +(Ex(t)) + ε.
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Consider the concatenation

(x, u) = (x, u) ♦
t

(x̃, ũ) ∈ B(E,A,B)(x0),

Then, by using time-invariance, we obtain

Ṽ +(Ex0) ≤ J (x, u, 0,∞) = J (x, u, 0, t) + J (x, u, t,∞)

= J (x, u, 0, t) + J (x(·+ t), u(·+ t), 0,∞)

= J (x, u, 0, t) + J (x̃, ũ, 0,∞)

≤ J (x, u, 0, t) + Ṽ +(Ex(t)) + ε.

The result follows, since ε > 0 can be made arbitrarily small.

Step 3: We show that Ṽ + = V +:

By construction of Ṽ +, we have Ṽ + ≥ V +. Assume that x0 ∈ Rn and (x, u) ∈
B(E,A,B)(x0) is given such that limt→∞Ex(t) = 0 and J (x, u, 0,∞) ∈ R. Then, since

Ṽ + is a dissipation function, we obtain that for all t ≥ 0 it holds that

Ṽ +(Ex0)− Ṽ +(Ex(t)) ≤ J (x, u, 0, t).

Taking the limit t→∞ and using limt→∞Ex(t) = 0, we obtain

Ṽ +(Ex0) ≤ J (x, u, 0,∞).

This implies Ṽ + ≤ V +.

Step 4: We prove that the matrix X := Y E ∈ Kn×n, where Y ∈ Rn×n is obtained in
Step 1, solves the descriptor KYP inequality:

Let (x0, u0) ∈ Rn × Rm be such that Ax0 + Bu0 ∈ imE. Using Lemma 3.8.2,
we obtain that there exists some continuous (x, u) ∈ B(E,A,B) with x(0) = x0 and
u(0) = u0. The dissipation inequality implies that for all h > 0 we have

x(0)TXTEx(0)− x(h)TXTEx(h)

h
≤ 1

h
· J (x, u, 0, h).

For h→ 0, the right hand side converges to(
x0

u0

)T [
Q S
ST R

](
x0

u0

)
.

The product rule and Eẋ(0) = Ax0 +Bu0 imply that the left hand side converges to(
x0

u0

)T [−ATX −XTA −XTB
−BTX 0

](
x0

u0

)
.
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Altogether this shows that X solves the descriptor KYP inequality (3.22).
Step 5: We prove that the matrix X induces a stabilizing solution of the descriptor
Lur’e equation:

Since by the findings of Step 4, X is a solution of the descriptor KYP inequality,
there exist K̃ ∈ Rl×n, L̃ ∈ Rl×m with[

ATX +XTA+Q XTB + S
BTX + ST R

]
=Vsys

[
K̃T

L̃T

] [
K̃ L̃

]
.

Assume that (x, u) ∈ B(E,A,B)(x0). Then we obtain for all t ≥ 0 that

x(t)TXTEx(t)− xT0XTEx0

=

∫ t

0

d

dτ
x(τ)TXTEx(τ)dτ

=

∫ t

0
ẋ(τ)TETXx(τ) + x(τ)TXTEẋ(τ)dτ

=

∫ t

0
(Ax(τ) +Bu(τ))TXx(τ) + x(τ)TXT(Ax(τ) +Bu(τ))dτ

=

∫ t

0

(
x(τ)
u(τ)

)T [
ATX +XTA XTB

BTX 0

](
x(τ)
u(τ)

)
dτ

=

∫ t

0

(
x(τ)
u(τ)

)T
([

K̃TK̃ K̃TL̃

L̃TK̃ L̃TL̃

]
−
[
Q S
ST R

])(
x(τ)
u(τ)

)
dτ

=

∫ t

0

∥∥K̃x(τ) + L̃u(τ)
∥∥2

2
dτ − J (x, u, 0, t).

By taking the limit t→∞, we obtain

xT0X
TEx0 +

∥∥K̃x+ L̃u
∥∥2

L2([0,∞),Rl)
= J (x, u, 0,∞). (3.87)

By Step 1 and Step 4, we have that for all x0 ∈ Rn, there exists a sequence (uk(·))k∈N
in L2([0,∞),Rm) such that for (uk, xk) ∈ B(E,A,B)(x0) we get

lim
k→∞

J (xk, uk, 0,∞) = xT0X
TEx0.

Consequently, by (3.87), we have

lim
k→∞

∥∥K̃xk + L̃uk
∥∥
L2([0,∞),Rl)

= 0.

By Proposition 2.2.30 there exists some matrix U ∈ Kq×l with orthogonal columns
such that, for K := UK̃ and L := UL̃, the system (E,A,B,K,L) ∈ Σn,m,q is outer
and, further, for all (x, u) ∈ B(E,A,B) it holds that∥∥Kx(t) + Lu(t)

∥∥
2

=
∥∥K̃x(t) + L̃u(t)

∥∥
2

for almost all t ≥ 0.
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By the same argumentation as in Step 4, we can show that[
ATX +XTA+Q XTB + S

BTX + ST R

]
=Vsys

[
KT

LT

] [
K L

]
.

Since (E,A,B,K,L) is outer, we have

rank

[
−λE +A B

K L

]
= n+ q ∀λ ∈ C+.

Hence, (X,K,L) is a stabilizing solution of the descriptor Lur’e equation.

In view of the concept introduced in Definition 2.2.21, we can now present struc-
tural properties of the infimizing controls. In particular, we can characterize whether
some (x, u) ∈ B(E,A,B)(x0) exists with J (x, u, 0,∞) = V +(Ex0). Such an infimizer is
typically called an optimal control . We also refer to [IR14] for a similar consideration
in the ODE case.

Proposition 3.8.4. Let (E,A,B) ∈ Σn,m with the system space Vsys be impulse con-
trollable and Q = QT ∈ Rn×n, S ∈ Rn×m, R = RT ∈ Rm×m. Let the cost functional
J be defined as in (3.74) and let the function V + : imE → R be defined as in (3.75).
Let (X,K,L) be a stabilizing solution of the descriptor Lur’e equation (3.35). As-
sume that (x, u) ∈ ZD(E,A,B,K,L)(x0) with J (x, u, 0,∞) <∞ and limt→∞Ex(t) = 0.
Then it holds that

J (x, u, 0,∞) = V +(Ex0). (3.88)

Furthermore, (x, u) ∈ B(E,A,B)(x0) is uniquely described by this equation if and only
if the zero dynamics of (E,A,B,K,L) are autonomous.

In view of (3.80), we see that (x, u) ∈ B(E,A,B)(x0) fulfills V +(Ex0) = J (x, u, 0,∞)
if and only if we have

Eẋ(t) = Ax(t) +Bu(t), Ex(0) = Ex0, lim
t→∞

Ex(t) = 0,

0 = Kx(t) + Lu(t).
(3.89)

Equivalently, we have (x, u) ∈ ZD(E,A,B,K,L)(x0) with limt→∞Ex(t) = 0.
Hence we can use Definitions 2.2.21 and 2.2.22 to characterize existence and struc-

ture of optimal controls for all x0 ∈ Rn.

Corollary 3.8.5. Let (E,A,B) ∈ Σn,m with the system space Vsys be impulse con-
trollable and let Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m be given. Let
the cost functional J be defined as in (3.74) and let the function V + : imE → R be
defined as in (3.75). Let (X,K,L) be a stabilizing solution of the descriptor Lur’e
equation (3.35). Then the following statements hold true:
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a) For all x0 ∈ Rn, there exists a (x, u) ∈ B(E,A,B)(x0) with V +(Ex0) = J (x, u, 0,∞)
if and only if the zero dynamics of (E,A,B,K,L) are strongly stabilizable.

b) For all x0 ∈ Rn, there exists a unique (x, u) ∈ B(E,A,B)(x0) with V +(Ex0) =
J (x, u, 0,∞) if and only if the zero dynamics of (E,A,B,K,L) are strongly
asymptotically stable.

Remark 3.8.6 (Optimal control, Popov function, even matrix pencil).

a) Let R(s) be the Rosenbrock pencil of (E,A,B,K,L) ∈ Σn,m,q. Then we can use
the structural characterization of the zero dynamics in Proposition 2.2.24 to see
that the following holds true:

i) The zero dynamics of (E,A,B,K,L) are strongly stabilizable if and only if
rankR(λ) = n + p for all λ ∈ C+ and, furthermore, the index of R(s) is at
most one.

ii) The zero dynamics of (E,A,B,K,L) are strongly asymptotically stable if and
only if R(λ) ∈ Gln+m(C) for all λ ∈ C+ and, furthermore, the index of R(s)
is at most one.

b) The two conditions in item ii) are equivalent to the function λ 7→ R(λ)−1 being
bounded in C+. Since, for W (s) = K(sE −A)−1B + L ∈ R(s)q×m it holds that

R−1(s)

=

[
−(sE −A)−1 + (sE −A)−1BW−1(s)K(sE −A)−1 (sE −A)−1BW−1(s)

W−1(s)K(sE −A)−1 W−1(s)

]
,

we obtain that this condition implies that W−1(s) is bounded in C+. Theo-
rem 3.6.3 implies that this condition is equivalent to the fact that the Popov
function Φ(s) in boundedly invertible on iR.

c) Glancing at the proofs of Theorem 3.4.9 and Theorem 3.5.3, we obtain that the
set of invariant zeros of (E,A,B,K,L) is in the set of the finite eigenvalues of the
even matrix pencil sE −A as in (3.29). Invertibility of R(s) (and thus invertibility
of W (s)) corresponds to regularity of sE − A. Furthermore, by comparing with
Table 3.1 the following holds for the Rosenbrock pencil R(s) of an outer system
(E,A,B,K,L):

• each block of type K1 and size k × k in the KCF of R(s) corresponds to a
block of type E1 and size 2k × 2k in the EKCF of sE − A;

• each block of type K2 and size k × k in the KCF of R(s) corresponds to a
block of type E3 and size (2k − 1)× (2k − 1) in the EKCF of sE − A.
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Moreover, the latter statement yields that R(s) has index at most one if and only
if sE − A has index at most one.

d) The transmission zeros of (E,A,B,K,L) are, by Proposition 2.2.25, invariant
zeros of (E,A,B,K,L). Hence, they are finite eigenvalues of sE − A.

e) Assume that for all x0 ∈ Rn, there exists a unique (x, u) ∈ B(E,A,B)(x0) with
limt→∞Ex(t) = 0 and V +(Ex0) = J (x, u, 0,∞). The previous statements yield
that W (s) is boundedly invertible in C+ and, further, the Popov function Φ(s) is
boundedly invertible on iR.

f) A Laplace transform of (3.89) with U(s) := L{u} (s) yields

0 = W (s)U(s) +K(sE −A)−1Ex0.

A multiplication from the left with W∼(s) together with W∼(s)W (s) = Φ(s) gives

0 = Φ(s)U(s) +W∼(s)K(sE −A)−1Ex0.

If Φ(s) ∈ Glm(R(s)), we obtain

U(s) = −Φ−1(s)W∼(s)K(sE −A)−1Ex0.

g) Assume that (x, u) ∈ B(E,A,B)(x0) with limt→∞Ex(t) = 0 and V +(Ex0) =
J (x, u, 0,∞). Then, by using (3.52) and (3.89), we can formally write 0 − d

dtE +A B
d
dtE

T +AT Q S
BT ST R

X 0
In 0
0 Im

(x(·)
u(·)

)

=

 In 0
−XT +HTΣMTT

∞ KT

JTΣMTT
∞ LT

[− d
dtE +A B
K L

](
x(·)
u(·)

)
︸ ︷︷ ︸

≡0

.

In particular, the function µ(·) = Xx(·) is part of a solution of the boundary value
problem  0 E 0

−ET 0 0
0 0 0

µ̇(t)
ẋ(t)
u̇(t)

 =

 0 A B
AT Q S
BT ST R

µ(t)
x(t)
u(t)

 , (3.90)

with Ex(0) = Ex0 and limt→∞ETµ(t) = 0.

On the other hand, if the boundary value problem (3.90) is solvable, then the
solution (µ(·)T, x(·)T, u(·)T)T pointwisely evolves in a deflating subspace corre-
sponding to the eigenvalues in C−. This however implies µ(·) = Xx(·) and hence
the solution of (3.90) is an optimal control. Note that similar statements can also
be found in [Meh91], however in a less general situation.
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h) In the case where the system is governed by an ordinary differential equation, the
pencil [

−sIn +A B
K L

]
(3.91)

is invertible and its index is at most one if and only if L is nonsingular. By simple
row operations, we see that the finite eigenvalues of the pencil in (3.91) are the
eigenvalues of the closed-loop matrix A − BR−1

(
BTX + S

)
. Consequently, our

concept of stabilizing solutions reduces to stabilizing solutions of algebraic Riccati
equations [ZDG96, Sec. 13.2] in the case where R > 0, E = In and the even
matrix pencil sE − A as in (3.29) has no eigenvalues on iR.

Further, note that in this case, a multiplication of the equation 0 = Kx(t)+Lu(t)
from the left with LT yields the optimal control u(t) = −R−1

(
BTX + S

)
x(t).

Therefore, the state trajectory of the optimal control fulfills

ẋ(t) =
(
A−BR−1

(
BTX + S

))
x(t).

Now we formulate a result for the characterization of the functional V −. That
is, we formulate a statement for infimization of the cost functional on the negative
time horizon analogously to Theorem 3.8.3. We will see that a transformation to
the backward system will lead to an equivalent optimization problem for the positive
time horizon.

Theorem 3.8.7. Let (E,A,B) ∈ Σn,m with the system space Vsys be given and
assume that Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m. Let the cost
functional J be defined as in (3.74), and let the function V − : imE → R be defined
as in (3.76). Then the following two assertions are equivalent:

a) V −(Ex0) ∈ R for all x0 ∈ Rn.

b) The system (E,A,B) is impulse controllable, has no uncontrollable modes on the
imaginary axis, and the descriptor Lur’e equation (3.35) has an anti-stabilizing
solution (X,K,L).

In the case where the above statements are valid, we have:

i) V −(Ex0) = xT0X
TEx0 for all x0 ∈ Rn.

ii) For all x0 ∈ Rn and (x, u) ∈ B(E,A,B)(x0) such that limt→−∞Ex(t) = 0 and
J (x, u,−∞, 0) ∈ R it holds that

− J (x, u,−∞, 0) = V −(Ex0)−
∫ 0

−∞
‖Kx(t) + Lu(t)‖22dt. (3.92)
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Proof. This problem can be lead back to Theorem 3.8.3 by considering the following
facts:

1) It holds that

(x(·), u(·)) ∈ B(E,A,B)(x0)⇔ (x(−·), u(−·)) ∈ B(−E,A,B)(x0).

2) The triple (X,K,L) is an anti-stabilizing solution of (3.35) if and only if it is
a stabilizing solution of the descriptor Lur’e equation (3.35) in which E is replaced
by −E.

3) We have

V −(Ex0) = − inf
{
J (x, u, 0,∞) : (x, u) ∈ B(−E,A,B)(x0) and lim

t→∞
Ex(t) = 0

}
.

Finally, we present some equivalences for the finiteness of the cost functionals V +

and V − for strongly controllable systems. In this situation we are able to obtain
a stronger result which relates the feasibility of optimal control problems with zero
terminal conditions to equivalent conditions expressed by the dissipation inequality,
the Popov function, the descriptor KYP inequality, and the descriptor Lur’e equation.
The proof requires the following lemma.

Lemma 3.8.8. Let (E,A,B) ∈ Σn,m be strongly controllable and assume that Q =
QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m are given. Let the cost functional J
be defined as in (3.74). Moreover, let x0 ∈ Rn, (x, u) ∈ B(E,A,B)(x0), and ε > 0 be
given. Then the following statements hold true:

a) If the integral J (x, u, 0,∞) converges and limt→∞Ex(t) = 0, then there exists
some (x, u) ∈ B(E,A,B)(x0) with compact support and

|J (x, u, 0,∞)− J (x, u, 0,∞)| < ε.

b) If the integral J (x, u,−∞, 0) converges and limt→−∞Ex(t) = 0, then there exists
some (x, u) ∈ B(E,A,B)(x0) with compact support and

|J (x, u,−∞, 0)− J (x, u,−∞, 0)| < ε.

c) If the integral J (x, u,−∞,∞) converges and limt→−∞Ex(t) = limt→∞Ex(t) = 0,
then there exists some (x, u) ∈ B(E,A,B)(x0) with compact support and

|J (x, u,−∞,∞)− J (x, u,−∞,∞)| < ε.
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Proof. Statement b) follows from a) by turning to the backward system (−E,A,B) ∈
Σn,m and, further, c) follows from a concatenation of the trajectories obtained in a)
and b). Therefore, it suffices to prove statement a).
Step 1: We show that there exists some constant c > 0 such that for all x0 ∈ Rn there
exists some (x, u) ∈ B(E,A,B)(x0) with (x, u)|[1,∞) ≡ 0 and

|J (x, u, 0, 1)| ≤ c · ‖Ex0‖22 : (3.93)

Let {z1, . . . , zr} be a basis of imE and let x01, . . . , x0r with Ex01 = z1, . . . , Ex0r =
zr be given. By [BR13, Lem. 2.3], there exists a trajectory (xk, uk) ∈ B(E,A,B)(x0k)
with (xk, uk)|[1,∞) ≡ 0 for all k ∈ {1, . . . , r}. Consider the linear operator

F : imE → L2([0,∞),Rn+m),

λ1z1 + . . .+ λrzr 7→ λ1(x1, u1) + . . .+ λr(xr, ur).

Then F(Ex0) ∈ B[E,A,B](x0) with F(Ex0)|[1,∞) = 0. The finite-dimensionality of
imE gives rise to the boundedness of F . Define the constant

κ =

∥∥∥∥[Q S
ST R

]∥∥∥∥
2

.

Then the Cauchy-Schwarz inequality implies that for (x, u) = F(Ex0) we have

|J (x, u, 0, 1)| ≤ κ · ‖(x, u)‖2L2([0,∞),Rn+m) ≤ κ · ‖F‖2 · ‖Ex0‖22.

Thus, (3.93) is satisfied with c = κ · ‖F‖2.
Step 2: We conclude the result:

Let c > 0 be defined as in Step 1. Since limt→∞Ex(t) = 0 and the integral
J (x, u, 0,∞) converges, there exists some T ≥ 0 with

|J (x, u, T − 1,∞)| < ε

2
,

and
c · ‖Ex(T − 1)‖22 <

ε

2
.

Using the shift-invariance of the behavior and the findings in Step 1, we obtain that
there exist some (x̃, ũ) ∈ B(E,A,B) with Ex̃(T −1) = Ex(T −1), (x̃, ũ)|[T,∞) ≡ 0, and

|J (x̃, ũ, T − 1, T )| ≤ c · ‖Ex(T − 1)‖2 < ε

2
.

Now define
(x, u) := (x, u) ♦

T−1
(x̃, ũ).
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Then we obtain by the triangle inequality

|J (x, u, 0,∞)− J (x, u, 0,∞)|
= |J (x, u, 0,∞)− J (x, u, 0, T − 1)− J (x̃, ũ, T − 1,∞)|
< |J (x, u, T − 1,∞)|+ |J (x̃, ũ, T − 1, T )|
< ε.

Now we can formulate the main result. Note that some of the implications have
already been shown for ODE systems in [Wil71, Thm. 2].

Theorem 3.8.9. Let (E,A,B) ∈ Σn,m with the system space Vsys be strongly con-
trollable, let Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m be given. Let the
cost functional J be defined as in (3.74), and let the functions V +, V − : imE → R
be defined as in (3.75) and (3.76). Then the following statements are equivalent:

a) For all T ≥ 0 and (x, u) ∈ B(E,A,B)(0) with Ex(T ) = 0 it holds that J (x, u, 0, T ) ≥
0.

b) For all trajectories (x, u) ∈ B(E,A,B) with limt→∞Ex(t) = limt→−∞Ex(t) = 0
and J (x, u,−∞,∞) <∞ it holds that J (x, u,−∞,∞) ≥ 0.

c) For all x0 ∈ Rn we have V +(Ex0) ∈ R.

d) For all x0 ∈ Rn we have V −(Ex0) ∈ R.

e) There exists some functional V : imE → R that satisfies the dissipation inequality
(3.77).

f) For all ω ∈ R with iω /∈ Λ(E,A), the Popov function (3.2) fulfills Φ(iω) ≥ 0.

g) There exists a P ∈ Rn×n that satisfies the descriptor KYP inequality (3.22).

h) The descriptor Lur’e equation (3.35) has a stabilizing solution.

i) The descriptor Lur’e equation (3.35) has an anti-stabilizing solution.

Moreover, if the above conditions are fulfilled, then for all x0 ∈ Rn it holds that

−∞ < V −(Ex0) ≤ V +(Ex0) <∞. (3.94)
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a)

b)

c)
d)

e)

f)

g)
h)

i)

Figure 3.1: Structure of the proof of Theorem 3.8.9

Proof. The proof is carried out by showing the following implications as in Figure 3.1.
The equivalences “g) ⇔ h)” and “g) ⇔ i)” have been shown in Theorem 3.5.3. The

statement “f) ⇔ g)” has been proven in Theorem 3.3.1. Further, the equivalences “c)
⇔ h)” and “d) ⇔ i)” are subject of Theorem 3.8.3 and Theorem 3.8.7, respectively.

The implication “g) ⇒ e)” follows from the fact that V (Ex0) = xT0E
TPx0 is a dis-

sipation function according to (3.77).
Moreover, the implication “e) ⇒ b)” follows from

J (x, u,−∞,∞) = lim
t→∞
J (x, u,−t, t) ≥ lim

t→∞
(V (Ex(t))− V (Ex(−t))) = 0.

For the proof of “b) ⇒ a)” assume that there exist a T ≥ 0 and a trajectory
(x, u) ∈ B(E,A,B)(0) with Ex(T ) = 0 such that J (x, u, 0, T ) < 0. The concatenation

(x, u) := (0, 0)|(−∞,0] ♦
0

(x, u) ♦
T

(0, 0)|[T,∞) ∈ B(E,A,B)

yields J (x, u,−∞,∞) < 0 which is a contradiction.
Now we show that a) implies b): Assume that b) does not hold true. Then there

exist some ε > 0 and some (x, u) ∈ B(E,A,B) with

lim
t→∞

Ex(t) = lim
t→−∞

Ex(t) = 0

and
J (x, u,−∞,∞) < −ε.
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By Lemma 3.8.8, there exist some T ≥ 0 and a (x, u) ∈ B(E,A,B) with support
contained in [−T, T ], and

|J (x, u,−∞,∞)− J (x, u,−∞,∞)| < ε

2
.

This gives

J (x, u,−T, T ) = J (x, u,−∞,∞) < −ε
2
< 0.

Since Ex(−T ) = Ex(T ) = 0, this is a contradiction to a).
Finally we show that b) implies c): Let x0 ∈ Rn be given. By strong controllability

of (E,A,B), there exists a (x̃, ũ) ∈ B(E,A,B)(x0) such that limt→−∞Ex̃(t) = 0 and
J (x̃, ũ,−∞, 0) converges. Let (x, u) ∈ B(E,A,B)(x0) be such that limt→∞Ex(t) = 0
and J (x, u, 0,∞) converges. Define

(x, u) := (x̃, ũ) ♦
0

(x, u) ∈ B(E,A,B).

Then we obtain

0 ≤ J (x, u,−∞,∞) = J (x̃, ũ,−∞, 0) + J (x, u, 0,∞),

and thus
−J (x̃, ũ,−∞, 0) ≤ J (x, u, 0,∞) ∀(x, u) ∈ B(E,A,B)(x0).

Thus we obtain
−∞ < −J (x̃, ũ,−∞, 0) ≤ V +(Ex0).

The inequality V +(Ex0) < ∞ follows by strong controllability of (E,A,B). The
inequality (3.94) follows, since by b), we have

0 ≤ J (x, u,−∞,∞) = J (x, u,−∞, 0) + J (x, u, 0,∞) ≤ −V −(Ex0) + V +(Ex0)

for all (x, u) ∈ B(E,A,B)(x0)

Remark 3.8.10. The requirement in Theorem 3.3.1 that rankR(s) Φ(s) = m (equiva-
lently sE − A is regular) in the case where (E,A,B) is only strongly stabilizable or
strongly anti-stabilizable seems to be, at least from a linear algebraic point of view,
artificial for solvability of the descriptor KYP inequality. Theorem 3.8.3 and Theo-
rem 3.8.7 however give rise to an interpretation of the solvability of the descriptor
KYP inequality in terms of feasibility of linear-quadratic infimization problems. In-
deed, it might happen that the infimization problem is not feasible even if the Popov
function is positive semidefinite on iR and the system is strongly stabilizable. For
instance, consider the strongly stabilizable system (E,A,B) ∈ Σ1,1 with

E = 1, A = −1, B = Q = R = 0, S = 1,
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and the Popov function Φ(s) = 0. Then the even pencil

sE − A :=

 0 −s− 1 0
s− 1 0 1

0 1 0

 ∈ R[s]3×3

is singular. Moreover, the associated descriptor KYP inequality[
ATP + PTA+Q PTB + S

BTP + ST R

]
=

[
−2P 1

1 0

]
≥ 0

has no solution. The cost functional

J (x, u, 0,∞) =

∫ ∞
0

2x(τ)Tu(τ)dτ

can indeed be made arbitrarily large and negative, since there exists a free control
variable that does not affect the system dynamics but the cost functional.

In the following we briefly consider the case where even equality holds true in the
dissipation inequality (3.77). In view of (3.80) and (3.92), this means that K and L
have zero rows, which means that, by Theorem 3.6.3, the Popov function vanishes.
We present some equivalent statements for the controllable case in the following
theorem.

Theorem 3.8.11. Let (E,A,B) ∈ Σn,m with the system space Vsys be strongly con-
trollable, let Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m be given. Let the
cost functional J be defined as in (3.74), and let the functions V +, V − : imE → R
be defined as in (3.75) and (3.76). Then the following statements are equivalent:

a) For all T ≥ 0 and (x, u) ∈ B(E,A,B)(0) with Ex(T ) = 0 it holds that J (x, u, 0, T ) =
0.

b) For all trajectories (x, u) ∈ B(E,A,B) with limt→∞Ex(t) = limt→−∞Ex(t) = 0
and J (x, u,−∞,∞) <∞ it holds that J (x, u,−∞,∞) = 0.

c) There exists some functional V : imE → R such that

J (x, u, t0, t1) + V (Ex(t1)) = V (Ex(t0))

∀(x, u) ∈ B(E,A,B), and t0, t1 ∈ R with t0 ≤ t1. (3.95)

d) The Popov function (3.2) fulfills Φ(s) = 0.

e) There exists some P ∈ Rn×n with[
ATP + PTA+Q PTB + S

BTP + ST R

]
=Vsys 0, ETP = PTE.
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f) There exists a stabilizing solution (X,K,L) of the descriptor Lur’e equation (3.35).
This solution has the property K ∈ R0×n and L ∈ R0×m.

g) There exists an anti-stabilizing solution (X,K,L) of the descriptor Lur’e equation
(3.35). This solution has the property K ∈ R0×n and L ∈ R0×m.

Moreover, if the above conditions are fulfilled, then for all x0 ∈ Rn it holds that

−∞ < V −(Ex0) = V +(Ex0) <∞. (3.96)

a)

b)

c)

d)

e)

f)

g)

Figure 3.2: Structure of the proof of Theorem 3.8.11

Proof. The proof is carried out by showing the following implications as in Figure 3.2.
The proof that a) and b) are equivalent is analogous to the proof of “a) ⇔ b)” in

Theorem 3.8.9.
The implication “c) ⇒ a)” is trivial.
We show that b) implies c): Assume that for (x, u) ∈ B(E,A,B) with limt→∞Ex(t) =

limt→−∞Ex(t) = 0 it holds J (x, u,−∞,∞) = 0. From Theorem 3.8.9 b) and e) we
obtain that there exists a function V : imE → R that fulfills the dissipation inequal-
ity. In particular, it holds that

J (x, u, t0, t1) + V (Ex(t1)) ≥ V (Ex(t0)). (3.97)

On the other hand we have

J (x, u,−∞, t0) + V (Ex(t0)) ≥ 0,

J (x, u, t1,∞) ≥ V (Ex(t1)).
(3.98)
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Since by assumption

J (x, u,−∞, t0) + J (x, u, t1,∞) = −J (x, u, t0, t1),

we obtain
−J (x, u, t0, t1) + V (Ex(t0)) ≥ V (Ex(t1))

by adding the two inequalities in (3.98). Together with (3.97) this yields the claim.
Now we prove that c) implies f): It follows from c) that

V (Ex0) = J (x, u, 0,∞) ∀(x, u) ∈ B(E,A,B)(x0) with lim
t→∞

Ex(t) = 0.

and therefore, V + = V . By Theorem 3.8.3, there exists a stabilizing solution
(X,K,L) of the descriptor Lur’e equation with K ∈ Kq×n and L ∈ Kq×m. It re-
mains to show that q = 0:

Therefore, assume that q > 0. Then, by the assumption of strong controllability, we
can use Lemma 3.8.2 to infer that there exists some x0 ∈ Rn and a smooth trajectory
(x, u) ∈ B(E,A,B)(x0) with Kx0 + Lu(0) 6= 0,

∫∞
0 ‖Kx(τ) + Lu(τ)‖22dτ < ∞ and

limt→∞Ex(t) = 0. The first two statements imply that

0 <

∫ ∞
0
‖Kx(τ) + Lu(τ)‖22dτ <∞.

We can further conclude from Theorem 3.8.3 and V + = V that

V +(Ex0) = J (x, u, 0,∞) = V +(Ex0) +

∫ ∞
0
‖Kx(τ) + Lu(τ)‖22dτ > V +(Ex0),

which is a contradiction.
The proof that c) implies g) is completely analogous to the proof of “c) ⇒ f)”.
The implications “f) ⇒ e)” and “g) ⇒ e)” are trivial.
Further, by Theorem 3.6.3, we see that e) implies d).
Moreover, e) implies c) since with V (Ex0) = xT0X

TPx0 we have(
x(t)
u(t)

)T [
Q S
ST R

](
x(t)
u(t)

)
= −∇V (Ex(t))(Ax(t) +Bu(t)) = −∇V (Ex(t))Eẋ(t)

∀(x, u) ∈ B(E,A,B) and almost all t ∈ R,

see also (3.78).
Finally, we show that d) implies f): If (E,A,B) is strongly controllable and

Φ(s) = 0, the existence of a stabilizing solution follows from Theorem 3.5.3. By
Theorem 3.6.4, we further have that K ∈ Rq×n and L ∈ Rq×m for

q = rankR(s) Φ(s) = 0.
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Equation (3.96) follows immediately from b) since for all (x, u) ∈ B(E,A,B)(x0) we
have

0 = J (x, u,−∞,∞) = J (x, u,−∞, 0) + J (x, u, 0,∞) = −V −(Ex0) + V +(Ex0).

Remark 3.8.12.

a) We can conclude from (3.96) and Theorem 3.5.4 that, if one of the assertions
a)–g) and the assumptions in Theorem 3.8.11 hold true, then the descriptor KYP
inequality has exactly one solution in the sense that ETP is unique.

b) If one of the assertions a)–g) and the assumptions in Theorem 3.8.11 hold true, it
holds that 0 −sE +A B
sET +AT Q S

BT ST R

X 0
In 0
0 Im

 =

 In
−XT +HTΣMTT

∞
JTΣMTT

∞

 [−sE +A B
]
.

We can further conclude from strong controllability of (E,A,B) that the KCF of
the augmented pencil

[
−sE +A B

]
∈ R[s]n×n+m consists of m blocks of type

K3, and n − r blocks of type K2. Hence, by Theorem 3.4.2 and Remark 3.4.3,
the statements a)–g) are equivalent to the EKCF of sE −A being of the following
structure:

i) There exist neither blocks of type E1 nor blocks of type E2.

ii) There exist exactly 2(n − r) blocks of type E3. These are all of size 1 × 1.
The number of blocks with positive and negative sign-characteristic is equal.

iii) There exist exactly m blocks of type E4.

3.8.2 Optimal Control with Free Terminal Condition

Now we turn to the linear-quadratic optimal control problem with free terminal
conditions. Therefore, we consider the following two optimal value functions [Wil71]:

a) V +
f (Ex0) = inf

{
J (x, u, 0,∞) : (x, u) ∈ B(E,A,B)(x0)

}
, (3.99)

b) V +
n (Ex0) = inf

{
J (x, u, 0, T ) : (x, u) ∈ B(E,A,B)(x0) and T ≥ 0

}
. (3.100)

Clearly, V +
n (Ex0) ≤ 0, since J (x, u, 0, 0) = 0 holds for all (x, u) ∈ B(E,A,B)(x0).

We will prove that, for strongly controllable systems, the finiteness of V +
n or V +

f is
equivalent to the existence of a nonpositive solution of the descriptor KYP inequality.
We also refer to [Wil71, Thm. 1] where some of the following implications are shown
for ODE systems.
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Theorem 3.8.13. Let (E,A,B) ∈ Σn,m with the system space Vsys be strongly con-
trollable, and let Q = QT ∈ Rn×n, S ∈ Rn×m, and R = RT ∈ Rm×m be given. Fur-
ther, let the functions V −, V +

f , and V +
n be defined as in (3.76), (3.99), and (3.100),

respectively. Then the following statements are equivalent:

a) For all T ≥ 0 and (x, u) ∈ B(E,A,B)(0) it holds that J (x, u, 0, T ) ≥ 0.

b) For all (x, u) ∈ B(E,A,B) with limt→−∞Ex(t) = 0 and J (x, u,−∞, 0) < ∞ it
holds that J (x, u,−∞, 0) ≥ 0.

c) For all x0 ∈ Rn we have −∞ < V −(Ex0) ≤ 0.

d) For all x0 ∈ Rn we have −∞ < V +
n (Ex0) ≤ 0.

e) For all x0 ∈ Rn we have V +
f (Ex0) ∈ R.

f) There exists some functional V : imE → (−∞, 0] that satisfies the dissipation
inequality (3.77).

g) The descriptor KYP inequality (3.22) has a nonpositive solution P ∈ Rn×n.

h) There exists an anti-stabilizing solution (X,K,L) to the descriptor Lur’e equation
(3.35) which satisfies ETX ≤ 0.

Furthermore, if the above conditions are fulfilled, then for all x0 ∈ Kn, it holds that

−∞ < V −(Ex0) ≤ V +
n (Ex0) ≤ V +

f (Ex0) ≤ V +(Ex0) <∞.

Proof. The proof is carried out by showing the following implications as in Figure 3.3.
The proof of “a) ⇒ b)” is obtained by contradiction: Assume that b) is not sat-

isfied. Then there exists an ε > 0 and a trajectory (x, u) ∈ B(E,A,B)(x0) with
limt→−∞Ex(t) = 0 such that

J (x, u,−∞, 0) < −ε.

From Lemma 3.8.8 we obtain that there exists a T > 0 and some (x, u) ∈ B(E,A,B)(x0)
with support in [−T, 0] such that

|J (x, u,−∞, 0)− J (x, u,−∞, 0)| < ε

2
.

By shift-invariance of the behavior this gives

J (x, u,−∞, 0) = J (x, u,−T, 0) = J (x(· − T ), u(· − T ), 0, T ) < −ε
2
,

which is a contradiction to a).
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 3.3: Structure of the proof of Theorem 3.8.13

The equivalence between b) and c) is trivial.

The implication “c) ⇒ f)” follows from the fact that the dissipation inequality is
fulfilled by V −, see Theorem 3.8.3.

The implication “f) ⇒ a)” follows from

J (x, u, t0, t1) + V (Ex(t1)) ≥ V (Ex(t0)),

and setting t0 = 0, Ex(t0) = 0 and by using the normalization V (0) = 0.

Now we prove “a) ⇒ d), e)”: Let (x, u) ∈ B(E,A,B) with limt→−∞Ex(t) = 0,
Ex(0) = Ex0, and Ex(T ) = ExT for T ≥ 0 be given. From “a) ⇒ c)” it follows that

−J (x, u,−∞, 0) ≤ J (x, u, 0, T ).

Therefore, the inequalities −∞ < V −(Ex0) ≤ V +
n (Ex0) ≤ V +

f (Ex0) hold which
directly yields d) and e).

The statement “e) ⇒ d)” trivially follows from definition.

Next we prove the implication “d) ⇒ a)”: Assume that (x, u) ∈ B(E,A,B)(0) and
T ≥ 0 with J (x, u, 0, T ) < 0. Then, by linearity of the behavior, we have (k ·x, k ·u) ∈
B(E,A,B)(0) for all k ∈ N, and we obtain

lim
k→∞

J (k · x, k · u, 0, T ) = lim
k→∞

k2 · J (x, u, 0, T ) = −∞.

This is a contradiction to d).
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Now we prove “f) ⇒ g)”: Since f) is equivalent to c) and by Theorem 3.8.7, V −

is a quadratic functional, the claim directly follows since V −(Ex0) = xT0E
TPx0 ≤ 0,

where P is a solution of the descriptor KYP inequality (3.22).

The implication“g)⇒ h)” is shown as follows: If the descriptor KYP inequality has
a solution P with ETP ≤ 0, then by Theorem 3.5.3, there exists an anti-stabilizing
solution (X,K,L) of the descriptor Lur’e equation (3.35). By Theorem 3.5.4 this
solution fulfills ETX ≤ ETP ≤ 0.

To complete the proof, we show “h) ⇒ f)”: Obviously, if the descriptor Lur’e
equation has an anti-stabilizing solution triple (X,K,L) with ETX ≤ 0, then the
desired functional is given by V −(Ex0) = xT0E

TXx0.

The last inequality V +
f (Ex0) ≤ V +(Ex0) <∞ is trivially fulfilled by definition of

the functionals. Finiteness of V + follows from strong controllability.

Remark 3.8.14.

a) We obtain from Theorem 3.8.13 and Theorem 3.7.1 that the finiteness of the
functionals V +

n and V +
f implies that the modified Popov function (3.62) is positive

semidefinite in C+ \ Λ(E,A).

b) If Theorem 3.8.13 holds true and Ψ(iω) = 0 for all ω ∈ R with iω /∈ Λ(E,A),
then Theorem 3.8.11 implies that the descriptor KYP inequality has exactly one
solution. This solution is nonpositive by Theorem 3.8.13.

c) In [Wil71], it has been claimed that the functionals V +
n and V +

f are quadratic
and that they can be expressed by a solution of the descriptor KYP inequality. A
proof that V +

f is a quadratic functional for ODE systems is given in [Gee89] and
an extension of this result to DAE systems seems possible. On the other hand,
it is doubtful that V +

n is quadratic, since the time T for which J (x, u, 0, T ) is
minimized, is variable.

3.9 Dissipative and Cyclo-Dissipative Systems

3.9.1 Systems with General Quadratic Supply Rates

The results of the previous sections will now be applied to the analysis of dissipativity
of differential-algebraic systems. Dissipative systems are provided with an energy
functional depending on inputs and outputs. Loosely speaking, dissipativity means
that the system only consumes and does not produce energy [Wil72a, Wil72b, Brü11b,
Brü11a].
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Definition 3.9.1 (Supply rate, dissipative system). Let Qs = QT
s ∈ Rp×p, Ss ∈

Rp×m, and Rs = RT
s ∈ Rm×m be given. The mapping

s : Rm × Rp → R

(u, y) 7→
(
y
u

)T [
Qs Ss
ST
s Rs

](
y
u

) (3.101)

is called supply rate. The differential-algebraic system (E,A,B,C,D) ∈ Σn,m,p is
called

a) dissipative (with respect to s(·, ·)), if for all T ≥ 0 and all (x, u, y) ∈ B(E,A,B,C,D)(0)
it holds that ∫ T

0
s(u(τ), y(τ))dτ ≥ 0;

b) cyclo-dissipative (with respect to s(·, ·)), if for all T ≥ 0 and all (x, u, y) ∈
B(E,A,B,C,D)(0) with Ex(T ) = 0 it holds that∫ T

0
s(u(τ), y(τ))dτ ≥ 0;

c) lossless dissipative (with respect to s(·, ·)), if it is dissipative and, furthermore, for
all T ≥ 0 and all (x, u, y) ∈ B(E,A,B,C,D)(0) it holds that∫ T

0
s(u(τ), y(τ))dτ = 0;

d) lossless cyclo-dissipative (with respect to s(·, ·)), if it is cyclo-dissipative and, fur-
thermore, for all T ≥ 0 and all (x, u, y) ∈ B(E,A,B,C,D)(0) with Ex(T ) = 0 it holds
that ∫ T

0
s(u(τ), y(τ))dτ = 0.

We will characterize dissipativity and cyclo-dissipativity by means of a linear ma-
trix inequality which is intimately related to the descriptor KYP inequality.

Definition 3.9.2 (Descriptor dissipativity inequality/equation). Let the linear sys-
tem (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in (3.5) be given and
assume that Qs = QT

s ∈ Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m. Let the supply

rate s(·, ·) be defined as in (3.101). Then we say that P ∈ Rn×n solves the

a) descriptor dissipativity inequality, if[
ATP + PTA− CTQsC PTB − CTQsD − CTSs
BTP −DTQsC − ST

s C −DTQsD − ST
s D −DTSs −Rs

]
≤Vsys 0,

ETP = PTE; (3.102)
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b) descriptor dissipativity equation, if[
ATP + PTA− CTQsC PTB − CTQsD − CTSs
BTP −DTQsC − ST

s C −DTQsD − ST
s D −DTSs −Rs

]
=Vsys 0,

ETP = PTE. (3.103)

Remark 3.9.3 (Descriptor dissipativity inequality/equation and (modified) Popov
functions).

a) By defining Q := CTQsC, S := CTQsD +CTSs, R := DTQsD + ST
s D +DTSs +

Rs, and replacing P by −P , we can make use of Theorem 3.8.9 to see that for
strongly controllable systems, cyclo-dissipativity is equivalent to the solvability of
the descriptor dissipativity inequality.

This however, is equivalent to the transfer function G(s) ∈ R(s)p×m of the system
(E,A,B,C,D) ∈ Σn,m,p fulfilling[

G(iω)
Im

]H [
Qs Ss
ST
s Rs

] [
G(iω)
Im

]
≥ 0 ∀ω ∈ R with iω /∈ Λ(E,A). (3.104)

Further, the existence of a solution of the descriptor dissipativity equation is
equivalent to[

G(iω)
Im

]H [
Qs Ss
ST
s Rs

] [
G(iω)
Im

]
= 0 ∀ω ∈ R with iω /∈ Λ(E,A). (3.105)

b) On the other hand, we can employ Theorem 3.8.13 to see that for strongly con-
trollable systems, dissipativity is equivalent to the solvability of the descriptor
dissipativity inequality with ETP ≥ 0. Since the descriptor dissipation inequal-
ity is a special descriptor KYP inequality, it can be treated by Theorem 3.7.1,
Theorem 3.7.4, and Proposition 3.7.6.

In particular, we obtain from Theorem 3.7.1 that solvability of the descriptor
dissipativity inequality with ETP ≥ 0 implies that the transfer function G(s) ∈
R(s)p×m of the system (E,A,B,C,D) ∈ Σn,m,p fulfills[

G(λ)
Im

]H [
Qs Ss
ST
s Rs

] [
G(λ)
Im

]
≥ 0 ∀λ ∈ C+ \ Λ(E,A). (3.106)

Further, the existence of a nonnegative solution of the descriptor dissipativity
equation gives rise to (3.106) with the additional property (3.105).

Following from the above remark we can directly conclude conditions for dissipa-
tivity and cyclo-dissipativity in terms of an associated (modified) Popov function,
formulated in the following corollary.
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Corollary 3.9.4. Let (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in (3.5)
and the transfer function G(s) ∈ R(s)p×m be given and assume that Qs = QT

s ∈ Rp×p,
Ss ∈ Rp×m, and Rs = RT

s ∈ Rm×m. Then the following statements hold true:

a) The system (E,A,B,C,D) is

i) cyclo-dissipative with respect to the supply rate s(·, ·) if and only if (3.104) is
satisfied;

ii) lossless cyclo-dissipative with respect to the supply rate s(·, ·) if and only if
(3.105) is satisfied.

b) Assume that K1 ∈ Rm×p, K2 ∈ Rp2×p, L1 ∈ Rm×m, and L2 ∈ Rp2×m are given
such that [

Qs Ss
ST
s Rs

]
=Ṽsys

[
KT

1 K1 KT
1 L1

LT
1K1 LT

1L1

]
−
[
KT

2 K2 KT
2 L2

LT
2K2 LT

2L2

]
,

with

Ṽsys :=

{(
y
u

)
∈ Rp+m : y = Cx+Du with

(
x
u

)
∈ Vsys

}
and K1G(s) + L1 ∈ Glm(R(s)). Then the system (E,A,B,C,D) is

i) dissipative with respect to the supply rate s(·, ·) if and only if (3.106) holds;

ii) lossless dissipative with respect to the supply rate s(·, ·) if and only if (3.106)
and (3.105) hold.

Proof. The proof is based on the fact that a system (E,A,B,C,D) ∈ Σn,m,p can
be transformed into Kalman decomposition for controllability [BT14]. That is, there
exist W, T ∈ Gln(R), such that

(WET,WAT,WB,CT,D) =

([
E11 E12

0 E22

]
,

[
A11 A12

0 A22

]
,

[
B1

0

]
,
[
C1 C2

]
, D

)
,

where (E11, A11, B1, C1, D) ∈ Σn1,m,p is completely controllable (and hence, strongly
controllable). The transfer functions of (E,A,B,C,D) and (E11, A11, B1, C1, D) co-
incide. Furthermore, by a conforming partition of the state, we obtain that

(x, u, y) ∈ B(E,A,B,C,D)(0) ⇐⇒ (x1, u, y) ∈ B(E11,A11,B1,C1,D)(0),

where x(t) = T−1

(
x1(t)

0

)
.

Thus we can restrict our considerations to the completely controllable subsystem of
(E,A,B,C,D).

Statement a) now follows from Remark 3.9.3 a), whereas Statement b) can be
concluded from Remark 3.9.3 b) together with Theorem 3.7.4 and Theorem 3.8.11.
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In the following we give a corollary that summarizes the relationship between cyclo-
dissipativity and the spectrum of two associated even matrix pencils. For a similar
result see also [Brü11b, Cor. 4.2]. For the formulation of our result we need the
sign-sum function for a Hermitian matrix H ∈ Ck×k. If In(H) = (π+, π0, π−), then
the sign-sum function is defined by

η(H) = π+ + π0 − π−. (3.107)

Corollary 3.9.5. Assume that (E,A,B,C,D) ∈ Σn,m,p be given and let Qs = QT
s ∈

Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m be given. Let the supply rate s(·, ·) be

defined as in (3.101). Furthermore, define Q := CTQsC, S := CTQsD + CTSs,
R := DTQsD + ST

s D +DTSs +Rs. Consider the two even matrix pencils

sE1 −A1 :=

 0 −sE +A B
sET +AT Q S

BT ST R

 ∈ R[s]2n+m×2n+m,

and

sE2 −A2 :=


0 0 0 −sE +A B
0 0 −Ip C D
0 −Ip Qs 0 Ss

sET +AT CT 0 0 0
BT DT ST

s 0 Rs

 ∈ R[s]2(n+p)+m×2(n+p)+m,

Then the following statements are equivalent:

a) The system (E,A,B,C,D) ∈ Σn,m,p is cyclo-dissipative with respect to s(·, ·).

b) The relation (3.104) holds.

c) It holds η(iωE1 −A1) = m for all ω ∈ R with iω /∈ Λ(E,A).

d) It holds η(iωE2 −A2) = m for all ω ∈ R with iω /∈ Λ(E,A).

If furthermore, the system (E,A,B) has no uncontrollable modes on the imaginary
axis, then the statements a)–d) are moreover equivalent to:

e) The EKCF of the pencil sE1−A1 fulfills the statements b) and c) of Theorem 3.4.2.

f) The EKCF of the pencil sE2−A2 fulfills the statements b) and c) of Theorem 3.4.2
with n replaced by n+ p.
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Proof. The equivalence of a) and b) has already been shown in Corollary 3.9.4. The
equivalence of b) and c) follows from

Φ(s) : =

[
G(s)
Im

]∼ [
Qs Ss
ST
s Rs

] [
G(s)
Im

]
=

[
(sE −A)−1B

Im

]∼ [
Q S
ST R

] [
(sE −A)−1B

Im

]
∈ R(s)m×m,

and an application of Lemma 3.4.1 with the fact that

In

([
0 −iωE +A

iωET +AT Q

])
= (n, 0, n) ∀ω ∈ R with iω /∈ Λ(E,A).

Now we show that b) is equivalent to d): It holds

Φ(s) : =

[
G(s)
Im

]∼ [
Qs Ss
ST
s Rs

] [
G(s)
Im

]

=

C(sE −A)−1B +D
(sE −A)−1B

Im

∼ Qs 0 Ss
0 0 0
ST
s 0 Rs

C(sE −A)−1B +D
(sE −A)−1B

Im


=

[
(sEe −Ae)

−1Be

Im

]∼ [
Qe Se

ST
e Re

] [
(sEe −Ae)

−1Be

Im

]
with

sEe−Ae :=

[
0 sE −A
Ip −C

]
, Be =

[
B
D

]
, Qe =

[
Qs 0
0 0

]
, Se =

[
Ss
0

]
, Re = Rs.

By using the same argumentation as for the proof of the equivalence of b) and c) we
obtain the result.

The equivalence of the statements a)–d) and e) and f) in case that (E,A,B) has
no uncontrollable modes on the imaginary axis follows directly from Theorem 3.4.2
and the relation

rank
[
λEe −Ae Be

]
= rank

[
0 λE −A B
Ip −C D

]
= p+ rank

[
λE −A B

]
∀λ ∈ C,

which means that (E,A,B) ∈ Σn,m has no uncontrollable modes on the imaginary
axis if and only if (Ee, Ae, Be) ∈ Σn+p,m has no uncontrollable modes on the imaginary
axis.

In the sequel we turn to energy considerations for differential-algebraic systems.
Therefore, we need the following definitions.
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Definition 3.9.6 ((Virtual) available storage and required supply). [HM80] Let the
system (E,A,B,C,D) ∈ Σn,m,m be given, and for Qs = QT

s ∈ Rp×p, Ss ∈ Rp×m and
Rs = RT

s ∈ Rm×m, let s(·, ·) be a supply rate as in (3.101). Then

a) the available storage is given by Vas : imE → R with

Vas(Ex0) = sup

{
−
∫ T

0
s(u(τ), y(τ))dτ :

T ≥ 0 and (x, u, y) ∈ B(E,A,B,C,D)(x0)

}
; (3.108)

b) the virtual available storage is given by Vvas : imE → R with

Vvas(Ex0) = sup

{
−
∫ ∞

0
s(u(τ), y(τ))dτ :

(x, u, y) ∈ B(E,A,B,C,D)(x0) with lim
t→∞

Ex(t) = 0

}
; (3.109)

c) the required supply is given by Vrs : imE → R with

Vrs(Ex0) = inf

{∫ 0

−∞
s(u(τ), y(τ))dτ :

(x, u, y) ∈ B(E,A,B,C,D)(x0) with lim
t→−∞

Ex(t) = 0

}
. (3.110)

Remark 3.9.7. The integral over the supply rate has the physical interpretation of
the energy supplied to the system. Therefore, the available storage is the maximum
amount of energy which can be extracted from the system initialized with Ex(0) =
Ex0. The virtual available storage is the maximum energy that can be extracted
from stabilizing trajectories, i. e., those that fulfill limt→∞Ex(t) = 0. On the other
hand, the required supply is the minimum amount of energy that has to be put into
the system to steer it from zero state to a final state with Ex(0) = Ex0. Clearly, this
amount is infinite, if Ex0 cannot be reached from zero. Note that “lossless” means
that no energy is dissipated for any input that controls from zero state.

With the above findings, it makes sense to define the following two terms.

Definition 3.9.8 ((Virtual) storage function). [HM80] A function V : imE → R is
called
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a) a storage function if it is continuous, 0 ≤ V (Ex0) <∞ for all x0 ∈ Rn, V (0) = 0,
and∫ t1

t0

s(u(τ), y(τ))dτ + V (Ex(t0)) ≥ V (Ex(t1))

∀(x, u, y) ∈ B(E,A,B,C,D), t0, t1 ∈ R with t0 ≤ t1; (3.111)

b) a virtual storage function if it is continuous, −∞ < V (Ex0) <∞ for all x0 ∈ Rn,
V (0) = 0, and (3.111) holds.

In the following we will give some corollaries that state equivalent characterizations
of dissipativity and cyclo-dissipativity. This will also show that under certain assump-
tions, Vas, Vvas, and Vrs are (virtual) storage functions. These follow by a combination
of Theorem 3.5.3, Theorem 3.5.4, Theorem 3.8.7, Theorem 3.8.13, Remark 3.9.3, and
Corollary 3.9.4.

Corollary 3.9.9. Let (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in (3.5)
be given and assume that Qs = QT

s ∈ Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m.

Let the supply rate s(·, ·) be defined as in (3.101) and let the functions Vas, Vvas, and
Vrs be defined as in (3.108), (3.109), and (3.110), respectively. Then the following
statements are equivalent:

a) The system (E,A,B,C,D) is strongly anti-stabilizable and there exists some P ∈
Rn×n with ETP ≥ 0 solving the descriptor dissipativity inequality (3.102).

b) The required supply fulfills 0 ≤ Vrs(Ex0) <∞ for all x0 ∈ Rn.

If (one of) the conditions a), b) is fulfilled, then the following statements hold true:

i) The system (E,A,B,C,D) is dissipative with respect to the supply rate s(·, ·).

ii) There exists some P+ ∈ Rn×n fulfilling (3.102) with ETP+ ≥ 0, such that for all
x0 ∈ Rn it holds that

Vrs(Ex0) = xT0E
TP+x0 ≥ 0. (3.112)

iii) With P+ as in (3.112) we have: For all solutions Y ∈ Rn×n of the descriptor
dissipativity inequality (3.102) it holds that ETY ≤ ETP+.

iv) The transfer function of (E,A,B,C,D) fulfills (3.106).

If (one of) the conditions a), b) is fulfilled and, moreover, (E,A,B,C,D) is strongly
stabilizable, then there exists some P− ∈ Rn×n fulfilling (3.102) such that for all
x0 ∈ Rn we obtain

Vvas(Ex0) = xT0E
TP−x0. (3.113)
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With P− as in (3.113) it holds: For all Y ∈ Rn×n solving (3.102) we have ETY ≥
ETP−. Moreover, the relation

0 ≤ Vas(Ex0) <∞ ∀x0 ∈ Rn

is fulfilled.

Corollary 3.9.10. Let (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in
(3.5) be given and assume that Qs = QT

s ∈ Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m.

Let the supply rate s(·, ·) be defined as in (3.101) and let the functions Vvas and Vrs

be defined as in (3.109) and (3.110), respectively.. Then the following statements are
equivalent:

a) The system (E,A,B,C,D) is strongly anti-stabilizable and there exists some P ∈
Rn×n solving the descriptor dissipativity inequality (3.102).

b) The required supply fulfills −∞ < Vrs(Ex0) <∞ for all x0 ∈ Rn.

If (one of) the conditions a), b) is fulfilled, then the following statements hold true:

i) (E,A,B,C,D) is cyclo-dissipative with respect to the supply rate s(·, ·).

ii) There exists some P+ ∈ Rn×n fulfilling (3.102) such that for all x0 ∈ Rn it holds
that

Vrs(Ex0) = xT0E
TP+x0. (3.114)

iii) With P+ as in (3.114) holds: For all solutions Y ∈ Rn×n of the descriptor
dissipativity inequality (3.102) it holds that ETY ≤ ETP+.

iv) The transfer function of (E,A,B,C,D) fulfills (3.104).

If (one of) the conditions a), b) is fulfilled and, moreover, (E,A,B,C,D) is strongly
stabilizable, then there exists some P ∈ Rn×n fulfilling (3.102), such that for all
x0 ∈ Rn we obtain

Vvas(Ex0) = xT0E
TP−x0. (3.115)

With P− as in (3.115) it holds: For all Y ∈ Rn×n solving (3.102) we have ETY ≥
ETP−.

Remark 3.9.11.

a) The above two corollaries show that if Vas and Vrs exist, they are both storage
functions in case of a dissipative system. On the other hand, if the functionals
Vvas and Vrs exist, they are virtual storage functions in case of a cyclo-dissipative
system.
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b) Define
Vsys,0 := {x ∈ Rn : Ax ∈ imE} .

If the index of sE−A ∈ R[s]n×n is at most one, CTQsC ≤Vsys,0 0 and if V (Ex0) =
xT0E

TPx0 is a quadratic storage function with ETP >Vsys,0 0, it is simultaneously
a Lyapunov function, that is V (Ex0) > 0 for all x0 ∈ Vsys,0, V (0) = 0, and
d
dtV (Ex(t)) ≤ 0 for all x ∈ B(E,A) [TSH01, p. 55]. The latter statement indeed
follows from

d

dt
V (Ex(t)) = ẋ(t)TETPx(t) + x(t)TPTEẋ(t)

= x(t)T
(
ATP + PTA

)
x(t)

≤ x(t)TCTQsCx(t) ≤ 0.

Therefore, from the theory of Lyapunov functions [Sty02], every dissipative system
that satisfies the above properties is automatically stable.

In the following two corollaries we consider the respective equivalences for the
lossless notions of dissipativity and cyclo-dissipativity. These results follow from the
previous two corollaries and an application of Theorem 3.8.11.

Corollary 3.9.12. Let (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in (3.5)
be strongly controllable and let Qs = QT

s ∈ Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m

be given. Let the supply rate s(·, ·) be defined as in (3.101) and let the functions
Vas, Vvas, and Vrs be defined as in (3.108), (3.109), and (3.110), respectively. Then
the following statements are equivalent:

a) There exists a solution P ∈ Rn×n of the descriptor dissipativity equation (3.103)
with ETP ≥ 0.

b) (E,A,B,C,D) is lossless dissipative with respect to the supply rate s(·, ·).

If (one of) the conditions a), b) is fulfilled, then the following statements hold true:

i) With P ∈ Rn×n as in a) it holds that

Vvas(Ex0) = Vas(Ex0) = Vrs(Ex0) = xT0E
TPx0 ≥ 0 ∀x0 ∈ Rn.

ii) The transfer function of (E,A,B,C,D) fulfills (3.106) and (3.105).

Corollary 3.9.13. Let (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in (3.5)
be strongly controllable and let Qs = QT

s ∈ Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m

be given. Let the supply rate s(·, ·) be defined as in (3.101) and let the functions
Vas, Vvas, and Vrs be defined as in (3.108), (3.109), and (3.110), respectively. Then
the following statements are equivalent:
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a) There exists a solution P ∈ Rn×n of the descriptor dissipativity equation (3.103).

b) (E,A,B,C,D) is lossless cyclo-dissipative with respect to the supply rate s(·, ·).
If (one of) the conditions a), b) is fulfilled, then the following statements hold true:

i) With P ∈ Rn×n as in a) it holds that

Vvas(Ex0) = Vas(Ex0) = Vrs(Ex0) = xT0E
TPx0 ∀x0 ∈ Rn.

ii) The transfer function of (E,A,B,C,D) fulfills (3.105).

Next we analyze whether the condition (3.106) on the transfer function is also
sufficient for dissipativity. The following result is an immediate consequence of The-
orem 3.7.4 (see also Remark 3.9.3).

Corollary 3.9.14. Let the system (E,A,B,C,D) ∈ Σn,m,p with the system space
Vsys as in (3.5) and the transfer function G(s) ∈ R(s)p×m be given. Further assume
that Qs = QT

s ∈ Rp×p, Ss ∈ Rp×m, Rs = RT
s ∈ Rm×m. Let the supply rate s(·, ·) be

defined as in (3.101). Assume that (3.106) holds true. Further, suppose that at least
one of the following two assumptions holds true:

a) (E,A,B,C,D) is strongly stabilizable and there exists some ω ∈ R with iω /∈
Λ(E,A) such that [

G(iω)
Im

]H [
Qs Ss
ST
s Rs

] [
G(iω)
Im

]
> 0.

b) (E,A,B,C,D) is strongly controllable.

Assume that there exist matrices K1 ∈ Rm×p, K2 ∈ Rp2×p, L1 ∈ Rm×m, L2 ∈ Rp2×m
with [

Qs Ss
ST
s Rs

]
=Ṽsys

[
KT

1 K1 KT
1 L1

LT
1K1 LT

1L1

]
−
[
KT

2 K2 KT
2 L2

LT
2K2 LT

2L2

]
(3.116)

and

Ṽsys :=

{(
y
u

)
∈ Rp+m : y = Cx+Du with

(
x
u

)
∈ Vsys

}
such that K1G(s) + L1 ∈ Glm(R(s)). Then there exists a P ∈ Rn×n with ETP ≥ 0
that solves the descriptor dissipativity inequality (3.102). If, furthermore, the system([

E 0
0 0

]
,

[
A B

K1C K1D + L1

]
,

[
0
−Im

]
,
[
K2C K2D + L2

])
∈ Σn+m,m,p2 (3.117)

is strongly detectable, then all P ∈ Rn×n solving the descriptor dissipativity inequality
(3.102) fulfill ETP ≥ 0.

Remark 3.9.15. If the condition (3.117) is fulfilled and thus all solutions of the descrip-
tor dissipativity inequality (3.102) are nonnegative, then even the virtual available
storage is a (proper) storage function.
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3.9.2 Contractive and Passive Systems

Important special cases of dissipative systems are so-called contractive and passive
systems. These classes play a fundamental role for instance in the analysis and de-
sign of electrical circuits as well as mechanical systems [AV73, Smi02, Rei10, RS10a,
RS10b, Rei14]. We will see in the following that, in the case where dissipativity cor-
responds to contractivity or passivity, the results from the above subsection simplify
drastically.

Definition 3.9.16 (Contractivity, passivity). [AV73] A system (E,A,B,C,D) ∈
Σn,m,p is called

a) contractive, if it is dissipative with respect to the supply rate s(u, y) = ‖u‖22−‖y‖22,
i. e., Qs = −Ip, Ss = 0p×m, and Rs = Im.

b) passive, if it is dissipative with respect to the supply rate s(u, y) = 2uTy, i. e.,
p = m, Qs = Rs = 0m×m, and Ss = Im.

Remark 3.9.17.

a) In case of a contractive system, the differential-algebraic dissipativity inequality
reads [

ATP + PTA+ CTC PTB + CTD
BTP +DTC DTD − Im

]
≤Vsys 0, ETP = PTE. (3.118)

For systems governed by ordinary differential equations, solvability of this inequal-
ity with ETP ≥ 0 is covered by the bounded real lemma [And66, AV73]. Note
that equation (3.106) reduces to

Im −GH(λ)G(λ) ≥ 0 ∀λ ∈ C+ \ Λ(E,A). (3.119)

This property is called bounded realness. In particular, due to the special structure
of the modified Popov function, (3.119) even holds for all λ ∈ C+. This however
is equivalent to G ∈ RHp×m∞ with ‖G‖H∞ ≤ 1. Furthermore, equation (3.105) is
equivalent to G(s) being inner, see Definition 2.2.17.

b) In case of a passive system, the associated descriptor dissipativity inequality is[
ATP + PTA PTB − CT

BTP − C −DT −D

]
≤Vsys 0, ETP = PTE. (3.120)

In the case of ordinary differential equations, the solvability of this equation with
ETP ≥ 0 is subject of the positive real lemma [AV73]. The equation (3.106)
reduces to

GH(λ) +G(λ) ≥ 0 ∀λ ∈ C+ \ Λ(E,A). (3.121)

120



3.9 Dissipative and Cyclo-Dissipative Systems

This property is called positive realness [AV73]. Furthermore, for every positive
real function G(s) ∈ R(s)m×m, it holds that P(G) ⊂ C−. To see this, we make
use of the pole-residue representation

G(s) =
∑̀
k=1

Rk
(s− λk)pk

+Gpoly(s)

with the poles λk of multiplicity pk and the associated residues Rk ∈ Cm×m for
k = 1, . . . , `. Assume that there exists a pole λj with positive real part. Then
for λ ∈ C+ \ {λj} close to λj we have the estimate

G(λ) +GH(λ) ≈ Rj(
λ− λj

)pj +
RH
j(

λ− λj
)pj

=
Rj
(
λ− λj

)pj +RH
j

(
λ− λj

)pj((
λ− λj

)(
λ− λj

))pj (3.122)

The denominator of (3.122) is always positive, however, the numerator changes
definiteness in a neighborhood of λj . This is a contradiction to positive realness.
Moreover, it can be shown that positive real functions can have poles on the
imaginary axis with multiplicity at most one [AV73].

In the lossless case, the transfer function is positive real with, moreover,

GH(iω) +G(iω) = 0 ∀ω ∈ R with iω /∈ Λ(E,A). (3.123)

We call the latter property lossless positive realness.

Now we first state a new version of the (lossless) bounded real lemma for DAEs.

Theorem 3.9.18 (Bounded real lemma for DAEs). Let (E,A,B,C,D) ∈ Σn,m,p

with the system space Vsys as in (3.5) and the transfer function G(s) ∈ R(s)p×m be
given.

a) If there exists some P ∈ Rn×n with ETP ≥ 0 fulfilling (3.118), then G(s) is
bounded real, or equivalently, G ∈ RHp×m∞ and ‖G‖H∞ ≤ 1.

b) Assume that G(s) is bounded real, and at least one of the following properties holds
true:

i) (E,A,B,C,D) is strongly stabilizable and there exists some ω ∈ R with iω /∈
Λ(E,A) such that ‖G(iω)‖2 6= 1;

ii) (E,A,B,C,D) is strongly controllable.

Then there exists some P ∈ Rn×n with ETP ≥ 0 fulfilling (3.118).
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c) If, in addition to the assumptions in b), (E,A,B,C,D) is strongly detectable, then
all P ∈ Rn×n satisfying (3.118) fulfill ETP ≥ 0.

Proof. The reason for statement a) has already been mentioned in Remark 3.9.3 b).
Now we prove b): The special structure of the supply rate (i. e., Qs = −Ip, Ss =

0p×m and Rs = Im) implies the following facts:

1) It holds ‖G‖H∞ ≤ 1 if and only if Im −GH(λ)G(λ) ≥ 0 for all λ ∈ C+.

2) For ω ∈ R with iω /∈ Λ(E,A) we have ‖G(iω)‖2 < 1 if and only if the relation
Im −GH(iω)G(iω) > 0 is satisfied.

3) Equation (3.116) holds true for K1 = 0m×p, K2 = Ip, L1 = Im, and L2 = 0p×m.

Since L1 + K1G(s) = Im is invertible, b) now follows immediately from Corol-
lary 3.9.14.

To prove Statement c), it suffices by Corollary 3.9.14 to check that strong de-
tectability of (E,A,B,C,D) implies that the system (3.117) is strongly detectable.
This however is a direct consequence of

rank

−λE +A B
K1C K1D + L1

K2C K2D + L2

 = rank

−λE +A B
0 Im
C D

 = m+ rank

[
−λE +A

C

]
∀λ ∈ C.

Theorem 3.9.19 (Lossless bounded real lemma for DAEs). Let (E,A,B,C,D) ∈
Σn,m,p with the system space Vsys as in (3.5) and the transfer function G(s) ∈ R(s)p×m

be given.

a) If there exists some P ∈ Rn×n with[
ATP + PTA+ CTC PTB + CTD

BTP +DTC DTD − Im

]
=Vsys 0, ETP ≥ 0, (3.124)

then G(s) is inner.

b) If G(s) is inner and (E,A,B,C,D) ∈ Σn,m,p is strongly controllable, then there
exists some P ∈ Rn×n fulfilling (3.124).

Proof. The reason for statement a) is presented in Remark 3.9.3 b).
To prove b), assume that G(s) is inner. Then Theorem 3.8.11 implies that there

exists some P ∈ Rn×n with ETP = PTE and[
ATP + PTA+ CTC PTB + CTD

BTP +DTC DTD − Im

]
=Vsys 0.

Theorem 3.9.18 c) now implies that ETP ≥ 0, hence the result is proven.
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In the following two theorems we finally present new differential-algebraic formu-
lations of the positive real lemma and the lossless positive real lemma.

Theorem 3.9.20 (Positive real lemma for DAEs). Let (E,A,B,C,D) ∈ Σn,m,p with
the system space Vsys as in (3.5) and the transfer function G(s) ∈ R(s)p×m be given.

a) If there exists some P ∈ Rn×n fulfilling (3.120), then G(s) is positive real, i. e.,
G(λ) +GH(λ) ≥ 0 for all λ ∈ C+.

b) Assume that G(s) is positive real, and least one of the following properties holds
true:

i) (E,A,B,C,D) is strongly stabilizable and there exists some ω ∈ R with iω /∈
Λ(E,A) and GH(iω) +G(iω) > 0;

ii) (E,A,B,C,D) is strongly controllable.

Then there exists some P ∈ Rn×n fulfilling (3.120).

c) If, in addition to the assumptions in b), (E,A,B,C,D) ∈ Σn,m,p is strongly de-
tectable, then all P ∈ Rn×n satisfying (3.120) fulfill ETP ≥ 0.

Proof. The reason for statement a) has already been mentioned in Remark 3.9.3 b).

Now we prove b): The special structure of the supply rate (i. e., Qs = Rs =
0m×m, Ss = Im) implies that (3.116) holds true for K1 = L1 = K2 = 1√

2
Im and

L2 = − 1√
2
Im. Then we obtain L1 + K1G(s) = 1√

2
(Im + G(s)). For λ ∈ C+ and

u ∈ Cm \ {0}, we obtain

uH(Im +G(λ))u = ‖u‖22 +
1

2
uH
(
GH(λ) +G(λ)

)
u ≥ ‖u‖22 > 0,

hence L1 + K1G(s) = 1√
2
(Im + G(s)) is invertible. Assertion b) now follows from

Corollary 3.9.14.

To prove Statement c) it suffices by Corollary 3.9.14 to check that strong detectabil-
ity of (E,A,B,C,D) implies that the system (3.117) is strongly detectable. However,
this is a consequence of

rank

−λE +A B
K1C K1D + L1

K2C K2D + L2

 = rank

−λE +A B
1√
2
C 1√

2
(D + Im)

1√
2
C 1√

2
(D − Im)


= m+ rank

[
−λE +A

C

]
∀λ ∈ C. (3.125)
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Theorem 3.9.21 (Lossless positive real lemma for DAEs). Let (E,A,B,C,D) ∈
Σn,m,p with the system space Vsys as in (3.5) and the transfer function G(s) ∈ R(s)p×m

be given.

a) If there exists some P ∈ Rn×n with[
ATP + PTA PTB − CT

BTP − C −DT −D

]
=Vsys 0, ETP ≥ 0, (3.126)

then G(s) is lossless positive real, i. e., positive real with G(iω) + GH(iω) = 0 for
all ω ∈ R with iω 6∈ Λ(E,A).

b) If G(s) is lossless positive real and (E,A,B,C,D) is strongly controllable, then
there exists some P ∈ Rn×n fulfilling (3.126)

Proof. This result can be inferred from Theorem 3.8.11 and Theorem 3.9.20 by using
an argumentation analogous to that in the proof of Theorem 3.9.19.

Remark 3.9.22 (Passivity, contractivity, positive realness, bounded realness).

a) If (E,A,B,C,D) ∈ Σn,m,p is strongly controllable, then by Theorem 3.9.18 its
transfer function is bounded real if and only if (3.118) has a solution P ∈ Rn×n
with ETP ≥ 0. Corollary 3.9.9 implies that (3.118) has such a a solution if and
only if (E,A,B,C,D) is contractive.

b) Analogous argumentations to b) can be made to see that a strongly controllable
system (E,A,B,C,D) ∈ Σn,m,p is lossless contractive (passive, lossless passive) if
and only if G(s) is inner (positive real, lossless positive real).

c) We can conclude from Corollary 3.9.4 that an arbitrary system (E,A,B,C,D) ∈
Σn,m,p is

i) contractive if and only if G ∈ RHp×m∞ and ‖G‖H∞ ≤ 1;

ii) lossless contractive if and only if G(s) is inner;

iii) passive if and only if G(s) is positive real;

iv) lossless passive if and only if G(s) is lossless positive real.

3.10 Normalized Coprime Factorizations

In this part we show that the theory of descriptor Lur’e equations can be used
to construct normalized coprime factorizations of transfer functions. These play
an important role in H∞-controller design [MG89, BB90a], system identification
[dHSdCB95], the computation of the gap metric [Geo88], and model order reduc-
tion [Mey88, MRS11].
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Definition 3.10.1 (Coprime factorizations). Let G(s) ∈ R(s)p×m be given.

a) A right coprime factorization of G(s) ∈ R(s)p×m is given by[
Mr

Nr

]
∈ RHm+p×m

∞

with Mr(s) ∈ Glm(R(s)) and Nr(s) ∈ R(s)p×m such that G(s) = Nr(s)M
−1
r (s),

and there exist Yr ∈ RHm×m∞ and Zr ∈ RHm×p∞ that satisfy the right Bézout
identity

Yr(s)Mr(s) + Zr(s)Nr(s) = Im.

b) A left coprime factorization of G(s) ∈ R(s)p×m is given by[
Ml Nl

]
∈ RHp×p+m∞

with Ml(s) ∈ Glp(R(s)) and Nl(s) ∈ R(s)p×m such that G(s) = M−1
l (s)Nl(s), and

there exist Yl ∈ RHp×p∞ and Zl ∈ RHm×p∞ that satisfy the left Bézout identity

Ml(s)Yl(s) +Nl(s)Zl(s) = Ip.

c) A doubly coprime factorization of G(s) ∈ R(s)p×m is given by a pair[
Mr

Nr

]
∈ RHm+p×m

∞ ,[
Ml Nl

]
∈ RHp×p+m∞ ,

such that G(s) = Nr(s)M
−1
r (s) = M−1

l (s)Nl(s) and there exist Yr ∈ RHm×m∞ ,

Zr ∈ RHm×p∞ , Yl ∈ RHp×p∞ , and Zl ∈ RHm×p∞ that satisfy the double Bézout
identity [

Yr(s) Zr(s)
−Nl(s) Ml(s)

] [
Mr(s) −Zl(s)
Nr(s) Yl(s)

]
= Im+p.

d) A right coprime factorization is called normalized, if additionally

M∼r (s)Mr(s) +N∼r (s)Nr(s) = Im (3.127)

holds true.

e) A left coprime factorization is called normalized, if additionally

Ml(s)M
∼
l (s) +Nl(s)N

∼
l (s) = Ip (3.128)

holds true.
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f) A doubly coprime factorization is called normalized, if additionally[
M∼r (s) N∼r (s)
−Nl(s) Ml(s)

] [
Mr(s) −N∼l (s)
Nr(s) M∼l (s)

]
= Im+p

holds true.

Remark 3.10.2. Property (3.127) is equivalent to[
Mr(s)
Nr(s)

]
being inner. Moreover, relation (3.128) is equivalent to[

Ml(s) Nl(s)
]

begin co-inner, equivalently

[
MH

l (s)
NH

l (s)

]
is inner.

We will construct normalized coprime factorizations on the basis of the following
descriptor Lur’e equations:[

ATXr +XT
r A+ CTC XT

r B + CTD
BTXr +DTC Im +DTD

]
=Vsys,r

[
KT

r

LT
r

] [
Kr Lr

]
, ETXr = XT

r E,

(3.129)
where

Vsys,r :=

{(
x
u

)
∈ Rn+m : Ax+Bu ∈ imE

}
,

and[
AXl +XT

l A
T +BBT XT

l C
T +BDT

CXl +DBT Ip +DDT

]
=Vsys,l

[
KT

l

LT
l

] [
Kl Ll

]
, EXl = XT

l E
T,

(3.130)
where

Vsys,l :=

{(
x
u

)
∈ Rn+m : ATx+ CTu ∈ imET

}
.

Before the normalized coprime factorizations will be constructed, we will analyze the
eigenstructure of the even matrix pencils associated to (3.129) and (3.130). We will in
particular show that the EKCFs of these matrix pencils do not contain any “critical
blocks”.

Lemma 3.10.3. The following two statements hold true:
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a) Assume that (E,A,B,C,D) ∈ Σn,m,p is strongly stabilizable and let r = rankE.
Then the EKCF of the pencil

sEr −Ar :=

 0 −sE +A B
sET +AT CTC CTD

BT DTC Im +DTD

 ∈ R[s]2n+m×2n+m

has the following properties:

i) There do neither exist any blocks of type E2 nor blocks of type E4.

ii) There exist m+ 2(n− r) blocks of type E3. These are of size 1× 1; n− r of
these blocks have negative sign-characteristic; the remaining m+n− r blocks
have positive sign-characteristic.

b) Assume that (E,A,B,C,D) ∈ Σn,m,p is strongly detectable and let r = rankE.
Then the EKCF of the pencil

sEl −Al =

 0 −sET +AT CT

sE +A BBT BDT

C DBT Ip +DDT

 ∈ R[s]2n+p×2n+p

has the following properties:

i) There do neither exist any blocks of type E2 nor blocks of type E4.

ii) There exist p + 2(n − r) blocks of type E3. These are of size 1 × 1; n − r of
these blocks have negative sign-characteristic; the remaining p+ n− r blocks
have positive sign-characteristic.

Proof. We will only show statement a), since b) follows from a) by turning to the
dual system

(
ET, AT, CT, BT, DT

)
∈ Σn,p,m.

First we prove statement i). This assertion will follow from the fact that iωEr−Ar ∈
Gl2n+m(C) for all ω ∈ R. The latter statement will be proven in the following:

Assume that ω ∈ R and let µ, x ∈ Cn and u ∈ Cm be such that 0 −iωE +A B
iωET +AT CTC CTD

BT DTC Im +DTD

µx
u

 = 0. (3.131)

In particular, we have (−iωE +A)x+Bu = 0. A multiplication of (3.131) from the
left with

(
01×n xH uH

)
yields

0 = ‖Cx+Du‖22 + ‖u‖22 + ((−iωE +A)x+Bu)Hµ = ‖Cx+Du‖22 + ‖u‖22.

We can now conclude that u = 0 and Cx = 0. Then (3.131) gives rise to[
iωET +AT

BT

]
µ = 0.
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By the assumption of strong stabilizability, we can use Proposition 2.2.6 to see that
µ = 0. Altogether, we have ker(iωEr −Ar) = {0}, hence iωEr −Ar ∈ Gl2n+m(C).

Now we show ii). The Popov function associated to the descriptor Lur’e equation
(3.129) reads

Φ(s) = Im +G∼(s)G(s). (3.132)

In particular, we have Φ(iω) > 0 for all ω ∈ R with iω /∈ Λ(E,A). Using Theo-
rem 3.4.2, it suffices to show that all blocks of type E3 in the EKCF of sEr −Ar are
of size 1× 1. This is proven in the following:

Since (E,A,B) is impulse controllable, there exist W, T ∈ Gln(R) and F ∈ Rm×n
such that

sEF −AF = W (sE − (A+BF ))T =

[
sIr −A11 0

0 −In−r

]
, BF = WB =

[
B1

B2

]
,

CF = CT =
[
C1 C2

]
, DF = D.

Following the argumentation of Remark 3.4.3, it remains to show that the EKCF of
the pencil

sÊr − Âr := 0 −sIr +A11 B1

sIr +AT
11 CT

1 C1 −CT
1 C2B2 + CT

1 D
BT

1 −BT
2 C

T
2 C1 +DTC1 BT

2 C
T
2 C2B2 −BT

2 C
T
2 D −DTC2B2 + Im +DTD


has exactly m blocks of type E3 of size 1 × 1. However, this fact follows from
BT

2 C
T
2 C2B2−BT

2 C
T
2 D−DTC2B2 + Im +DTD = Im + (D−C2B2)T(D−C2B2) > 0,

which implies that the pencil sÊr − Âr is regular and of index at most one.

Lemma 3.10.4. The following two statements hold true:

a) Assume that (E,A,B,C,D) ∈ Σn,m,p is strongly stabilizable. Then a stabiliz-
ing solution (Xr,Kr, Lr) of the descriptor Lur’e equation (3.129) exists. Fur-
ther, the Rosenbrock pencil Rr(s) of (E,A,B,Kr, Lr) ∈ Σn,m,m is regular with
R−1

r ∈ RHn+m×n+m
∞ .

b) Assume that (E,A,B,C,D) ∈ Σn,m,p is strongly detectable. Then a stabilizing
solution (Xl,Kl, Ll) of the descriptor Lur’e equation (3.130) exists. Further, the
Rosenbrock pencil Rl(s) of

(
ET, AT, CT,Kl, Ll

)
∈ Σn,p,p is regular with R−1

l ∈
RHn+p×n+p

∞ .

Proof. It suffices to prove statement a) since b) follows from a) by turning to the dual
system

(
ET, AT, CT, BT, DT

)
∈ Σn,p,m. Assume that the system (E,A,B,C,D) is

128



3.10 Normalized Coprime Factorizations

strongly stabilizable. Furthermore, P = 0 solves the descriptor KYP inequality
associated to (3.129). The existence of a stabilizing solution (Xr,Kr, Lr) then follows
from Theorem 3.5.3.

By (3.52) and the fact that, by Lemma 3.10.3, the associated even matrix pencil
sEr−Ar is regular, does not have any imaginary eigenvalues and its index is bounded
from above by one, we obtain that Rr(s) is as well regular, it does not have any
eigenvalues on iR, and its index does not exceed one. This means that λ 7→ Rr(λ)−1

is bounded on iR. On the other hand, since (Xr,Kr, Lr) is a stabilizing solution,
R−1

r (s) further does not have any poles in C+. Altogether, we obtain that R−1
r ∈

RHn+m×n+m
∞ .

Theorem 3.10.5. Let (E,A,B,C,D) ∈ Σn,m,p be given and let G(s) ∈ R(s)p×m be
its transfer function. Then the following statements hold true:

a) Assume that (E,A,B,C,D) is strongly stabilizable. Let (Xr,Kr, Lr) be a stabi-
lizing solution of the descriptor Lur’e equation (3.129). Then a normalized right

coprime factorization

[
Mr(s)
Nr(s)

]
∈ R(s)m+p×m of G(s) is realized by

(Er, Ar, Br, Cr) =

([
E 0
0 0

]
,

[
A B
Kr Lr

]
,

[
0
−Im

]
,

[
0 Im
C D

])
∈ Σn+m,m,p+m.

(3.133)

b) Assume that (E,A,B,C,D) is strongly detectable. Let (Xl,Kl, Ll) be a stabilizing
solution of the descriptor Lur’e equation (3.130). Then a normalized left coprime
factorization

[
Ml(s) Nl(s)

]
∈ R(s)p×p+m of G(s) is realized by

(El, Al, Bl, Cl) =

([
E 0
0 0

]
,

[
A KT

l

C LT
l

]
,

[
0 B
Ip D

]
,
[
0 −Ip

])
∈ Σn+p,p+m,p.

(3.134)

c) Assume that (E,A,B,C,D) is strongly stabilizable and strongly detectable. Then
a normalized doubly coprime factorization is given by the normalized left and right
coprime factorizations in (3.134) and (3.133).

Proof. First we prove statement a): Lemma 3.10.4 implies that Mr ∈ RHm×m∞ and
Nr ∈ RHp×m∞ . By Lemma 3.7.3 we obtain

Mr(s) =
[
0 Im

] [sE −A −B
−Kr −Lr

]−1 [
0
−Im

]
=
(
Lr +Kr(sE −A)−1B

)−1
,

and

Nr(s) =
[
C D

] [sE −A −B
−Kr −Lr

]−1 [
0
−Im

]
= G(s) ·

(
Lr +Kr(sE −A)−1B

)−1
.
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Thus we obtain

Nr(s)M
−1
r (s) = G(s).

Since by Lemma 3.10.4, sEr − Ar is regular and of index at most one, we have
Lr ∈ Glm(R). By using the Schur complement, we obtain another realization for[
Mr(s)
Nr(s)

]
given by

(
Ẽr, Ãr, B̃r, C̃r, D̃r

)
:=

(
E,A−BL−1

r Kr, BL
−1
r ,

[
−L−1

r Kr

C −DL−1
r Kr

]
,

[
L−1

r

DL−1
r

])
∈ Σn,m,m+p.

Since sẼr − Ãr is regular and of index at most one and all its eigenvalues are in C−,

we see from [WB89] (see also [Var98, Lem. 1]) that

[
Mr(s)
Nr(s)

]
is indeed a right coprime

factorization.

It remains to show that

[
Mr(s)
Nr(s)

]
is inner, i. e., there exists a solution to the de-

scriptor dissipativity equality

[
AT

r Pr + PT
r Ar + CT

r Cr PT
r Br

BT
r Pr −Im

]
=Ṽsys,r 0, ET

r Pr ≥ 0

with the subspace

Ṽsys,r :=


x1

x2

u

 ∈ Rn+2m :

(
x1

x2

)
∈ Vsys,r and Krx1 + Lrx2 = u

 .

Indeed, for x1

x2

u

 ∈ Ṽsys,r and Pr =

[
Xr 0
0 0

]
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we obtain

x1

x2

u

T



[
A B
Kr Lr

]T [
Xr 0
0 0

]
+

[
Xr 0
0 0

]T [
A B
Kr Lr

]
+

[
0 Im
C D

]T [
0 Im
C D

] [
Xr 0
0 0

]T [
0
−Im

]
[

0
−Im

]T [
Xr 0
0 0

]
−Im


x1

x2

u



=

 x1

x2

Krx1 + Lrx2

T ATXr +XT
r A+ CTC XT

r B + CTD 0
BTXr +DTC Im +DTD 0

0 0 −Im


·

 x1

x2

Krx1 + Lrx2


=

(
x1

x2

)T([
ATXr +XT

r A+ CTC XT
r B + CTD

BTXr +DTC Im +DTD

]
−
[
KT

r

LT
r

] [
Kr Lr

])(x1

x2

)
= 0,

and

ET
r Pr =

[
ETXr 0

0 0

]
≥ 0

which shows the claim.
Statement b) is proven in an analogous fashion. Lemma 3.10.4 implies that Ml ∈
RHp×p∞ and Nl ∈ RHp×m∞ . By Lemma 3.7.3 we obtain

Ml(s) =
[
0 −Ip

] [sE −A −KT
l

−C −LT
l

]−1 [
0
Ip

]
=
(
LT

l + C(sE −A)−1KT
l

)−1
,

and

Nl(s) =
[
0 −Ip

] [sE −A −KT
l

−C −LT
l

]−1 [
B
D

]
=
(
LT

l + C(sE −A)−1KT
l

)−1 ·G(s).

Thus we obtain
M−1

l (s)Nl(s) = G(s).

From [WB89] it follows that
[
Ml(s) Nl(s)

]
is a left coprime factorization.

Now we show that
[
Ml(s) Nl(s)

]
is co-inner, i. e.,[

MH
l (s)

NH
l (s)

]
=

[
0 Ip
BT DT

] [
sET −AT −CT

−Kl −Ll

]−1 [
0
−Ip

]
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is inner. This rational function, however, has a similar structure as

[
Mr(s)
Nr(s)

]
(in fact

the matrices E, A, B, C, and D are replaced by those of the dual system). Therefore,

we can use analogous arguments as in the proof of a) to show that

[
MH

l (s)
NH

l (s)

]
is inner.

Finally we show statement c). The doubly coprimeness follows from [WB89]. By
construction it holds that

M∼r (s)Mr(s) +N∼r (s)Nr(s) = Im,

Ml(s)M
∼
l (s) +Nl(s)N

∼
l (s) = Ip.

Moreover, by construction we have

−Nl(s)Mr(s) +Ml(s)Nr(s) = 0,

−M∼r (s)N∼l (s) +N∼r (s)M∼l (s) = 0.

This shows the result and finalizes the proof.

Example 3.10.6. To illustrate the result of Theorem 3.10.5, we consider the matrices

E =

[
1 0
0 0

]
, A =

[
1 0
0 −1

]
, B =

[
1
0

]
, C =

[
1 0

]
, D = 0.

The system (E,A,B,C,D) ∈ Σ2,1,1 is strongly stabilizable with transfer function

G(s) =
[
1 0

] [s− 1 0
0 1

]−1 [
1
0

]
=

1

s− 1
.

From ETXr = XT
r E we obtain

Xr =

[
x11 0
x21 x22

]
,

and the descriptor Lur’e equation (3.129) is2x11 + 1 −x21 x11

−x21 −2x22 0
x11 0 1

 =Vsys,r

k1

k2

`

 [k1 k2 `
]
, (3.135)

where Kr =
[
k1 k2

]
and Lr = `. Then a straight-forward calculation shows that a

stabilizing and maximal solution of (3.135) is given by

(Xr,Kr, Lr) =

([
1 +
√

2 0
0 0

]
,
[
1 +
√

2 0
]
, 1

)
.
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Then Theorem 3.10.5 yields

Mr(s) =
[
0 0 1

]  s− 1 0 −1
0 1 0

−1−
√

2 0 −1

−1  0
0
−1

 =
s− 1

s+
√

2
∈ RH1×1

∞ ,

Nr(s) =
[
1 0 0

]  s− 1 0 −1
0 1 0

−1−
√

2 0 −1

−1  0
0
−1

 =
1

s+
√

2
∈ RH1×1

∞ .

Obviously, we have G(s) = Nr(s)M
−1
r (s). Moreover, a simple calculation shows

M∼r (s)Mr(s) + Nr(s)
∼Nr(s) = 1, i. e., we have indeed calculated a right normalized

coprime factorization. By a completely analogous computation, we further obtain
Ml(s) = Mr(s) and Nl(s) = Nr(s) as the corresponding left normalized coprime
factors.

Remark 3.10.7 (Normalized coprime factorizations).

a) If E = In, then the descriptor Lur’e equations (3.129) and (3.130) reduce to
algebraic Riccati equations

ATXr +XrA+ CTC −
(
XrB + CTD

)(
Im +DTD

)−1(
XrB + CTD

)T
= 0,

Xr = XT
r ,

AXl +XlA
T +BBT −

(
XlC

T +BDT
)(
Ip +DDT

)−1(
XlC

T +BDT
)T

= 0,

Xl = XT
l .

The matrices Kr and Lr can be chosen as Lr ∈ Glm(R) with Lr =
(
Im +DTD

)1/2
and Kr = L−Tr

(
BTXr + DTC

)
. In this case we can see that the realization of[

Mr(s)
Nr(s)

]
in Theorem 3.10.5 reduces to

(
In, A−BL−1

r Kr, BL
−1
r ,

[
−L−1

r Kr

C −DL−1
r Kr

]
,

[
L−1

r

DL−1
r

])
∈ Σn,m,m+p.

Similarly, the matrices Kl and Ll can be chosen such that Ll ∈ Glp(R) with

Ll =
(
Ip +DDT

)1/2
and Kl = L−Tl

(
CXl +DBT

)
. In this case the realization of[

Ml(s) Nl(s)
]

in Theorem 3.10.5 reduces to(
In, A−KT

l L
−T
l C,

[
−KT

l L
−T
l B −KT

l L
−T
l D

]
, L−Tl C,

[
L−Tl L−Tl D

])
∈ Σn,p+m,p.

These are also the realizations that have been obtained in [ZDG96, Sect. 13.8].
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b) Algorithms for computing normalized coprime factorizations via (generalized) al-
gebraic Riccati equations are outlined in [Var98]. These methods are based on an
orthogonal factorization of the Rosenbrock pencil[

−sE +A B
C D

]
∈ R[s]n+p×n+m

to extract a Rosenbrock subpencil[
−sÊ + Â B̂

Ĉ D̂

]
∈ R[s]r+p×r+m

with nonsingular Ê ∈ Rr×r, which corresponds to an inherent generalized state-
space system. The generalized ARE for computing the right normalized coprime
factorization is then given by

ÂTX̂rÊ + ÊTX̂rÂ+ ĈTĈ

−
(
ÊTX̂rB̂ + ĈTD̂

)(
Im + D̂TD̂

)−1(
ÊTX̂rB̂ + ĈTD̂

)T
= 0, X̂r = X̂T

r .

Note that this equation can always be formed since Im + D̂TD̂ > 0.

3.11 Inner-Outer Factorizations

We show that the previously obtained results can be used to construct inner-outer
factorizations of arbitrary rational matrices. Such factorizations play a crucial role
in H∞-control [Fra87, Gre88, ZDG96].

Definition 3.11.1. Let G(s) ∈ R(s)p×m with q = rankR(s)G(s) be given. An inner-
outer factorization of G(s) is a representation

G(s) = Gi(s)Go(s),

where Gi(s) ∈ R(s)p×q is inner, and Go(s) ∈ R(s)q×m is outer.

We will construct a realization of the inner and outer factors of the transfer function
G(s). The basis for such a construction will be the following descriptor Lur’e equation:[

ATX +XTA+ CTC XTB + CTD
BTX +DTC DTD

]
=Vsys

[
KT

LT

] [
K L

]
, ETX = XTE,

(3.136)
where Vsys is the system space of (E,A,B) as in (3.5). We first prove that, if
(E,A,B,C,D) ∈ Σn,m,p is strongly stabilizable, then (3.136) has a positive stabi-
lizing solution.
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Proposition 3.11.2. Let (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in
(3.5) be strongly stabilizable. Then the descriptor Lur’e equation (3.136) has a stabi-
lizing solution (X,K,L). This solution fulfills ETX ≥ 0.

Proof. The existence of a stabilizing solution follows from Theorem 3.5.3. Since,
furthermore, P = 0 solves the descriptor KYP inequality associated to (3.136), we
obtain from Theorem 3.5.4 that ETX ≥ 0.

This solution will be the basis for our construction of inner-outer factorizations.
The following two auxiliary results will be further used for this construction and its
proof.

Lemma 3.11.3. Let a system (E,A,B,C,D) ∈ Σn,m,p with transfer function G(s) ∈
R(s)p×m be given. Denote q = rankR(s)G(s). Then there exists some matrix Z ∈
Rm×q such that

a) each column vector of Z consists of a canonical unit vector, and

b) rankR(s)G(s)Z = q.

If, further, q = p and Z has the above properties, then the following statements hold
true:

i) It holds that [
−sE +A BZ

C DZ

]
∈ Gln+p(R(s)).

ii) The function

P(s) = Z(G(s)Z)−1G(s) ∈ R(s)p×p

is a projector onto imR(s)G(s) and along kerR(s)G(s).

Proof. Denote the k-th canonical unit vector by ek ∈ Rm. Since the set of column
vectors of G(s) can be reduced to a basis of imR(s)G(s) and dim imR(s)G(s) = q,
there exist i1, . . . , iq such that{

G(s)ei1 , . . . , G(s)eiq
}

is a basis of imR(s)G(s). Then the matrix

Z =
[
ei1 · · · eiq

]
has the properties a) and b).

If, further, q = p, then the function G(s)Z is invertible. Statement i) can now be
concluded from Lemma 2.2.26, ii) follows by simple calculations.
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Lemma 3.11.4. Let G(s) ∈ R(s)p×m be given. Assume that P(s) ∈ R(s)m×m is
a projector with kerR(s) P(s) ⊆ kerR(s)G(s). Then we have G(s)P(s) = G(s).

Proof. Let x(s) ∈ R(s)m be given. Since P(s) is a projector, we have x(s) = x1(s) +
x2(s) with x1(s) ∈ imR(s) P(s) and x2(s) ∈ kerR(s) P(s). Moreover, since we have
x1(s) = P(s)y1(s) for some y1(s) ∈ R(s)m, we obtain x1(s) = P(s)x1(s). This yields
the claim, since it holds that

G(s)x(s) = G(s)x1(s) = G(s)P(s)x1(s) = G(s)P(s)x(s).

Now we formulate our main result on inner-outer factorizations.

Theorem 3.11.5. Let (E,A,B,C,D) ∈ Σn,m,p with the system space Vsys as in (3.5)
be strongly stabilizable and let G(s) ∈ R(s)p×m be the associated transfer function.
For q = rankR(s)G(s), let Z ∈ Rm×q be a matrix whose column vectors are canonical
unit vectors, and rankR(s)G(s)Z = q. Let (X,K,L) be a stabilizing solution of the
descriptor Lur’e equation (3.136). Then an inner-outer factorization of G(s) is given
by G(s) = Gi(s)Go(s), where Gi(s) ∈ R(s)p×q is realized by

(Ei, Ai, Bi, Ci) :=

([
E 0
0 0

]
,

[
A BZ
K LZ

]
,

[
0
−Iq

]
,
[
C DZ

])
∈ Σn+q,q,p,

and Go(s) ∈ R(s)q×m is realized by

(Eo, Ao, Bo, Co, Do) := (E,A,B,K,L) ∈ Σn,m,q.

Proof. We prove the theorem in five steps.
Step 1: We show that Go(s) is outer:

This claim directly follows from Theorem 3.6.3.
Step 2: We show that kerR(s)G(s) = kerR(s)Go(s):

By Theorem 3.6.3 we have

G∼o (s)Go(s) = Φ(s) = G∼(s)G(s).

In particular, it holds that

GH
o (iω)Go(iω) = GH(iω)G(iω) ∀ω ∈ R with iω /∈ Λ(E,A). (3.137)

First we show that kerR(s)G(s) ⊆ kerR(s)Go(s). Therefore, assume that v(s) ∈
kerR(s)G(s). Let Γ ⊂ C be the (finite) set of poles of v(s) ∈ R(s)m. Then, we obtain
from (3.137) that for all ω ∈ R with iω /∈ (Γ ∪ Λ(E,A)) it holds that

‖Go(iω)v(iω)‖22 = ‖G(iω)v(iω)‖22 = 0.
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Hence, λ 7→ Go(λ)v(λ) is a vector-valued rational function which vanishes on iR \ Γ.
The finiteness of the set Γ leads to Go(s)v(s) = 0, i. e., v(s) ∈ kerR(s)Go(s). The
reverse implication kerR(s)Go(s) ⊆ kerR(s)G(s) can be proven analogously.

Step 3: We prove that Go(s)Z is invertible:

We obtain from Step 2 that

rankR(s)Go(s) = rankR(s) Φ(s) = rankR(s)G(s) = q.

The outerness of Go(s) implies Go(s) ∈ R(s)q×m. Further, by

(Go(iω)Z)H(Go(iω)Z) = (G(iω)Z)H(G(iω)Z) ∀ω ∈ R with iω /∈ Λ(E,A),

the assumption rankR(s)G(s)Z = q leads to

Go(s)Z ∈ Glq(R(s)).

Step 4: We show that Gi(s)Go(s) = G(s):

Using the statement in Step 1 and the fact that Go(s)Z is realized by the system
(E,A,BZ,K,LZ), Lemma 3.11.3 a) leads to regularity of its Rosenbrock pencil, i. e.,[

−sE +A BZ
K LZ

]
∈ Gln+q(R(s)).

Lemma 3.7.3 a) then gives rise to

Gi(s) =
[
C DZ

] [sE −A −BZ
−K −LZ

]−1 [
0
−Iq

]
= G(s)Z(Go(s)Z)−1.

By Lemma 3.11.3 b), Z(Go(s)Z)−1Go(s) ∈ R(s)q×q is a projector along kerR(s)G(s).
Then, by Lemma 3.11.4, we obtain

Gi(s)Go(s) = G(s)Z ·
(
LZ +K(sE −A)−1BZ

)−1 ·
(
L+K(sE −A)−1B

)
= G(s).

Step 5: We show that Gi(s) is inner:

We have to show that (Ei, Ai, Bi, Ci) fulfills a certain descriptor dissipativity equal-
ity. Define the subspace

Vsys,i : =

{(
x
u

)
∈ Rn+2q : Aix+Biu ∈ imEi

}

=


x1

x2

u

 ∈ Rn+2q :

(
x1

Zx2

)
∈ Vsys and Kx1 + LZx2 = u

 .
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Then for (
x
u

)
=

x1

x2

u

 ∈ Vsys,i and Pi =

[
X 0
0 0

]
we obtain(

x
u

)T [
AT

i Pi + PT
i Ai + CT

i Ci PT
i Bi

BT
i Pi −Iq

](
x
u

)

=

x1

x2

u

T



[
A BZ
K LZ

]T [
X 0
0 0

]
+

[
X 0
0 0

]T [
A BZ
K LZ

]
+
[
C DZ

]T [
C DZ

]
[
X 0
0 0

]T [
0
−Iq

]
[

0
−Iq

]T [
X 0
0 0

]
−Iq


x1

x2

u



=

 x1

x2

Kx1 + LZx2

T ATX +XTA+ CTC XTBZ + CTDZ 0
ZTBTX + ZTDTC ZTDTDZ 0

0 0 −Iq


·

 x1

x2

Kx1 + LZx2


=

(
x1

Zx2

)T([
ATX +XTA+ CTC XTB + CTD

BTX +DTC DTD

]
−
[
KT

LT

] [
K L

])( x1

Zx2

)
= 0.

Furthermore, by Proposition 3.11.2 we have

ET
i Pi =

[
ETX 0

0 0

]
≥ 0.

Then by the lossless bounded real lemma for DAEs (Theorem 3.9.19), we obtain that
Gi(s) is inner.

Example 3.11.6. For illustrating the result of Theorem 3.11.5 consider the system
given by

E =

[
1 0
0 0

]
, A =

[
1 0
0 −1

]
, B =

[
1 0
0 0

]
, C =

[
1 0
0 0

]
, D = 02×2. (3.138)

The system (E,A,B,C,D) ∈ Σ2,2,2 is strongly stabilizable with transfer function

G(s) =

[
1 0
0 0

] [
s− 1 0

0 1

]−1 [
1 0
0 0

]
=

[
1
s−1 0

0 0

]
.
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From ETX = XTE we obtain

X =

[
x11 0
x21 x22

]
,

and the descriptor Lur’e equation (3.136) reduces to
2x11 + 1 −x21 x11 0
−x21 −2x22 0 0
x11 0 0 0
0 0 0 0

 =Vsys


k1

k2

`1
`2

 [k1 k2 `1 `2
]
, (3.139)

where K =
[
k1 k2

]
and L =

[
`1 `2

]
. A simple calculation shows that a stabilizing

and maximal solution of the descriptor Lur’e equation is given by the triple

(X,K,L) =

([
0 0
0 0

]
,
[
1 0

]
,
[
0 0

])
.

Then from Theorem 3.11.5 we obtain Z =

[
1
0

]
and

Gi(s) =

[
1 0 0
0 0 0

]s− 1 0 −1
0 1 0
−1 0 0

−1  0
0
−1

 =

[
1
0

]
∈ R(s)2×1,

Go(s) =
[
1 0

] [s− 1 0
0 1

]−1 [
1 0
0 0

]
=
[

1
s−1 0

]
∈ R(s)1×2.

We obviously have G(s) = Gi(s)Go(s). Moreover, it is readily verified that Gi(s) and
Go(s) are inner and outer rational functions, respectively.

Remark 3.11.7 (Inner-outer factorization).

a) The even matrix pencil associated to (3.136) can be factored as

sE − A =

 0 −sE +A B
sET +AT CTC CTD

BT DTC DTD


=

 0 0 In
sET +AT CT 0

BT DT 0

 0 0 In
0 Ip 0
In 0 0

 0 −sE +A B
0 C D
In 0 0

 .
Thereby, we see that, for the KCF of the Rosenbrock pencilR(s) of (E,A,B,C,D),
each block of type K1 corresponding to a non-imaginary eigenvalue corresponds
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to a block of type E1 in the EKCF of sE −A of double size corresponding to the
same eigenvalue. Further, each block of type K1 of the KCF of R(s) corresponding
to an imaginary eigenvalue corresponds to a block of type E2 in the EKCF of
sE − A with negative sign-characteristic and double size corresponding to the
same eigenvalue. Analogous statements on the relation between blocks of type
K2, K3, and K4 in the KCF of R(s) and blocks in the EKCF of sE − A of type
E3 and E4 can further be inferred from Theorem 3.4.2.

b) In the SISO case (that is, m = p = 1), an inner-outer factorization can be obtained
by purely algebraic considerations. The transfer function g(s) ∈ R(s) is first
factorized as

g(s) =
d+(s) · d−(s)

n(s)

for polynomials d+(s), d−(s), n(s) ∈ R[s] with the property that all roots of d+(s)
are in C+ and all roots of d−(s) are in C−. An inner-outer factorization is then
given by g(s) = gi(s)go(s), where

gi(s) =
d+(s)

d+(−s)
, go(s) =

d+(−s) · d−(s)

n(s)
.

This approach is called Hurwitz reflection [IW13].

c) If E = In and rankD = m, then the matrix Z in Theorem 3.11.5 becomes the
identity. Moreover, the descriptor Lur’e equation (3.136) can be reformulated as
an algebraic Riccati equation

ATX +XA+ CTC −
(
XB + CTD

)(
DTD

)−1(
XB + CTD

)T
= 0, X = XT.

The matrices K and L can be chosen as L ∈ Glm(R) with L =
(
DTD

)1/2
and

K = L−T
(
BTX + DTC

)
. In this case we can see that the realization of Gi(s)

reduces to (
In, A−BL−1K,BL−1, C −DL−1K,DL−1

)
∈ Σn,m,p.

This is also the realization that has been obtained in [ZDG96, Sect. 13.7].

d) In the literature, inner-outer factorizations have been computed by employing
(generalized) algebraic Riccati equations [Gre88, OV00, ZDG96]. In [OV00], the
Rosenbrock pencil [

−sE +A B
C D

]
∈ R[s]n+p×n+m
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is first transformed by orthogonal transformations such that a Rosenbrock sub-
pencil [

−sÊ + Â B̂

Ĉ D̂

]
∈ R[s]r+q×r+q

with nonsingular Ê ∈ Rr×r and D̂ ∈ Rq×q can be extracted. Since D̂TD̂ > 0, the
generalized algebraic Riccati equation

ÂTX̂Ê + ÊTX̂Â+ ĈTĈ

−
(
ÊTX̂B̂ + ĈTD̂

)(
D̂TD̂

)−1(
ÊTX̂B̂ + ĈTD̂

)T
= 0, X̂ = X̂T.

can be formed and solved.

3.12 Summary and Outlook

In this chapter we have given a complete theoretical analysis of the linear-quadratic
optimal control problem for differential-algebraic systems. The main assumption of
this analysis is impulse controllability, no assumptions on the index are imposed. The
basis of our theory is a new differential-algebraic version of the Kalman-Yakubovich-
Popov lemma. Resulting from this lemma we have derived a new type of alge-
braic matrix equations, namely the descriptor Lur’e equation, that attains the rank-
minimizing solutions of the descriptor KYP inequality. This equation extends both
generalized algebraic Riccati equations and Lur’e equations. We have studied the
solution theory for this equation. In particular, we have given criteria in terms of
the spectrum of an associated even matrix pencil. Furthermore, we have shown how
to construct solutions via its deflating subspaces. We have shown that for strongly
stabilizable and strongly anti-stabilizable systems, there exist stabilizing and anti-
stabilizing solutions of the descriptor Lur’e equation, respectively. These also define
extremal elements in the solution set of the corresponding descriptor KYP inequality.
Moreover, we have stated conditions for the existence of nonpositive solutions to the
descriptor KYP inequality.

We have discussed various applications of our new theory. In particular, we have
studied the linear-quadratic optimal control problem. We could show that the linear-
quadratic optimal control problem (3.1) is feasible if and only if the descriptor Lur’e
equation has a stabilizing solution. Moreover, we have shown that for strongly con-
trollable systems, the descriptor Lur’e equation has a nonpositive solution if and
only if a linear-quadratic optimal control problem with free terminal conditions is
feasible. These results have also given rise to the analysis of dissipativity and cyclo-
dissipativity of DAEs. Finally, we have shown that certain factorizations of ratio-
nal matrices, namely spectral factorizations, normalized coprime factorizations, and
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inner-outer factorizations can be carried out be solving descriptor Lur’e equations.
In particular, our theory covers the singular case which means the rational matri-
ces under consideration do not have full rank. In this sense, our theory presents a
uniform framework for solving control problems for DAEs.

Possible extensions of this theory include the consideration of systems that are
not impulse controllable or systems that are over- or underdetermined. The case of
non-impulse controllable systems has recently been treated in [RRV14]. The main
idea consists of a transformation of the system to feedback equivalence form, i. e., for
(E,A,B) ∈ Σn,m,p there exist matrices W, T ∈ Gln(R) and F ∈ Rm×n, such that

[
sEF −AF BF

]
: = W

[
sE −A B

] [ T 0
−FT Im

]

=

sIn1 −A11 0 0 B1

0 −In2 sE23 B2

0 0 sE33 − In3 0

 ,
where E33 ∈ Rn3×n3 is nilpotent. Then for the transformed system, the reduced
system space

V̂sys,F :=




x1

−B2u
0n3×1

u

 ∈ Rn+m : x1 ∈ Rn1 , u ∈ Rm

 ⊂ Vsys,F =

[
T−1 0
−F Im

]
· Vsys

is considered, where Vsys is as in (3.5). Note that V̂sys,F is the smallest subspace in
which the solution trajectories (xF , uF ) ∈ B(EF ,AF ,BF ) pointwisely evolve. Using the
above relations, results analogous to the ones presented in this thesis can be derived
with completely the same machinery. Only the construction of the solution of the
descriptor Lur’e equation via the deflating subspaces of an even matrix pencil requires
an index reduction of the pencil sE −A, see [RRV14] for details.

In case the pencil sE − A is singular, one has to perform a regularization process
[CKM12, BLMV14] to the system (E,A,B). This procedure includes removing re-
dundant states as well as a reinterpretation of variables in case of a nonsquare system.
Reinterpretation in this context means that some states might actually be considered
as inputs and vice versa.

Another open question is the following one. In Section 3.8 we have shown that the
feasibility of the optimal control problem (3.1) directly implies strong stabilizability
and the existence of a stabilizing solution of the associated descriptor Lur’e equation.
However, such a relation is still unknown for the case of optimal control problems
with free terminal conditions. This means that it is not clear whether the finiteness
of the functionals V +

f in (3.99) or V +
n in (3.100) already implies the existence of a
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nonpositive solution to the descriptor KYP inequality (without the requirement of
strong controllability).

Another possible direction for future research is the development of numerical
methods for the solution of descriptor Lure equations. Recently, some advances have
been made in this direction for the case of standard Lur’e equations [PR11, PR12].
The corresponding algorithms are based on considerations for the deflating subspaces
of the even matrix pencil (3.10). Therefore, there is the hope that these methods can
be generalized to descriptor Lur’e equations using the solution theory developed in
this chapter.
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4 Systems with Counterclockwise Input/Output
Dynamics

4.1 Introduction

Dynamical systems with dissipative or cyclo-dissipative behavior play an important
role in the modeling and analysis of, e. g., flexible mechanical structures or electrical
circuits and are well-studied, see Chapter 3.

A less known property of dynamical systems is a counterclockwise input/output
(ccw I/O) dynamics [Ang06]. For SISO systems, this refers to the fact that the in-
put/output trajectories have a counterclockwise motion in the input/output plane.
Closely related is the concept of a negative imaginary transfer function. These prop-
erties often occur in models associated to mechanical systems and electrical circuits
provided that certain measurements are taken. For instance, mechanical structures
with colocated force actuators and position sensors yield such systems [PL10].

Since dynamical systems of the above type are naturally modeled via differential-
algebraic equations, one is interested in the theory and numerical methods which
directly work on the given system realization. In this manner, the goal of this chapter
is to generalize the negative imaginary theory [LP08, PL10, XPL10] to descriptor
systems without performing any reductions to standard state-space systems.

Our particular focus is on deriving algebraic characterizations of the negative imag-
inary property of transfer functions, similarly to the cases of bounded realness and
positive realness. For such systems, there exist characterizations in terms of the solv-
ability of certain dissipativity inequalities and descriptor Lur’e equations (see Chap-
ter 3), given by the bounded real and positive real lemma. In this fashion, there also
exists a negative imaginary lemma, for standard state-space systems [PL10, XPL10],
as well as for descriptor systems [MKPL12]. However, [MKPL12] does not provide
necessary and sufficient conditions for negative imaginariness and the conditions on
the solution of the LMI are so strong that they are almost never fulfilled. Further-
more, LMI conditions have several disadvantages: they pose certain conditions on the
system such as controllability, and LMIs are very expensive to solve, i. e., infeasible
for larger systems. Therefore, spectral conditions of structured matrices and pencils
have been developed. There are conditions for cyclo-dissipativity in terms of Hamil-
tonian matrices [Wil71, Rem. 28] for the standard state-space case and even matrix
pencils, given by Theorem 3.4.2. Recently, a similar approach has been used to de-
rive a Hamiltonian matrix to check negative imaginariness of a standard state-space
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system given in minimal realization [MKPL11b]. This chapter generalizes this result
in multiple directions. First, we formulate conditions for descriptor systems by using
the more general concept of even matrix pencils without posing any very restrictive
assumptions on the realization. Second, we cover all possible boundary cases in a
uniform way by analyzing the eigenstructure of this pencil in a similar fashion as in
Theorem 3.4.2.

The second part of this chapter deals with the question how to restore the negative
imaginary property of a transfer function in case that it is lost due to errors in
the modeling process. We will give a more detailed motivation and explanation
in mathematical terms in Section 4.4. There is a huge list of papers concerning
restoring dissipativity of dynamical systems such as [GT04, GTU06, SS07] and more
recently [BS13]. All of them rely on perturbing certain eigenvalues of Hamiltonian
matrices or even matrix pencils. The paper [MKPL11a] about the restoration of the
negative imaginary property is also based on [GT04, GTU06]. In this chapter we
will adapt this strategy for descriptor systems using the eigenvalue characterization
for even pencils. One focus of our work is also the usage of structure-preserving and
-exploiting algorithms to obtain the quantities that are needed for the perturbation
of the eigenvalues in a more efficient, reliable, and accurate manner.

The remainder of this chapter is structured as follows. In Section 4.2 we intro-
duce the concepts of ccw I/O dynamics for descriptor systems, negative imaginary
transfer functions, and discuss some basic properties. In Section 4.3 we derive the
spectral characterizations of structured matrix pencils for negative imaginariness. In
Section 4.4 we suggest an algorithm which can be used to restore the negative imag-
inary property of a system if it has been lost by approximating the system by, e. g.,
reducing the model order. Finally, in Section 4.5 we summarize this chapter and
point towards further possible research directions.

4.2 Systems with Counterclockwise Input/Output Dynamics
and Negative Imaginary Transfer Functions

First, we introduce the notion of a system with counterclockwise input-output dy-
namics and adapt the definition to systems (E,A,B,C,D) ∈ Σn,m,p.

Definition 4.2.1. A descriptor system (E,A,B,C,D) ∈ Σn,m,p has a counterclock-
wise input/output dynamics if m = p and it holds that∫ T

0
ẏ(τ)Tu(τ)dτ ≥ 0 (4.1)

for all T ≥ 0 and all (x, u, y) ∈ B(E,A,B,C,D)(0) such that ẏ ∈ L2
loc([0,∞),Rp).

145



4 Systems with Counterclockwise Input/Output Dynamics

Roughly speaking, a ccw I/O dynamics can be interpreted as passivity with respect
to the derivative of the output (instead of the output itself). This will be made more
precise in the following lemma.

Lemma 4.2.2. Consider a system (E,A,B,C,D) ∈ Σn,m,m with strictly proper
transfer function G(s) ∈ R(s)m×m. Assume that G(s) has a state-space realization
(Ir, A11, B1, C1) ∈ Σr,m,m. Then (E,A,B,C,D) has a ccw I/O dynamics if and only
if the system (Ir, A11, B1, C1A11, C1B1) ∈ Σr,m,m is passive.

Proof. We can assume w. l. o. g. that sE −A ∈ R[s]n×n is given in QWF, i. e.,(
E,A,B,C,D

)
=

([
Ir 0
0 E22

]
,

[
A11 0
0 In−r

]
,

[
B1

B2

]
,
[
C1 C2

]
, D

)
,

where A11 ∈ Rr×r, E22 ∈ Rn−r×n−r is nilpotent with index of nilpotency ν, and
B1 ∈ Rr×m, B2 ∈ Rn−r×m, C1 ∈ Rp×r, and C2 ∈ Rp×n−r. Since G(s) is strictly
proper, it holds that

D − C2B2 = 0, C2E22B2 = . . . = C2E
ν−1
22 B2 = 0.

Thus, the system (E,A,B,C,D) has ccw I/O dynamics if and only if (Ir, A11, B1, C1)
has ccw I/O dynamics.

Now assume that (E,A,B,C,D) has a ccw I/O dynamics. Since (Ir, A11, B1, C1)
has ccw I/O dynamics, this implies that∫ T

0
ỹ(τ)Tu(τ)dτ ≥ 0

for all T ≥ 0 and all (x, u, ỹ) ∈ B(Ir,A11,B1,C1A11,C1B1)(0) with ˙̃y ∈ L2
loc([0,∞),Rp).

By Definition 3.9.16 b), this means that (Ir, A11, B1, C1A11, C1B1) is passive.
On the other hand, if (Ir, A11, B1, C1A11, C1B1) is passive, one can conclude that

(Ir, A11, B1, C1) has a ccw I/O dynamics and consequently (E,A,B,C,D) has a ccw
I/O dynamics.

Remark 4.2.3. By the definition in [Ang06], a system (E,A,B,C,D) has a ccw I/O
dynamics if m = p and it holds that

inf

{∫ ∞
0

ẏ(τ)Tu(τ)dτ : (x, u, y) ∈ B(E,A,B,C,D)

with ẏ ∈ L2
loc([0,∞),Rp)

}
> −∞.

By Theorem 3.8.13 and Lemma 4.2.2, this definition is equivalent to ours if the system
(E,A,B,C,D) is behaviorally controllable and has a strictly proper transfer function.
In [BV13] it was erroneously claimed that both definitions generally coincide. This
puts also doubts on the general validity of [Ang06, Prop. III.3] and [CH10, Lem. 2.1].
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Now assume that Gpoly(s) = M0 is the polynomial part of G(s). In [CH10] it has
been shown that if M0 = MT

0 ≥ 0, the passivity of (Ir, A11, B1, C1A11, C1B1) also
implies a ccw I/O dynamics of (Ir, A11, B1, C1,M0) with proper transfer function
G(s) ∈ R(s)m×m, or equivalently a ccw I/O dynamics of a system (E,A,B,C,D) with
the same transfer function G(s). Furthermore, it turns out that for stable systems
(E,A,B,C,D) ∈ Σn,m,m with proper transfer function and M0 = MT

0 ≥ 0, a ccw I/O
dynamics is equivalent to a negative imaginary transfer function G(s) ∈ R(s)m×m.

We will intensively study the rational function

Φ(s) := i (G(s)−G∼(s)) ∈ iR(s)m×m. (4.2)

This function will play a similar role as the Popov function for dissipative systems,
however here Φ(s) has some different features as discussed below.

Definition 4.2.4 ((Strict) negative imaginariness). A function G ∈ RHm×m∞ is called

a) negative imaginary if Φ(iω) ≥ 0 for all ω ≥ 0;

b) strictly negative imaginary if Φ(iω) > 0 for all ω > 0.

Note, that the above definition can be generalized to allow Φ(s) to have poles on
the imaginary axis [XPL10]. However, since this chapter focuses on transfer functions
G ∈ RHm×m∞ , we do not need this more general definition.

As for ccw I/O dynamics and passivity, there exists a relation between negative
imaginariness and positive realness of transfer functions.

Lemma 4.2.5. [XPL10, Lem. 3, Lem. 4]

a) A strictly proper G ∈ RHm×m∞ is negative imaginary if and only if sG(s) ∈
R(s)m×m is positive real.

b) A proper G ∈ RHm×m∞ with constant polynomial part M0 is negative imaginary if
and only if M0 = MT

0 and s(G(s)−M0) ∈ R(s)m×m is positive real.

The properties above can be related to (4.1) as the derivative in the output gen-
erates an additional factor s when taking Laplace transforms. Next, we show an
important symmetry property of the function Φ(s).

Lemma 4.2.6. [BV13, Lem. 4] Let G ∈ RHm×m∞ and Φ(s) ∈ iR(s)m×m as in (4.2)
be given. Then we have Λ (Φ(iω)) = Λ (−Φ(−iω)) for all ω ∈ R.

Proof. First note that i
(
G(iω)−GH(iω)

)
= −i

(
GH(iω)−G(iω)

)
which means that

Φ(iω) is Hermitian and thus has a purely real spectrum for all real values of ω. Thus
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Figure 4.1: Schematic illustration of the spectrum of Φ(i·) for a negative imaginary
transfer function

we can conclude that

Λ (Φ(iω)) = Λ
(
i
(
G(iω)−GH(iω)

))
= Λ

((
i
(
G(iω)−GH(iω)

))T)
= Λ

(
i
(
GH(−iω)−G(−iω)

))
= Λ

(
− i
(
G(−iω)−GH(−iω)

))
= Λ (−Φ(−iω)) .

Following from Lemma 4.2.6, the eigenvalue curves of the matrix-valued function
Φ(iω) are symmetric with respect to the origin, see also Figure 4.1.

4.3 Spectral Characterizations for Negative Imaginariness

In this section we derive algebraic characterizations for negative imaginariness of
transfer functions in terms of spectral conditions of even matrix pencils. We formulate
these conditions by using the given descriptor system realization (E,A,B,C,D) ∈
Σn,m,m without transforming it to standard state-space form. This has some advan-
tages for computational considerations as performing such a transformation might be
an ill-conditioned problem and thus should be avoided whenever possible.

First we can formulate following preliminary result and give a corrected proof.

Theorem 4.3.1. [BV13, Thm. 1] Let G ∈ RHm×m∞ and iω0 6∈ Λ(E,A) be given.
Assume that Φ(s) ∈ iR(s)m×m is as in (4.2). Then Φ(iω0) is singular if and only if
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the even matrix pencil

sE − A :=

 0 siE − iA −iB
siET + iAT 0 iCT

iBT −iC i
(
DT −D

)
 ∈ iR[s]2n+m×2n+m (4.3)

is singular or has the eigenvalue iω0.

Proof. Let Φ(iω0) be a singular matrix. First, we see that

Φ(iω0) = iC
(

iω0

(
iE
)
− iA

)−1
iB + iD

− iBT
(

iω0

(
iET

)
−
(
− iAT

))−1 (
− iCT

)
− iDT

=
[
iC −iBT

] [iω0

(
iE
)
− iA 0

0 iω0

(
iET

)
+ iAT

]−1 [
iB
−iCT

]
+ i
(
D −DT

)
.

(4.4)

From Proposition 2.2.25 and Lemma 2.2.26 it follows that the matrix

iω0E − A =

 0 iω0

(
iE
)
− iA −iB

iω0

(
iET

)
+ iAT 0 iCT

iBT −iC i
(
DT −D

)


is singular, i. e., the pencil sE −A is singular or has the eigenvalue iω0. On the other
hand, if sE − A is singular, then it follows from Lemma 2.2.26 that Φ(s) does not
have full rank, and therefore, Φ(iω0) is singular. If iω0 is an eigenvalue of sE − A,
then Proposition 2.2.25 yields that iω0 is a zero of Φ(s) since uncontrollable and
unobservable modes have been excluded by assumption.

From Theorem 4.3.1 we conclude that G ∈ RHm×m∞ is strictly negative imaginary
if and only if M0 = MT

0 , there exists an ω0 > 0 such that Φ(iω0) > 0, and the cor-
responding even matrix pencil sE −A has no nonzero, purely imaginary eigenvalues.
Graphically, this means that the eigenvalue curves of Φ(iω) lie all above the zero level
in the positive frequency range. However, there is the boundary case of eigenvalue
curves that touch the zero level (and hence generate purely imaginary eigenvalues in
sE − A) but do not cross it. These boundary cases are treated in the next theorem.

The following lemma is needed for the proof and is an adaption of Lemma 3.4.1.

Lemma 4.3.2. [BV13, Prop. 4] Let sE − A be given as in (4.3). Then there exists
a congruence transformation U(iω) ∈ C2n+m×2n+m for all iω 6∈ Λ(E,A) such that

UH(iω)(iωE − A)U(iω) =

 0 iω
(
iE
)
− iA 0

iω
(
iET

)
+ iAT 0 0

0 0 −Φ(iω)

 ,
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where Φ(s) ∈ iR(s)m×m is as in (4.2) and

U(iω) =

In 0 −
(
iω
(
iET

)
+ iAT

)−1
iCT

0 In
(
iω
(
iE
)
− iA

)−1
iB

0 0 Im

 .
Theorem 4.3.3. Assume that iω 6∈ Λ(E,A) for all ω ∈ R, and let G ∈ RHm×m∞ be
given. Assume that Φ(s) ∈ iR(s)m×m is as in (4.2) with q = rankC(s) Φ(s) and that
the associated even matrix pencil sE−A is as in (4.3). Then the following statements
are equivalent:

a) G(s) is negative imaginary.

b) The EKCF of sE − A has the following structure:

i) Whenever there exists an even block of type E2 associated to a µ = ω0 > 0, it
has positive sign-characteristic and there exists an equally sized block of type
E2 associated to µ = −ω0 with negative sign-characteristic.

ii) There exist exactly q odd blocks of type E2 corresponding to µ = 0 with neg-
ative sign-characteristic.

iii) Blocks of type E3 are either of even size or otherwise, the number of odd
blocks of type E3 with positive and negative sign-characteristic is equal.

iv) There exist exactly m− q blocks of type E4.

Proof. First we show that a) implies b): From the negative imaginariness and stability
of G(s) it follows that

Φ(iω) ≥ 0 for all ω ≥ 0, and

Φ(iω) ≤ 0 for all ω ≤ 0,

following from Lemma 4.2.6. Then there exists a function a : R → N which is zero
except for a finite set of values of ω such that

• In(iωE − A) = (n,m− q + a(ω), n+ q − a(ω)) for ω > 0,

• In(−A) = (n,m, n) = (n,m− q + a(0), n),

• In(iωE − A) = (n+ q − a(ω),m− q + a(ω), n) for ω < 0.

Roughly speaking, the function a(ω) describes the change of inertia in the case that
eigenvalue curves touch the zero level at ω. Now we analyze which block structures
in the EKCF of sE −A can produce such an inertia pattern. First of all, sE −A has
at least m− q zero eigenvalues for all values of ω. Hence, according to the EKCF we
have m− q blocks of type E4. We consider the subpencil sE1−A1 ∈ C[s]2n1+q×2n1+q

of sE − A without these blocks which has the inertia pattern
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4.3 Spectral Characterizations for Negative Imaginariness

• In(iωE1 −A1) = (n1, a(ω), n1 + q − a(ω)) for ω > 0,

• In(−A1) = (n1, q, n1) = (n1, a(0), n1),

• In(iωE1 −A1) = (n1 + q − a(ω), a(ω), n1) for ω < 0.

From this structure, we can deduce that there exist q odd blocks of type E2 corre-
sponding to µ = 0 with negative sign-characteristic. By again removing these from
sE1 −A1, we obtain the subpencil sE2 −A2 ∈ C[s]2n2×2n2 with

• In(iωE2 −A2) = (n2, a(ω), n2 − a(ω)) for ω > 0,

• In(−A2) = (n2, 0, n2),

• In(iωE2 −A2) = (n2 − a(ω), a(ω), n2) for ω < 0.

Now, we see that the remaining blocks of type E2 are of even size. Whenever there
exists such a block associated to a µ = ω0 > 0, it has positive sign-characteristic and
there exists an equally sized block of type E2 associated to µ = −ω0 with negative
sign-characteristic. When removing these blocks as well, there remains a subpencil
sE3 −A3 ∈ C[s]2n3×2n3 of sE2 −A2 with

• In(iωE3 −A3) = (n3, 0, n3) for ω > 0,

• In(−A3) = (n3, 0, n3),

• In(iωE3 −A3) = (n3, 0, n3) for ω < 0.

This shows that all blocks of type E3 are either of even size or otherwise, the number
of odd blocks of type E3 with positive and negative sign-characteristic is equal. This
shows the assertion.

To prove that b) implies a) one has to use the same argumentation backwards. By
constructing a matrix pencil with the given blocks, one can show the properties of
the inertia of the matrix pencil sE − A as given here hold. From this fact one can
conclude that G(s) is negative imaginary by employing Lemma 4.3.2.

Remark 4.3.4.

a) The even matrix pencil sE − A has purely imaginary coefficients. However, from
a numerical point of view it is desirable to work in real instead of complex arith-
metics. This can be achieved by dividing both coefficient matrices by i. We
obtain

sH− S :=

 0 sE −A −B
sET +AT 0 CT

BT −C DT −D

 ∈ R[s]2n+m×2n+m. (4.5)

However, instead of an even pencil, sH− S is an odd matrix pencil , see below.

151



4 Systems with Counterclockwise Input/Output Dynamics

b) A matrix pencil P (s) := sH− S ∈ C[s]n×n is called odd, if P∼(s) = −P (s), i. e.,
H = HH and S = −SH. Since every odd matrix pencil is equivalent to an even
one (which follows by a multiplication with i), it is clear, that odd matrix pencils
admit the same spectral symmetry as even ones.

4.4 Enforcement of Negative Imaginariness

Often, the systems that we consider are only approximations to the real system
dynamics. This happens, if we, e. g., apply model order reduction [BMS05] to a
large-scale system or if we approximate the system by rational interpolation via fre-
quency response data (like vector fitting [Ant05], or interpolation via Löwner matrix
pencils [LA10]). In this way it can easily happen that the negative imaginariness of
the system is lost due to the modeling or approximation error. It is important to
keep this property since otherwise this could lead to physically meaningless results
when simulating the model. Therefore, one is interested in a post-processing proce-
dure to restore negative imaginariness without introducing too large perturbations to
the dynamical system. The method we will use here is an adaption of the concepts
presented for passivity enforcement in [GT04, GTU06, SS07]. From Theorems 4.3.1
and 4.3.3 it follows that (strict) negative imaginariness is connected to the spectrum
of a related imaginary even (or as shown above real odd) matrix pencil. Thus, our
method is based on the computation of a perturbed descriptor system with realiza-
tion

(
Ẽ, Ã, B̃, C̃, D̃

)
∈ Σn,m,m and transfer function G̃ ∈ RHm×m∞ which is negative

imaginary and the error
∥∥G̃ − G∥∥ is small in some system norm. The computation

is performed by perturbing the nonzero, purely imaginary eigenvalues of the related
matrix pencils off the imaginary axis. In our considerations, we keep the matrix pen-
cil sE−A to preserve the modes of the system. So, there is no risk of loosing stability
if Λ(E,A) ⊂ C−. Following from the decomposition (2.12), we have to perturb B1

or C1 if there is a violation of negative imaginariness in the dynamic part. We will
discuss in detail which matrix is the best choice for this. Furthermore, we have to
modify the matrices D, B2, or C2 if the matrix M0 is not symmetric. In this section
we will always implicitly assume that rankC(s) Φ(s) = m and that Λ(E,A) ⊂ C− so
that the system is asymptotically stable.

4.4.1 Some Useful Results

First, we need a basic spectral perturbation result for general matrix pencils.

Proposition 4.4.1. [SS90] Let sE − A ∈ R[s]n×n be a given matrix pencil and
let v, w ∈ Cn be right and left eigenvectors corresponding to a simple eigenvalue
λ = α

β = wHAv
wHEv

. Let s(E + ∆E) − (A + ∆A) be a perturbed matrix pencil with
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4.4 Enforcement of Negative Imaginariness

eigenvalues λ̃ = α̃

β̃
. Then it holds that

α̃

β̃
=
α+ wH∆Av

β + wH∆Bv
+O

(
ε2
)
, (4.6)

where ε =
∥∥[∆A ∆B

]∥∥
2
.

Next, we want to apply this lemma to the special case of an odd matrix pencil. Let
v ∈ C2n+m be a right eigenvector of the odd matrix pencil sH−S ∈ R[s]2n+m×2n+m

corresponding to the eigenvalue λ. Then we obtain

0 = λHv − Sv.

Now, by taking the conjugate transpose of the above equation and using HT = H
and ST = −S, we obtain

0 = λvHHT − vHST = λvHH+ vHS.

So, when λ is purely imaginary and hence λ = −λ, we get that if v is an associated
right eigenvector, v is also a corresponding left eigenvector. Let λ = α

β be a simple,
purely imaginary eigenvalue of an odd matrix pencil sH−S. For a perturbed matrix
pencil of the form s (H+ εH′)− (S + εS ′), formula (4.6) can be written as

α̃

β̃
=
α+ εvHS ′v
β + εvHH′v +O

(
ε2
)
, (4.7)

Theorem 4.4.2. [BV13, Thm. 3] Consider a transfer function G ∈ RHm×m∞ and let
Φ(s) ∈ iR(s)m×m be as in (4.2). Let furthermore v ∈ C2n+m be a right eigenvector
of sH − S ∈ R[s]2n+m×2n+m as in (4.5) corresponding to a nonzero, simple, purely
imaginary eigenvalue iω0 and let ν(ω) be an eigenvalue curve of Φ(iω) that crosses
the level zero at ω0, i. e., ν(ω0) = 0. Then the slope of ν(ω) is positive (negative) at
ω0 if vHHv > 0 (vHHv < 0).

Proof. The proof strongly follows the line of argumentation of [SS07, Thm. 2] and is
motivated by the following idea. To decide whether the curve increases or decreases
at the point ω0, we compute the point ω0 + δ, where the curve crosses the level ε
with ε > 0 and then check whether δ is positive or negative. Therefore, we consider
the eigenvalues of the perturbed matrix pencil

sH− Sε := sH− (S + εS ′),

where

S ′ = dSε
dε

∣∣∣∣
ε=0

=
d

dε

0 0 0
0 0 0
0 0 iεIm

∣∣∣∣∣∣
ε=0

=

0 0 0
0 0 0
0 0 iIm

 .
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Figure 4.2: Characterization of negative imaginariness violation points and corre-
sponding slopes

The matrix Sε is obtained by analyzing at which frequencies the eigenvalue curves of
Φ(iω) cross the level ε, or equivalently at which frequencies the eigenvalue curves of
Φ(iω)−εIm cross the zero level, see (4.4). Note that we do not consider a perturbation
of the matrix H, since

H′ = dH
dε

∣∣∣∣
ε=0

= 0.

Furthermore, the matrix S ′ε is skew-Hermitian. Let iω0 be a finite eigenvalue of sH−S
and let iωε be the corresponding perturbed eigenvalue of sH− Sε. Then, by (4.7) it
follows that

iωε =
vHSv + εvHS ′v

vHHv +O
(
ε2
)

= iω0 + ε
vHS ′v
vHHv +O

(
ε2
)
. (4.8)

In other words, we have
dωε
dε

∣∣∣∣
ε=0

=
vHS ′v
ivHHv .

Since ν and ε can be interchanged, the eigenvalue curve crossing the zero level at ω0

has the slope

ξ :=
dν

dωε

∣∣∣∣
ωε=ω0

=
1

dωε
dε

∣∣
ε=0

=
ivHHv
vHS ′v .

Now, we conclude the assertion as S ′ = iŜ with a positive semidefinite matrix Ŝ.

In Figure 4.2, Φ(s) for a non-negative imaginary transfer function is depicted with
intersection points of the eigenvalue curves with the zero level and corresponding
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4.4 Enforcement of Negative Imaginariness

slopes depicted by triangles. With this characterization we can now think about
moving the nonzero, purely imaginary eigenvalues of sH−S off the imaginary axis in
order to enforce negative imaginariness. Therefore, we need the positive imaginary
eigenvalues of sH − S and the corresponding eigenvectors. To compute these, we
reformulate the odd eigenvalue problem into a Hamiltonian/skew-Hamiltonian one
and use a structure-preserving algorithm [BBMX99] to solve it. Then, we can also
use a structure-exploiting technique to obtain the corresponding eigenvectors. We
will describe this in detail in Subsections 4.4.7 and 4.4.8.

4.4.2 Choice of the New Frequencies

From Figure 4.2 we can see that it is reasonable to assume that the “size” of the
violation of negative imaginariness decreases if we move the nonzero, purely imaginary
eigenvalues of sH− S with negative slope to the right and those with positive slope
to the left. Let the frequencies ωi, where the eigenvalue curves cross the zero level, be
ordered in increasing order, i. e., 0 < ω1 < ω2 < . . . < ωk. We choose a proportional
displacement between ωi and ωi+1 [SS07] and obtain

ω̃i =


ωi + α(ωi+1 − ωi), vHi Hvi < 0, i 6= k 6= 1,

(1 + 2α)ωi vHi Hvi < 0, i = k,

ωi − α(ωi − ωi−1), vHi Hvi > 0, i 6= 1 6= k,

(1− 2α)ωi, vHi Hvi > 0, i = 1,

(4.9)

where α ∈ (0, 0.5] is a tuning parameter. It seems appropriate to use α = 0.5 since
then the transfer function would be negative imaginary in just one step. However, the
first order perturbation theory only holds in a small neighborhood around ωi. There-
fore, taking α = 0.5 might be ill-advised since it corresponds to a large perturbation.
Instead, we suggest to use smaller values of α (depending on the problem) and to
apply the whole method multiple times, until the negative imaginariness is enforced,
see also [SS07]. We remark, that when vHkHvk < 0, the system violates the negative
imaginary property at infinity. To restore this we have to move the eigenvalue iωk to
infinity. It is not possible to do this numerically. Hence we define a threshold η and
declare all eigenvalues whose magnitudes are larger than η as numerically infinite.

There are particular situations where the rule above might not lead to the desired
result. Consider, for example, the situation depicted in Figure 4.3. Here, there
are two intersected intervals in which negative imaginariness is violated. This is
characterized by two subsequent intersection points of the eigenvalue curves with the
zero level which have negative slope followed by two intersection points with positive
slope. When successively applying formula (4.9), the second and third frequency
point would form a double intersection point (assuming that we are able to exactly
perturb these frequency points which is actually not the case). This means that
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Figure 4.3: Depiction of Φ(i·) for a non-negative imaginary transfer function having
intersected frequency intervals with negative imaginariness violations

the corresponding matrix pencil sH− S has an algebraically double nonzero, purely
imaginary eigenvalue. However, in this case we also have two linearly independent
eigenvectors which means that this eigenvalue does not generate nontrivial blocks in
the Kronecker canonical form. On the other hand, in the case that the frequency
intervals do not intersect (like in Figure 4.2), the converged eigenvalues would form
an associated block of size two in the Kronecker canonical form as there exists only
one linearly independent eigenvector. So we add the following rule to the update
formula (4.9):

ω̃i =

{
ωi + α(ωi+2 − ωi), vHi Hvi < 0, i 6= k − 1, k,

ωi − α(ωi − ωi−2), vHi Hvi > 0, i 6= 1, 2,

if

|ωi+1 − ωi| < δ and

{∣∣∣∣ ivHi HvivHi S ′vi

∣∣∣∣ > ε or

∣∣∣∣∣ ivHi+1Hvi+1

vHi+1S ′vi+1

∣∣∣∣∣ > ε

}
, or

|ωi − ωi−1| < δ and

{∣∣∣∣∣ ivHi−1Hvi−1

vHi−1S ′vi−1

∣∣∣∣∣ > ε or

∣∣∣∣ ivHi HvivHi S ′vi

∣∣∣∣ > ε

}
,

(4.10)

respectively, where δ and ε are predefined tolerances.

4.4.3 Choice of the System Norm

Similarly as proposed in [GTU06, SS07], we compute the perturbation that minimizes
the HL2-norm of the error E(s) := G̃(s)−G(s). This norm is a generalization of the
H2-norm for non-strictly proper transfer functions, see Definition 2.2.20. Using the
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4.4 Enforcement of Negative Imaginariness

decomposition (2.12) into a strictly proper and polynomial part for E(s), we have
E(s) = Esp(s) + Epoly(s). Then, the HL2-norm is given by

‖E‖HL2 :=

(
‖Esp‖2H2

+
1

2π

∫ 2π

0

∥∥Epoly(eiω)
∥∥2

F
dω

)1/2

. (4.11)

Assume that the descriptor system (E,A,B,C,D) ∈ Σn,m,m has been transformed
such that sE −A is in QWF, i. e., there exist W, T ∈ Gln(R) such that

(WET,WAT,WB,CT,D) =

([
Ir 0
0 E22

]
,

[
A11 0
0 In−r

]
,

[
B1

B2

]
,
[
C1 C2

]
, D

)
,

(4.12)
and suppose that M0 = MT

0 . By only perturbing B1 and/or C1 we ensure that the
error E(s) is strictly proper. Then we can drop the second term of the right-hand
side of (4.11) and get

‖E‖HL2 = ‖Esp‖HL2 = ‖Esp‖H2
.

Consider the observability Gramian Go of the subsystem (Ir, A11, B1, C1) ∈ Σr,m,m

which is defined as the unique, positive semidefinite solution of the Lyapunov equation
[ZDG96, p. 71]

GoA11 +AT
11Go = −CT

1 C1. (4.13)

Since Go can be written as

Go =
1

2π

∫ ∞
−∞

(iωIr −A11)−HCT
1 C1 (iωIr −A11)−1 dω,

and due to the relation [ZDG96, Lem. 4.6]

‖G‖2H2
= tr

(
BTGoB

)
,

we have ‖Esp‖H2
= ‖L∆‖F where L is a lower triangular Cholesky factor of Go, i. e.,

Go = LTL, and ∆ is a perturbation of B1, i. e., ∆ = B̃1 −B1 with B̃1 corresponding
to a system with negative imaginary transfer function.

We remark that it is not necessary to compute the fully decoupled realization
(4.12) to solve the Lyapunov equation (4.13) to obtain L. This is also not reasonable
since the computation of this realization might be arbitrarily ill-conditioned and thus
should be avoided. There are algorithms which compute a less condensed form of the
matrix pencil sE −A, that is

W (sE −A)T = s

[
E11 0
0 E22

]
−
[
A11 0
0 A22

]
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4 Systems with Counterclockwise Input/Output Dynamics

where W, T ∈ Gln(R) and sE11 − A11 ∈ R[s]r×r, sE22 − A22 ∈ R[s]n−r×n−r are the
subpencils of sE−A that correspond to its finite and infinite eigenvalues, respectively.
These algorithms basically work in two steps. In Step 1, an upper triangular form
with eigenvalue separation of the pencil sE −A is computed, i. e.,

P (sE −A)Q = s

[
E11 E12

0 E22

]
−
[
A11 A12

0 A22

]
, (4.14)

with orthogonal matrices P, Q ∈ Rn×n. This can be done by the QZ algorithm with
subsequent eigenvalue reordering [GL96], the GUPTRI algorithm [DK93a, DK93b],

or the disk function method discussed in [BB97, SQO04]. Let PB =

[
B1

B2

]
and

CQ =
[
C1 C2

]
be partitioned according to the block structure of (4.14). Now, Step

2 consists of block-diagonalizing the pencil (4.14). This can be achieved by solving
the generalized Sylvester equation

A11Y + ZA22 +A12 = 0, E11Y + ZE22 + E12 = 0, (4.15)

for Y, Z ∈ Rr×n−r, see, e. g., [KD92, KW89]. Then, we define

Z :=

[
Ir Z
0 In−r

]
, Y :=

[
Ir Y
0 In−r

]
,

and get

Z
(
s

[
E11 E12

0 E22

]
−
[
A11 A12

0 A22

])
Y = s

[
E11 0
0 E22

]
−
[
A11 0
0 A22

]
.

By updating the input and output matrices, we obtain the realization([
E11 0
0 E22

]
,

[
A11 0
0 A22

]
,

[
B̂1

B2

]
,
[
C1 Ĉ2

]
, D

)
∈ Σn,m,p (4.16)

with B̂1 := B1 + ZB2 and Ĉ2 := C1Y + C2. To compute ‖Esp‖H2
, we can now solve

the generalized Lyapunov equation

ET
11GoA11 +AT

11GoE11 = −CT
1 C1. (4.17)

instead of (4.13).
Note, that it is sufficient to perform only Step 1 since E11, A11, and C1 are not

changed while performing Step 2. However, this is only possible when we only change
the matrix B1 during the enforcement procedure. This would no longer hold, if we
would also change C1. This is the reason why we only apply perturbations to B1

in this paper. Furthermore, note that we can compute L directly without explicitly
computing Go beforehand [BQO99, Ham82].
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4.4 Enforcement of Negative Imaginariness

4.4.4 Enforcement Procedure

Now, as we know how to move nonzero, purely imaginary eigenvalues of odd ma-
trix pencils sH − S and which system norm we use to compute the optimal per-
turbation, we are now going to actually compute this perturbation, similarly as in
[GT04, GTU06, SS07]. We follow and adapt the argumentation in [SS07] to derive
our enforcement procedure. We consider the matrix pencil (4.5), where sE − A is
now given in the form (4.14) and B and C are properly updated, i. e.,

sH− S =


0 0 sE11 −A11 sE12 −A12 −B1

0 0 0 sE22 −A22 −B2

sET
11 +AT

11 0 0 0 CT
1

sET
12 +AT

12 sET
22 +AT

22 0 0 CT
2

BT
1 BT

2 −C1 −C2 DT −D

 (4.18)

We perturb the matrix pencil (4.18) by replacing B1 with B1 + ∆. The perturbed
matrix pencil sH− S̃ can then be written as sH− S̃ = sH−

(
S + Ŝ

)
with

Ŝ =


0 0 0 0 ∆
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−∆T 0 0 0 0

 . (4.19)

Let vi be a right eigenvector of sH − S corresponding to a simple eigenvalue iωi.
Then, by (4.8) the imaginary eigenvalues iω̃i of sH − S̃ and those of sH − S are
related via the first order approximation

ω̃i − ωi =
vHi Ŝvi
ivHi Hvi

. (4.20)

It holds that

vHi Ŝvi = vHi1∆vi5 − vHi5∆Tvi1

= 2i Im
(
vHi1∆vi5

)
, (4.21)

where vi =
(
vHi1 . . . vHi5

)H ∈ C2n+m is partitioned according to the block structure
of (4.18). Vectorizing the matrix ∆ in (4.21) gives

vHi Ŝvi = 2i Im
(
vTi5 ⊗ vHi1

)
vec (∆) .

By inserting this into (4.20) we obtain

2

vHi Hvi
Im
(
vTi5 ⊗ vHi1

)
vec (∆) = ω̃i − ωi.
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By gathering these relations for all purely imaginary eigenvalues with positive imag-
inary part, we get the linear system of equations

Z vec (∆) = ω̃ − ω, (4.22)

where ω̃ =
(
ω̃1 . . . ω̃k

)T
, ω =

(
ω1 . . . ωk

)T
, and the i-th row of Z ∈ Rk×rm is

given by

eTi Z =
2

vHi Hvi
Im
(
vTi5 ⊗ vHi1

)
,

where ei ∈ Rk denotes the i-th canonical unit vector. To compute the optimal
perturbation ∆, i. e., the one that satisfies (4.22) and minimizes ‖Esp‖H2

, we have to
solve the minimization problem

min
∆∈Rr×m

‖L∆‖F subject to Z vec(∆) = ω̃ − ω.

If (E,A,B,C,D) ∈ Σn,m,p is behaviorally observable, then the observability Gramian
Go is positive definite with a nonsingular Cholesky factor L [ZDG96]. Therefore, we
can perform the change of basis ∆L := L∆ and obtain the equivalent minimization
problem

min
∆L∈Rr×m

‖∆L‖F subject to ZL vec(∆L) = ω̃ − ω, (4.23)

where ZL = Z
(
I ⊗ L−1

)
. Note that the i-th row of ZL can be computed as

eTi ZL = eTi Z
(
I ⊗ L−1

)
=

2

vHi Hvi
Im
(
vTi5 ⊗ vHi1L−1

)
. (4.24)

This avoids the explicit construction of the matrix I ⊗ L−1. Now the minimization
problem (4.23) transforms to the standard least squares problem

min
∆L∈Rr×m

‖vec (∆L)‖2 subject to ZL vec(∆L) = ω̃ − ω.

Its solution is formally given by the Moore-Penrose inverse Z+
L of ZL, namely

vec (∆L) = Z+
L (ω̃ − ω) .

Finally, the desired perturbation is given by

∆ = L−1∆L.
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4.4 Enforcement of Negative Imaginariness

4.4.5 Enforcing Symmetry of the Polynomial Part

As shown by Lemma 4.2.6, a negative imaginary transfer function G ∈ RHm×m∞
satisfies M0 = MT

0 , where M0 = limω→∞G(iω). It might happen, that this property
is also lost during the modeling process. In this section we will briefly describe
how to restore the symmetry of M0. First, we actually compute this matrix. This
can be done by transforming the system (E,A,B,C,D) into the decoupled form
(4.16). Since G(s) is proper, we directly obtain that M0 = D− Ĉ2A

−1
22 B2. Note, that

computing the form (4.16) might be ill-conditioned, as solving a generalized Sylvester
equation might be. Hence, this operation should be avoided when it is clear, that M0

is symmetric.
Now assume that M0 is not symmetric. Then

M0 −MT
0 = F = T − T T,

where T is defined as the strictly upper triangular part of the skew-symmetric error
matrix F . In this way we perturb the matrix D as

D̃ := D − T .

The error caused by this perturbation in the HL2-norm of the system is given by

‖E‖HL2 =

(
1

2π

∫ 2π

0

∥∥P(eiω)
∥∥2

F
dω

)1/2

= ‖T ‖F ,

see (4.11).

4.4.6 The Overall Process

From the considerations above we can now state the procedures for enforcing the
symmetry of M0 in Algorithm 4.1 and negative imaginariness in Algorithm 4.2.
Note, that when Algorithm 4.1 has been performed, the triangularization of sE −A
has already been done, so this step can be omitted in Algorithm 4.2.

We briefly summarize how to solve some specific subproblems with available soft-
ware tools. In particular, we mention routines implemented in MATLAB and FOR-
TRAN (within the software packages LAPACK1 and SLICOT2). Algorithms which
have only been implemented in FORTRAN can be called by MATLAB by using its
mex functionality. See Table 4.1 for an overview. Note that the SLICOT routine
MB04BD is actually designed to compute the eigenvalues of a skew-Hamiltonian/Ha-
miltonian matrix pencil. However, as pointed out in the next subsection, there is a
close connection between skew-Hamiltonian/Hamiltonian and odd matrix pencils.

1http://www.netlib.org/lapack/
2http://slicot.org/
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Algorithm 4.1 Algorithm for enforcing symmetry of M0

Input: Asymptotically stable descriptor system (E,A,B,C,D) ∈ Σn,m,p.

Output: Descriptor system (E,A,B,C, D̃) with symmetric constant part.
1: Triangularize the matrix pencil sE −A, i. e., compute orthogonal P ∈ Rn×n and
Q ∈ Rn×n such that

P(sE −A)Q = s

[
E11 E12

0 E22

]
−
[
A11 A12

0 A22

]
.

2: Set B := PB =

[
B1

B2

]
and C := CQ =

[
C1 C2

]
.

3: Solve the generalized Sylvester equation

A11Y + ZA22 +A12 = 0, E11Y + ZE22 + E12 = 0.

4: Update C2 := C1Y + C2.
5: Compute M0 := D − C2A

−1
22 B2.

6: Compute the strictly upper triangular part of M0 −MT
0 , denoted by T .

7: Set D̃ := D − T .

4.4.7 Reformulation of the Odd Eigenvalue Problem

This subsection provides some details about the solution of the odd eigenvalue prob-
lem. First, we transform the matrix pencil sH − S to a related Hamiltonian/skew-
Hamiltonian pencil sH̃ − S̃, i. e., H̃ is Hamiltonian and S̃ is skew-Hamiltonian.

Then, we can apply the structure-preserving method presented in Subsection 2.1.3
to compute the eigenvalues of sS̃ −H̃. The related eigenvectors can also be computed
in a structure-exploiting manner by using the generalized symplectic URV decompo-
sition, see (2.4). More details on this will be given in the next subsection.

Consider now the odd matrix pencil sH − S ∈ R[s]2n+m×2n+m. Recall that every
Hamiltonian/skew-Hamiltonian matrix pencil has even dimension. So, if m is an odd
number, we first increase the dimension of sH− S by one. We define the numbers

r := mmod 2, k := n+
1

2
(m+ r).

Then, similarly as in Subsection 2.1.3, the pencil

sH̃ − S̃ := Jk
[
sH− S 0

0 Ir

]
is Hamiltonian/skew-Hamiltonian. If the dimension is increased by one, an addi-
tional infinite eigenvalue is introduced. Now, we can compute the purely imaginary
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Algorithm 4.2 Algorithm for the enforcement of negative imaginariness

Input: Asymptotically stable and behaviorally observable descriptor system
(E,A,B,C,D) such that lim

ω→∞
Φ(iω) = 0, control parameters 0 < α ≤ 0.5, δ > 0,

ε > 0.
Output: A negative imaginary descriptor system

(
E,A, B̃, C,D

)
.

1: Triangularize the matrix pencil sE −A, i. e., compute orthogonal P ∈ Rn×n and
Q ∈ Rn×n such that

P(sE −A)Q = s

[
E11 E12

0 E22

]
−
[
A11 A12

0 A22

]
.

2: Set B := PB =

[
B1

B2

]
and C := CQ =

[
C1 C2

]
.

3: Compute the Cholesky factor L of the observability Gramian Go = LTL by solving
the generalized Lyapunov equation (4.17).

4: Compute the purely imaginary eigenvalues of the odd matrix pencil sH−S from
(4.18) with positive imaginary part.

5: while sH− S has nonzero, purely imaginary eigenvalues do
6: Choose new eigenvalues as in (4.9) and (4.10).
7: Solve min

∆L∈Rr×m
‖vec (∆L)‖2 subject to ZL vec(∆L) = ω̃−ω with ZL as in (4.24).

8: Update B1 := B1 + L−1∆L and update S accordingly.
9: Compute the positive imaginary eigenvalues and the corresponding eigenvec-

tors of sH− S.
10: end while
11: Set B̃ := PTB.

eigenvalues of sS̃ − H̃ and the associated eigenvectors in a structure-preserving way.
Due to the symmetry of Φ(i·) we only need the eigenvalues with positive imaginary
parts. Let iω with ω > 0 be an eigenvalue of sS̃ − H̃ with eigenvector v ∈ C2k. Then
it holds that

0 = iωS̃v − H̃v

= S̃v − 1

iω
H̃v

= S̃v + i
1

ω
H̃v

= S̃v − i
1

ω
H̃v.

In other words, v is a right eigenvector of sS̃ − H̃ corresponding to iω if and only if
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Table 4.1: Survey of available software

Operation MATLAB FORTRAN

Block triangularizing sE −A as in (4.14) qz, ordqz DGGES

guptri3 GUPTRI3

Solving generalized Sylvester equations as in (4.15) — SB04OD

Solving generalized Lyapunov equations as in (4.17) lyapchol SG03BD

Computing imaginary eigenvalues of sH− S — MB04BD

v is a right eigenvector of sH̃ − S̃ corresponding to i 1
ω . Now the theory presented for

odd matrix pencils in this section directly applies to Hamiltonian/skew-Hamiltonian
pencils as well. However, note that if v is a right eigenvector to a purely imaginary
eigenvalue iω, then Jkv is a corresponding left eigenvector.

4.4.8 Computation of the Eigenvectors

To compute the eigenvectors of the skew-Hamiltonian/Hamiltonian pencil sS̃ − H̃ ∈
R[s]2k×2k corresponding to the purely imaginary eigenvalues we will make use of the
generalized symplectic URV decomposition, presented in Subsection 2.1.3. Since for
our enforcement procedure we only need the positive imaginary eigenvalues, i. e.,
those with positive imaginary parts, we restrict ourselves to the computation of the
eigenvectors corresponding to these eigenvalues. The following method has already
been presented in [BV11, JV13]. Throughout the whole subsection we assume that
all purely imaginary eigenvalues are simple.

The Algorithm Consider the symplectic URV decomposition of sS̃ −H̃ ∈ R[s]2k×2k,
i. e., there exist orthogonal matrices Q1, Q2 ∈ R2k×2k such that

QT
1 S̃JkQ1J T

k =

[
S11 S12

0 ST
11

]
,

JkQT
2J T

k S̃Q2 =

[
T11 T12

0 TT
11

]
,

QT
1 H̃Q2 =

[
H11 H12

0 H22

]
,

(4.25)

where S12 and T12 are skew-symmetric and the formal matrix product S−1
11 H11T

−1
11 H

T
22

is in real periodic Schur form [BGD92, HL94, Kre01]. Moreover, define the skew-

3http://www8.cs.umu.se/~guptri/
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Hamiltonian/Hamiltonian pencil

sBS̃ − BH̃ := XT
k

[
sS̃ − H̃ 0

0 sS̃ + H̃

]
Xk ∈ R[s]4k×4k (4.26)

as in (2.3) and (2.2). By using the decomposition (4.25) we can finally determine an
orthogonal matrix Q ∈ R4k×4k such that

sB̂S̃ − B̂H̃ : = J2kQTJ T
2k(sBS̃ − BH̃)Q

= s


S11 0 S12 0
0 T11 0 T12

0 0 ST
11 0

0 0 0 TT
11

−


0 H11 0 H12

−HT
22 0 HT

12 0

0 0 0 H22

0 0 −HT
11 0


with Q = PT

k

[
JkQ1J T

k 0
0 Q2

]
Pk.

To derive an algorithm for computing the desired eigenvectors we use the following

two lemmas. In the following we assume that the matrix pencil s

[
S11 0
0 T11

]
−[

0 H11

HT
22 0

]
is regular which is also equivalent to the regularity of s

[
S11 0
0 T11

]
−[

0 H11

−HT
22 0

]
and sB̂S̃ − B̂H̃.

Lemma 4.4.3. [JV13, Lem. 3] The vector

(
v1

v2

)
∈ C2k with v1, v2 ∈ Ck is a

right eigenvector of the matrix pencil s

[
S11 0
0 T11

]
−
[

0 H11

HT
22 0

]
corresponding to

the eigenvalue ω0 if and only if

(
−iv1

v2

)
is a right eigenvector of the matrix pencil

s

[
S11 0
0 T11

]
−
[

0 H11

−HT
22 0

]
corresponding to the eigenvalue iω0.

Proof. Let

(
v1

v2

)
be a right eigenvector of s

[
S11 0
0 T11

]
−
[

0 H11

HT
22 0

]
corresponding

to the eigenvalue ω0. Then we have

ω0S11v1 = H11v2, ω0T11v2 = HT
22v1.

This is equivalent to

iω0S11(−iv1) = H11v2, iω0T11v2 = −HT
22(−iv1).
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In other words,

(
−iv1

v2

)
is a right eigenvector of the matrix pencil s

[
S11 0
0 T11

]
−[

0 H11

−HT
22 0

]
corresponding to the eigenvalue iω0. The converse direction is analo-

gous.

Lemma 4.4.4. [JV13, Lem. 4] The vector v ∈ C2k is a right eigenvector of the

matrix pencil s

[
S11 0
0 T11

]
−
[

0 H11

−HT
22 0

]
corresponding to the eigenvalue λ0 if and

only if the vector

(
v
0

)
∈ C4k is a right eigenvector of the skew-Hamiltonian/Hamil-

tonian matrix pencil sB̂S̃ − B̂H̃ corresponding to the eigenvalue λ0.

Proof. The proof is trivial.

As an intermediate step, we compute a matrix X whose columns contain the eigen-

vectors corresponding to the positive real eigenvalues of the pencil s

[
S11 0
0 T11

]
−[

0 H11

HT
22 0

]
. This is done by the following basic steps already summarized in [BV11].

Step 1: Reorder the positive real eigenvalues of the k × k generalized matrix
product P := S−1

11 H11T
−1
11 H

T
22 to the top, i. e., compute orthogonal matrices Ui =[

U
(1)
i U

(2)
i

]
, i = 1, . . . , 4, such that

UT
2 S11U1 =

[
S

(11)
11 S

(12)
11

0 S
(22)
11

]
, UT

2 H11U3 =

[
H

(11)
11 H

(12)
11

0 H
(22)
11

]
,

UT
4 T11U3 =

[
T

(11)
11 T

(12)
11

0 T
(22)
11

]
, UT

4 H
T
22U1 =

[
H

(11)
22 H

(12)
22

0 H
(22)
22

]

are still in upper (quasi-)triangular form, but the eigenvalues of the q× q generalized

matrix product P (11) :=
(
S

(11)
11

)−1
H

(11)
11

(
T

(11)
11

)−1
H

(11)
22 are the positive real ones of

P [GKK03].

Step 2: Reorder the eigenvalues of s

[
S

(11)
11 0

0 T
(11)
11

]
−
[

0 H
(11)
11

H
(11)
22 0

]
∈ R[s]2q×2q

by computing orthogonal matrices V1 =
[
V

(1)
1 V

(2)
1

]
, V2 =

[
V

(1)
2 V

(2)
2

]
∈ R2q×2q

such that

V T
1

(
s

[
S

(11)
11 0

0 T
(11)
11

]
−
[

0 H
(11)
11

H
(11)
22 0

])
V2 = s

[
S̃11 S̃12

0 S̃22

]
−
[
H̃11 H̃12

0 H̃22

]
,
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where the eigenvalues of sS̃11− H̃11 ∈ R[s]q×q are positive and those of sS̃22− H̃22 ∈
R[s]q×q are negative.

Step 3: Compute the eigenvectors of sS̃11− H̃11, i. e., compute a matrix W ∈ Rq×q
such that H̃11W = S̃11WD, where D ∈ Rq×q is an appropriate diagonal matrix
composed of the eigenvalues of sS̃11 − H̃11.

Step 4: Collect the information contained in the relevant columns of the transfor-
mation matrices to obtain

X :=

[
X(1)

X(2)

]
:=

[
U

(1)
1 0

0 U
(1)
3

]
V

(1)
2 W ∈ R2k×q.

Now, using Lemma 4.4.3 it turns out that

X̃ :=

[
−iX(1)

X(2)

]
∈ C2k×q

contains the eigenvectors corresponding to the positive imaginary eigenvalues of the

pencil s

[
S11 0
0 T11

]
−
[

0 H11

−HT
22 0

]
. Then, by Lemma 4.4.4, the columns of the

matrix

[
X̃
0

]
∈ C4k×q contain eigenvectors corresponding to the positive imaginary

eigenvalues of the pencil sB̂S̃−B̂H̃. Note that all eigenvalues of this pencil have double

algebraic, geometric, and partial multiplicities. So the matrix

[
X̃
0

]
contains only half

of the eigenvectors to each positive imaginary eigenvalue of sB̂S̃ − B̂H̃. However, this

is not a problem, since by later turning to the original pencil sS̃ − H̃, we do not need
the other half of the eigenvectors.

Decompose the matrices

Q1 = :

[
Q(11)

1 Q(12)
1

Q(21)
1 Q(22)

1

]
, Q(ij)

1 ∈ Rk×k, i, j = 1, 2, and

Q2 = :

[
Q(11)

2 Q(12)
2

Q(21)
2 Q(22)

2

]
, Q(ij)

2 ∈ Rk×k, i, j = 1, 2.

Now, the corresponding eigenvectors corresponding to the positive imaginary eigen-
values of the double-sized matrix pencil sBS̃ − BH̃ are given by

Y :=

[
Y1

Y2

]
= XkQ

[
X̃
0

]
=

1√
2


−iQ(22)

1 X(1) +Q(11)
2 X(2)

iQ(12)
1 X(1) +Q(21)

2 X(2)

iQ(22)
1 X(1) +Q(11)

2 X(2)

−iQ(12)
1 X(1) +Q(21)

2 X(2)

 ∈ C4k×q.
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In the equation above, only Y1 ∈ C2k×q contains the desired eigenvectors of the
matrix pencil sS̃−H̃ and Y does not have to be computed explicitly. More specifically,
we can express Y1 as

Y1 :=
1√
2

[
−iQ(22)

1 X(1) +Q(11)
2 X(2)

iQ(12)
1 X(1) +Q(21)

2 X(2)

]
.

Implementation and Numerical Experiments To compute the eigenvector matrix
Y1 we have implemented a FORTRAN 77 subroutine MB04BV that is subject to be
included into SLICOT. This routine takes the output of the SLICOT routine MB04BD

(that performs the generalized symplectic URV decomposition as in (4.25)) as inputs,
i. e., the matrices S11, T11, H11, H22, Q1, and Q2.

In this paragraph we also compare our structure-exploiting approach with the stan-
dard one for general eigenvalue problems, namely the QZ algorithm (with eigenvalue
reordering) [GL96]. In order to have a fair comparison of the performance of both
methods, we have also implemented a FORTRAN 77 subroutine which combines the
QZ algorithm with reordering the purely imaginary eigenvalues to the top by using
the LAPACK subroutines DGGES and DGGEV. For testing purposes, MEX-files have
been written to call both subroutines from MATLAB.

In order to test the performance of MB04BV, we feed it with random examples which
have purely imaginary eigenvalues. We randomly generate matrices E, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m, and define the transfer function G(s) =
C(sE −A)−1B +D. Define

sS̃ − H̃ = s


E 0 0 0
0 0 0 0

0 0 ET 0
0 0 0 0

−

A B 0 0
C D 0 γIm
0 0 −AT −CT

0 −γIm −BT −DT

 . (4.27)

If sE − A ∈ R[s]n×n is regular, has no eigenvalues on the imaginary axis and G ∈
RHm×m∞ , then the matrix pencil sS̃ − H̃ is guaranteed to have purely imaginary
eigenvalues if infω∈R σmax (G(iω)) < γ < ‖G‖L∞ [BSV12a]. Theoretically, when the
distance between γ and ‖G‖L∞ decreases, the difficulty of the example will increase,
in the sense that the eigenvalues will be increasingly sensitive to perturbations, as
the numerical results will later demonstrate. This is due to the fact, that there are
two purely imaginary eigenvalues which almost form a non-trivial Jordan block in the
Weierstraß canonical form. Then, the transformation matrices will be ill-conditioned,
which leads to a higher sensitivity of these eigenvalues.

Now we compare both approaches by constructing random pencils of the form
(4.27) with n = 100 and m = 5. Table 4.2 shows the performance results of both
algorithms when computing both desired eigenvalues and eigenvectors for different
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values of γ = ‖G‖L∞ (1− κ), from the more well- to the more ill-conditioned exam-
ples. Each row contains the results for a thousand test runs. The time measured is for
both eigenvalue and eigenvector computation. The accuracy of the results is measured
by computing the average of the relative residuals given by

∥∥(λiS̃ − H̃)vi∥∥2
/ ‖vi‖2,

where (λi, vi) are pairs of computed purely imaginary eigenvalues and their respective
eigenvectors. The runtime is given in seconds, using the tic and toc commands in
MATLAB. Furthermore, for the QZ algorithm we have an additional column that
indicates the percentage of examples that could not be solved. This is due to the fact
that eigenvalues might be perturbed off the imaginary axis and will not be consid-
ered as purely imaginary when the distance to the imaginary axis exceeds a certain
threshold. For our tests this value is set to 1e–10. First of all, Table 4.2 shows that

Table 4.2: Comparison of the two methods for eigenvector computation; here γ =
‖G‖L∞ (1− κ)

new algorithm QZ algorithm
κ runtime avg. rel. residual runtime avg. rel. residual failure rate

10−2 99.48 1.1936e–13 154.62 1.0388e–13 0.0%
10−4 99.53 1.5555e–13 153.96 3.2024e–13 0.1%
10−6 99.45 1.3882e–13 153.74 3.2727e–12 0.8%
10−8 99.92 1.1820e–13 153.69 1.9054e–11 4.6%
10−10 99.42 1.3450e–13 151.76 6.6909e–11 28.9%
10−12 99.51 1.3827e–13 147.13 6.5136e–11 78.7%

the QZ algorithm needs about 50% more time to execute than the new algorithm.
However, the most important aspect of the new algorithm is the improved reliabil-
ity. We can see that the failure rate of the QZ algorithm is dramatically increasing
when the examples become more ill-conditioned. By failure we mean that the algo-
rithm extracts a different number of eigenvectors, compared to the actual number of
purely imaginary eigenvalues. Moreover, even in the cases where the QZ algorithm
successfully extracts the eigenvectors, the average relative residual becomes signifi-
cantly larger when the condition gets worse. On the other hand, the new algorithm
performs more reliably and more accurately. Its runtime and accuracy remain at the
same level from the “easier” examples to the “harder” ones.

We now briefly describe the nature of QZ algorithm’s failure by examining a small
example. Consider a randomly generated skew-Hamiltonian/Hamiltonian matrix
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pencil

sS̃ − H̃ = s



0.7060 0.2769 0 0 0 0
0.0318 0.0462 0 0 0 0

0 0 0 0 0 0
0 0 0 0.7060 0.0318 0
0 0 0 0.2769 0.0462 0
0 0 0 0 0 0



−



0.7431 0.6555 0.0971 0 0 0
0.3922 0.1712 0.8235 0 0 0
0.6948 0.3171 0.9502 0 0 0.9502

0 0 0 −0.7431 −0.3922 −0.6948
0 0 0 −0.6555 −0.1712 −0.3171
0 0 −0.9502 −0.0971 −0.8235 −0.9502

 ∈ R[s]6×6,

of the form (4.27) with κ = 10−6. The spectrum is given by

Λ
(
S̃, H̃

)
= {927.5i,−927.5i, 1.161,−1.161}

with two eigenvalues at infinity. In the spectrum, only the purely imaginary eigen-
value 927.5i is interesting to us. The new algorithm successfully extracts one eigen-
vector with relative residual 1.8594e–15.

However, the QZ algorithm fails to extract the eigenvector. Since it does not
respect the structure of the pencil, all purely imaginary eigenvalues will be perturbed
off the imaginary axis. When we are selecting the purely imaginary eigenvalues, we
cannot expect that the real part of an eigenvalue is exactly zero, as it is for the
structure-preserving algorithm. Alternatively, what we do is to ask if the real part
is smaller than some tolerance. This tolerance is empirically set to 1e–10. This is
a rather tight bound, but it illustrates the behavior of the QZ algorithm quite well.
However, the real part of this eigenvalue after perturbation is 1.4079e–10. Because
the real part is slightly larger than the tolerance, this eigenvalue is not selected and
thus no eigenvector is extracted.

Finally, we can conclude that the new method to compute the eigenvectors

a) is more robust, especially for ill-conditioned examples;

b) is comparably accurate for well-conditioned examples, and significantly more ac-
curate for ill-conditioned examples;

c) needs only about 2/3 of time to execute.
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4.4.9 An Illustrative Example

In this section we present some numerical results of the algorithm for enforcing neg-
ative imaginariness. As an example we use the constrained damped mass-spring
system described the introduction, see Figure 1.1. Since the input and the output
are colocated, i. e., at the same position, such a system has a negative imaginary
transfer function, see also [PL10]. The system we consider has n = 11 state variables
and m = 1 input and output. To obtain non-negative imaginary test examples we
perturb the state matrix A by a matrix Â with small norm. Here, we have a look on
two such example systems which have been created by a relatively large perturbation
of the matrix A.

We analyze the results for different values of the tuning parameter α and present
the relative error measured in the HL2-norm and the number of iterations needed to
make the systems negative imaginary.

Table 4.3: Numerical results for enforcing negative imaginariness of the first example

α 0.5 0.4 0.3 0.2 0.1

rel. error 0.28648 0.24260 0.17241 0.11459 0.08087
# iter. 1 5 3 1 10

0.05 0.02 0.01

0.07706 0.07634 0.07480
26 61 132

Table 4.4: Numerical results for enforcing negative imaginariness of the second ex-
ample

α 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01

rel. error — — — — 0.58480 0.47038 0.43616 0.42904
# iter. — — — — 9 121 276 514

For the first example, the perturbation of A is still small enough that the algorithm
gives reasonable results for all values of α. The results are listed in Table 4.3. Note,
that for larger α additional violations of negative imaginariness are introduced since
the perturbations of the eigenvalues are too large to be captured by the first order
perturbation theory. For the second example we increased the size of the perturbation
and then the violation of negative imaginariness is so large that the enforcement
algorithm fails, if α is too big. We only get reasonable results if we further decrease
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α and make the perturbation of the system in each step sufficiently small. See
also Table 4.4 in which all results are presented. We observe that when we run
the algorithm, it often happens that there occur additional negative imaginariness
violations for larger frequencies. This is due to the fact that for these frequencies, the
eigenvalues of Φ(iω) are already very close to zero and thus can be easily perturbed
to negative values. Therefore, the algorithm has to enforce negative imaginariness
(repeatedly) for these frequencies which drastically increases the iteration numbers
for smaller α.

0 0.5 1 1.5 2

0

0.1

0.2

0.3

ω

Λ
(Φ

(i
ω

))

orig.
enf.

(a) α = 0.5

0 0.5 1 1.5 2

0

0.1

0.2

0.3

ω

Λ
(Φ

(i
ω

))

orig.
enf.

(b) α = 0.3

0 0.5 1 1.5 2

0

0.1

0.2

0.3

ω

Λ
(Φ

(i
ω

))

orig.
enf.

(c) α = 0.1

0 0.5 1 1.5 2

0

0.1

0.2

0.3

ω

Λ
(Φ

(i
ω

))

orig.
enf.

(d) α = 0.02

Figure 4.4: Results for enforcing negative imaginariness of the first example

The numerical results are also depicted in Figures 4.4 and 4.5. For the first example
we see that for larger values of α, we perform a slightly too large perturbation as
the eigenvalue curves have some distance from the zero level. However, for smaller
values of α this distance gets smaller and the approximation gets better. For the
second example one can see that for α = 0.1 we have a large error around ω = 1.1
as there is a very high peak for the negative imaginary system. But again, as α
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Figure 4.5: Results for enforcing negative imaginariness of the second example

decreases, also the size of the peak gets closer to the one of the original system and
the approximation gets better.

4.5 Conclusions and Outlook

In this chapter we have introduced the negative imaginary property for transfer func-
tions related to descriptor systems. We have shown equivalent conditions for negative
imaginariness in terms of the spectrum of a certain even matrix pencil. We have an-
alyzed the EKCF of this pencil and showed that it has to fulfill a certain block struc-
ture. In the second part of the chapter, we have introduced a numerical method for
restoring negative imaginariness in the case that it has been lost when applying a sys-
tem approximation algorithm such as done in model order reduction. This numerical
method relies on the structure-preserving computation of the purely imaginary eigen-
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4 Systems with Counterclockwise Input/Output Dynamics

values and associated eigenvectors of related skew-Hamiltonian/Hamiltonian matrix
pencils. Finally, we have presented some numerical results and we have discussed
the behavior of the enforcement algorithm. A future research topic might be the
analysis of an negative imaginariness enforcement procedure which also allows the
perturbation of other matrices than B1 to obtain more accurate results. For instance
it would be interesting to analyze whether the enforcement procedure in [BS13] could
be adapted to our problem.
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5 Computation of the Complex Cyclo-Dissipativity
Radius

5.1 Introduction

In this chapter we turn back to the concept of cyclo-dissipative systems. When
modeling cyclo-dissipative processes, it is important to reflect this property in the
structure of the model. Otherwise, simulations could produce physically meaningless
results. However, due to modeling errors, introduced, e. g., by model order reduction,
linearizations, or uncertainties in the parameters of the system, it could easily happen
that cyclo-dissipativity in the model structure is lost. In other words, a physically
cyclo-dissipative process is modeled by a non-cyclo-dissipative mathematical model.
Then it is necessary to restore this structure by a post-processing procedure, typically
known as dissipativity enforcement [BS13] (or passivity enforcement in certain special
cases, e. g., [GT04, GTU06], or see Chapter 4 for system with ccw I/O dynamics). On
the other hand, even if the model is cyclo-dissipative, it might be close to a non-cyclo-
dissipative model. Then it is desirable to assess robustness of cyclo-dissipativity with
respect to perturbations of the model. A more precise formulation of this question
is:

What is the distance of a given cyclo-dissipative model
to the set of non-cyclo-dissipative models?

The aim of this chapter is to define the distance to non-cyclo-dissipativity, discuss its
properties and an algorithm to compute it.

A first attempt to calculate the cyclo-dissipativity radius is given in [OD05]. There
the authors consider the problem of computing the passivity radius for a stable linear
time-invariant system (In, A,B,C,D) ∈ Σn,m,m. Then they define the perturbed
system

ẋ(t) = (A+ ∆A)x(t) + (B + ∆B)u(t),

y(t) = (C + ∆C)x(t) + (D + ∆D)u(t),
(5.1)

with ∆A ∈ Cn×n, ∆B ∈ Cn×m, ∆C ∈ Cm×n, and ∆D ∈ Cm×m and ask the question
what is

rpas(A,B,C,D) := inf

{∥∥∥∥[∆A ∆B

∆C ∆D

]∥∥∥∥
2

: system (5.1) is not passive

}
. (5.2)
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5 Computation of the Complex Cyclo-Dissipativity Radius

This number is also called the complex passivity radius of (In, A,B,C,D). Then
they compute the solution by solving a sequence of structured matrix perturbation
problems for Hermitian matrices. However, this approach has some disadvantages:

a) The definition of the passivity radius in (5.2) does not turn over to the corre-
sponding transfer function, defined by G(s) := C(sIn − A)−1B + D ∈ R(s)m×m.
Instead of asking for the passivity radius one could ask for the positive realness
radius. Under system theoretic aspects they should be the same. To see that they
are not, we consider a state-space transformation of the system of the form[

Ã B̃

C̃ D̃

]
:=

[
W−1 0

0 Im

] [
A B
C D

] [
W 0
0 Im

]
with W ∈ Gln(R). The associated transfer function remains invariant under such

a transformation, i. e., G(s) = C̃
(
sIn − Ã

)−1
B̃ + D̃. On the other hand, for the

associated transformation of the perturbation matrices we generally obtain∥∥∥∥[∆Ã
∆
B̃

∆
C̃

∆
D̃

]∥∥∥∥
2

: =

∥∥∥∥[W−1 0
0 Im

] [
∆A ∆B

∆C ∆D

] [
W 0
0 Im

]∥∥∥∥
2

6=
∥∥∥∥[∆A ∆B

∆C ∆D

]∥∥∥∥
2

.

For instance, we have

2.5 =

∥∥∥∥[1 0.5
2 1

]∥∥∥∥
2

=

∥∥∥∥[0.5 0
0 1

] [
1 1
1 1

] [
2 0
0 1

]∥∥∥∥
2

6=
∥∥∥∥[1 1

1 1

]∥∥∥∥
2

= 2.

This means, that the definition of the complex passivity radius is a property of
the dynamical system and not of the transfer function G(s).

b) The definition only takes the special case of passivity into account and does not
consider the case of general supply rates.

These observations are the motivation for this chapter. Our contribution is a defi-
nition of the passivity radius that is invariant under certain system transformations.
Moreover, we consider differential-algebraic systems with arbitrary quadratic supply
rates.

This chapter is structured as follows. In Section 5.2 we discuss a spectral char-
acterization of cyclo-dissipativity via an even matrix pencil and give a definition of
the complex cyclo-dissipativity radius. Since the problem of computing the cyclo-
dissipativity radius is related to structured perturbations of the even pencils, in Sec-
tion 5.3 we discuss perturbations of the various substructures, in particular, the
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5.2 The Cyclo-Dissipativity Radius

singular and higher-index structures of the even pencil. In Sections 5.4 we derive a
computational procedure to compute the complex cyclo-dissipativity radius. Finally,
in Section 5.5 we present some numerical results of the algorithm and summarize the
chapter in Section 5.6, where we also point to some open problems.

5.2 The Cyclo-Dissipativity Radius

Assume that Σ := (E,A,B,C,D) ∈ Σn,m,p and let Qs = QT
s ∈ Rp×p, Ss ∈ Rp×m,

and Rs = RT
s ∈ Rm×m be given. Let the supply rate s(·, ·) be defined as in (3.101).

Our definition of the cyclo-dissipativity radius is based on structured perturbations
of the form [

A B
C D

]
 

[
A B
C D

]
+

[
L1

L2

]
∆
[
R1 R2

]
with

• a perturbation matrix ∆ ∈ Cm0×p0 and

• matrices L1 ∈ Rn×m0 , L2 ∈ Rp×m0 , R1 ∈ Rp0×n, and R2 ∈ Rp0×m defining the
perturbation structure.

The perturbation structures in L and R can be chosen in such a way to analyze

the influence of perturbations on individual entries in

[
A B
C D

]
which could reflect

perturbations of a certain set of parameters of the system.

Definition 5.2.1. Define the matrices

L :=

[
L1

L2

]
∈ Rn+p×m0 and R :=

[
R1 R2

]
∈ Rp0×n+m.

Then the number

rs,C(Σ,L,R) := inf
{
‖∆‖2 : the perturbed system is not cyclo-dissipative

with respect to the supply rate s(·, ·) and with ∆ ∈ Cm0×p0}
is called the complex cyclo-dissipativity radius of the system Σ with respect to the
supply rate s(·, ·).
Remark 5.2.2 (Real cyclo-dissipativity radii). Note, that even if the matrices defin-
ing the system and the supply rate are all real, we use complex perturbations. In
general, the computation of the real cyclo-dissipativity radius is much more involved.
However, since the set of the real matrices is contained the set complex matrices, we
always have the inequality

rs,C(Σ,L,R) ≤ rs,R(Σ,L,R),

where rs,R(Σ,L,R) denotes the corresponding real cyclo-dissipativity radius.
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5 Computation of the Complex Cyclo-Dissipativity Radius

To characterize the loss of cyclo-dissipativity, we make use of the conditions in
Corollary 3.9.5. Therefore, define

N (s) :=


0 0 0 −sE +A B
0 0 −Ip C D
0 −Ip Qs 0 Ss

sET +AT CT 0 0 0
BT DT ST

s 0 Rs

 ∈ R[s]`×` (5.3)

with ` := 2(n+ p) +m. Note that from the numerical point of view, it is preferable
to use the pencil from Corollary 3.9.5 d) rather than the one from c), because it is
constructed by only using the original data without forming explicit matrix-times-
its-transpose-like products as for the pencil in c). It is mentioned in [BBMX99]
that forming such products might be numerically unstable and should be avoided
whenever possible. From Corollary 3.9.5 d) it is clear that cyclo-dissipativity is lost
if and only if there exists an ω0 ∈ R with iω0 6∈ Λ(E,A) such that

η(N (iω0)) 6= m,

where η(·) denotes the sign-sum function as in (3.107). Define

K :=

[
K1

K2

]
=

[
LT 0m0×p 0m0×n+m

0p0×n+p 0p0×p R

]
(5.4)

and consider the perturbed even pencil

N∆(s) := N (s) +KT

[
0 ∆

∆H 0

]
K. (5.5)

Then we obtain

rs,C(Σ,L,R) = inf
{
‖∆‖2 : η (N∆(iω0)) 6= m

for some ω0 ∈ R with iω0 /∈ Λ(E,A+ L1∆R1) and ∆ ∈ Cm0×p0}.
Remark 5.2.3.

a) It is easily verified that rs,C(Σ,L,R) is invariant under generalized state-space

transformations, i. e., forW :=

[
W 0
0 Ip

]
∈ Gln+p(R), T :=

[
T 0
0 Im

]
∈ Gln+m(R),

and [
−sẼ + Ã B̃

C̃ D̃

]
: =W

[
−sE +A B

C D

]
T , L̃ :=WL, R̃ := RT ,

Σ̃ : =
(
Ẽ, Ã, B̃, C̃, D̃

)
∈ Σn,m,p,
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5.2 The Cyclo-Dissipativity Radius

it holds that

rs,C
(
Σ,L,R

)
= rs,C

(
Σ̃, L̃, R̃

)
.

This follows from the fact that UTN∆(s)U has the same Kronecker structure as
N∆(s) for any nonsingular U ∈ R`×`. In our case we have U := diag(W, Ip, T ).
This also leads to a proper definition of the cyclo-dissipativity radius in the fre-
quency domain, since the associated Popov functions are invariant under such
state-space transformations.

b) The structure of the perturbations is contained in the matrix K. In this chapter,
the structure of K does not play any particular role for computational purposes.
Therefore, one could also allow different classes of perturbations as long as they are
conforming to the perturbation structure of the even pencil, given by (5.5) (with
possibly different K). However, in this case, statement a) does not necessarily
hold true anymore.

c) Under certain conditions, it is also possible to compute the complex dissipativity
radius. Therefore, assume that (E,A,B,C,D) ∈ Σn,m,p with the system space
Vsys as in (3.5) is dissipative with respect to the supply rate s(·, ·) given by[

Qs Ss
ST
s Rs

]
=Ṽ

[
K̂T

1 K̂1 K̂T
1 L̂1

L̂T
1 K̂1 L̂T

1 L̂1

]
−
[
K̂T

2 K̂2 K̂T
2 L̂2

L̂T
2 K̂2 L̂T

2 L̂2

]

with K̂1 ∈ Rm×p, K̂2 ∈ Rp2×p, L̂1 ∈ Rm×m, L̂2 ∈ Rp2×m, and

Ṽsys :=

{(
y
u

)
∈ Rp+m : y = Cx+Du with

(
x
u

)
∈ Vsys

}
such that K̂1G(s)+ L̂1 ∈ Glm(R(s)). From the proof of Theorem 3.7.4 and Corol-
lary 3.9.4 b), dissipativity is equivalent to the bounded realness of the rational
function Ge(s) ∈ R(s)p×m that is realized by

Σe : = (Ee, Ae, Be, Ce)

=

([
E 0
0 0

]
,

[
A B

K̂1C K̂1D + L̂1

]
,

[
0
−Im

]
,
[
K̂2C K̂2D + L̂2

])
∈ Σn+m,m,p.

Define the perturbed transfer function

Ge,∆(s) :=
[
K̂2(C + L2∆R1) K̂2(D + L2∆R2) + L̂2

]
·
[
sE − (A+ L1∆R1) −(B + L1∆R2)

−K̂1(C + L2∆R1) −K̂1(D + L2∆R2) + L̂1

]−1 [
0
−Im

]
.
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5 Computation of the Complex Cyclo-Dissipativity Radius

Then the complex dissipativity radius r̂s,C(Σ,L,R) is given by

r̂s,C(Σ,L,R) = inf
{
‖∆‖2 : Ge,∆(s) is not bounded real with ∆ ∈ Cm0×p0} .

Assume that one of the following statements holds true:

a) Λ(Ee, Ae) ⊂ C− and the index of sEe −Ae is at most one;

b) Σe is given in a weakly minimal realization, i. e., it is completely controllable
and completely observable.

With the assumptions above, it is not possible that an uncontrollable or unobserv-
able mode of the system Σe in the closed right half-plane is perturbed to a pole
of Ge,∆(s) for an arbitrarily small ∆. Since the pole perturbations are continuous
and due to the special structure of bounded real rational functions, the condition
that In+m−G∼e,∆(iω)Ge,∆(iω) ≥ 0 for all ω ∈ R is violated before one of the poles
of Ge,∆(s) is moved to the imaginary axis. Therefore, in this case we have

r̂s,C(Σ,L,R) = rs,C(Σ,L,R).

5.3 Perturbations of the Singular Part and the Defective
Infinite Eigenvalues

Now we study the effect of structured perturbations of the form (5.5) on the even
pencil N (s) ∈ R[s]`×`. There are fundamental differences between perturbations
of the part of the pencil which correspond to different block types of the EKCF.
Therefore, we distinguish the “exceptional” cases of perturbations of the singular
part or defective infinite eigenvalues (i. e., those which correspond to blocks of type
E3 of size larger than 1× 1) from perturbations of the remaining part.

5.3.1 Perturbation of the Singular Part

In this subsection we consider perturbations of the singular part of the pencil N (s).
For this analysis we assume that N (s) ∈ R[s]`×` has no purely imaginary eigenvalues.
With regard to Proposition 3.2.2 and Lemma 3.4.1 this equivalent to the fact that
(E,A,B,C,D) ∈ Σn,m,p has no uncontrollable modes on the imaginary axis and
Φ(s) ∈ R(s)m×m has no purely imaginary zeros.

First, we analyze whether and how the zero eigenvalues of a given Hermitian ma-
trix can move by a structured perturbation. The main result is summarized in the
following theorem.

Theorem 5.3.1. Let H ∈ C`×` be a given Hermitian matrix and consider the spectral
decomposition

H =
[
V1 V2

] [Θ 0
0 0

] [
V1 V2

]H
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Eigenvalues

with V1 ∈ C`×`1, V2 ∈ C`×`2 and
[
V1 V2

]
having unitary columns, and Θ ∈ R`1×`1

being a diagonal matrix containing the nonzero eigenvalues of H on its diagonal.
Consider a perturbed matrix

H̃ = H +

[
K1

K2

]T [
0 ∆

∆H 0

] [
K1

K2

]
with nonzero K1 ∈ Rm0×`, K2 ∈ Rp0×`, and ∆ ∈ Cm0×p0. Let H+ denote the Moore-
Penrose inverse of H. Then the following statements are satisfied:

a) If K1V2 = 0 and K2V2 = 0, then H and H̃ have the same zero eigenvalues for all
sufficiently small ∆ 6= 0.

b) If K1V2 6= 0, and K2V2 6= 0, then there exists an arbitrarily small ∆ 6= 0 such
that some zero eigenvalues of H can be perturbed to positive and some to negative
eigenvalues in H̃.

c) If K1V2 6= 0 and K2V2 = 0, then there exists an arbitrarily small ∆ 6= 0 such that
some zero eigenvalues of H are perturbed to positive (negative) eigenvalues in H̃
if and only if K2H

+KT
2 6≥ 0 (K2H

+KT
2 6≤ 0). If K2H

+KT
2 ≥ 0 (K2H

+KT
2 ≤ 0),

then the smallest perturbation ∆0 that perturbs a zero eigenvalue of H to a positive
(negative) eigenvalue of H̃ fulfills

‖∆0‖2 > inf
∆∈Cm0×p0

{
‖∆‖2 : V H

1

(
H +

[
K1

K2

]T [
0 ∆

∆H 0

] [
K1

K2

])
V1 is singular

}
.

(5.6)

d) If K1V2 = 0 and K2V2 6= 0, then there exists an arbitrarily small ∆ 6= 0 such that
some zero eigenvalues of H are perturbed to positive (negative) eigenvalues in H̃
if and only if K1H

+KT
1 6≥ 0 (K1H

+KT
1 6≤ 0). If K1H

+KT
1 ≥ 0 (K1H

+KT
1 ≤ 0),

then the smallest perturbation ∆0 that perturbs a zero eigenvalue of H to a positive
(negative) eigenvalue of H̃ fulfills (5.6).

Proof. Assume that ∆ = ε∆̃ with
∥∥∆̃
∥∥

2
= 1 and ε > 0 are given and define the

matrices

Θ11 : = V H
1 K

T
1 ∆̃K2V1 + V H

1 K
T
2 ∆̃HK1V1,

Θ12 : = V H
1 K

T
1 ∆̃K2V2 + V H

1 K
T
2 ∆̃HK1V2,

Θ22 : = V H
2 K

T
1 ∆̃K2V2 + V H

2 K
T
2 ∆̃HK1V2.

This yields [
V1 V2

]H
H̃
[
V1 V2

]
=

[
Θ + εΘ11 εΘ12

εΘH
12 εΘ22

]
.
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5 Computation of the Complex Cyclo-Dissipativity Radius

Since Θ has no zero eigenvalues, there exists an ε0 such that Θ + εΘ11 ∈ Gl`1(C) for
all 0 < ε < ε0. The Haynsworth inertia additivity formula [Hay68] implies that for
all 0 < ε < ε0 it holds that

In
(
H̃
)

= In (Θ + εΘ11) + In (F (ε)) = In (Θ) + In (F (ε)) ,

where F (ε) := εΘ22 − ε2ΘH
12 (Θ + εΘ11)−1 Θ12. Since F (ε) is a rational function, it

can be expanded into a Taylor series at expansion point ε∗ = 0, i. e.,

F (ε) = εΘ22 − ε2
∞∑
k=0

Mkε
k (5.7)

with Mk = ΘH
12

(
−Θ−1Θ11

)k
Θ−1Θ12, see [FBK13, p. 73].

Now we prove statement a): We have

[
V1 V2

]H
H̃
[
V1 V2

]
=

[
Θ + εΘ11 0

0 0

]
and no perturbation of the zero eigenvalues of H is possible.

Next we show b): By the assumptions we can choose ∆̃ such that Θ22 6= 0. From
(5.7) we have F (ε) = εΘ22 +O(ε2) and thus we obtain

In(F (ε)) = In(Θ22)

for all sufficiently small ε. Now the result follows since we can choose ∆̃ such that
Θ22 has at least one positive eigenvalue. This can be seen from the fact that by
choosing −∆̃ as perturbation, the signatures of all eigenvalues of Θ22 change as well.

Now we prove statement c): From the assumptions it follows that Θ22 = 0 and
Θ12 = V H

1 K
T
2 ∆̃HK1V2. We obtain F (ε) = −ε2ΘH

12Θ−1Θ12 + O(ε3). Moreover, it
holds that

Θ0 : = ΘH
12Θ−1Θ12

= V H
2 K

T
1 ∆̃K2V1Θ−1V H

1 K
T
2 ∆̃HK1V2

= V H
2 K

T
1 ∆̃K2H

+KT
2 ∆̃HK1V2.

Let K2H
+KT

2 = PHΞP with a diagonal matrix Ξ ∈ Rp0×p0 and a unitary matrix

P ∈ Cp0×p0 be a spectral decomposition. With ∆̂ = ∆̃PH this yields

Θ0 = V H
2 K

T
1 ∆̂Ξ∆̂HK1V2.

Assume that K1V2 has a nonzero entry at the (p, q)-th position. Then, by choosing
a nonzero value for ∆̂H at the position (r, p) (and zero at the other entries), Θ0 is a
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matrix with exactly one nonzero eigenvalue that has the signature of the entry at the
(r, r)-th position of Ξ. Therefore, if K2H

+KT
2 6≥ 0, one of the zero eigenvalues of H

can be perturbed to a positive eigenvalue of H̃ by an arbitrarily small perturbation.
Now assume that K2H

+KT
2 ≥ 0. Then obviously no eigenvalue of Θ0 can be

negative for any ∆̂ and no perturbation of the eigenvalues of H in positive direction
is possible for sufficiently small ε. Now consider the function

F̃ (ε) := ΘH
12(Θ + εΘ11)−1Θ12,

which is continuous as long as ε < ε0 := infε>0{ε : Θ + εΘ11 is singular}. Moreover,
we have rank

(
F̃ (ε)

)
= rank(Θ12) for all ε < ε0. However, due to the continuity

of F̃ (ε) and the constancy of the rank, also In
(
F̃ (ε)

)
is constant for all ε < ε0,

otherwise there would exist an ε̂ ∈ (0, ε0) such that rank
(
F̃
(
ε̂
))
< rank(Θ12) which

is a contradiction and proves the claim.
The proof of statement d) is completely analogous to the one of c).

The above theorem directly leads to the following corollary, describing the loss of
cyclo-dissipativity due to perturbations of the singular part of N (s).

Corollary 5.3.2. Assume that Σ := (E,A,B,C,D) ∈ Σn,m,p and let Qs = QT
s ∈

Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m be given. Let the system be cyclo-dissipative

with respect to s(·, ·) as defined in (3.101) and let N (s) ∈ R[s]`×` and K be defined
as in (5.3) and (5.4), respectively. Assume that N (s) has no purely imaginary eigen-
values. For all ω ∈ R consider the spectral decomposition

N (iω) =
[
V1(ω) V2(ω)

] [Θ(ω) 0
0 0

] [
V1(ω) V2(ω)

]H
with analytic functions V1 : R → C`×`1, V2 : R → C`×`2 and

[
V1(·) V2(·)

]
having

pointwise unitary columns, and Θ : R → R`1×`1 being a analytic diagonal matrix-
valued function containing the nonzero eigenvalues of N (i·) on its diagonal. Then
the following statements hold true:

a) If there exists an ω0 ∈ R such that

i) K1V2(ω0) 6= 0 and K2V2(ω0) 6= 0; or

ii) K1V2(ω0) 6= 0 and K2V2(ω0) = 0 and K2N (iω0)+KT
2 6≤ 0; or

iii) K1V2(ω0) = 0 and K2V2(ω0) 6= 0 and K1N (iω0)+KT
1 6≤ 0,

then the cyclo-dissipativity radius is zero.

b) On the other hand, if none of the above conditions is satisfied for all ω0 ∈ R, then
the zero eigenvalues of N (iω0) remain zero in N∆(iω0) for all ω0 ∈ R and any
sufficiently small perturbation ∆ ∈ Cm0×p0, where N∆(s) ∈ C[s]`×` is as in (5.5).
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5 Computation of the Complex Cyclo-Dissipativity Radius

Proof. The sign-sum function can be changed by an arbitrarily small perturbation if
for one ω0 ∈ R, some of the zero eigenvalues of N (iω0) can be perturbed to negative
values. Due to Theorem 5.3.1 applied to N (iω0), this is the case if and only if one of
the conditions a) i)–iii) is fulfilled.

Statement b) follows directly from Theorem 5.3.1 a), c), and d).

Remark 5.3.3. If N (s) ∈ R[s]`×` has a purely imaginary eigenvalue iω0, then in
principal, we would have to check the conditions of Theorem 5.3.1 for N (iω0) as well.
However, in this case, the situation is more subtle. For instance, consider the even
matrix pencil

N (s) =


0 0 0 1 0
0 0 s 0 0
0 −s 0 0 0
1 0 0 0 0
0 0 0 0 0

 ∈ R[s]5×5

with 0 ∈ Z(N ), η(N (iω)) = 1 for all ω ∈ R \ {0}, and η(N (0)) = 3. This pencil is
not directly connected to cyclo-dissipativity, but certain effects can still be observed.

We have

N (iω) =
1

2


1 1 0 0 0
0 0 1 i 0
0 0 −i −1 0
1 −1 0 0 0

0 0 0 0
√

2




1 0 0 0 0
0 −1 0 0 0
0 0 ω 0 0
0 0 0 −ω 0
0 0 0 0 0




1 0 0 1 0
1 0 0 −1 0
0 1 i 0 0
0 −i −1 0 0

0 0 0 0
√

2

 ,

i. e., using the notation of Corollary 5.3.2, for ω 6= 0 we have

Θ(ω) =


1 0 0 0
0 −1 0 0
0 0 ω 0
0 0 0 −ω

 , V1(ω) =
1√
2


1 1 0 0
0 0 1 i
0 0 −i −1
1 −1 0 0
0 0 0 0

 , V2(ω) =


0
0
0
0
1

 .

Now assume that

K =

[
K1

K2

]
=

[
0 1 0 0 0
0 0 0 0 1

]
.

Then we haveK1V2(·) ≡ 0, but it holds thatK2V2(·) ≡ 1. Moreover, for all ω ∈ R\{0}
we have K1N (iω)+KT

1 = 0, i. e., according to Theorem 5.3.1 d), the sign-sum function
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remains constant for all ω 6= 0. Indeed, it holds that

N∆(s) =


0 0 0 1 0
0 0 s 0 ∆
0 −s 0 0 0
1 0 0 0 0
0 ∆H 0 0 0

 .
The EKCF of the subpencil

Ñ∆(s) =

 0 s ∆
−s 0 0
∆H 0 0


contains only a block of type E4 of size 3×3 for all ∆ ∈ C\{0}. Thus, by Lemma 2.1.15
f) it holds that In

(
Ñ∆(iω)

)
= (1, 1, 1) for all ω ∈ R. Hence, we can conclude that

η(N∆(iω)) = η(N (iω)) = 1 for all ω ∈ R \ {0}.
On the other hand, for ω = 0 we obtain η(N (0)) = 3. However, for any ∆ ∈ C\{0},

we have η(N∆(0)) = 1 and 0 6∈ Z(N∆). In particular, in the context of a cyclo-
dissipative system this means that, if the original system is cyclo-dissipative, then
the perturbed system remains cyclo-dissipative for any nonzero perturbation ∆ ∈ C,
even though there exists a point ω0 ∈ R with η(N (iω0)) 6= η(N∆(iω0)).

To check whether there exists an ω0 that fulfills one of the conditions i)–iii) in
Corollary 5.3.2 a), we make the following considerations. First we check whether
K1V2(·) ≡ 0.

If the EKCF of N (s) has no blocks of type E4 of size larger than 1× 1, then V2(·)
is constant and if K1V2(ω0) = 0 holds for one point ω0, then it holds that for all of
them. However, if there are larger blocks of type E4, V2(ω0) depends on ω0 and the
situation is more complicated. Let D(s) ∈ C[s]2j−1×2j−1 be a block of type E4. Then
D(iω0) has exactly one zero eigenvalue with eigenvector

vj(ω0) =
(
0 . . . 0 (iω0)j (iω0)j−1 . . . (iω0)0

)T ∈ C2j−1.

This means that we have the representation

K1V2(ω) =

w∑
i=0

(iω)iQ̃i,

where Q̃i ∈ Rm0×`2 , i = 1, . . . , w, and the largest block of type E4 in the EKCF of
N (s) is of size (2w − 1) × (2w − 1). Indeed, w is the same as in the even staircase
form (2.1). If K1V2(ω0) 6= 0 for an ω0 ∈ R, then

Q(s) :=
w∑
i=0

siQ̃i ∈ R[s]m0×`2
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is not the zero polynomial and hence Q(iω0) = 0 can only hold in a finite number
of points (namely in at most w many). Therefore, the condition K1V2(·) ≡ 0 can be
checked with at most w function evaluations. The same technique can also be used
to check the condition K2V2(·) ≡ 0.

Now assume that K1V2(·) ≡ 0 and K2V2(·) 6≡ 0. It remains to check whether
M1(ω) := K1N (iω)+KT

1 6≤ 0 holds true for an ω ∈ R. It holds that

M1(ω) = K1V1(ω)Θ(ω)−1V1(ω)HKT
1 ,

i. e., M1(·) has a zero at ω0 ∈ R if and only if there is a rank drop in K1V1(·) at ω0.
On the other hand, this condition is equivalent to

rank

[
Θ(ω0) V1(ω0)HKT

1

K1V1(ω0) 0

]
= rank

 Θ(ω0) 0 V1(ω0)HKT
1

0 0 V2(ω0)HKT
1

K1V1(ω0) K1V2(ω0) 0


= rank

[
N (iω0) KT

1

K1 0

]
< rankR(s)

[
N (s) KT

1

K1 0

]
,

i. e., iω0 is an eigenvalue of the (possibly singular) even pencilH1(s) :=

[
N (s) KT

1

K1 0

]
∈

R[s]`+m0×`+m0 . Now let iα1 < iα2 < . . . < iαk be the purely imaginary eigenvalues
of H1(s) with positive imaginary part and set α0 = 0 and αk+1 = ∞. Due to the
piecewise continuity of the spectrum of M1(·) it is only necessary to verify whether
it holds that M1(α̂j) 6≤ 0 for some α̂j ∈ (αj , αj+1), j = 0, . . . , k. The same strategy
can also be applied to check the same condition for M2(ω) := K2N (iω)+KT

2 6≤ 0.

5.3.2 Perturbation of the Defective Infinite Eigenvalues

In this subsection we consider perturbations of the defective infinite eigenvalues of
N (s) ∈ R[s]`×`, i. e., those that correspond to blocks of type E3 of size larger than
1 × 1 in the EKCF. Therefore, we need the following theorem which is similar to
Theorem 5.3.1 in some aspects. Note that in the following we only consider N (iω)
for ω → ∞, since for even pencils with real coefficients it holds that Λ(N (iω)) =
Λ(N (−iω)).

Theorem 5.3.4. Let H : (ω0,∞) → C`×` be a given analytic Hermitian matrix-
valued function. Consider the pointwise spectral decomposition

H(ω) =
[
V1(ω) V2(ω)

] [Θ(ω) 0
0 Ω(ω)

] [
V1(ω) V2(ω)

]H
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with analytic functions V1 : (ω0,∞)→ C`×`1, V2 : (ω0,∞)→ C`×`2 and
[
V1(·) V2(·)

]
having pointwise unitary columns. Furthermore, Θ : (ω0,∞) → R`1×`1 and Ω :
(ω0,∞)→ R`2×`2 are analytic diagonal matrix-valued functions containing the eigen-
values of H(·) on their diagonal with the additional properties that

∥∥Θ(ω)−1
∥∥

2
< h <

∞ for all ω ∈ (ω0,∞) and limω→∞Ω(ω) = 0.

Consider a perturbed analytic matrix-valued function

H̃(ω) = H(ω) +

[
K1

K2

]T [
0 ∆

∆H 0

] [
K1

K2

]
with nonzero K1 ∈ Rm0×`, K2 ∈ Rp0×`, and ∆ ∈ Cm0×p0.

Furthermore, define V1,∞ := limω→∞ V1(ω), V2,∞ := limω→∞ V2(ω), and H+
∞ :=

limω→∞H(ω)+. Then the following statements are satisfied:

a) If K1V2,∞ = 0 and K2V2,∞ = 0, then H(ω) and H̃(ω) have the same zero eigen-
values for ω →∞ for all sufficiently small ∆ 6= 0.

b) If K1V2,∞ 6= 0 and K2V2,∞ 6= 0, then there exists an arbitrarily small ∆ 6= 0 such
that for ω → ∞, some zero eigenvalues of H(ω) can be perturbed to positive and
some negative eigenvalues in H̃(ω).

c) If K1V2,∞ 6= 0 and K2V2,∞ = 0, then there exists an arbitrarily small ∆ 6= 0
such that for ω → ∞, some zero eigenvalues of H(ω) are perturbed to positive
(negative) eigenvalues in H̃(ω) if and only if K2H

+
∞K

T
2 6≥ 0 (K2H

+
∞K

T
2 6≤ 0). If

K2H
+
∞K

T
2 ≥ 0 (K2H

+
∞K

T
2 ≤ 0), then the smallest perturbation ∆0 that perturbs

a zero eigenvalue of H(ω) to a positive (negative) eigenvalue of H̃(ω) for ω →∞
fulfills

‖∆0‖2 > inf
∆∈Cm0×p0

{
‖∆‖2 : V H

1,∞

(
H(ω) +

[
K1

K2

]T [
0 ∆

∆H 0

] [
K1

K2

])
V1,∞

has a zero eigenvalue for ω →∞
}
. (5.8)

d) If K1V2,∞ = 0 and K2V2,∞ 6= 0, then there exists an arbitrarily small ∆ 6= 0
such that for ω → ∞, some zero eigenvalues of H(ω) are perturbed to positive
(negative) eigenvalues in H̃(ω) if and only if K1H

+
∞K

T
1 6≥ 0 (K1H

+
∞K

T
1 6≤ 0). If

K1H
+
∞K

T
1 ≥ 0 (K1H

+
∞K

T
1 ≤ 0), then the smallest perturbation ∆0 that perturbs

a zero eigenvalue of H(ω) to a positive (negative) eigenvalue of H̃(ω) for ω →∞
fulfills (5.8).
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Proof. Assume that ∆ = ε∆̃ with
∥∥∆̃
∥∥

2
= 1 and ε > 0 are given and define the

following analytic matrix-valued functions for ω ∈ (ω0,∞):

Θ11(ω) : = V H
1 (ω)KT

1 ∆̃K2V1(ω) + V1(ω)HKT
2 ∆̃HK1V1(ω),

Θ12(ω) : = V H
1 (ω)KT

1 ∆̃K2V2(ω) + V1(ω)HKT
2 ∆̃HK1V2(ω),

Θ22(ω) : = V H
2 (ω)KT

1 ∆̃K2V2(ω) + V2(ω)HKT
2 ∆̃HK1V2(ω).

(5.9)

This yields[
V1(ω) V2(ω)

]H
H̃(ω)

[
V1(ω) V2(ω)

]
=

[
Θ(ω) + εΘ11(ω) εΘ12(ω)

εΘH
12(ω) Ω(ω) + εΘ22(ω)

]
for all ω ∈ (ω0,∞). Since all eigenvalues of Θ(ω) are uniformly bounded away from
zero for all ω > ω1 > ω0, there exists an ε0 such that Θ(ω) + εΘ11(ω) is nonsingular
for all (ε, ω) ∈ (0, ε0)× (ω1,∞). The Haynsworth inertia additivity formula [Hay68]
yields that for all such (ε, ω) it holds that

In
(
H̃(ω)

)
= In (Θ(ω) + εΘ11(ω)) + In (F (ε, ω)) = In (Θ(ω)) + In (F (ε, ω))

with F (ε, ω) := Ω(ω) + εΘ22(ω)− ε2ΘH
12(ω) (Θ(ω) + εΘ11(ω))−1 Θ12(ω).

Now we prove statements a)–d).
First we show a): Since the functions Ω(·), K1V2(·), and K2V2(·) are analytic and

tend to zero for ω → ∞ and Θ11(·) is analytic and bounded, each of them can be
expanded into a Taylor series at expansion point ω∗ =∞. This yields

Ω(ω) =
−1∑

k=−∞
Lkω

k, Θ11(ω) =
0∑

k=−∞
Mkω

k,

Θ12(ω) =
−1∑

k=−∞
Nkω

k, Θ22(ω) =
−2∑

k=−∞
Pkω

k. (5.10)

Note that the upper summation indices for Θ11(·), Θ12(·), and Θ22(·) follow directly
from the respective definitions in (5.9) and the assumptions of a). Furthermore, since
‖Θ(·)‖−1

2 is uniformly bounded from above, we have

Θ(ω)−1 =

0∑
k=−∞

Qkω
k.

Therefore, by plugging in the expansions for Θ(·)−1 and Θ11(·) it holds that

(Θ(ω) + εΘ11(ω))−1 =

∞∑
k=0

(
Θ(ω)−1Θ11(ω)

)k
Θ(ω)−1εk

=
∞∑

k,j=0

Rk,jε
kω−j
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for ε ∈ (0, ε0). Altogether this yields

F (ε, ω) =
−1∑

k=−∞
Lkω

k + ε
−2∑

k=−∞
Pkω

k

− ε2

( −1∑
k=−∞

NH
k ω

k

) ∞∑
k,j=0

Rk,jε
kω−j

( −1∑
k=−∞

Nkω
k

)
(5.11)

=
−1∑

k=−∞
Lkω

k + εO
(
ω−2

)
,

and therefore, F (ε, ω) tends to zero for ω →∞ and all ε ∈ (0, ε0).
Now we show b): We can use the same line of argumentation as in a). However,

we can choose a perturbation ∆̃ such that instead of (5.10) it holds that

Θ12(ω) =

0∑
k=−∞

Nkω
k,

Θ22(ω) =

0∑
k=−∞

Pkω
k, P0 6= 0.

Hence we get

F (ε, ω) =

−1∑
k=−∞

Lkω
k + ε

0∑
k=−∞

Pkω
k +O

(
ε2
)
,

i. e., as in the proof of Theorem 5.3.1 we can achieve perturbations of the zero eigen-
values of H(ω) for ω →∞ into positive as well as negative direction for an arbitrarily
small perturbation ∆.

Next we show statement c): We approach the problem as in a). However, we can
choose a perturbation ∆̃ such that instead of (5.10) it holds that

Θ12(ω) = V H
1 (ω)KT

1 ∆̃K2V2(ω)︸ ︷︷ ︸
→0 for ω→∞

+V H
1 (ω)KT

2 ∆̃HK1V2(ω)

=

0∑
k=−∞

Nkω
k, N0 = lim

ω→∞
V H

1 (ω)KT
2 ∆̃HK1V2(ω),

Θ22(ω) =

−1∑
k=−∞

Pkω
k.

Therefore, by comparing with (5.11) we obtain the expansion

F (ε, ω) =
−1∑

k=−∞
Lkω

k + ε
−1∑

k=−∞
Pkω

k − ε2
∞∑

k,j=0

R̃k,jε
kω−j
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with

R̃0,0 = lim
ω→∞

(
V H

2 (ω)KH
1 ∆̃K2V1(ω)Θ(ω)−1V H

1 (ω)KT
2 ∆̃HK1V2(ω)

)
= V H

2,∞K
H
1 ∆̃K2H

+
∞K

T
2 ∆̃HK1V2,∞.

Now we can use the same argumentation as in Theorem 5.3.1 to obtain the result.
Finally, d) is proved completely analogously to the previous statement.

The following corollary now makes a statement about the loss of cyclo-dissipativity
due to perturbations of the defective infinite eigenvalues of N (s) ∈ R[s]`×`.

Corollary 5.3.5. Assume that Σ := (E,A,B,C,D) ∈ Σn,m,p and let Qs = QT
s ∈

Rp×p, Ss ∈ Rp×m, and Rs = RT
s ∈ Rm×m be given. Let the system be cyclo-dissipative

with respect to s(·, ·) as defined in (3.101) and let N (s) ∈ R[s]`×` and K be defined
as in (5.3) and (5.4), respectively. For all ω ∈ R consider the spectral decomposition

N (iω) =
[
V1(ω) V2(ω)

] [Θ(ω) 0
0 Ω(ω)

] [
V1(ω) V2(ω)

]H
with analytic functions V1 : R → C`×`1, V2 : R → C`×`2 and

[
V1(·) V2(·)

]
having

pointwise unitary columns, and Θ : R → R`1×`1, Ω : R → R`2×`2 being analytic
diagonal matrix-valued functions with the additional properties that

∥∥Θ(ω)−1
∥∥

2
<

h <∞ for all sufficiently large ω ∈ R and limω→∞Ω(ω) = 0. Let

Ij : = {i ∈ N : the i-th column of KjV2,∞ is nonzero}
=
{
ij,1, ij,2, . . . , ij,̂̀j

}
,

and define the matrices

Q1 :=
[
e

(m0)
i1,1

, . . . , e
(m0)
i
1,̂̀1
]
, Q2 :=

[
e

(p0)
i2,1

, . . . , e
(p0)
i
2,̂̀2
]
,

where e
(k)
i denotes the i-th unit vector of length k. Moreover, define the matrices

N+
∞ := limω→∞N (iω)+ and V2,∞ := limω→∞ V2(ω). For an ω0 ∈ R define the

inertias (
π
Ij
+ , π

Ij
0 , π

Ij
−
)

:= In(QjΩ(ω0)QT
j ).

Then the following statements hold true:

a) If it holds that

i) K1V2,∞ 6= 0 and K2V2,∞ 6= 0; or

ii) K1V2,∞ 6= 0 and K2V2,∞ = 0 and
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1) if πI1+ + πI10 6= 0 then K2N+
∞K

T
2 6≤ 0, or

2) if πI1− 6= 0 then K2N+
∞K

T
2 6≥ 0; or

iii) K1V2,∞ = 0 and K2V2,∞ 6= 0 and

1) if πI2+ + πI20 6= 0 then K1N+
∞K

T
1 6≤ 0, or

2) if πI2− 6= 0 then K1N+
∞K

T
1 6≥ 0,

then the cyclo-dissipativity radius is zero.

b) If on the other hand, none of the above conditions is satisfied, then with N∆(s) ∈
C[s]`×` as in (5.5) it holds that η(N (iω)) = η(N∆(iω)) for all sufficiently large
ω ∈ R and all sufficiently small perturbations ∆ ∈ Cm0×p0.

Proof. First we show a). The sign-sum function η(N (i·)) can be changed if for ω →∞
• one of the constant zero eigenvalues of Ω(ω) can be perturbed to a negative

value;
• one of the eigenvalues of Ω(ω) approaching zero from above can be perturbed

to a negative value;
• one of the eigenvalues of Ω(ω) approaching zero from below can be perturbed

to a positive value.

But this is the case if and only if the conditions in a) are fulfilled. We show how
to construct the corresponding perturbation matrix for case a) ii) 1):

Similarly as in the proof of Theorem 5.3.1 consider the matrix

Θ0 : = V H
2,∞K

T
1 ∆̃K2N+

∞K
T
2 ∆̃HK1V2,∞

= V H
2,∞K

T
1 ∆̂Ξ∆̂HK1V2,∞

with a spectral decomposition K2N+
∞K

T
2 = PHΞP and a unitary matrix P ∈ Cp0×p0 ,

a diagonal matrix Ξ ∈ Rp0×p0 , and ∆̂ := ∆̃PH.
Assume that Q1Ω(ω)QT

1 for sufficiently large ω has a nonnegative eigenvalue at
position (q, q). Since by construction K1V2,∞QT

1 has only nonzero columns, it has
a nonzero (p, q)-th entry for some p. Finally, Ξ has at least one positive eigenvalue,
assume at position (r, r). Now we can construct a desired perturbation as in the
proof of Theorem 5.3.1 by setting the (r, p)-th element of ∆̂H to a nonzero value and
the others to zero.

Statement b) is a direct consequence of Theorem 5.3.4 a), c), and d).

To check the above conditions, we evaluate Θ(ω∞), Ω(ω∞), and V2(ω∞) for suffi-
ciently large ω∞. Since V2(ω) converges for ω → ∞, we can get a good estimate of
V2,∞ in this way. From Θ(ω∞), Ω(ω∞), and V2(ω∞) we can determine all information
that is needed to apply Corollary 5.3.5.

We will illustrate the above result with the following example.
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Example 5.3.6. Consider the even matrix pencil

N (s) =

[
si 1
1 0

]
∈ C[s]2×2.

Note that we take a pencil with complex coefficients, since a pencil with real coeffi-
cients and similar properties would be at least of size 4× 4 and it would be difficult
to determine the eigenvalues of N (iω) analytically. However, the main features of
our theory also apply to complex pencils. For this example it holds that

N (iω) =

[
γ(ω) δ(ω)

γ(ω)(α(ω)− β(ω)) δ(ω)(α(ω) + β(ω))

]
·
[
−α(ω)− β(ω) 0

0 −α(ω) + β(ω)

] [
γ(ω) δ(ω)

γ(ω)(α(ω)− β(ω)) δ(ω)(α(ω) + β(ω))

]H
with

α(ω) =
ω

2
, β(ω) =

√
ω2

4
+ 1,

and the normalization functions

γ(ω) =
(

1 + (α(ω)− β(ω))2
)−1/2

, δ(ω) =
(

1 + (α(ω) + β(ω))2
)−1/2

.

Using the notation of Corollary 5.3.5, we have

Θ(ω) = −α(ω)− β(ω), Ω(ω) = −α(ω) + β(ω),

V1(ω) =

[
γ(ω)

γ(ω)(α(ω)− β(ω))

]
, V2(ω) =

[
δ(ω)

δ(ω)(α(ω) + β(ω))

]
,

V2,∞ = lim
ω→∞

[
δ(ω)

δ(ω)(α(ω) + β(ω))

]
=

[
0
1

]
.

a) Assume that

K =

[
K1

K2

]
=

[
1 0
0 1

]
.

Then we obtainK1V2,∞ = 0 andK2V2,∞ = 1. Moreover, we have
(
πI2+ , πI20 , πI2−

)
=

(1, 0, 0), and

K1N+
∞K

T
1 =

[
1 0

] [0 0
0 0

] [
1
0

]
= 0.

In other words, the only possible condition in Corollary 5.3.5 a) iii) 1) is not
satisfied and hence, no perturbation of the defective infinite eigenvalues is possible.
Indeed, we have

N∆(s) =

[
si 1 + ∆H

1 + ∆ 0

]
,

whose EKCF is the same as for N (s) for all ∆ ∈ C with ‖∆‖2 < 1.
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b) Now assume that

K =

[
K1

K2

]
=

[
0 1
0 1

]
.

Then we obtain K1V2,∞ = 1 and K2V2,∞ = 1, i. e., Corollary 5.3.5 a) i) holds true.
This is confirmed by considering

N∆(s) =

[
si 1
1 ∆ + ∆H

]
.

Assume that ρ := ∆ + ∆H. Then, the eigenvalues of N∆(iω) are

λ1(ω) =
−ω + ρ

2
+

√
(ω + ρ)2

4
+ 1,

λ2(ω) =
−ω + ρ

2
−
√

(ω + ρ)2

4
+ 1.

Note that the signature of λ1(ω) changes for ω = −1/ρ, so for any ρ 6= 0, the
defective infinite eigenvalues are perturbed.

5.4 Computation of the Complex Cyclo-Dissipativity Radius

Now we turn to perturbation of the “nonzero” part of the pencil N (s) ∈ R[s]`×`,
i. e., we consider perturbations of the nonzero eigenvalues of N (i·). From now on we
assume N (s) has no purely imaginary eigenvalues and that there does not exist an
arbitrarily small perturbation of the singular part or the defective infinite eigenvalues
as discussed above. From the perturbation bounds (5.6) and (5.8) it remains to
calculate the smallest perturbation that moves one of the nonzero eigenvalues of
N (iω) to zero for an ω ∈ R.

Since the sign-sum function can only change at purely imaginary eigenvalues, we
obtain

rs,C(Σ,L,R) = inf
{
‖∆‖2 : rank(N∆(iω0)) < rankC(s)(N∆(s))

with ∆ ∈ Cm0×p0 for some iω0 6∈ Λ (E,A+ L1∆R1)
}
. (5.12)

From (5.6) and (5.8), the condition (5.12) is equivalent to the existence of an iω0 6∈
Λ (E,A+ L1∆R1) such that

det

(
Θ(ω0)− V H

1 (ω0)KT

[
0 ∆

∆H 0

]
KV1(ω0)

)
= 0. (5.13)

Similarly as in [OD05], the determinant condition in (5.13) is equivalent to

det

(
Im0+p0 −

[
0 ∆

∆H 0

]
M(ω0)

)
= 0,
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where M(ω) := KV1(ω)Θ(ω)−1V H
1 (ω)KT = KN (iω)+KT. This multiplicative per-

turbation structure will be used to derive an algorithm for the computation of the
complex cyclo-dissipativity radius.

First, we focus on multiplicative perturbations of a fixed Hermitian matrix M =
M(ω0), i. e., we want to compute

qC(M) := inf

{
‖∆‖2 : det

(
Im0+p0 −

[
0 ∆

∆H 0

]
M
)

= 0 with ∆ ∈ Cm0×p0
}
.

(5.14)
The solution of this subproblem will then be subsequently used to find the solution
of the general problem by

rs,C(Σ,L,R) = inf
ω∈R

qC(M(ω)).

Consider now the subproblem of computing (5.14). A solution of this problem
has already been given [HQ98]. There, it is shown that when partitioning M =[
M11 M12

MH
12 M22

]
withM11 ∈ Cm0×m0 ,M12 ∈ Cm0×p0 , andM22 ∈ Cp0×p0 it holds that

det

(
Im0+p0 −

[
0 ∆

∆H 0

] [
M11 M12

MH
12 M22

])
= det

(
Im0+p0 −

[√
γIm0 0
0 Ip0/

√
γ

]−1 [
0 ∆

∆H 0

] [
M11 M12

MH
12 M22

] [√
γIm0 0
0 Ip0/

√
γ

])

= det

(
Im0+p0 −

[
0 ∆

∆H 0

] [
γM11 M12

MH
12 M22/γ

])
for all γ > 0. Then the following theorem can be proven.

Theorem 5.4.1. [HQ98, Thm. 1] Let

F(γ) :=

[
γM11 M12

MH
12 M22/γ

]
.

Furthermore, assume that In(M) = (π+, π0, π−). Define the numbers

r+ =


(

inf
γ>0
{λ1(F(γ))}

)−1

if π+ > 0,

∞ if π+ = 0,

r− =


(

inf
γ>0
{−λm0+p0(F(γ))}

)−1

if π− > 0,

∞ if π− = 0,
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5.4 Computation of the Complex Cyclo-Dissipativity Radius

where λj(F(γ)), j = 1, . . . , m0 + p0, denotes the j-th largest eigenvalue of F(γ).
Then it holds that

qC(M) = min {r+, r−} . (5.15)

In the following lemma we show that for our problem the minimum in (5.15) is
indeed attained for some γ0 ∈ (0,∞).

Lemma 5.4.2. Let M = KN+KT = KVΘ−1V HKT ∈ Cm0+p0×m0+p0 for some
Hermitian N ∈ C`×`, and some Θ ∈ Gl`1(R), V ∈ Cm0+p0×`1, and K ∈ R`×m0+p0 be
given. Then the minimum in (5.15) is attained for some γ0 ∈ (0,∞).

Proof. Let KT =
[
KT

1 KT
2

]
be a partitioning with K1 ∈ Rm0×`, K2 ∈ Cp0×`. We

now consider row compressions of K1V and K2V , i. e., let U1 ∈ Cm0×m0 , U2 ∈ Cp0×p0
be unitary matrices such that

K1V = U1

[
K̃1

0

]
, K2V = U2

[
K̃2

0

]
,

where K̃1 and K̃2 have full row-rank. Therefore, we get

M =

[
U1 0
0 U2

]
K̃1

0

K̃2

0

Θ−1
[
K̃T

1 0 K̃T
2 0

] [UT
1 0
0 UT

2

]

=

[
U1 0
0 U2

]
K̃1Θ−1K̃T

1 0 K̃1Θ−1K̃T
2 0

0 0 0 0

K̃2Θ−1K̃T
1 0 K̃2Θ−1K̃T

2 0
0 0 0 0

[UT
1 0
0 UT

2

]
.

Now, qC(M) and qC
(
M̃
)

with

M̃ =

[
K̃1Θ−1K̃T

1 K̃1Θ−1K̃T
2

K̃2Θ−1K̃T
1 K̃2Θ−1K̃T

2

]

are attained for the same γ0, since the zero rows and columns do not give any addi-
tional information. However, K̃1Θ−1K̃T

1 and K̃2Θ−1K̃T
2 are both nonsingular. Using

[HQ98, Lem. 5] and the argumentation of the proof of [HQ98, Claim 1(b)], it follows
that there are eigenvalues of F(γ) tending to ±∞ for γ → 0 and γ → ∞. This is a
contradiction and shows that γ0 ∈ (0,∞).

195



5 Computation of the Complex Cyclo-Dissipativity Radius

The following statement is about the construction of an optimal perturbation ma-
trix ∆ ∈ Cm0×p0 that achieves (5.14). It summarizes arguments from the proof of
[HQ98, Claim 1(a)].

Theorem 5.4.3. Let the minimum in (5.15) be attained at γ0 ∈ (0,∞) with the
optimal eigenvalue λ0 = max{λ1(F(γ0)),−λm0+p0(F(γ0))}. Then there exists an
eigenvector v0 ∈ Cm0+p0 of F(γ0) corresponding to the eigenvalue λ0 such that

F(γ0)v0 = λ0v0, and vH0
dF(γ0)

dγ
v0 = 0.

Partition v0 =
(
vH01 vH02

)H
according to the block structure of M. Then an optimal

perturbation is given by ∆ = λ−1
0 v01v

H
02/v

H
01v01.

Finally, the following theorem shows that at least one of the functions λ1(F(γ))
or −λm0+p0(F(γ)) (whichever has a larger supremum) is unimodal. This means that
any local supremum is simultaneously a global supremum. Therefore, the solution of
the optimization problem can be numerically easily tracked.

Theorem 5.4.4. [HQ98, Prop. 1] Let F , r+, and r− be given as in Theorem 5.4.1.
Then the following statements hold true:

(a) If r+ ≤ r−, then λ1(F(γ)) is unimodal and any local infimum of −λm0+p0(F(γ))
is equal or smaller than (r+)−1.

(b) If r− ≤ r+, then −λm0+p0(F(γ)) is unimodal and any local infimum of λ1(F(γ))
is equal or smaller than (r−)−1.

In the next part we will discuss how to actually compute the complex cyclo-
dissipativity radius. We will do this by using a level-set method that has already
been applied in [OD05], or in [SDT96] to compute the real structured stability radius
which is a generalization of the real stability radius of [QBR+95]. We follow the line
of argumentation of [OD05].

Let

F(γ, ω) =

[√
γIm0 0
0 Ip0/

√
γ

]
M(ω)

[√
γIm0 0
0 Ip0/

√
γ

]
=

[
γM11(ω) M12(ω)
MH

12(ω) M22(ω)/γ

]
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be given with inertia In(F(γ, ω)) = (π+(ω), π0(ω), π−(ω)) (which is independent from
γ). Furthermore, define

ϕ+ (γ, ω) : =

{
λ1(F(γ, ω)) if π+(ω) > 0,

0 if π+(ω) = 0,

ϕ− (γ, ω) : =

{
−λm0+p0(F(γ, ω)) if π−(ω) > 0,

0 if π−(ω) = 0,

and

ϕ̂+ (ω) :=

(
inf
γ>0

ϕ+(γ, ω)

)−1

, ϕ̂− (ω) :=

(
inf
γ>0

ϕ−(γ, ω)

)−1

,

with the convention that 0−1 :=∞. By definition of the complex cyclo-dissipativity
radius we have

rs,C(Σ,L,R) = inf
ω∈R

min {ϕ̂+ (ω) , ϕ̂− (ω)} .

Initially, we evaluate ξ0 := min {ϕ̂+ (ω0) , ϕ̂− (ω0)} for some ω0 ∈ R. Let γ0 be a
minimizing value of γ. This value is determined by computing the points γ+, γ− > 0
that fulfill

∂λ1(F(γ, ω0))

∂γ

∣∣∣∣
γ=γ+

= 0 and
∂λm+p(F(γ, ω0))

∂γ

∣∣∣∣
γ=γ−

= 0, (5.16)

respectively. The two partial derivatives can be explicitly determined and then γ+, γ−
can be computed using a bisection scheme or Newton’s method, see also [OD05] for
details. Finally, we set

γ0 =

{
γ+ if ξ0 = ϕ̂+(ω0),

γ− if ξ0 = ϕ̂−(ω0).
(5.17)

Furthermore, by definition we have

ϕ+ (γ0, ω)−1 ≤ ϕ̂+ (ω) , ϕ− (γ0, ω)−1 ≤ ϕ̂− (ω) ,

and therefore, we obtain

min
{
ϕ+ (γ0, ω)−1 , ϕ− (γ0, ω)−1

}
≤ min {ϕ̂+ (ω) , ϕ̂− (ω)} (5.18)

for all ω ∈ R.
We now compute the intervals for ω in which it holds that

ξ0 > min
{
ϕ+ (γ0, ω)−1 , ϕ− (γ0, ω)−1

}
. (5.19)

This condition is fulfilled if one of the conditions
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5 Computation of the Complex Cyclo-Dissipativity Radius

a) ξ0 > ϕ+ (γ0, ω)−1; or

b) ξ0 > ϕ− (γ0, ω)−1

is satisfied.
The intervals that fulfill condition a) can be found by computing the values of

ω ∈ R that fulfill

det
(
ξ−1

0 Im0+p0 − Γ0KN (iω)+KTΓ0

)
= 0 with Γ0 =

[√
γ0Im0 0

0 Ip0/
√
γ0

]
.

This is equivalent to the condition

det
(

Θ(ω)− V H
1 (ω)KTΓ0ξ0Γ0KV1(ω)

)
= 0,

or in other terms

rank
(
N (iω)−KTΓ0ξ0Γ0K

)
< rankR(s)

(
N (s)−KTΓ0ξ0Γ0K

)
. (5.20)

This is an even eigenvalue problem in two parameters. By exploiting the Schur
complement structure of N (s) − KTΓ0ξ0Γ0K, we obtain a larger even eigenvalue
problem for the extended even pencil

H+(s, ξ0, γ0) :=

[
N (s) KTΓ0

Γ0K ξ−1
0 Im0+p0

]
∈ R[s]`+m0+p0×`+m0+p0 ,

whose purely imaginary eigenvalues we must compute. This pencil has the same finite
eigenvalues as N (s)−KTΓ0ξ0Γ0K, but more infinite eigenvalues. The advantage of
this extended formulation is that it is not necessary to explicitly form matrix-times-
its-transpose like products as in the reduced formulation (5.20). As mentioned in
[BBMX99], forming such products might be numerically unstable and should be
avoided whenever possible.

Similarly, the intervals that fulfill condition b) are determined by the values of
ω ∈ R that satisfy

det
(
−ξ−1

0 Im0+p0 − Γ0KN (iω)+KTΓ0

)
= 0.

This leads to another extended even eigenvalue problem, namely for the even pencil

H−(s, ξ0, γ0) :=

[
N (s) KTΓ0

Γ0K −ξ−1
0 Im0+p0

]
∈ R[s]`+m0+p0×`+m0+p0 ,

whose purely imaginary eigenvalues have to be computed.
By taking the union of the intervals obtained for subproblems a) and b), we obtain

the so-called level-set satisfying (5.19). Due to the relation (5.18), this level-set must
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contain the values ω∗ ∈ R for which the complex cyclo-dissipativity radius is attained,
i. e.,

rs,C(Σ,L,R) = min {ϕ̂+ (ω∗) , ϕ̂− (ω∗)} .
In the next step we choose a new frequency ω1 such that

ξ1 := min {ϕ̂+ (ω1) , ϕ̂− (ω1)} < ξ0

and continue as before until the level-set is empty. In this case we have found the
solution. It can be shown that this algorithm converges globally. Similarly as for other
related level-set methods [BB90b, BS90, SDT96, GDV98, LTD00, OD05, BSV12a,
BSV12b], the convergence is at least quadratic, but depending on the strategy for
updating the test frequencies, it can also be faster. Note also that we can ensure a
maximum relative error of ε, assuming that we have exact arithmetics.

In Algorithm 5.1 we summarize the complete procedure.

5.5 Numerical Results

5.5.1 Illustrative Examples

To demonstrate the effectiveness of Algorithm 5.1, we compute the complex cyclo-
dissipativity radius for the example from Chapter 1 given by (1.4) with g = 5,

k1 = . . . = k4 = κ2 = . . . = κ4 = 2, κ1 = κ5 = 4,

d1 = . . . = d4 = δ2 = . . . = δ4 = 5, δ1 = δ5 = 10,

and

Qs = −1, Ss = 0, Rs = 1, L =

[
B
0

]
, R =

[
C 0

]
.

With this set of matrices Q, S, R we measure the distance of the system to the closest
non-contractive system, see Definition 3.9.16. Moreover, a system is contractive if
its transfer function G(s) = C(sE − A)−1B + D ∈ R(s)p×m is bounded real (see
Remark 3.9.22) which is equivalent to a H∞-norm smaller or equal than one, i. e.,

‖G‖H∞ ≤ 1.

Since Λ(E,A) ⊂ C− and by Remark 5.2.3 c), the complex cyclo-dissipativity radius
coincides with the complex dissipativity radius. Our test system satisfies

‖G‖H∞ = 0.1589,

so we expect the dissipativity radius to be rather large.
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5 Computation of the Complex Cyclo-Dissipativity Radius

Algorithm 5.1 Computation of the complex cyclo-dissipativity radius

Input: System Σ := (E,A,B,C,D) ∈ Σn,m,p which is cyclo-dissipative with respect
to the supply rate (3.101), matrices L, R defining the perturbation structure,
desired relative accuracy ε.

Output: Complex cyclo-dissipativity radius ξ∗ := rs,C(Σ,L,R), optimal frequency
ω∗, optimal scaling parameter γ∗, optimal perturbation ∆∗.

1: Compute all eigenvalues λ1, . . . , λk of N (s) ∈ R[s]`×` as in (5.3).
2: Choose an eigenvalue λ0 among λ1, . . . , λk with smallest absolute real part and

nonnegative imaginary part and set ω0 := Im(λ0).
3: Compute ξ0 := min {ϕ̂+ (0) , ϕ̂− (0)} with corresponding optimal scaling param-

eter γ0 using (5.16) and (5.17).
4: Compute ξω0 := min {ϕ̂+ (ω0) , ϕ̂− (ω0)} with corresponding optimal scaling pa-

rameter γω0 using (5.16) and (5.17).
5: Compute ξ∞ := min {ϕ̂+ (ω∞) , ϕ̂− (ω∞)} for sufficiently large ω∞ with corre-

sponding optimal scaling parameter γ∞ using using (5.16) and (5.17) to estimate
limω→∞min {ϕ̂+ (ω) , ϕ̂− (ω)}.

6: Set ξ := min {ξ0, ξω0 , ξ∞} and select ω ∈ {0, ω0, ω∞}, and γ ∈ {γ0, γω0 , γ∞}
accordingly.

7: repeat
8: Set ξ̂ := ξ(1− 2ε).
9: Compute all eigenvalues of H+

(
s, ξ̂, γ

)
,H−

(
s, ξ̂, γ

)
∈ R[s]`+m0+p0×`+m0+p0 .

10: if no finite, purely imaginary eigenvalues then
11: Set ξ∗ := ξ, γ∗ := γ, ω∗ := ω.
12: Construct ∆∗ as in Theorem 5.4.3.
13: Break.
14: else
15: Set {iω1, . . . , iωk} = purely imaginary eigenvalues of H+

(
s, ξ̂, γ

)
and

H−
(
s, ξ̂, γ

)
satisfying 0 ≤ ω1 < . . . < ωk <∞.

16: Compute new test frequencies as mj :=
√
ωjωj+1 for j = 1, . . . , k − 1.

17: Compute ξj := min {ϕ̂+ (mj) , ϕ̂− (mj)} with corresponding optimal scaling
parameter γj using (5.16) and (5.17) for j = 1, . . . , k − 1.

18: Set ξ := min {ξ1, . . . , ξ`−1} and select ω ∈ {m1, . . . ,mk−1} and γ ∈
{γ1, . . . , γk−1} accordingly.

19: end if
20: until Break
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Table 5.1: Intermediate results of the dissipativity radius computation for the first
example

iteration # ξ γ level-set, ω∗ ∈
1 5.290577 1.000000 (0.137948, 0.156058)
2 5.289442 1.000000 (0.146724, 0.148263)

A reduction of the corresponding even pencil N (s) ∈ R[s]25×25 to even stair-
case form reveals the following structures. Using the notation of Theorems 2.1.16
and 2.1.17, we get the values

w = 2, s1 = 2, s2 = 0, q1 = 2, q2 = 0,

π+,1 = 1, π−,1 = 2, r1 = 3,

π+,2 = 2, π−,2 = 3, r2 = 5,

π+,3 = 2, π−,3 = 3, r3 = 5.

(5.21)

The application of Theorem 2.1.17 yields that N (s) has no blocks of type E4, but
5 blocks of type E3 (three 1 × 1 blocks among which 2 have positive and 1 has
negative sign-characteristic and two 3 × 3 blocks among which 1 has positive and 1
has negative sign-characteristic). Therefore, V2,∞ has two columns. For this example,
KV2,∞ = 0, which means that no arbitrarily small perturbation of the defective
infinite eigenvalues, that destroys dissipativity, is possible.

We get the following test frequencies and initial values:

• at ω = 0.000000: ξ = 9.259962, γ = 1.000000;

• at ω = 0.156058: ξ = 5.440666, γ = 1.000000;

• at ω = 4.50360e+12: ξ = 4.05648e+27, γ = 1.000000.

The smallest value for ξ is attained at ω = 0.156058. Therefore, Algorithm 5.1 gives
the results presented in Table 5.1. As final result we obtain

rs,C(Σ,L,R) = 5.289442, at ω∗ = 0.147491.

As a second example we use the same matrices as above but replace B by 6.2893·B.
When doing this we obtain a system with

‖G‖H∞ = 0.9996,

so we expect a small value for the dissipativity radius. Indeed, we get the following
results. First, the structure of the even staircase form is the same as in (5.21).
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5 Computation of the Complex Cyclo-Dissipativity Radius

Table 5.2: Intermediate results of the dissipativity radius computation for the second
example

iteration # ξ γ level-set, ω∗ ∈
1 2.0304218649893e–04 1.000000 (0.137948337, 0.156058240)
2 2.2582134423309e–05 1.000000 (0.146724145, 0.148262833)
3 2.2572391984637e–05 1.000000 (0.147491482, 0.147502786)
4 2.2572391984415e–05 1.000000 (0.147497100, 0.147497169)
5 2.2572391984474e–05 1.000000 (0.147497126, 0.147497144)

Moreover, we also get KV2,∞ = 0. Thus, no perturbation of the defective infinite
eigenvalues, that destroys dissipativity, is possible. As test frequencies and initial
values we get

• at ω = 0.000000: ξ = 0.631336, γ = 1.000000;

• at ω = 0.156058: ξ = 0.024067, γ = 1.000000;

• at ω = 4.50360e+12: ξ = 6.44981e+26, γ = 1.000000.

The smallest value for ξ is attained at ω = 0.156058. Then Algorithm 5.1 gives the
results presented in Table 5.2. As final result we obtain

rs,C(Σ,L,R) = 2.25724e−05, at ω∗ = 0.147497,

which means that the system is indeed close to a non-dissipative one.

5.5.2 Limitations of the Method

The algorithm presented is this paper has various limitations and shortcomings that
we want to comment on.

In the most general setting, the algorithm has to deal with possibly singular pencils
N (s), H+(s, ξ, γ), and H−(s, ξ, γ). In order to safely compute the eigenvalues, it is
necessary to reduce these pencils to even staircase form and compute the eigenvalues
of the regular index-one part. As already mentioned in Subsection 2.1.2, this reduc-
tion heavily relies on the numerical determination of ranks of several intermediate
matrices. If there is no clear gap in the small singular values, then the rank decision
strongly depends on the truncation tolerance that has been chosen. Therefore, the
even staircase form and all their invariants might also strongly depend on the drop
tolerance.

Another problem occurs when the system under consideration is very close to a
non-cyclo-dissipative system. To illustrate the problems in this case we take the
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Figure 5.1: Plot of 1/ξ(ω) for an almost non-cyclo-dissipative system

Table 5.3: Computed level-sets for all intermediate ξ values for an almost non-cyclo-
dissipative system

iteration # ξ level-set, ω∗ ∈
1 2.379047e–02 (0.13794834, 0.15605824)
2 6.723999e–05 (0.14647426, 0.14672415) ∪ (0.14826283, 0.14850728)
3 4.566576e–06 (0.14658205, 0.14659945) ∪ (0.14838501, 0.14840202)
4 2.212123e–08 (0.14659066, 0.14659075) ∪ (0.14839352, 0.14839359)
5 2.640649e–10 (0.14659049, 0.14659071) ∪ (0.14839355, 0.14839377)

initial example from above and replace B by 6.2910 · B. Then we plot the values
1/ξ(ω) (that are all attained at γ(ω) = 1), see Figure 5.1. Assume that we have
chosen a sufficiently small level ξ0 > rs,C(Σ,L,R). Then the pencils H+(s, ξ0, 1)
and H−(s, ξ0, 1) have two pairs of eigenvalues in which the eigenvalues are extremely
close together. In theory, the level set for ξ1 < ξ0 is contained in the level set for ξ0.
However, due to round-off errors in the eigenvalue computation this is not the case in
practice. Therefore, it is not possible to resolve the intervals that contain the optimal
frequency ω∗ with sufficient accuracy. For illustration we list the computed level sets
in Table 5.3. Even if we cannot give the cyclo-dissipativity radius very accurately
in this case, we still obtain rather small intervals, that are at least very close to the
optimal frequency. In this case we can, e. g., do a sampling in a small neighborhood
of the level-set and still obtain a result, however without guaranteed accuracy. See
also [LV13] for more details on this strategy for a related problem.

203



5 Computation of the Complex Cyclo-Dissipativity Radius

5.6 Summary and Open Problems

In this chapter we have presented an algorithm to compute the distance of a cyclo-
dissipative system to the closest non-cyclo-dissipative system under structured per-
turbations. Since cyclo-dissipativity can be characterized via a spectral condition of
even matrix pencils we have studied the perturbation theory of such pencils. We
have discussed different substructures of such pencils, especially the singular and
higher-index parts have been in focus. We have given computable conditions to check
whether there are arbitrarily small perturbations that destroy cyclo-dissipativity of
the system. Finally, to compute the cyclo-dissipativity radius we have solved a se-
quence of eigenvalue optimization problems. We have demonstrated the behavior of
the algorithm for some examples and have discussed numerical problems arising when
the system is very close to a non-cyclo-dissipative one.

There are various open problems and possible future research directions. For in-
stance, it would be desirable to generalize this algorithm in order to compute the
real cyclo-dissipativity radius. We have intensively tried this, but there occur various
problems, similarly as in [HQ97, HQ98]. The main problem is that instead of the
largest and smallest eigenvalues of F(γ) we have to consider the second-largest and
second-smallest eigenvalues of a matrix G(α, β) in two parameters. In this case it is
not obvious how to show whether one of these eigenvalue functions is unimodal in
both arguments. Moreover, there exist difficulties in constructing the optimal per-
turbation for some situations, for instance if the optimum is attained for one of the
parameters α, β going to zero or infinity.

Therefore, an alternative approach is to study the effect of perturbations of the
even pencils by using structured pseudospectra and optimizing over them. This has
already been done in various papers of different authors, for instance [GO11, GL13,
GKL14b]. The main challenge in this context is to take the special block structure
of the perturbation matrix into account.

We further want to remark that in this context one could also consider the “dual”
problem, namely, finding the smallest perturbation that makes a non-cyclo-dissipative
system cyclo-dissipative. This is the problem of cyclo-dissipativity enforcement, see,
for instance [BS13] or Chapter 4 for a related problem.
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6 Computation of the H∞-Norm for Large-Scale
Descriptor Systems

6.1 Introduction

Consider a dynamical system (E,A,B,C,D) ∈ Σn,m,p with transfer function G ∈
RHp×m∞ . The H∞-norm of a transfer function (see Definition 2.2.20) is a popular
tool to measure the distance of transfer functions which is of importance in several
applications.

Assume for instance that
(
Ẽ, Ã, B̃, C̃, D̃

)
∈ Σr,m,p with transfer function G̃ ∈

RHp×m∞ is a reduced order model of (E,A,B,C,D). Then the transfer function of
the error system is given by

Gerr(s) = G(s)−G̃(s) =
[
C −C̃

](
s

[
E 0

0 Ẽ

]
−
[
A 0

0 Ã

])−1 [
B

B̃

]
+D−D̃ ∈ RHp×m∞ .

The value of ‖Gerr‖H∞ can be now interpreted as the worst-case error for G(s) eval-
uated on the imaginary axis.

Another field of application can be found in robust control where the H∞-norm
attains the role of a robustness measure. Consider a static output feedback controller
K ∈ Rm×p that stabilizes the system (E,A,B,C) ∈ Σn,m,p. This leads to the closed-
loop dynamics

Eẋ(t) = AKx(t) := (A+BKC)x(t).

In robust control we are interested in the robustness of the closed-loop system with
respect to perturbations in the controller K. In other words, we want to know how
much we can maximally perturb K such that the perturbed closed-loop system

Eẋ(t) = AK+∆x(t) = (AK +B∆C)x(t)

is guaranteed to remain stable. To quantify robustness of a dynamical system, un-
structured (i. e., for B = C = In) and structured stability radii for matrices were
introduced, first by Hinrichsen and Pritchard in [HP86a, HP86b, HP90]. The gener-
alization to matrix pencils is a nontrivial issue due to the fact that the influence of
the infinite eigenvalues as well as perturbations that make the pencil singular have to
be studied. For structured perturbations this has already been considered in [Du08].
In particular, it provides a relationship between the H∞-norm and the structured
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complex stability radius of the pencil sE − A. We have found an easier and more
intuitive proof of this relation, outlined in Lemma 6.2.2 and Proposition 6.2.3. A
further generalization of the structured complex stability radius has been analyzed
in [DTL11], allowing simultaneous structured perturbations of A and E. However,
we do not consider perturbations of E since we would not have a relation to the
H∞-norm anymore. Another recent survey paper on robust stability of descriptor
systems and stability radii of matrix pencils is [DLM13].

Numerical methods for computing the H∞-norm are well-established. Most of
them are based on relations between the H∞-norm and the spectrum of certain
Hamiltonian matrices or pencils. For an overview, we refer to [Bye88, BBK89, BS90,
BB90b, BSV12a, BSV12b]. We briefly summarize the most general result presented
in [BSV12a]. In [BSV12a] it is shown that if sE − A ∈ R[s]n×n is regular, has no
purely imaginary eigenvalues and infω∈R σmax (G(iω)) < γ, it holds that ‖G‖H∞ < γ
if and only if the even pencil

sE − A(γ) :=


0 −sET −AT −CT 0

sE −A 0 0 −B
−C 0 γIp −D
0 −BT −DT γIm

 ∈ R[s]2n+m+p×2n+m+p (6.1)

has no purely imaginary eigenvalues. Based on this fact, the algorithm chooses an
initial guess γ < ‖G‖H∞ and iterates over γ in a suitable way until sE − A(γ) has
no purely imaginary eigenvalues. This iteration can be implemented in a globally
quadratically converging way. The drawback of the algorithm is the decision in each
step whether there are purely imaginary eigenvalues. It is important to find all of
them since otherwise the algorithm could fail. In [BSV12a] this issue is addressed
by using a structure-preserving method for a skew-Hamiltonian/Hamiltonian pencil
related to sE − A(γ), which prevents the purely imaginary eigenvalues from moving
off the imaginary axis as long as their pairwise distance is sufficiently large (see also
Subsection 2.1.3). However, this method computes a full structured factorization of
the pencil in each step. Due to its cubic complexity it is infeasible for large-scale
problems.

Therefore, there is a need to develop computational methods for determining the
H∞-norm for large-scale problems. Up to now, the only method that took large-
scale systems into account is presented in [CGD04, CGVD07] and uses the bounded
real lemma to estimate the H∞-norm of a discrete-time state-space system which is
required to be given in a minimal realization. This algorithm checks a sequence of
LMIs for feasibility. This is done by deciding if a so-called Chandrasekhar iteration
converges. However, this test lacks of reliability, in particular if the iterates are
approaching the H∞-norm. Hence, only an estimation of the norm value can be
given by this algorithm.
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6.1 Introduction

In this chapter we will present and compare two methods that are based on com-
pletely different ideas. The first method [BV14] exploits the relationship between
the H∞-norm and the complex H∞-radius of the transfer function G(s). This is
the spectral norm of the smallest complex perturbation ∆ such that the perturbed
transfer function

G∆(s) := C(sE − (A+B∆C))−1B /∈ RHp×m∞,C , (6.2)

where RHp×m∞,C denotes the normed space

RHp×m∞,C :=

{
G(s) ∈ C(s)p×m : P(G) ⊂ C− and sup

λ∈C+

‖G(λ)‖2 <∞
}
.

The algorithm is based on ε-pseudopole sets for G(s). This means that we consider
all perturbations ∆ with ‖∆‖2 < ε and analyze how the poles of (6.2) might move.
To compute the complexH∞-radius we have to find the ε-pseudopole set that touches
the imaginary axis. This calculation is carried out by a nested iteration. The inner
iteration is adapted from [GO11] and computes the ε-pseudopole set abscissa for a
fixed value of ε, that is the real part of the rightmost point in the ε-pseudopole set.
This iteration relies on the fact that the entire pseudopole set can be realized by
rank-1 perturbations, so an optimal perturbation can be efficiently computed. In the
outer iteration, the value of ε is updated by Newton’s method in order to drive the
ε-pseudopole set abscissa to zero, similarly as in [GGO13]. Since the inner iteration
might only converge to a local maximizer, we discuss a way to obtain good initial
values that indeed allows convergence to a global maximizer in most cases. These
initial values are obtained by computing some dominant poles [RM06b, RM06a], i. e.,
those poles of G(s) that generate the largest local maxima of ‖G(iω)‖2 for ω ∈ R.

The second method [LV13] that we present goes back to the original algorithm using
the even pencils in (6.1). Actually, we would have to compute all purely imaginary
eigenvalues of these pencils to obtain all intervals for ω in which ‖G(iω)‖2 > γ.
However, we can relax this requirement when we make again use of the dominant
poles of G(s). These are used to calculate shifts for a structure-preserving method for
even eigenvalue problem [MSS12] which computes eigenvalues close to these shifts.
In this way we do not necessarily compute all frequency intervals with ‖G(iω)‖2 > γ,
but we can still obtain the frequency interval that contains the optimal frequency ω∗
at which the H∞-norm is attained.

This chapter is divided into three sections. In Section 6.2 we discuss the first
method which is based on optimization over pseudopole sets. Results on the rela-
tionship between the H∞-norm and the complex H∞-radius for descriptor systems
are discussed in Subsection 6.2.1. In Subsection 6.2.2 we describe how to compute
the pseudopole set abscissa for a transfer function which is the key ingredient of the
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algorithm. A large part of this section will also be devoted to fixed point analy-
sis. In Subsection 6.2.3 we describe how to use Newton’s method to compute the
complex H∞-radius. Subsection 6.2.4 is devoted to the analysis of the differences
between the method presented here and the reference [GGO13] since both are based
on similar ideas. In particular, we show that both methods are not equivalent in the
context of standard state-space systems. In Subsection 6.2.5 we present a study of
numerical examples. In particular, we compare our method with existing algorithms.
Furthermore, we analyze drawbacks and limitations.

In Section 6.3 we present a modification of the standard algorithm via optimization
over γ in (6.1). We give details on the computation of the eigenvalues of the even
pencil and compare the method with the pseudopole set approach.

Finally, in Section 6.4 we give conclusions and point towards possible future re-
search directions.

6.2 The Pseudopole Set Approach

In this section we drive the first method which implements an optimization procedure
over pseudopole sets. Let (E,A,B,C,D) ∈ Σn,m,p with G ∈ RHp×m∞ be given.
Throughout the whole section we assume w. l. o. g. that D = 0. Otherwise we could
use the realization([

E 0
0 0

]
,

[
A 0
0 −Ip

]
,

[
B
D

]
,
[
C Ip

])
∈ Σm+p,m,p (6.3)

to achieve this form. Moreover, we assume that m, p � n and that all matrices
E, A, B, C are sparse.

6.2.1 Complex H∞-Radius and H∞-Norm

First we establish a connection between the H∞-radius and the H∞-norm of a trans-
fer function G(s). To do so, we have consider the controllability and observability
concepts in Subsection 2.2.2 in more detail.

Recall that the system (E,A,B,C) ∈ Σn,m,p is

a) completely controllable, if rank
[
λE −A B

]
= n for all λ ∈ C and furthermore

rank
[
E B

]
= n;

b) completely observable, if rank

[
λE −A
C

]
= n for all λ ∈ C and furthermore

rank

[
E
C

]
= n.
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We can also define these concepts for single eigenvalues of the sE − A ∈ R[s]n×n

as follows. A descriptor system (E,A,B,C) ∈ Σn,m,p is called

a) controllable at λ ∈ C if rank
[
λE −A B

]
= n;

b) controllable at infinity if rank
[
E B

]
= n;

c) observable at λ ∈ C if rank

[
λE −A
C

]
= n;

d) observable at infinity if rank

[
E
C

]
= n;

otherwise it is called uncontrollable or unobservable at λ, respectively. Note that
in the above definitions one can also consider each individual block of the WCF of
sE−A separately in case of multiple eigenvalues. This is possible by considering the
corresponding eigenvectors. Let x, y ∈ Cn be right and left eigenvectors correspond-
ing to an individual block of type K1 or K2 in the WCF of sE−A. For an eigenvalue
λ ∈ C it holds that

yH
[
λE −A B

]
=
(
0 yHB

)
,

[
λE −A
C

]
x =

(
0
Cx

)
.

Therefore, we say that such a block is controllable if BTy 6= 0, and observable if
Cx 6= 0, otherwise we call it uncontrollable or unobservable. Similarly we can treat
eigenvalues at infinity. We use this definition when talking about controllability and
observability of eigenvalues.

For an asymptotically stable system Σ := (E,A,B,C) ∈ Σn,m,p define the numbers

qf
C(Σ) := inf

{
‖∆‖2 : Λ(E,A+B∆C) ∩ iR 6= ∅ with ∆ ∈ Cm×p

}
,

q∞C (Σ) := inf
{
‖∆‖2 : sE − (A+B∆C) with ∆ ∈ Cm×p is a singular pencil or

has controllable and observable defective infinite eigenvalues} .

Then we define the structured complex stability radius of a matrix pencil sE−A with
respect to B and C by

qC(Σ) := min
{
qf
C(Σ), q∞C (Σ)

}
.

The value of qf
C(Σ) is the size of the smallest structured perturbation that makes the

system unstable. The interpretation of q∞C (Σ) is more involved. Defective infinite
eigenvalues do not make the system unstable. However, if there are controllable and
observable ones, we can construct an arbitrarily small structured perturbation such
that the system will be unstable. This means that systems with controllable and
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observable defective infinite eigenvalues are on the “boundary to instability”. If the
perturbed matrix pencil becomes singular, then a part of the system dynamics is“free”
and thus there exist essentially unbounded solution trajectories for the perturbed
system.

In practice, it is desirable to make qC(Σ) as large as possible in order to guarantee
a very high robustness against perturbations. Later in this section we show that for
a stable system Σ := (E,A,B,C) ∈ Σn,m,p with transfer function G ∈ RHp×m∞ , it
holds that

qC(Σ) =

{
1/ ‖G‖H∞ if G(s) 6≡ 0,

∞ if G(s) ≡ 0,

so a large value of qC(Σ) corresponds to a small H∞-norm of the transfer function
G(s).

We also introduce the complex H∞-radius for a transfer function G ∈ RHp×m∞
(called complex structured stability radius in [BV14]). For ∆ ∈ Cm×p we define the
perturbed transfer function

G∆(s) := C (sE − (A+B∆C))−1B ∈ C(s)p×m (6.4)

and the numbers

rf
C(G) := inf

{
‖∆‖2 : P(G∆) ∩ iR 6= ∅ with ∆ ∈ Cm×p

}
,

r∞C (G) := inf
{
‖∆‖2 : G∆(s) as in (6.4) with ∆ ∈ Cm×p is improper

or not well-defined
}
.

Then the complex H∞-radius of a transfer function G(s) is defined by

rC(G) := min
{
rf
C(G), r∞C (G)

}
.

Remark 6.2.1. In fact, rC(G) is the structured distance of a function G ∈ RHp×m∞ to
the set of functions which are not in RHp×m∞,C , i. e.,

rC(G) = inf
{
‖∆‖2 : G∆ 6∈ RHp×m∞,C with G∆(s) as in (6.4) and ∆ ∈ Cm×p

}
.

For stable or weakly minimal descriptor systems Σ := (E,A,B,C) ∈ Σn,m,p with
transfer function G ∈ RHp×m∞ , we have qf

C(Σ) = rf
C(G) and qC(Σ) = rC(G). However,

G(s) can also be realized by an unstable descriptor system when all unstable eigen-
values are uncontrollable or unobservable. In this case, the definitions of qf

C(Σ) and
qC(Σ) do not make sense whereas those of rf

C(G) and rC(G) do. It is very important
to well distinguish between these definitions.

Next we prove an important relationship between the H∞-norm and the complex
H∞-radius of a transfer function G(s).
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Lemma 6.2.2. [BV14, Lem. 3.1] Let (E,A,B,C) ∈ Σn,m,p with transfer function
G ∈ RHp×m∞ be given. Then it holds that

r∞C (G) =

{
1/ lim

ω→∞
σmax(G(iω)) if G(s) 6≡ 0,

∞ if G(s) ≡ 0.

Proof. If G(s) ≡ 0, we cannot make the system improper by any structured pertur-
bation, and therefore r∞C (G) = ∞. Consider the non-trivial case. We can assume
w. l. o. g. that we have a weakly minimal realization of a proper G(s) given in WCF,
i. e.,

Σ =

([
Ir 0
0 E22

]
,

[
A11 0
0 In−r

]
,

[
B1

B2

]
,
[
C1 C2

])
∈ Σn,m,p

with A11 ∈ Cr×r and a nilpotent E22 ∈ Rn−r×n−r. Note that for a weakly minimal
system with proper transfer function, the nilpotent matrix E22 in the Weierstraß
canonical form is zero or void. This follows from [Dai89, Thm. 2-6.2 and Lem. 2-6.2].
Using this realization, it holds that

lim
ω→∞

G(iω) =

{
−C2B2 if n 6= r,

0 if n = r.

If n = r, i. e., E22 is void, then r∞C (G) = ∞. If n 6= r, we consider structured
perturbations of the matrix pencil which lead to

sEmin −A∆
min : = s

[
Ir 0
0 0

]
−
([
A11 0
0 In−r

]
+

[
B1

B2

]
∆
[
C1 C2

])
= s

[
Ir 0
0 0

]
−
[
A11 +B1∆C1 B1∆C2

B2∆C1 In−r +B2∆C2

]
∈ C[s]n×n,

where ∆ ∈ Cm×p. Now we distinguish whether the pencil sEmin−A∆
min is singular or

not. If it is regular, then in [BSV12a, Thm. 3] it is shown that the perturbed transfer
function is improper if and only if In−r + B2∆C2 is singular. If sEmin − A∆

min is a

singular pencil, then
[
B2∆C1 In−r +B2∆C2

]
or

[
B1∆C2

In−r +B2∆C2

]
do not have full

row or column rank, respectively. Hence, In−r +B2∆C2 is also singular in this case.
Therefore, we have to determine the value of

pC : = inf
{
‖∆‖2 : In−r +B2∆C2 is singular with ∆ ∈ Cm×p

}
= inf

{
‖∆‖2 : −In−r +B2∆C2 is singular with ∆ ∈ Cm×p

}
.

We consider the complex H∞-radius of the transfer function

G∞(s) := C2(sIn−r + In−r)−1B2 ∈ RHp×m∞ .
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By employing [HP86b, Prop. 2.1] we obtain

rC(G∞) =
1

max
ω∈R

σmax(C2((iω + 1)In−r)−1B2)
(6.5)

=
1

σmax(C2B2)

=
1

lim
ω→∞

σmax(G(iω))
.

Since the maximum in (6.5) is attained at ω = 0, we have pC = rC(G∞). This shows
the assertion.

Proposition 6.2.3. [BV14, Prop. 3.2] Let (E,A,B,C) ∈ Σn,m,p with transfer func-
tion G ∈ RHp×m∞ be given. Then it holds that

rC(G) =

{
1/ ‖G‖H∞ if G(s) 6≡ 0,

∞ if G(s) ≡ 0.
(6.6)

Proof. The proof is similar to the corresponding one for state-space systems in
[HP86b]. First we analyze the case that the value of the H∞-norm is attained at
some finite ω ∈ R.

Assume that for some ∆ ∈ Cm×p, 0 6= x ∈ Cm, and ω ∈ R we have

(A+B∆C)x = iωEx,

or equivalently
x = (iωE −A)−1B∆Cx.

Since G ∈ RHp×m∞ , we have v := Cx 6= 0, i. e., it holds that

v = G(iω)∆v. (6.7)

If G(s) ≡ 0 this leads to a contradiction and so rf
C(G) = ∞, otherwise (6.7) implies

‖G(iω)‖2 ‖∆‖2 ≥ 1.
Now suppose that ‖G‖H∞ is attained at ω0, i. e., ‖G(iω0)‖2 = ‖G‖H∞ . Let

G(iω0) =
k∑
j=1

σjvjw
H
j

be a singular value decomposition of G(iω0) with vj ∈ Cp, wj ∈ Cm, ‖vj‖2 = ‖wj‖2 =
1, for j = 1, . . . , k := min {m, p}, and ‖G(iω0)‖2 = σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0. With
∆ := σ−1

1 w1v
H
1 it follows that

G(iω0)∆v1 = C(iω0E −A)−1B∆v1 = v1.
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Defining x := (iω0E −A)−1B∆v1 leads to Cx = v1 and hence x 6= 0. This yields

x := (iω0E −A)−1B∆Cx,

and consequently
(A+B∆C)x = iω0Ex.

From [
iω0E − (A+B∆C)

C

]
x =

(
0
Cx

)
=

(
0
v1

)
with v1 6= 0, we conclude that iω0 is an observable mode of the perturbed system
(E,A+B∆C,B,C). Similarly we can prove controllability of iω0.

From that we conclude ‖∆‖2 = 1/ ‖G‖H∞ , where ∆ is a perturbation of infimal
norm such that P(G∆) ∩ iR 6= ∅.

This shows that ‖G‖H∞ = ‖G(iω)‖2 for some ω ∈ R if and only if rC(G) = rf
C(G).

The case that the norm value is attained at infinity is covered by Lemma 6.2.2.

For the remainder of this section we need the following definitions.

Definition 6.2.4 (Pseudopole sets). [BV14, Def. 3.3]

a) The ε-pseudopole set of the transfer function G(s) is defined by

Pε(G) =
{
λ ∈ C : λ ∈ P(G∆) for some ∆ ∈ Cm×p with ‖∆‖2 < ε

}
.

Elements of Pε(G) are called ε-pseudopoles.

b) The ε-pseudopole set Pε(G) is called regular if there exists no ∆ ∈ Cm×p with
‖∆‖2 ≤ ε such that G∆(s) is improper or not well-defined.

c) For a regular ε-pseudopole set, the ε-pseudopole set abscissa (called structured
ε-pseudospectral abscissa in [BV14]) is given by

αε(G) := sup {Re(λ) : λ ∈ Pε(G)} .

Remark 6.2.5 (Pseudopole sets and structured pseudospectra, regularity).

a) The notion of ε-pseudopole sets is strongly related to the concept of structured
ε-pseudospectra. For Σ = (E,A,B,C) ∈ Σn,m,p these are defined by

Λε(Σ) :=
{
λ ∈ C : λ ∈ Λ(E,A+B∆C) for some ∆ ∈ Cm×p with ‖∆‖2 < ε

}
.

With the set Ψ(Σ) of uncontrollable or unobservable modes of the system Σ, we
have the relation

Λε(Σ) = Pε(G) ∪Ψ(Σ).
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Figure 6.1: Poles (blue crosses) and pseudopole sets of a transfer function for different
perturbation levels

b) The definition of regularity of a ε-pseudopole set is strongly related to the so-
called admissibility of perturbations [BN93, DLM13], i. e., a regular ε-pseudopole
set can only be generated by admissible perturbations. From the definition it is
clear that regularity is equivalent to ε < 1/ limω→∞ σmax(G(iω)).

A graphical interpretation of the terms defined in Definition 6.2.4 is given in Fig-
ure 6.1.

It is also obvious that αrfC(G)(G) = 0. So the main idea of our algorithm is to find

the (unique) root of the function α(ε) := αε(G). To get an efficient algorithm, we
need to evaluate α(ε) for different values of ε in a cheap way. Then we can employ,
e. g., Newton’s method to compute the actual root.

6.2.2 Computation of the ε-Pseudopole Set Abscissa

Derivation of the Basic Algorithm In this paragraph we derive a fast algorithm
for computing α(ε). The following fundamental results are generalizations of the
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corresponding ones in [Rie94].

Lemma 6.2.6. [BV14, Lem. 4.1] Let (E,A,B,C) ∈ Σn,m,p with transfer function
G(s) ∈ R(s)p×m be given. Let λ ∈ C \P(G) be given and ε > 0. Then the following
statements are equivalent:

a) λ ∈ Pε(G).

b) σmax(G(λ)) > ε−1.

c) There exist vectors v ∈ Cm and w ∈ Cp with ‖v‖2 < 1 and ‖w‖2 < 1 such that
λ ∈ P (GεvwH).

Proof. First we show that a) implies b): From λ ∈ Pε(G) it follows that there exist
a matrix ∆ ∈ Cm×p with ‖∆‖2 < ε and a vector x ∈ Cn such that

(λE − (A+B∆C))x = 0.

This is equivalent to

(λE −A)x = B∆Cx

and therefore

Cx = C (λE −A)−1B∆Cx.

Now we can estimate

‖Cx‖2 ≤
∥∥C (λE −A)−1B

∥∥
2
‖∆‖2 ‖Cx‖2 ,

and hence

ε−1 < ‖∆‖−1
2 ≤ ‖G(λ)‖2 .

Next we show that b) implies c): Let σmax(G(λ)) > ε−1. Define σ := σmax(G(λ))
with corresponding singular vectors v ∈ Cm, w ∈ Cp satisfying ‖v‖2 = ‖w‖2 = 1.
Then we have

G(λ)v = σw, wHG(λ) = σvH, σ > ε−1. (6.8)

Multiplying the first equation of (6.8) by wH from the left and by wHC from the right
yields

wHC(λE −A)−1BvwHC = σwHwwHC = σwHC.

By setting yH := wHC(λE −A)−1 we obtain

yHBvwHC = σyH(λE −A).
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It holds that yH 6= 0 since wHC 6= 0, otherwise we would have σ = 0 which is excluded
since ε > 0. Therefore, λE − Â := λE −

(
A+ σ−1BvwHC

)
is singular. It remains to

show that λ is indeed a pole of the perturbed transfer function

GεvwH(s) = C
(
sE − Â

)−1
B,

i. e., we have to prove controllability and observability of λ. Since y is a left eigen-
vector of λE − Â it holds that

yH
[
λE − Â B

]
=
(
0 yHB

)
=
(
0 wHC(λE −A)−1B

)
=
(
0 σvH

)
.

Since σvH 6= 0, λ is a controllable mode. Observability can be proven in an analogous
manner and is therefore omitted. This yields statement c) by noting that

σ−1vwH = εṽw̃H with ṽ =
1√
εσ
v, w̃ =

1√
εσ
w,

where εσ > 1 by definition.

The implication “c)⇒ a)” is trivial since with ∆ := εvwH we obtain λ ∈ P(G).

By employing the same techniques as in the proof of the previous lemma we can
also show the following result.

Corollary 6.2.7. [BV14, Cor. 4.2] Let (E,A,B,C) ∈ Σn,m,p with transfer function
G(s) ∈ R(s)p×m be given. Assume that ε > 0 and λ ∈ C \P(G). Then the following
statements are equivalent:

a) G(λ) has a (not necessarily maximum) singular value ε−1 with right and left sin-
gular vectors v ∈ Cm and w ∈ Cp satisfying ‖v‖2 = ‖w‖2 = 1.

b) The number λ is a controllable and observable mode of the perturbed system (E,A+
εBvwHC), B,C) with associated right and left eigenvectors x and y of sE − (A+
εBvwHC) ∈ C[s]n×n given by

x = (λE −A)−1Bv, and y = (λE −A)−HCTw. (6.9)

From Lemma 6.2.6 we can conclude that

Pε(G) = P(G) ∪
{
λ ∈ C : σmax (G(λ)) > ε−1

}
with boundary

∂Pε(G) =
{
λ ∈ C : σmax (G(λ)) = ε−1

}
. (6.10)
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In other words, also the rightmost structured ε-pseudopole is arbitrarily close to the
curve ∂Pε(G). Thus, our strategy consists of computing a sequence of suitable struc-
tured rank-1 perturbed pencils sE −

(
A+ εBvwHC

)
∈ C[s]n×n such that one of the

perturbed eigenvalues converges to the rightmost ε-pseudopole of G(s). A similar
technique has already been successfully applied to compute the pseudospectral ab-
scissa of a matrix, see [GO11]. For computational purposes we assume that ε is chosen
such that the corresponding ε-pseudopole set is regular. In this way we guarantee
that we only consider admissible perturbations of finite eigenvalues and that α(ε)
is finite. Inadmissible perturbations are covered by evaluating limω→∞ σmax(G(iω))
which will be done separately.

With regard to Proposition 4.4.1 we see the following. Let sE − A ∈ R[s]n×n

be a given regular matrix pencil and let x, y ∈ Cn be right and left eigenvectors

corresponding to a simple finite eigenvalue λ = yHAx
yHEx

. Let sE −
(
A+ tBvwHC

)
∈

C[s]n×n be a perturbed regular matrix pencil with eigenvalue λ̃(t). Then it holds
that

λ̃(t) = λ+ t
yHBvwHCx

yHEx
+O

(
t2
)
.

Furthermore, this directly yields

dλ̃(t)

dt

∣∣∣∣∣
t=0

=
yHBvwHCx

yHEx
.

Now, we describe how such rank-1 perturbations can be constructed in an optimal
way. Therefore, let λ be a simple eigenvalue of the pencil sE−A with corresponding
right and left eigenvectors x, y ∈ Cn satisfying yHEx > 0. Let v ∈ Cm and w ∈ Cp
with ‖v‖2 = ‖w‖2 = 1 be given vectors. Then it holds that

Re

(
dλ̃(t)

dt

∣∣∣∣∣
t=0

)
=

Re
(
yHBvwHCx

)
yHEx

≤
∥∥yHB∥∥

2
‖Cx‖2

yHEx
. (6.11)

Equality in (6.11) holds for v = BTy/
∥∥BTy

∥∥
2
, w = Cx/

∥∥Cx∥∥
2
. Hence, local maximal

growth in Re
(
λ̃(t)

)
as t increases from 0 is achieved for this choice of v and w. In this

way we generate the initial perturbation. Next we consider subsequent perturbations.
Let therefore sE − Â := sE −

(
A+ εBv̂ŵHC

)
∈ C[s]n×n with a simple eigenvalue λ̂

and associated right and left eigenvectors x̂, ŷ ∈ Cn with ŷHEx̂ > 0 be the perturbed
matrix pencil. In addition, let vectors v ∈ Cm, w ∈ Cp with ‖v‖2 = ‖w‖2 = 1 be

given. We consider the family of perturbations of the matrix pencil sE − Â of the
form

sE −
(
Â+ tB

(
vwH − v̂ŵH

)
C
)
,
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which are structured ε-norm rank-1 perturbations of sE−A for t = 0 and t = ε. For
the perturbed eigenvalue, for simplicity called again λ̃, we obtain

Re

(
dλ̃(t)

dt

∣∣∣∣∣
t=0

)
=

Re
(
ŷHB

(
vwH − v̂ŵH

)
Cx̂
)

ŷHEx̂

≤
∥∥ŷHB∥∥

2
‖Cx̂‖2 − Re

(
ŷHBv̂ŵHCx̂

)
ŷHEx̂

. (6.12)

Similarly to the above considerations, equality in (6.12) holds for v = BTŷ/
∥∥BTŷ

∥∥
2
,

w = Cx̂/
∥∥Cx̂∥∥

2
. Therefore, the basic algorithm consists of successively choosing an

eigenvalue and constructing the perturbations described above by using the corre-
sponding eigenvectors. However, an important question is how to actually choose
these eigenvalues. This will be discussed in the next paragraph.

Choice of the Eigenvalues Recall that we want to construct structured ε-norm
rank-1 perturbations of the pencil sE−A such that one of the perturbed eigenvalues
converges to the rightmost ε-pseudopole of the transfer function G(s). Intuitively,
in each step one would choose the rightmost eigenvalue of the perturbed pencil to
construct the next perturbation. However, this might not be a good choice. Note that
the perturbability of an eigenvalue λ ∈ C with right and left normalized eigenvectors
x and y highly depends on the values of

∥∥BTy
∥∥

2
and

∥∥Cx∥∥
2
. If these values are small,

no large perturbation is possible. We recall that these values are strongly related to
the controllability and observability concepts introduced in Subsection 6.2.1. Roughly
speaking, the “larger” the values of

∥∥BTy
∥∥

2
, the “larger” is the distance of the system

to uncontrollability at λ. So, large values of
∥∥BTy

∥∥
2

indicate a good controllability
at λ. Analogous considerations can also be made for observability.

Consequently, for our algorithm we look for eigenvalues that have both sufficiently
large real part and a high controllability and observability. An algorithm which
unites both concepts is the (subspace accelerated MIMO) dominant pole algorithm
(SAMDP), introduced by Rommes and Martins [RM06b, RM06a, RS08, Rom08].
This algorithm can be shown to converge locally superlinearly to the desired eigenval-
ues. It has actually been designed to find the poles which have the highest influence on
the frequency response of the transfer function G(s). Assume that sE−A ∈ R[s]n×n

has only simple eigenvalues λk with left and right eigenvectors yk, xk ∈ Cn, normal-
ized such that yHk Exk = 1. Then we have the representation

G(s) =

n∑
k=1

Rk
s− λk

+R∞ (6.13)

with the residues

Rk = Cxky
H
kB and R∞ = lim

ω→∞
G(iω).
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Then it holds that

‖Rk‖2 = λmax

(
Cxky

H
kBB

Tykx
H
kC

T
)1/2

=
∥∥Cxk∥∥2

∥∥BTyk
∥∥

2

is a measure for simultaneous controllability and observability of λk. We observe that
if λj is close to the imaginary axis and ‖Rj‖2 is large, then for ω ≈ Im(λj) we obtain

G(iω) ≈ Rj
−Re(λj)

+

n∑
k=1
k 6=j

Rk
iω − λk

+R∞, (6.14)

and therefore, ‖G(iω)‖2 is large, too. These considerations give the motivation for
the following definition. We call an eigenvalue λj ∈ Λ(E,A) dominant pole of G(s),
if

‖Rk‖2
|Re(λk)|

<
‖Rj‖2
|Re(λj)|

, k = 1, . . . , n, k 6= j. (6.15)

The most dominant poles can be determined by SAMDP and are essentially what
we are looking for. However, we also deal with positive ε-pseudopole set abscissae.
By using the definition (6.15), the eigenvalues tend to loose dominance as soon as
they have crossed the imaginary axis into the right half-plane. Then in subsequent
iterations eigenvalues in the left half-plane tend to be determined as most dominant.
This is of course an undesired behavior since this could lead to convergence problems
when the rightmost structured ε-pseudopole is“far” in the right half-plane. Therefore,
we also propose an alternative dominance measure which does not have this drawback.
We call an eigenvalue λj ∈ Λ(E,A) exponentially dominant pole of G(s), if

‖Rk‖2 exp(βRe(λk)) < ‖Rj‖2 exp(βRe(λj)), k = 1, . . . , n, k 6= j. (6.16)

The parameter β is a weight factor which determines the trade-off between the in-
fluence of the residues and the real parts of the eigenvalues. In our numerical ex-
periments it turned out that the dominance defined by (6.15) or (6.16) with rather
large values of β (high weight on the real part) are good choices for many examples.
Since SAMDP delivers the poles which have the highest influence on the frequency
response of a system and due to the relation (6.6), we can determine good initial
estimates for rf

C(G). We compute some of the dominant poles λk, k = 1, . . . , ` and
determine an estimate rest

C (G) as

rest
C (G) = 1/ max

1≤k≤`
σmax (G (iωk)) (6.17)

with ωk = Im(λk), k = 1, . . . , `.
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Algorithm 6.1 Computation of the pseudopole set abscissa

Input: System Σ = (E,A,B,C) ∈ Σn,m,p with transfer function G(s) ∈ R(s)p×m,
perturbation level ε < 1/ limω→∞ σmax(G(iω)), tolerance on relative change τ ,
dominance measure as in (6.15) or (6.16) for all dominant pole computations.

Output: αε(G), right and left eigenvectors x∗, y∗ ∈ Cn associated to the optimal
pseudopole.

1: Compute a dominant pole λ0 of G(s) with associated right and left eigenvectors
x0, y0 ∈ Cn of sE −A.

2: Compute the perturbation Â = A+ ε
BBTy0xH0C

TC

‖BTy0‖2‖Cx0‖2
.

3: for j = 1, 2, . . . do
4: Compute a dominant pole λj of Ĝ(s) := C

(
sE − Â

)−1
B with associated right

and left eigenvectors xj , yj ∈ Cn of sE − Â.
5: if |Re (λj)− Re (λj−1)| < τ |Re (λj)| then
6: Set k = j.
7: Break.
8: end if

9: Compute the perturbation Â = A+ ε
BBTyjx

H
j C

TC

‖BTyj‖2‖Cxj‖2
.

10: end for
11: Set αε(G) = Re (λk), x∗ = xk, y∗ = yk.

Algorithmic Details In this paragraph we present some pseudocode of the algo-
rithms that we have derived. Algorithm 6.1 summarizes the procedure for the com-
putation of the ε-pseudopole set abscissa. In our implementation we always initialize
Algorithm 6.1 by setting x0 and y0 to the eigenvectors returned by the previous eval-
uation of α(ε) (if there is one). This accelerates the computation drastically since
the eigenvectors used in the outer iteration converge as well.

We mention the drawback that the algorithm does not necessarily converge to the
globally rightmost value on the boundary of the ε-pseudopole set ∂Pε(G) in (6.10).
Mostly it does but in some rare situations the algorithm converges only to a local
maximizer. This especially happens in the first iteration of the root-finding algo-
rithm when no good estimates of the optimal eigenvectors are available. Therefore,
sometimes one has to try several dominant poles to find the global maximizer in
the beginning. Note that we could also follow multiple poles to the boundary of
the corresponding pseudopole set in order to increase the chance to find the globally
rightmost point. But due to the much higher complexity and a comparably small gain
we only follow one pole. In fact, by choosing a dominant pole of the original transfer
function as starting pole usually gives the desired result as shown in Subsection 6.2.5.
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Fixed Point Analysis This section is devoted to the analysis of the fixed points of
the iteration given by Algorithm 6.1. The following two lemmas will be needed for
our considerations.

Lemma 6.2.8. [GO11] Let t ∈ R and consider the p × m matrix family C(t) =
C0 +tC1. Let σ(t) be a singular value of C(t) converging to a simple nonzero singular
value σ0 of C0 as t→ 0. Then, σ(t) is analytic near t = 0 and

dσ(t)

dt

∣∣∣∣
t=0

= wH0 C1v0,

where v0 and w0 with ‖v0‖2 = ‖w0‖2 = 1 are, respectively, the right and left singular
vectors of C0 corresponding to σ0.

Lemma 6.2.9. [FBK13, p. 73] Let λ∗ ∈ C \ P(G) be given. Then G(s) can be
expanded into a Laurent series at λ∗ as

G(λ) = C(In −
(
λ− λ∗)(λ∗E −A)−1E

)−1
(λ∗E −A)−1B

= M0 +M1(λ− λ∗) +M2(λ− λ∗)2 + . . .

with the moments Mj = C
(
−(λ∗E −A)−1E

)j
(λ∗E −A)−1B.

Besides the above we will make the following assumption [GGO13, Assmp. 2.19]
throughout this section.

Assumption 6.2.10. [BV14, Assmp. 4.6] Let (E,A,B,C) ∈ Σn,m,p with transfer
function G(s) ∈ R(s)p×m be given. Moreover, let ε > 0 be given such that the
associated ε-pseudopole set of G(s) is regular. Let λ∗ ∈ C be a locally rightmost
point of Pε(G). Then we assume that

a) the largest singular value ε−1 of G(λ∗) is simple;

b) if v∗ ∈ Cm and w∗ ∈ Cp are the corresponding right and left singular vectors with
‖v∗‖2 = ‖w∗‖2 = 1, then the pole λ∗ of the perturbed transfer function Gεv∗wH

∗
(s)

is simple. (That λ∗ is a pole follows from Corollary 6.2.7.)

Note, that using similar arguments as in [BLO03, p. 362], the first part of Assump-
tion 6.2.10 is generically true, i. e., it holds true for almost all systems (E,A,B,C) ∈
Σn,m,p. However, it is not difficult to find counter-examples.

Lemma 6.2.11. [BV14, Lem. 4.7] Let (E,A,B,C) ∈ Σn,m,p with transfer function
G(s) ∈ R(s)p×m be given and let Assumption 6.2.10 be satisfied. If λ∗ ∈ C is a local
maximizer of the optimization problem

sup {Re(λ) : λ ∈ Pε(G)} , (6.18)
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then it holds that

‖G(λ∗)‖2 = ε−1 and wH
∗ C (λ∗E −A)−1E (λ∗E −A)−1Bv∗ > 0,

where v∗ ∈ Cm and w∗ ∈ Cp are the normalized right and left singular vectors of
G(λ∗).

Proof. Our proof follows similar arguments as in the proof of [GGO13, Lem. 2.21].
The assertion that we have ‖G(λ∗)‖2 = ε−1 directly follows from the fact that λ∗ is
on the boundary of Pε(G). Next, the optimization problem (6.18) is equivalent to

max
{

Re(λ) : ‖G(λ)‖2 ≥ ε−1
}
.

By identifying λ = γ+iδ ∈ C with the vector

(
γ
δ

)
∈ R2, this is furthermore equivalent

to
max {g(γ, δ) : h(γ, δ) ≤ 0}

with g(γ, δ) = γ and h(γ, δ) = ε−1 − ‖G(γ + iδ)‖2. At the optimum

(
γ∗
δ∗

)
we must

now either have

a) ∇h(γ∗, δ∗) = 0; or

b) ∇g(γ∗, δ∗) = µ∇h(γ∗, δ∗) with a Lagrange multiplier µ > 0.

From Lemma 6.2.9 it follows that in a neighborhood of λ∗ = γ∗ + iδ∗ we have

G(λ) = C(λ∗E −A)−1B + (λ∗ − λ)C(λ∗E −A)−1E(λ∗E −A)−1B

+O
(
(λ∗ − λ)2

)
.

By applying Lemma 6.2.8 to G(λ), we obtain

∇hT(γ∗, δ∗) =

Re
(
wH
∗ C (λ∗E −A)−1E (λ∗E −A)−1Bv∗

)
Im
(
wH
∗ C (λ∗E −A)−1E (λ∗E −A)−1Bv∗

) .

Since λ∗ is an eigenvalue of the pencil sE −
(
A+ εBv∗wH

∗ C
)
∈ C[s]n×n with right

and left eigenvectors x∗, y∗ ∈ Cn we obtain

x∗ = ε(λ∗E −A)−1Bv∗wH
∗ Cx∗,

yH∗ = εyH∗ Bv∗w
H
∗ C(λ∗E −A)−1,

and hence

0 6= yH∗ Ex∗ = ε2yH∗ Bv∗w
H
∗ C(λ∗E −A)−1E(λ∗E −A)−1Bv∗wH

∗ Cx∗.
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This means that wH
∗ C(λ∗E − A)−1E(λ∗E − A)−1Bv∗ 6= 0 and as a consequence we

can exclude case a) above. Since ∇g(γ∗, δ∗) =
(
1 0

)
and b) holds true, we directly

obtain
wH
∗ C (λ∗E −A)−1E (λ∗E −A)−1Bv∗ = 1/µ > 0

and the proof is complete.

Lemma 6.2.11 gives necessary first-order optimality conditions for λ∗ ∈ C to be a
locally rightmost point in the ε-pseudopole set. Now we can start analyzing the fixed
points of the iteration presented in Algorithm 6.1. First we introduce the notion of a
fixed point similar as in [GGO13, Def. 3.1]. Here, the term “dominant pole” is either
understood with respect to (6.15) or (6.16).

Definition 6.2.12 (Fixed point). [BV14, Def. 4.8] Let ε > 0 be given such that the
associated ε-pseudopole set is regular. Furthermore, assume that ((vj , wj))j∈N0

=((
BTyj/

∥∥BTyj
∥∥

2
, Cxj/

∥∥Cxj∥∥2

))
j∈N0

is a sequence of perturbations constructed by

Algorithm 6.1. Assume that λj is the unique dominant pole of the perturbed transfer
function GεvjwH

j
(s). A vector pair (vj , wj) is a fixed point of this iteration if λj is

simple, vjw
H
j = vj+1w

H
j+1, and consequently λj = λj+1.

Next, we get a similar theorem as [GGO13, Thm. 3.2] which we will prove in an
analogous fashion.

Theorem 6.2.13. [BV14, Thm. 4.9]

a) Let ε > 0 be chosen such that the corresponding ε-pseudopole set is regular. Let
(v∗, w∗) be a fixed point of the iteration induced by Algorithm 6.1 corresponding
to the dominant pole λ∗ ∈ C of Gεv∗wH

∗
(s) which we assume to be unique. Then

G(λ∗) has a singular value equal to ε−1 and if this is the largest one, the first-order
optimality conditions presented in Lemma 6.2.11 hold true.

b) Conversely, assume that ε > 0 is chosen such that the corresponding ε-pseudopole
set is regular and that the first-order optimality conditions in Lemma 6.2.11 hold
true for some λ∗ ∈ C and (v∗, w∗). Then λ∗ is a pole of Gεv∗wH

∗
(s) and if it is

the unique dominant one and simple, then (v∗, w∗) is a fixed point of the iteration
induced by Algorithm 6.1.

Proof. First we show a): Let (v∗, w∗) be a fixed point of the iteration induced by
Algorithm 6.1 corresponding the dominant pole λ∗ ∈ C of Gεv∗wH

∗
(s). Then we have

v∗ = BTy∗/
∥∥BTy∗

∥∥
2

and w∗ = Cx∗/
∥∥Cx∗∥∥2

, where x∗ and y∗ are the right and left
eigenvectors of the perturbed matrix pencil

λE −
(
A+ ε

BBTy∗xH∗C
TC∥∥BTy∗

∥∥
2

∥∥Cx∗∥∥2

)
(6.19)
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to the eigenvalue λ∗. That ε−1 is indeed a singular value of G(λ∗) follows by Corol-
lary 6.2.7. Let ε−1 now be the largest singular value of G(λ∗). Then we have

x∗ = ε
(λ∗E −A)−1BBTy∗xH∗C

TCx∗∥∥BTy∗
∥∥

2

∥∥Cx∗∥∥2

,

yH∗ = ε
yH∗ BB

Ty∗xH∗C
TC(λ∗E −A)−1∥∥BTy∗
∥∥

2

∥∥Cx∗∥∥2

.

Due to the normalization yH∗ Ex∗ = 1 we now obtain

yH∗ Ex∗ = ε2
∥∥BTy∗

∥∥
2

∥∥Cx∗∥∥2

xH∗C
T∥∥Cx∗∥∥2

C (λ∗E −A)−1E (λ∗E −A)−1B
BTy∗∥∥BTy∗

∥∥
2

= 1 > 0,

(6.20)

i. e., the first-order optimality conditions hold true.

Now we prove statement b): Assume that the first-order optimality conditions in
Lemma 6.2.11 are satisfied for some λ∗ ∈ C and (v∗, w∗). Then σmax (G(λ∗)) =
ε−1 with right and left normalized singular vectors v∗ = BTy∗/

∥∥BTy∗
∥∥

2
and w∗ =

Cx∗/
∥∥Cx∗∥∥2

. From the second optimality condition in Lemma 6.2.11 and with (6.9)
we obtain

xH∗C
TC(λ∗E −A)−1E(λ∗E −A)−1BBTy∗∥∥Cx∗∥∥2

∥∥BTy∗
∥∥

2

> 0,

where x∗ and y∗ are now again the right and left eigenvectors of the perturbed pencil
(6.19) to the eigenvalue λ∗. So, if λ∗ is dominant and simple, then the pair (v∗, w∗)
is a fixed point of the iteration.

As in [GO11, p. 1176] we argue that the only possible attractive fixed points of
the iteration given by Algorithm 6.1 are the local maximizers of the optimization
problem (6.18).

Local Convergence and Error Analysis Similarly as in [GO11] it is possible to show
that for sufficiently small values of ε we have local convergence to a fixed point with
linear rate. The generalization of the proof is analogous to the one for the algorithm
in [GGO13], as discussed by [GO13]. Since this analysis is rather lengthy we omit the
details. However, as shown by our numerical examples we always have convergence
to a fixed point independently of ε. However, similarly as in [GO11], the linear
convergence factor might get higher for larger values of ε.
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6.2.3 Newton’s Method for Computing the Complex H∞-Radius

In this subsection we derive a Newton-like method for computing the root of α(·).
This is a generalization of the method presented in [GGO13] and we will later show
that it is slightly faster than the secant method used in [BV12b] or any other superlin-
early converging root-finding scheme [BV12a] applied to this problem. The following
theorem deals with the derivative of the pseudopole set abscissa with respect to ε,
similarly as in [GGO13, Thm. 4.1].

Theorem 6.2.14. [BV14, Thm. 5.1] Let (E,A,B,C) ∈ Σn,m,p with transfer func-
tion G(s) ∈ R(s)p×m be given. Let ε > 0 be such that the associated ε-pseudopole
set is regular. Let λ(ε) be the rightmost point of Pε(G). Let Assumption 6.2.10
be satisfied for all regular ε-pseudopole sets and let v(ε) = BTy(ε)/

∥∥BTy(ε)
∥∥

2
and

w(ε) = Cx(ε)/
∥∥Cx(ε)

∥∥
2

be the normalized singular vectors of G(λ(ε)) correspond-
ing to the largest singular value ε−1, where x(ε), y(ε) ∈ Cn are the right and left
eigenvectors of the perturbed pencil

sE −
(
A+ ε

BBTy(ε)x(ε)HCTC∥∥BTy(ε)
∥∥

2

∥∥Cx(ε)
∥∥

2

)
∈ C[s]n×n,

with y(ε)HEx(ε) = 1. Furthermore, let ε0 > 0 be given such that the structured ε0-
pseudopole set is regular and such that the rightmost point λ(ε0) of Pε0(G) is uniquely
determined. Then λ(·) is continuously differentiable at ε0 and it holds that

dα(ε)

dε

∣∣∣∣
ε=ε0

=
dλ(ε)

dε

∣∣∣∣
ε=ε0

=
∥∥BTy(ε0)

∥∥
2

∥∥Cx(ε0)
∥∥

2
. (6.21)

Proof. The proof is similar as for [GGO13, Thm. 4.1]. Due to the first part of
Assumption 6.2.10, the singular vectors v(ε) and w(ε) are unique up to multiplication
with a unitary scalar. Therefore, the largest singular value of G(λ(·)) is differentiable
with respect to ε. The second part of Assumption 6.2.10 ensures that y(ε)HEx(ε) 6= 0
while the uniqueness of the rightmost point λ(ε0) guarantees the continuity of λ(·)
and its derivative in a neighborhood of ε0.

Now we prove (6.21). Differentiating the constraint G(λ(ε)) = ε−1 with respect to
ε yields

0 =
d

dε

(
ε−1 −

∥∥C(λ(ε)E −A)−1B
∥∥

2

)
= −ε−2 + w(ε)HC (λ(ε)E −A)−1E (λ(ε)E −A)−1Bv(ε) · dλ(ε)

dε
.

Plugging in v(ε) = BTy(ε)/
∥∥BTy(ε)

∥∥
2

and w(ε) = Cx(ε)/
∥∥Cx(ε)

∥∥
2

and comparing
this with (6.20) gives the desired result and finalizes the proof.
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Now, since we know how to differentiate α(·), we can make use of Newton’s method
to compute the root of α(·). This method has a local quadratic convergence since
dα(ε)/dε > 0 and d2α(ε)/dε2 is finite. The complete procedure is summarized in
Algorithm 6.2. First, we check whether the H∞-norm is attained at ω = ∞. This
is done by evaluating σmax(G(·)) at the imaginary parts of the dominant poles. If
all these values are below g∞ := limω→∞ σmax (G(iω)), we assume that the norm
is attained at infinity and we return g∞. This step is necessary to avoid possi-
ble computations with nonregular pseudopole sets in subsequent steps. To estimate
limω→∞G(iω), we evaluate G(iω) for a sufficiently large ω. The largest singular value
of G(iω) will converge quickly due to the fact that for large ω there are no close poles
which can introduce peaks. We can give the following upper bound using the residue
representation of the transfer function (6.13) with λj = νj + iωj , j = 1, . . . , n:

‖G(iω)‖2 =

∥∥∥∥∥∥
n∑
j=1

Rj
iω − iωj − νj

+R∞

∥∥∥∥∥∥
2

≤
n∑
j=1

‖Rj‖2
|iω − iωj − νj |

+ ‖R∞‖2 . (6.22)

For ω � max1≤j≤n ωj we can neglect the real parts of the denominators νj , j =
1, . . . , n. Since usually there are only very few dominant poles, we can control the
desired accuracy by, e. g., choosing ω such that for the most dominant poles λj ,
j = 1, . . . , `, we have ∑̀

j=1

‖Rj‖2
|ω − ωj |

≤ η (6.23)

for some small η > 0. Note that in the algorithm, the dominant poles have to be
computed anyway, so we can evaluate the left-hand side of (6.23) at no additional
cost.

When we assume that the H∞-norm is attained at a finite frequency, we compute
the root of α(·) as described above. As the initial value we take ε1 = rest

C (G) as in
(6.17) which is already very close to the exact value of the complex H∞-radius for
most of our examples. In our actual implementation of the algorithm we also check
if the most dominant poles are purely real. In this case we assume that ‖G‖H∞ =
‖G(0)‖2 and return this value. This is done to improve the performance of the
algorithm since there are many examples with this property.

6.2.4 Comparison with the Method of Guglielmi, Gürbüzbalaban, and
Overton

As already pointed out in the introduction, the work [GGO13] uses a similar idea to
compute theH∞-norm for standard state-space system Σ := (In, A,B,C,D) ∈ Σn,m,p
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6.2 The Pseudopole Set Approach

Algorithm 6.2 Computation of the H∞-norm using the pseudopole set approach

Input: System (E,A,B,C) ∈ Σn,m,p with transfer function G ∈ RHp×m∞ .
Output: ‖G‖H∞ , optimal frequency ω∗.

1: Compute some dominant poles λj = νj + iωj , j = 1, . . . , `.
2: Compute g∞ := limω→∞ σmax (G(iω)).
3: if g∞ > σmax(G(iωj)), j = 1, . . . , ` then
4: Set ‖G‖H∞ = g∞ and ω∗ =∞.
5: Return.
6: else
7: Set ε1 = rest

C (G) as in (6.17).
8: for j = 1, 2, . . . , k do
9: Compute α(εj), and right and left eigenvectors xj , yj ∈ Cn associated to the

optimal pseudopole λj .

10: Perform a Newton step: set εj+1 = εj − α(εj)

‖BTy(εj)‖
2
‖Cx(εj)‖

2

.

11: end for
12: end if
13: Set ‖G‖H∞ = ε−1

k+1 and ω∗ = Im (λk).

with transfer function

G(s) = C(sIn −A)−1B +D ∈ RHp×m∞ . (6.24)

The presence of a nonzero matrix D makes the derivation and analysis of the algo-
rithm from [GGO13] particularly cumbersome and difficult. In this case the role of
the ε-pseudopole sets of this work is attained by the so-called ε-spectral value sets
which are defined by

Ξε(Σ) :=
{
λ ∈ C : λ ∈ Λ

(
A+B∆(Ip −D∆)−1C

)
for some ∆ ∈ Cm×p with ‖∆‖2 < ε

}
.

Then it is shown that Ξε(Σ) can be constructed by only using rank-1 perturbations
∆, and therefore, also the rightmost point in the spectral value set can be realized
by a rank-1 perturbation εv∗wH

∗ with ‖v∗‖2 = ‖w∗‖2 = 1. The construction of this
optimizing perturbation is done by an iteration that yields a sequence of normalized
vector pairs ((vj , wj))j∈N0 . For each j > 0, vj and wj are determined as solutions of
the optimization problem

max
‖u‖2=‖v‖2=1

Re

(
yHj B

(
vwH

1− εwHDv

)
Cxj

)
, (6.25)

where xj and yj are the right and left eigenvectors to the rightmost eigenvalue of the

perturbed matrix A + εBvj−1w
H
j−1

(
Ip − εDvj−1w

H
j−1

)−1
C, respectively. An explicit
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6 Computation of the H∞-Norm for Large-Scale Descriptor Systems

solution of this optimization problem is derived in [GGO13]. In our method we
circumvent the solution of such an optimization problem, since we always eliminate
D. Then we can directly construct the next perturbation matrix by using (6.12). Of
course, then we have to deal with a descriptor system, even if the original problem
comes from a standard state-space system.

Note that both methods are also not equivalent in the context of standard state-
space systems. To see this we rewrite (6.24) as

G(s) =
[
C Ip

](
s

[
In 0
0 0

]
−
[
A 0
0 −Ip

])−1 [
B
D

]
.

Let λ0 be the rightmost finite eigenvalue of the pencil s

[
In 0
0 0

]
−
[
A 0
0 −Ip

]
∈

R[s]n+p×n+p with right and left eigenvectors x0 =
(
xT01 xT02

)T ∈ Cn+p and y0 =(
yT01 yT02

)T ∈ Cn+p. Then we have x02 = 0 and y02 = 0. Therefore, the first
perturbation in the descriptor system case is constructed by the vectors

v0 := BTy01/
∥∥BTy01

∥∥
2
, w0 := Cx01/

∥∥Cx01

∥∥
2
. (6.26)

Furthermore, since x01 and y01 are the right and left eigenvectors of the matrix A
with respect to the eigenvalue λ0, the first perturbation in the standard system case
is computed via the solution of the optimization problem (6.25) with xj = x01 and
yj = y01. However, its solution only corresponds to (6.26) if D = 0. In our algorithm,
D is completely ignored, whereas in [GGO13] both D and ε play a certain role in the
optimization process. So, even if both methods converge to the same locally rightmost
point in the pseudopole set or spectral value set, the path of intermediate iterates
might be different. It is far from obvious to see whether one of the approaches works
better than the other one, but this is also out of the scope of this thesis. However, this
question is particularly interesting in the context of generalizing the approach from
[GGO13] to the descriptor system case, since there is a large freedom of choosing E
and D to obtain the same transfer function.

The second main difference to [GGO13] is that in our algorithm we explicitly
consider poles instead of eigenvalues. This difference seems to be of minor nature
but it has some important consequences. Consider for example the case that E = In
and Λ(A) ⊂ C−. Now we could inflate A by an uncontrollable or unobservable mode
λ0 to still obtain the same transfer function. Since we can choose λ0 arbitrarily we
can also place it far in the right half-plane. The method from [GGO13] would now
choose λ0 as a starting value and directly return Re(λ0) as spectral value set abscissa
since there is no spectral value set component around λ0. This could then lead to a
wrong result, since Re(λ0) can be much larger than the corresponding spectral value
set abscissa obtained by using the original data. This problem is avoided by our
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6.2 The Pseudopole Set Approach

method since obviously λ0 is no pole of the transfer function. In fact, it is only a
removable singularity. The further incorporation of only the most dominant poles
by our method enables us to find good starting values that can be used to indeed
find a global instead of a local maximizer of ‖G(i·)‖2. This is not guaranteed by
[GGO13], since controllability and observability do not play a role for choosing the
initial eigenvalue.

6.2.5 Numerical Results

Test Setup In this subsection we present some numerical results of our download-
able implementation1. To compute the (exponentially) dominant poles we use a
(slightly modified) version of Rommes’ MATLAB codes2. The data for the numerical
examples was taken from [RM06a, MPR07, FRM08, CD02] and it can also be down-
loaded from Rommes’ website or from the NICONET page3. As dominance measure
we use (6.15). In Paragraph 6.2.5 we also analyze the behavior of the algorithm us-
ing the exponential dominance measure. The tolerance on the relative change of the
iterates in Algorithm 6.1 is set to τ = 10−3. We also abort the iteration when the
iterates start to cycle which typically happens when they are approaching zero. In
Algorithm 6.2 we abort this iteration when the relative change of the iterates is below

10−6, i. e., if
∣∣∣1− εk

εk+1

∣∣∣ < 10−6. To obtain rest
C (G), we compute 20 dominant poles us-

ing SAMDP (40 for the peec example and 30 for the bips07_1693 system). For every
further outer iteration we compute only 5 dominant poles (10 for the peec example).
Note that we have to compute more dominant poles for peec and bips07_1693 to
ensure that the most dominant poles are really found. Both examples are particularly
difficult, so it is necessary to deviate from the default values mentioned above.

Test Results In Table 6.1 we summarize the results of 33 numerical tests. The first
13 examples are standard or generalized state space systems whereas the other 20
ones are descriptor systems (with singular E). With nout we denote the number of
outer iterations, i. e., the number of steps needed by Algorithm 6.2 to find the root.
By nin we refer to the total number of inner iterations, i. e., the total number of steps
needed by Algorithm 6.1.

For all tests, the correct value of ‖G‖H∞ was found. In 30 tests the first outer
iteration returned a positive value. However, for 3 of the tests (M10PI_n1, M10PI_n,
bips07_1693), a negative value was returned and therefore, we have to try more dom-
inant poles (one for each M10PI_n1, M10PI_n and four for bips07_1693) to converge
to the correct initial value.

1http://www.mpi-magdeburg.mpg.de/mpcsc/software/infnorm/
2http://sites.google.com/site/rommes/software
3http://www.icm.tu-bs.de/NICONET/benchmodred.html
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Table 6.2: Convergence history for the M20PI_n example, λdom denotes the dominant
pole

k
1 2

R
e(
λ

d
o
m

) -6.7945e–02 1.6145e–08
2.3140e–03 1.6256e–08
3.0285e–03 1.6257e–08
3.0355e–03 —
3.0356e–03 —

εk 2.58250e–01 2.58224e–01

For a more detailed impression of the behavior of the algorithm, Tables 6.2 and 6.3
summarize the convergence history for the M20PI_n and the bips07_2476 examples,
listing each intermediate iterate for each iteration of the root-finding algorithm. We
clearly observe a linear convergence of Algorithm 6.1 with different convergence rates
depending on the problem, see also the last paragraph in Subsection 6.2.2.

In Figure 6.2 we also depict a set of pseudopole sets for the M20PI_n example and
the iterates of the first iteration of Algorithm 6.1. Blue contours in Figure 6.2(a)
correspond to small perturbation levels whereas yellow and red contours indicate
areas which need larger perturbations to be reached by the perturbed poles. There-
fore, poles that correspond to the blue contours are particularly controllable and
observable. Intuitively, it is clear that the H∞-norm will most likely be attained at
frequencies close to these poles. This is also confirmed by having a look at Figure 6.3
that shows transfer function plots for the M20PI_n and bips07_2476 examples to-
gether with the computed H∞-norms. For the M20PI_n example we observe that
the correct norm value is computed even though there are lots of close-by peaks of
similar height. We can also see that lots of peaks are introduced in the transfer func-
tion at frequencies that correspond to areas that are covered by the blue contours in
Figure 6.2(a).

Comparison of Dominance Measures Since our exponential dominance measure is
a heuristic method, we provide some results that emphasize that using (6.16) with
larger values of β as an alternative dominance measure can also be a good choice. In
particular, we perform a study of the behavior of our algorithm for different values
of β, but also with the standard measure given by (6.15). To ensure that the most
exponentially dominant poles are really found in the inner iterations we increase
nin to 20, but all other options are the same as before. In Table 6.4 we list those
examples that fail when trying to compute the H∞-norm using different dominance
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Table 6.3: Convergence history for the bips07_2476 example, λdom denotes the dom-
inant pole

k
1 2

R
e(
λ

d
o
m

)

-8.1617e–02 2.1202e–08
-9.6637e–03 3.0116e–08
-2.6717e–03 3.4986e–08
-9.8184e–04 3.7652e–08
-3.9561e–04 3.9111e–08
-1.5362e–04 3.9910e–08
-4.3525e–05 4.0348e–08
9.6185e–06 4.0587e–08
3.6273e–05 4.0718e–08
4.9989e–05 4.0790e–08
5.7173e–05 4.0830e–08
6.0984e–05 —
6.3022e–05 —
6.4120e–05 —
6.4714e–05 —
6.5036e–05 —
6.5211e–05 —
6.5307e–05 —
6.5359e–05 —

εk 5.27515e–03 5.27485e–03

measures. Unfortunately, for all tested values of β, some of the examples fail which is
always due to a wrong selection of the poles with the respective dominance measure.
Nevertheless, also all examples could be solved for some choice of β. For the iss

example, we obtain ‖G‖H∞ = 0.115885 for β = 10 and β = 100 which is slightly
smaller than the true value. This inaccuracy is also related to a different pole selection
in the iteration for different dominance measures. However, the algorithm converges
to the same peak in the transfer function.

In conclusion, it is important to choose a good value of β depending on the actual
example when applying (6.16). The table also makes clear that it is advisable to
put a rather high weight on the real part of the poles which corresponds to a high
value of β. However, it is still important to have an eye on the perturbability of the
poles which is neglected if β becomes too large. The standard measure (6.15) works
particularly well for our examples since the computed dominant poles already give
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Figure 6.2: Pseudopole sets with the most dominant poles (black crosses) and first
outer iteration for the M20PI_n example

Table 6.4: Comparison of different dominance measures for the 33 test examples from
Table 6.1

dominance measure failed examples

(6.15) —
(6.16) with β = 1 iss, peec, bips98_606, bips98_1142, bips98_1450,

bips07_1693, xingo_afonso_itaipu, mimo8x8_system,
mimo46x46_system

(6.16) with β = 10 (iss), peec
(6.16) with β = 100 (iss), peec
(6.16) with β = 1000 peec

(6.16) with β = 10000 M10PI_n1, M10PI_n

very good initial estimates of the actual value of the H∞-norm. However, if this is
not the case, the rightmost pseudopole in the first iteration might be “far” in the
right half-plane which makes the exponential dominance measure more advisable.

Comparison with Other Methods This subsection gives a brief comparison with
other methods, in particular those based on the solution of Hamiltonian and skew-
Hamiltonian/Hamiltonian eigenvalue problems. These are implemented in the MAT-
LAB Control Systems Toolbox as the function norm and in SLICOT4 as the upcoming
subroutine AB13HD. Both implementations rely on dense matrix algebra and there-
fore, they do not exploit the sparse structure of the involved matrices. We illustrate

4http://www.slicot.org/
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Figure 6.3: Transfer function plots for the M20PI_n and bips07_2476 test examples
with computed H∞-norm (red circle)

Table 6.5: Comparison of the pseudopole set method with standard approaches

computed H∞-norm time in s
example norm AB13HD new method norm AB13HD new method

M10PI_n 4.05662 4.05662 4.05662 40.44 50.59 3.56
M20PI_n 9.92404 3.87260 3.87260 296.65 276.41 4.03
M40PI_n 3.81766 3.81767 3.81767 2322.66 1998.26 6.11

the speed-up of the method compared to the standard approaches in Table 6.5 for
some smaller examples that can be solved by all available implementations. Both,
the MATLAB function norm and SLICOT’s AB13HD are used with a relative toler-
ance of 10−6 to obtain a similar accuracy as in Table 6.1. From the table we conclude
that the new method is much faster than existing algorithms. A high speed-up can
already be observed for small and medium-sized examples. Furthermore, for the
M20PI_n example, the new method and the SLICOT solver AB13HD are able to com-
pute the correct result whereas the MATLAB solver norm returns the wrong norm
value without printing an error or warning message.

Furthermore, we compare our approach with the method in [GGO13] for standard
state-space examples. The MATLAB code for [GGO13] is freely available5. As
examples we use the state-space examples used in Table 6.1 (#1–5). Moreover, we
generated test systems using state matrices A from EigTool [Wri02] or the COMPleib
package [Lei04, LL04] with randomly generated sparse input and output matrices B

5http://cims.nyu.edu/~mert/software/hinfinity.html
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and C and random feedthrough matrix D. For a good comparison we choose similar
termination tolerances in both methods. For our algorithm we use the same tolerances
as above. For the method from [GGO13] we choose tolerances for the relative and
absolute error of 10−6 and 10−12, respectively. As tolerance of the absolute error
of the spectral value set abscissa computation we take 10−3. In order to apply our
method, we first eliminate the matrix D as in (6.3). Furthermore, we remark that
we let the algorithm from [GGO13] run using dense arithmetics in case that n ≤ 500
since its performance is much better in this situation. The computed H∞-norms
and the runtimes of the algorithms are listed in Table 6.6. First, we see that for
both algorithms there are examples that could not be solved which is emphasized by
boldface font in the table. For the iss system this is caused by convergence to a
locally but not globally rightmost pseudopole whereas for NN18 and tolosa, SAMDP
or eigs from MATLAB fail, respectively. The convdiff_fd system is difficult in
the sense that we need to increase the relative tolerance of the inner iteration of
our algorithm to at least 10−4 to obtain an accurate result. On the other hand,
even decreasing the tolerance of the absolute error of the spectral value set abscissa
computation in the algorithm from [GGO13] does not improve the accuracy of the
result in Table 6.6 which is obtained by using a tolerance of 10−3.

Concerning the runtimes there is no pattern observable. There are examples for
which the method from [GGO13] performs better, but on the other hand there are
many examples for which our method is faster. This is particularly true for those
systems whose H∞-norm is attained at ω = 0. These are dwave, HF1, markov,
and olmstead. When all dominant poles are purely real, our algorithm directly
returns ‖G‖H∞ = ‖G(0)‖2 as result whereas this property is not explicitly checked
in [GGO13] which performs the full iteration. This is a particular advantage of our
method since by employing the residues of the poles we can get information about the
shape of the transfer function which is not possible by looking only at the location
of the eigenvalues as in [GGO13].

Limitations of the Method In this paragraph we explain limitations of our method.
For illustrate these we use the peec example. We plot the transfer function of this
example in Figure 6.4, once in the interval (0, 10) and once for the interval (5.2, 5.5),
where the maximum peak is located. First of all we see, the transfer function has lots
of peaks which is due to the high amount of poles close to the imaginary axis. We
plot the eigenvalues of the corresponding pencil sE − A ∈ R[s]480×480 in Figure 6.5,
together with the ten most dominant poles. It is very hard for SAMDP to find the
most dominant pole. In fact, if we only compute 20 dominant poles, the actually
most dominant one is not found. This is only the case if we increase the number
of wanted poles up to 40. Another problem is that the maximum peak is extremely
thin and spiky (see Figure 6.4(b)). We do not even see it with the resolution used for
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Table 6.6: Comparison of our method with [GGO13] for standard state-space systems,
bold values indicate failure of the method

computed H∞-norm time in s
# example n m p [GGO13] new meth. [GGO13] new meth.

1 build 48 1 1 5.27633e–03 5.27633e–03 0.93 1.54
2 pde 84 1 1 1.08358e+01 1.08358e+01 0.99 2.08
3 CDplayer 120 2 2 2.31982e+06 2.31982e+06 9.68 2.70
4 iss 270 3 3 1.20261e–02 1.15887e–01 5.53 2.69
5 beam 348 1 1 4.55487e+03 4.55487e+03 10.97 50.22
6 convdiff_fd 400 4 6 1.46898e+01 1.46968e+01 1247.09 92.21
7 dwave 2048 4 6 1.27874e+01 1.27874e+01 58.34 5.55
8 HF1 130 1 2 8.42158e–01 8.42158e–01 1.15 0.34
9 markov 5050 4 6 3.37266e+00 3.37266e+00 98.70 14.56
10 NN18 1006 1 2 9.29638e+00 fail 63.84 —
11 olmstead 500 4 6 2.79331e+00 2.79331e+00 23.17 1.68
12 tolosa 4000 4 6 fail 6.76382e+01 — 15.40
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Figure 6.4: Transfer function plots for the peec example with computed (wrong)H∞-
norm

236



6.2 The Pseudopole Set Approach

−0.2 −0.18−0.16−0.14−0.12 −0.1 −0.08−0.06−0.04−0.02 0 0.02
−1

0

1

2

3

4

5

6

7

8

9

10

Re(λ)

Im
(λ
)

1

2

3
4

5

67 8

9
10

Figure 6.5: Eigenvalues of sE − A for the peec example (blue crosses) and the 10
most dominant poles (red circles)

plotting Figure 6.4(a). To find it we would actually need very good approximations
to the eigenvectors which are needed to construct the optimal rank-1 perturbation.
This is only the case if we initialize the iteration with the most dominant pole and
take an appropriate dominance measure to continue with the most dominant poles
in each further iteration as done in Table 6.1. On the other hand, even if we start
from a pole very close to this optimal pole, e. g., when we only compute 20 dominant
poles and take, e. g., β = 100 in the beginning, our initial eigenvectors (the ones of
the initial pencil) are not that good. Therefore, we only find the close-by peak which
is much “wider” than the one we actually seek, see also the computed norm value in
Figure 6.4. However, we can check if the computed norm value is larger than the
2-norms of the transfer function evaluated at the test frequencies. For this example,
the test that we have implemented is not satisfied and therefore, we can at least
return an error indicator. The main problem of our method is that the user has to
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provide certain parameters to the algorithm, for instance the number of dominant
poles that should be computed in the beginning and every further iteration, since a
high number can be necessary in order to find the most dominant pole.

Unfortunately, there also exist examples for which we observe an extremely slow
convergence of SAMDP, in particular for those that have all real poles. Typically, the
circuit examples from the MNA group of [CD02] are of this kind. However, for these
problems, the H∞-norm is attained at zero, i. e., ‖G‖H∞ = ‖G(0)‖2, see [RS11]. This
behavior is captured by our algorithm by returning this value if the most dominant
poles are all real, provided that SAMDP is able to compute the poles.

6.3 The Even Pencil Approach

In this section we turn back to the original approach using the even pencil (6.1) and
discuss modifications to make this idea applicable to large-scale systems, too. In
particular, we will exploit structured iterative eigensolvers to reduce the complexity
of the eigenvalue computation (and thus, of the overall algorithm). For more details,
especially on the implementation, we refer to [LV13].

6.3.1 Theoretical Preliminaries and Algorithm Outline

The following two theorems form the basis for the algorithm to calculate the H∞-
norm. The first relates the singular values of G(iω) with the purely imaginary eigen-
values of sE − A(γ) in (6.1), see [BSV12a, BSV12b].

Theorem 6.3.1. Let (E,A,B,C,D) ∈ Σn,m,p with transfer function G ∈ RHp×m∞ be
given. Assume that sE − A has no purely imaginary eigenvalues and let ω0 ∈ R be
given. Then γ is a singular value of G(iω0) if and only if iω0E − A(γ) is singular.

The following theorem is a direct consequence of Theorem 6.3.1 [BSV12a].

Theorem 6.3.2. Let (E,A,B,C,D) ∈ Σn,m,p with transfer function G ∈ RHp×m∞
be given. Assume that sE − A has no purely imaginary eigenvalues and let γ >
infω∈R σmax(G(iω)). Then it holds that ‖G‖H∞ ≥ γ if and only if sE − A(γ) has
purely imaginary eigenvalues.

Using the theorems from above we are able to state an iterative method, as pre-
sented in [BSV12a, BSV12b], to calculate the H∞-norm. First, an initial γ is cal-
culated that is less than the H∞-norm. In each step, a check is performed to verify
whether the matrix pencil sE −A(γ) has purely imaginary eigenvalues. If such eigen-
values are found, γ is incremented and the process is repeated. Finally, when no
imaginary eigenvalues are found, γ serves as an upper bound for ‖G‖H∞ . By updat-
ing γ in a certain way, this process converges monotonically at a quadratic rate, with
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Algorithm 6.3 Computation of the H∞-norm using the even pencil approach

Input: System (E,A,B,C,D) ∈ Σn,m,p with transfer function G(s) ∈ RHp×m∞ , rel-
ative tolerance ε.

Output: ‖G‖H∞ , optimal frequency ω∗.
1: Compute an initial value γlb ≤ ‖G‖H∞ .
2: repeat
3: Set γ := (1 + 2ε)γlb.
4: Compute some desired eigenvalues of the matrix pencil sE − A(γ).
5: if no purely imaginary eigenvalues then
6: Set γub = γ.
7: Break.
8: else
9: Set {iω1, . . . , iωk} = purely imaginary eigenvalues of sE −A(γ), with ωj ≥ 0

for j = 1, . . . , k.
10: Set mj =

√
ωjωj+1, j = 1, . . . , k − 1.

11: Compute the largest singular value of G(imj) for j = 1, . . . , k − 1.
12: Set γlb = max1≤j≤k−1 σmax(G(imj)).
13: Set ω∗ = argmaxm1≤mj≤mk−1

σmax(G(imj)).
14: end if
15: until break
16: Set ‖G‖H∞ = 1

2(γlb + γub).

a relative error of at most the desired tolerance ε, as long as the arithmetic is exact.
The complete process is summarized in Algorithm 6.3.

6.3.2 Structured Iterative Eigensolvers

In the large-scale setting there are two main problems:

a) How do we efficiently determine a good initial value of γlb in Step 1 of Algo-
rithm 6.3?

b) How can we compute the desired eigenvalues of sE − A(γ) in Step 4 of Algo-
rithm 6.3?

First we discuss problem a): In general, the important factors that affect the com-
putational costs of the algorithm are the total number of iterations and the number
of purely imaginary eigenvalues of the matrix pencil sE − A(γ) in each iteration
Therefore, the initial choice of γlb is an important issue, since it can have a signif-
icant impact on both the total number of iterations and the number of imaginary
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eigenvalues. Here we choose

γlb := max
{
σmax(G(0)), σmax(G(iωp)), lim

ω→∞
σmax(G(iω))

}
,

where ωp is a test frequency that gives the maximum singular value [BSV12a]. To
determine the test frequencies we make use of the dominant poles of G(s). This is
reasonable strategy due to the relation (6.14). Therefore, let λj for j = 1, . . . , ` be
some computed dominant poles. Then we define the test frequency ωj as

ωj = Im(λj),

and thus we have

ωp := argmaxω1≤ωj≤ω`
σmax(G(iωj)).

Several dominant poles are used to potentially increase the value of γlb.

Next we discuss problem b): Since the standard algorithm [BSV12a, BSV12b]
uses full structured factorizations of skew-Hamiltonian/Hamiltonian pencils related
to sE − A(γ) and relies on dense matrix algebra, it has a cubic complexity and
therefore, it is infeasible in the large-scale setting.

Instead, we propose to use the even IRA algorithm [MSS12] which can compute
several eigenvalues close to a prespecified shift (and, if desired, the associated eigen-
vectors) of large and sparse even pencils.

In order to solve problems of this type, we limit ourselves to the case where the
structure of E and A(γ) allows for the use of sparse direct LU factorizations of
σE − A(γ) for some shift σ. In particular, the even IRA algorithm is a structure-
preserving method based on Krylov subspaces with implicit restarts [MSS12]. A
prespecified number of eigenvalues is calculated in a neighborhood of the shift σ,
which is allowed to be either real or purely imaginary. The algorithm then implicitly
solves a related eigenvalue problem of the form K(γ)x = θx, with

K(γ) := (A(γ) + σE)−1E(A(γ)− σE)−1E .

Then an eigenvalue pair (λ,−λ) can be easily extracted from θ by a simple transfor-
mation. Since it is desirable for the shifts to be as near as possible to the calculated
eigenvalues, the ones used in this chapter are the midpoints of the imaginary parts of
the eigenvalues of sE −A(γ) calculated in the previous iteration, with a slight offset
which is explained in Subsection 6.3.3. In the case of the first iteration, when such
eigenvalues have yet to be calculated, the imaginary parts of some of the dominant
poles are used instead. In order to improve the accuracy of the eigenvalue calculation
method, and to ensure that all desired purely imaginary eigenvalues of the matrix
pencil are found, often multiple shifts are used in a loop.
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Table 6.7: Most important design parameters of Algorithm 6.3

param. description default

ε desired relative accuracy for the H∞-norm 1e–06
ndom number of dominant poles computed in initial stage 20
τdom relative cutoff value for the dominance of the poles to 0.5

determine the initial eigenvalues
τshift minimum relative distance between two subsequent shifts 0.01
mmax maximum search space dimension even IRA 8
rmax maximum number of restarts for even IRA 30
neig number of eigenvalues calculated per shift in even IRA 4
τeig tolerance on the eigenvalue residual for even IRA 1e–06
τsweep relative eigenvalue distance for frequency sweep 1e–05
δ relative shift displacement 5e–04

6.3.3 Implementation Details

In this subsection, we outline some of the details regarding the implementation of
Algorithm 6.36.

In our implementation we use a large amount of design parameters which are
summarized in Table 6.7.

The parameter ndom specifies the number of dominant poles returned by SAMDP.
Since the most dominant poles do not always correlate to the test frequencies that
provides the highest singular value, this parameter is not trivially 1. Furthermore,
for some examples this number must be much higher before the pole with the highest
dominance is actually found; as such, the default value is set to 20, although this must
be increased for some examples, see also the last paragraph in Subsection 6.2.5.

To compute the purely imaginary eigenvalues of sE − A(γ) in the initial iteration
we use the imaginary parts of the dominant poles as shifts. When we take a large
number of shifts we observe that some eigenvalues occur repeatedly. Therefore, we
only use a limited amount of them, determined by the parameter τdom. Let λk,
k = 1, . . . , `, be the dominant poles of G(s). With Rk as in (6.13) we define the
dominance by

dom(λk) :=
∥∥Rk∥∥2

/Re(λk).

Then we determine the shifts only by those dominant poles λj that satisfy

dom(λj) > τdom max
1≤k≤`

dom(λk).

6downloadable from http://www.mpi-magdeburg.mpg.de/mpcsc/software/infnorm
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Moreover, we reduce the number of shifts, if some of them are close together.
Therefore, let the shifts iω1, . . . , iω` ∈ iR be given in increasing order. If

|ωj+1 − ωj | < τshiftω`,

then we replace the shifts iωj and iωj+1 by a single shift. In the code this is also done
for multiple close-by shifts.

The even IRA solver, while providing a fast and relatively robust method for the
computation of the eigenvalues of even matrix pencils, can return inaccurate eigen-
values under certain circumstances. Additional security measures are put into the
code to alleviate these issues.

A problem with the even IRA solver arises in the case of close proximity of the given
shift and one of the eigenvalues of the matrix pencil to be calculated. In such a case,
the eigenvalue close to the shift is calculated correctly, however all other eigenvalues
have a high degree of inaccuracy. This is thought to be caused by resulting ill-
conditioned matrices used in the even IRA solver [Sch13]. This problem occurs fairly
often, when taking the eigenvalues from the previous iteration as shifts. Therefore,
we perform a slight relative offset by the parameter δ – if the shifts are displaced by
a small relative amount, all inaccuracies in the eigenvalue calculation associated with
this problem are eliminated.

Another possible scenario involves a transfer function where the slope of a singular
value plot around the optimal frequency ω∗ is very steep – in other words, the H∞-
norm is achieved at the tip of a very thin spike on the singular value vs. frequency
graph, see for instance Figure 6.4(a). In this case, the purely imaginary eigenvalues
of the matrix pencil sE −A(γ) will be very close together in the later stages of com-
putation. Even IRA is not able to accurately calculate eigenvalues that are extremely
close together which can result in a decreasing value of γ in the next steps of the
iteration. To prevent this, if the previously calculated eigenvalues have a relative dis-
tance less than τsweep, a frequency sweep is performed around the imaginary parts of
the eigenvalues to find the H∞-norm. Since this process is relatively computationally
inexpensive, many points can be evaluated over a large range (relative to the distance
between the eigenvalues), so the final norm is usually very accurate. The drawback
to this approach is, of course, that the accuracy of the resulting H∞-norm is not
guaranteed. However, since the eigenvalues close to the location of the frequency
sweep are so close to the optimal frequency, this method usually still gives a good
approximation.

Finally, in some rare occasions, even IRA does not find any purely imaginary
eigenvalues of the matrix pencil, even if the provided γ is smaller than the known
H∞-norm calculated using other methods. Often, the reason for this problem is that
the shifts used for the even IRA solver are too far from the imaginary eigenvalues, for
instance if the range in which shifts are averaged, is too big. In such a case, adjusting
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τdom and τshift such that more shifts are obtained, usually solves the problem. Another
possible reason is that the tolerance of the eigenvalue residuals given by τeig is too
big. Then the code of even IRA does not return the inaccurate eigenvalues. To obtain
a correct result, τeig must be further decreased.

Summarizing, a major disadvantage of our method is the fact that the user must
supply good values for the design parameters. Even if the default values work well
for most examples, for a few tests we have to change them to get good results.

6.3.4 Numerical Results

Test Setup For our MATLAB implementation we use the code of SAMDP by Joost
Rommes and the MATLAB implementation for even IRA from Christian Schröder7.
For all examples we use the default values as in Table 6.7, except for beam (τeig =
1e−5), peec (ndom = 40), bips07_1693 (ndom = 30), and bips07_1998 (τdom = 0.2)
which are particularly difficult.

Test Results and Comparison with the Pseudopole Set Approach In this para-
graph we analyze computational results of the new approach and compare them with
those obtained by the pseudopole set approach from Section 6.2. The results for
33 test examples are summarized in Table 6.8. Using the even pencil approach, the
correct value of ‖G‖H∞ was found for all cases. For a few examples (build, beam,
M80PI_n1, M80PI_n, mimo8x8_system), the result differs by only 1e–6 for the different
methods, which is in the range of desired accuracy. Only for the peec example, the
difference between the calculated H∞-norm values is significant. The reason is the
very thin spike at which the H∞-norm is attained, see also Figure 6.4(a). In the run
using the even pencil approach we actually did not find purely imaginary eigenvalues
in the first iteration and therefore, we can only take ‖G‖H∞ = σmax(G(iωp)) with
the optimal test frequency ωp as defined above. When decreasing τeig we get purely
imaginary eigenvalues, which are so close together such that a frequency sweep is
performed. This leads to a similar result.

In terms of the runtime, the method based on even matrix pencils performs remark-
ably better than the pseudopole set method. In fact, every single numerical example
resulted in a decreased runtime. For almost all tests the runtime was reduced to
50% or less, especially for some larger examples we can have a speedup by a factor
of 5. Only in the beam example, where the dominant pole calculation is the limiting
factor, the speedup is much smaller. To demonstrate the behavior of the method,
we show the intermediate iterates for the bips07_3078 example in Figure 6.6. This
illustration indicates how quickly the algorithm converges – in fact, all 33 examples
took three iterations or fewer.

7http://www.math.tu-berlin.de/fachgebiete_ag_modnumdiff/fg_numerische_
mathematik/v-menue/mitarbeiter/christianschroeder/software/even_ira/
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Figure 6.6: Illustration of the convergence of Algorithm 6.3 for the bips07_3078 ex-
ample, intermediate values of γ are depicted by dotted red lines and the
purely imaginary eigenvalues by black crosses

6.4 Conclusions and Future Research Perspectives

In this chapter we have introduced and compared two methods to compute the H∞-
norm of large-scale descriptor systems.

The first method uses the relationship between the H∞-norm and the complex
H∞-radius of a matrix or a pencil. Based on the method introduced in [GO11],
the algorithm computes a sequence of pseudopole set abscissae. This is done by
computing an optimal rank-1 perturbation of the pencil sE − A such that one of
the eigenvalues of the perturbed pencil converges to the rightmost pseudopole of
the transfer function. Finally, the complex H∞-radius is computed by driving the
pseudopole set abscissa to zero.

The second method is based on even matrix pencils similarly as in [BSV12a] and
uses structured iterative eigensolvers to make the algorithm applicable to large-scale
problems. In particular, it uses the even IRA algorithm to calculate the eigenvalues of
the even matrix pencil, and employs the dominant pole algorithm to find appropriate
test frequencies and to get good shifts for even IRA. The calculated H∞-norm values
were identical (up to the desired tolerance) or very close to those calculated by the
pseudopole set method, and were accompanied by a significant drop in runtime.

In following we will briefly compare the features, i. e., advantages and disadvantages
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6 Computation of the H∞-Norm for Large-Scale Descriptor Systems

of the implementations of both methods:

a) The pseudopole set approach

+ needs a smaller number of user-defined parameters and is easier to use;

- is slower than the even pencil approach;

- leads to perturbed pencils that are usually complex and thus we need complex
arithmetics;

- does not guarantee global optimization.

b) The even pencil approach

+ is faster than the pseudopole set approach;

+ works under less restrictive conditions than the pseudopole set method; in
particular we can drop the requirement of sparsity ofB and C and the method
can also be used in the more general context of L∞-norm computations;

- needs a larger number of user-defined design parameters;

- does not guarantee global optimization.

As mentioned above, both methods suffer from the fact, the we cannot guarantee
global optimization. For the pseudopole set method this would mean that we have
to ensure convergence to a globally rightmost point in the pseudopole sets. For the
even pencil approach this would mean that we, e. g., have to ensure that we compute
all purely imaginary eigenvalues of a pencil sE − A(γ). Both are challenging tasks
for future research.

A further idea for the improvement of the pseudopole set method is the implicit
handling of the perturbed pencils sE−Â. All we need for the dominant pole algorithm
is actually a method to solve shifted linear systems for matrices of the form σE − Â.
This however, can be done by applying the Sherman-Morrison-Woodbury identity
which only requires the solution of shifted linear systems of the form σE − A which
avoids the explicit construction of the perturbed pencils. This would also allow to
deal with dense matrices B and C. Moreover, we could think of using adaptive
tolerances, i. e., we begin with rather large termination tolerances and decrease them
throughout the process. This promises to speedup the algorithm drastically.

Another recent approach to compute the H∞-norm has been presented in [FSD14].
Furthermore, the method of [GGO13] has been recently improved in [MO14, Mit14].
In the future, these new algorithms should also be compared to our methods.

The pseudopole set algorithm can also be seen as a basis to solve certain related
problems. For instance, one could think of a discrete-time version of the algorithm
presented here. This has already been done in [GGO13] via optimizing the structured
pseudospectral radius. However, the authors of [GGO13] have not used a method that
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6.4 Conclusions and Future Research Perspectives

takes controllability or observability of the poles into account. It is an open problem
to develop and implement a dominant pole algorithm for the discrete-time case to
employ similar ideas as presented here. Another future research direction could be
on the analysis of real H∞-radii. Most likely, this will also lead to an optimization
procedure over rank-2 perturbations as presented in [GL13].

Moreover, one could consider the behavior of structured matrices and pencils under
structured perturbations. As shown in [GKL14b, GKL14a] there are also low-rank
dynamics for Hamiltonian and symplectic perturbations of Hamiltonian and symplec-
tic matrices. In this manner one could consider the more general concepts of even
and palindromic matrix pencils.
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7 Summary and Outlook

In this thesis we have advanced the linear-quadratic control theory for DAEs as well
as their robustness analysis. The contributions of this thesis are of both theoretical
and numerical nature.

In Chapter 3 we have analyzed the linear-quadratic optimal control problem for
DAEs in detail. We have started with a new version of the Kalman-Yakubovich-
Popov lemma for DAEs that relates the positive semidefiniteness of a Popov function
on the imaginary axis to the solvability of a descriptor KYP inequality. Based on
this result we have developed the descriptor Lur’e equation that generalizes both the
concepts of algebraic Riccati equations and Lur’e equations, especially in the context
of singular control problems. We have shown that the solutions of this new matrix
equation define the rank-minimizing solutions of the descriptor KYP inequality. In
order to study the solution theory of descriptor Lur’e equations we have taken certain
even matrix pencils into account. In particular, we have given solvability conditions
in terms of the spectrum of this matrix pencil and constructed its solutions via
the deflating subspaces. Moreover, we have shown that under the conditions of
strong stabilizability and strong anti-stabilizability, there exist stabilizing and anti-
stabilizing solutions of the descriptor Lur’e equation, respectively. These are shown
to define also extremal solutions of the descriptor KYP inequality in a certain sense.
In this work we have also studied conditions that allow for nonpositive solutions of
the descriptor KYP inequality.

In the second part of Chapter 3 we have considered manifold applications of our
new theory. A classical application is linear-quadratic optimal control. We have
shown that a linear-quadratic optimal control problem is feasible if and only if an
associated descriptor Lur’e equation has a stabilizing solution. Moreover, we have
clarified the relation to the zero dynamics of the closed-loop system. Furthermore,
we have studied linear-quadratic control problems with free terminal condition. For
strongly controllable systems, it has been shown that the existence of a nonpositive
solution of the descriptor KYP inequality is equivalent to the feasibility of such an
optimal control problem. Resulting from these observations we have extended the
theory for dissipative and cyclo-dissipative systems. As special cases we have obtained
new versions of the positive real and bounded real lemma, respectively. Moreover,
we have shown how we can obtain normalized coprime factorizations and inner-outer
factorizations of rational matrices by the solution of descriptor Lur’e equations.

In Chapter 4 we have turned to the concepts of systems with ccw I/O dynamics
and negative imaginary transfer functions which are strongly related to passivity and
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positive realness. In the flavor of the results of Chapter 3 we have given equivalent
conditions for negative imaginariness in terms of the spectrum of an even matrix
pencil. Moreover, we have developed an algorithm for the enforcement of negative
imaginariness by perturbations of the model in case this structure has been lost
during the modeling process. The algorithm is based on the perturbation of the
purely imaginary eigenvalues of an associated skew-Hamiltonian/Hamiltonian pencil
off the imaginary axis. This process requires the corresponding eigenvectors that we
have computed in a new structure-exploiting manner.

In Chapter 5 we have considered the influence of perturbations on the cyclo-
dissipativity of a system. In particular, we have developed an algorithm to com-
pute the cyclo-dissipativity radius, i. e., the distance of a cyclo-dissipative system to
the set of non-cyclo-dissipative systems. Moreover, we have given conditions under
which the cyclo-dissipativity radius is equivalent to the dissipativity radius. The
whole analysis is based on the structured perturbation theory of even matrix pencils.
A big challenge in this context has been the analysis of the influence of perturbations
on the singular part and the defective infinite eigenvalues which has needed special
treatment. Finally, we have solved a sequence of eigenvalue optimization problems
to compute the cyclo-dissipativity radius.

Finally, in Chapter 6 we have developed two algorithm to calculate theH∞-norm of
large-scale descriptor systems. The first approach is based on a relationship between
the complex H∞-radius of a transfer function G ∈ RHp×m∞ and its H∞-norm. We
have developed a fast iteration that computes the rightmost point of a given ε-
pseudopole set for G(s). Then we have applied Newton’s method to find the value
of ε, for which this rightmost point is on the imaginary axis in order to obtain the
complex H∞-radius. To improve the behavior with respect to global optimization we
have used the dominant poles of G(s). The second approach goes back to the original
method for H∞-norm computation which is based on an optimization process over
even matrix pencils. To make this method applicable to large-scale problems, we
have used structured iterative eigensolvers such as the dominant pole algorithm and
the even IRA algorithm. Numerical examples have demonstrated that both methods
work well, even for rather difficult examples.

Future possible research topics are manifold. For instance, in this thesis we have
only considered systems where sE−A ∈ R[s]n×n is a square and regular matrix pencil.
However, many of the concepts considered here, are also extendable to systems with
nonsquare or singular pencils sE−A or even to higher-order systems. In this context
the behavior approach of systems theory comes into play. Some advances into this
direction have already been obtained in [Brü11b]. Furthermore, in Chapter 3 we
have constantly made the assumption of impulse controllability. In [RRV14] it is
shown that the descriptor KYP inequality and the descriptor Lur’e equation can also
be extended to the non-impulse controllable case. We strongly believe that also the
concepts of linear-quadratic optimal control, (cyclo-)dissipativity, and rational matrix
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7 Summary and Outlook

factorizations can be considered in the non-impulse controllable context. Moreover,
numerical methods for the solution of descriptor Lur’e equations should be developed.

Concerning the results of Chapters 5 and 6 we have only considered complex pertur-
bations, even if the problem is real. A possible future research topic is the extension
to real perturbations. In the context of the computation of H∞-radii this seems to
be rather straightforward, since a related method for unstructured real stability radii
of matrices already exists [GL13]. However, in the context of the cyclo-dissipativity
radii, this is rather involved. A possible way out is the application of structured
pseudospectra for even matrix pencils. However, the block structure of the pertur-
bation makes this a nontrivial issue. Luckily, the solution of this problem would also
potentially allow for an application to large-scale systems.
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[SS07] C. Schröder and T. Stykel. Passivation of LTI systems. MATHEON-
Preprint 368, DFG-Forschungszentrum MATHEON, 2007. Available
from https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/

docId/368.

[Smi02] M. C. Smith. Synthesis of mechanical networks: The inerter. IEEE
Trans. Automat. Control, 47(10):1648–1662, 2002.

[SDT96] J. Sreedhar, P. Van Dooren, and A. L. Tits. A fast algorithm to compute
the real structured stability radius. volume 121 of Internat. Ser. Numer.
Math., pages 219–230. Springer-Verlag, 1996.

[SS90] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic
Press, New York, 1990.

[Sty02] T. Stykel. On criteria for asymptotic stability of differential-algebraic
equations. ZAMM Z. Angew. Math. Mech., 82(3):147–158, 2002.

[Sty06] T. Stykel. On some norms for descriptor systems. IEEE Trans. Au-
tomat. Control, 51(5):842–847, 2006.

[SQO04] X. Sun and E. S. Quintana-Ort́ı. Spectral division methods for block
generalized Schur decompositions. Math. Comp., 73:1827–1847, 2004.

[Tho76] R. C. Thompson. The characteristic polynomial of a principal subpencil
of a Hermitian matrix pencil. Linear Algebra Appl., 14(2):135–177,
1976.

[Tho91] R. C. Thompson. Pencils of complex and real symmetric and skew
matrices. Linear Algebra Appl., 147:323–371, 1991.

[Tre89] H. L. Trentelman. The regular free-endpoint linear quadratic problem
with indefinite cost. SIAM J. Control Optim., 27(1):27–42, 1989.

266

https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/368
https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/368


Bibliography

[Tre99] H. L. Trentelman. When does the algebraic Riccati equation have
a negative semi-definite solution? In V. D. Blondel, E. D. Sontag,
M. Vidyasagar, and J. C. Willems, editors, Open Problems in Mathe-
matical Systems and Control Theory, Comm. Control Engrg. Ser., chap-
ter 44, pages 229–237. Springer-Verlag, London, 1999.

[TSH01] H. L. Trentelman, A. A. Stoorvogel, and M. Hautus. Control Theory for
Linear Systems. Comm. Control Engrg. Ser. Springer-Verlag, London,
2001.

[Var98] A. Varga. Computation of normalized coprime factorizations of rational
matrices. Systems Control Lett., 33(1):37–45, 1998.
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HL2-norm, 33, 157

H2-norm, 33, 157

H∞-control, 134

H∞-norm, 33, 205

H∞-radius, 225

complex, 207, 210

real, 247

L∞-norm, 33, 168, 246

J -congruence transformation, 20

algebraic Riccati equation, 40, 57, 72,
133, 140

generalized, 41, 134, 141

solution

stabilizing, 97

all-pass, see rational matrix

anti-detectability, 24

behavioral, 28

complete, 28

strong, 28

anti-stabilizability, 24

behavioral, 25

complete, 26

strong, 26, 70, 84

available storage, 115, 117–119

virtual, 115–119

Bézout identity, 125

backward system, 26

basis matrix, 13, 51

behavior, 22, 48

with initial differential variable, 23

behavioral system, 39, 83
bisection method, 197
BLAS, 8
boundary value problem, 41, 96, 106
bounded invertibility, 95, 128
bounded real lemma, 120, 121, 206

lossless, 122, 138
bounded realness, see rational matrix
boundedness

exponential, 28
polynomial, 23

bounding exponent, 28

Cauchy-Schwarz inequality, 99
Chandrasekhar iteration, 206
Cholesky factor, 157
closed-loop matrix, 97
closed-loop system, 97, 205
complexity, 238
congruence transformation, 15
consistency, 25, 34
contractivity, 120, 121, 124

lossless, 124
controllability, 24, 218

at infinity, 25
behavioral, 25
complete, 26, 30, 39, 112, 208
impulse, 25, 39, 45, 56, 69, 85, 142
strong, 26

coprime factorization
doubly, 125, 129
left, 125
normalized, 124, 125, 129
right, 125, 129
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cost functional, 48, 84
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complex, 175
real, 177, 204
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descriptor dissipativity equation, 110,

118, 122
descriptor dissipativity inequality, 110,

116, 117
descriptor KYP inequality, 39, 46, 57,

71, 100, 103, 110
solution

nonpositive, 74, 78, 107
rank-minimizing, 43, 74

descriptor Lur’e equation, 42, 47, 53,
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alternative, 60, 62
solution, 57, 74

anti-stabilizing, 47, 70, 71, 73,
85, 97, 100, 104, 107

extremal, 70
stabilizing, 47, 70, 71, 73, 85,

100, 104, 129, 136
structure, 67
uniqueness, 67, 71

descriptor system, 22, 23
linear

time-invariant, 2
time-varying, 2, 44

nonlinear, 1, 44
second order, 2

detectability, 24
behavioral, 28
complete, 28
strong, 28, 37, 78

differential-algebraic equation, 1

solution, 22
differential-algebraic system, see descrip-

tor system
disk function method, 158
dissipation function, 85, 91
dissipation inequality, 85, 100, 107
dissipativity, 109, 112, 116

cyclo-, 109, 112, 113, 117, 175
lossless, 110, 112, 118

lossless, 110, 112, 118
dissipativity radius, 179
dominance, 241
dominant pole, 219, 229, 240

exponential, 219
dominant pole algorithm, 218, 241
dual system, 28

eigenvalue, 96, 184
defective, 10, 186, 209
finite, 10, 15
infinite, 10, 15
multiplicity, 10
perturbability, 218

eigenvector, 11, 153, 164, 209, 217
even IRA, 240

feedback, 45
output, 205

feedback equivalence form, 142
feedback regularization, 45
feedback transformation, 45, 46
fixed point, 220, 223

attractive, 224
FORTRAN, 7, 161
frequency domain, 28

gfortran, 7
gradient, 85
GUPTRI form, 12, 158

Haynsworth inertia additivity formula,
182, 188
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Hurwitz reflection, 140

index, see Kronecker index
index reduction, 142
inertia, 15, 54, 113
initial differential variable, 23, 25
initial value, 25
inner rational matrix, see rational ma-

trix
inner-outer factorization, 134, 136
input, 1, 23
invariant subspace, 13, 40

Jordan chain, 11

Kalman decomposition
controllability, 112
observability, 79

Kalman-Yakubovich-Popov lemma, 48
Kronecker canonical form, 9, 66, 95,

106
even, 14, 41, 53, 56, 66, 71, 95,

106, 113, 150
Kronecker chain, 11
Kronecker index, 11, 18
Krylov subspace, 240
KYP inequality, 39

solution
maximal, 40
rank-minimizing, 40

LAPACK, 8, 161, 168
Laplace transform, 29, 96
Laplace transformation, 28
Laurent series, 221
least squares problem, 160
level-set, 198
level-set method, 196
linear-quadratic optimal control prob-

lem, 3, 72, 84
feasibility, 38, 98, 102
regular, 40

singular, 40
with free terminal condition, 106
with zero terminal condition, 84

linearization, 2
LU factorization, 240
Lur’e equation, 41
Lyapunov equation, 157

generalized, 158
Lyapunov function, 118

Markov parameter, 32
mass-spring-damper system, 2
MATLAB, 7, 161, 168, 229, 233
matrix

Hamiltonian, 19, 40, 247
Hermitian, 113
ill-conditioned, 12, 16
nilpotent, 32, 142
orthogonal, 12, 21, 134, 141, 164
skew-Hamiltonian, 19
sparse, 208
symmetric, 161
symplectic, 247
unitary, 12, 180, 186

matrix pencil, 9
even, 198
condensed form, 9
eigenvalue, 10
eigenvector, 11
equivalence, 9
even, 14, 41, 47, 53, 61, 65, 95,

113, 149, 178, 206, 238
eigenvalue, 15, 96, 184

Hamiltonian/skew-Hamiltonian, 162
Hermitian, 14
nonsquare, 142
odd, 151

eigenvector, 153
of index at most one, 18, 35, 45,

95, 96, 128
palindromic, 247
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rank, 10, 36
regular, 10, 18, 36, 45, 95
singular, 10, 142, 180, 209
skew-Hamiltonian/Hamiltonian, 19,

155, 206
eigenvector, 164

meromorphic function, 74
mex, 7, 161
minimum phase, see rational matrix
mode

nondynamic, 30
uncontrollable, 28, 35, 213
unobservable, 28, 35, 213

model order reduction, 205
moment, 221
Moore-Penrose inverse, 160

negative imaginariness, see rational ma-
trix

negative imaginariness enforcement, 152
Newton’s method, 197, 225

observability, 24, 218
behavioral, 28
complete, 28, 30, 80, 208
impulse, 28
strong, 28

observability Gramian, 157
optimal control, 94–97

existence, 38, 42, 95
uniqueness, 38, 95

optimal value function, 38, 84, 106
optimality condition, 222
outer rational matrix, see rational ma-

trix
outer system, 34, 36, 37, 70, 93, 95
output, 1, 24

parallelogram identity, 89
passivity, 120, 124, 146, 176

lossless, 124
passivity radius, 175

perturbation

admissible, 214

of a Hermitian matrix, 180

of a matrix pencil, 152, 217

of a Rosenbrock pencil, 177

of a transfer function, 179, 210

of an even matrix pencil, 180, 186

of an odd matrix pencil, 153, 155,
159

pole, 31, 121, 210, 218

dominant, see dominant pole

polynomial

coprime, 31

monic, 31

polynomial matrix, 30

unimodular, 30

Pontryagin’s maximum principle, 41

Popov function, 38, 46, 48, 72, 95, 100,
103, 111, 147

modified, 74, 77, 109, 111

positive real lemma, 120, 123

lossless, 124

positive realness, see rational matrix

principal vector, 11

projector, 135, 136

pseudopole, 213

pseudopole set, 207, 208, 213

regular, 213, 217

pseudopole set abscissa, 213, 214

pseudospectral radius, 246

pseudospectrum, 204, 213

quadratic functional, 89–91, 109

quasi-Kronecker form, 12

quasi-Weierstraß form, 12, 45

QZ algorithm, 13, 20, 21, 158, 168, 169

rank decision, 12, 202

rational matrix, 30, 74

all-pass, 31

bounded real, 120, 122, 124
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lossless, 124
co-inner, 31, 126, 131
function spaces, 33
improper, 32
inner, 31, 120, 126, 134, 136
minimum phase, 31
negative imaginary, 144, 147, 149,

150
strictly, 147

outer, 31, 37, 73, 88, 134, 136
positive real, 121, 123, 124, 147

lossless, 121, 124
proper, 32

strictly, 32, 146
realization, 30, 176

minimal, 30
reducing subspace, see deflating sub-

space
regularization, 142
reinterpretation of variables, 142
required supply, 115–119
residual, 169, 241
residue, 121, 218, 226
restart

implicit, 240
robust control, 205
root, 214, 225, 226
Rosenbrock pencil, 35, 36, 72, 95, 128,

134, 137, 140, 149
row compression, 195

SAMDP, see dominant pole algorithm
Schur complement, 198
Schur form

generalized real, 12
real periodic, 21, 164
skew-Hamiltonian/Hamiltonian, 20

secant method, 225
Sherman-Morrison-Woodbury identity,

48, 246
shift, 240, 242

shift-invariance, 24, 99, 107
sign-characteristic, 15, 18, 20, 21, 40,

41, 53, 55, 150
sign-controllability, 27
sign-sum function, 113, 178
signature matrix, 60
singular chain, see Kronecker chain
singular system, see descriptor system
singular value decomposition, 12
singularity

removable, 229
SLICOT, 8, 21, 161, 168, 233
Smith-McMillan form, 31
spectral decomposition, 180, 186
spectral factor, 72, 73
spectral factor system, 72
spectral factorization, 43, 72
spectral value set, 227
spectral value set abscissa, 228
stability, 22, 118

asymptotic, 23
in the behavioral sense, 23
of a rational function, 32

stability radius, 205
complex structured, 209
real

structured, 196
unstructured, 196

stabilizability, 24
behavioral, 25
complete, 26
strong, 25, 37, 70, 84

staircase form
even, 16, 201

state, 1, 23
state-space transformation, 30, 45
storage function, 115, 119

virtual, 115
strangeness-index, 44
structure-preservation, 21
supply rate, 109, 120, 122, 123
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support
compact, 98

Sylvester equation
generalized, 158

Sylvester’s law of inertia, 54, 60, 83
system norm, 33
system space, 39, 46, 142

transfer function, see also rational ma-
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1. We have developed a new version of the Kalman-Yakubovich-Popov lemma for
DAEs which relates the positive semi-definiteness of a Popov function on the
imaginary axis to the solvability of an LMI on a subspace (the descriptor KYP in-
equality). This new formulation eliminates the restrictions of previous approaches.

2. Resulting from the descriptor KYP inequality we have developed the descriptor
Lur’e equation that generalizes the concepts of the algebraic Riccati and the Lur’e
equation, in particular in the context of singular control problems for DAEs. We
have shown that the solutions of this matrix equation realize the rank-minimizing
solutions of the descriptor KYP inequality.

3. We have given criteria for the positive semidefiniteness of a Popov funtion on the
imaginary axis in terms of the spectrum of an associated even matrix pencil. For
this we have used the even Kronecker canonical form.

4. We have proved how to construct the solutions of the descriptor Lur’e equation
using the deflating subspaces of the associated even matrix pencil.

5. We have shown that under the condition of strong stabilizability and strong anti-
stabilizability, the descriptor Lur’e equation admits stabilizing and anti-stabilizing
solutions. Moreover, these solution simultaneously define extremal solutions of the
descriptor KYP inequality.

6. We have shown that each solution of the descriptor KYP inequality realizes a
spectral factorization of the Popov function.

7. We have shown that under some conditions on controllability and the structure of
the Popov function, the descriptor KYP inequality admits nonpositive solutions.
Moreover, we have given a sufficient condition for nonpositivity of all solutions.

8. We have applied the new theory to the linear-quadratic optimal problem with zero
terminal conditions. We have shown that the optimal control problem is feasible
if and only if the associated descriptor Lur’e equation has a stabilizing solution.
Moreover, we have proven conditions on the closed-loop system for the existence
and uniqueness of optimal control signals.

9. We have further considered the linear-quadratic optimal control problem with
free terminal conditions. For strongly controllable systems it turns out that the
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optimal control problem is feasible if and only if the descriptor KYP inequality
has a nonpositive solution.

10. We have applied the results for linear-quadratic optimal control for the charac-
terization of dissipativity and cyclo-dissipativity of DAEs. Hereby, dissipativity
is related to an optimal control problem with free terminal conditions, whereas
cyclo-dissipativity corresponds to an optimal control problem with zero terminal
condition.

11. We have considered important special cases of dissipativity, namely contractivity
and passivity. These concepts are equivalent to bounded realness and positive
realness of the transfer function, respectively. We have formulated and proven
new versions of the bounded real lemma and the positive real lemma.

12. We have demonstrated how to construct normalized coprime factorizations by
solving descriptor Lur’e equations.

13. We have further shown that inner-outer factorizations can be constructed by em-
ploying descriptor Lur’e equations.

14. We have studied systems with counterclockwise I/O dynamics and negative imag-
inary transfer functions. We have proven a characterization for negative imagi-
nariness in terms of the spectral structure of an even matrix pencil.

15. We have developed an algorithm for enforcing negative imaginariness of a transfer
function by perturbations of the system. This algorithm is based on moving all
purely imaginary eigenvalues of a related skew-Hamiltonian/Hamiltonian matrix
pencil off the imaginary axis. This procedure requires the corresponding eigenvec-
tors that have been computed using a new structure-preserving method.

16. We have studied the influence of perturbations on cyclo-dissipativity of a system.
We have developed a computational procedure for computing the distance of a
cyclo-dissipative system to the set of non-cyclo-dissipative systems, the so-called
cyclo-dissipativity radius. We have given conditions on the system under which
the cyclo-dissipativity radius is equivalent to the dissipativity radius.

17. The computation of the cyclo-dissipativity radius is related to the structured per-
turbation analysis of an even matrix pencil. A particular challenge in this context
is the influence of the perturbations on the singular part and the defective infi-
nite eigenvalues. We have presented computable conditions to check whether such
perturbations are possible. In order to compute the cyclo-dissipativity radius we
have finally solved a sequence of eigenvalue optimization problems.
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18. We have developed a method to compute the H∞-norm of a large-scale descrip-
tor system. We have generalized a relation between the complex H∞-radius of a
transfer function and its H∞-norm. Particular care has to be taken of perturba-
tions that make the transfer function improper or not well-defined. The algorithm
itself is a nested process. In the inner iteration we compute the rightmost point of
a certain pseudopole set by constructing a sequence of rank-1 perturbations. The
outer iteration is a Newton process to drive this rightmost point to the imaginary
axis. The usage of dominant poles improves the behavior of the method with
respect to global optimization.

19. We have further modified the standard algorithm to compute the H∞-norm based
on even matrix pencils to make it applicable to large-scale problems. We have
used structured eigensolvers such as the dominant pole algorithm and the even
IRA algorithm to solve these issues.

20. Both algorithms for H∞-norm computations work well, even for rather difficult
examples, however one has to use good design-parameters in the implementation
to solve some difficult problems. Moreover, none of the methods is guaranteed to
perform a global optimization.
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Chapter 3

This Chapter is based on a joint work with TR. The initial result we obtained is the
Kalman-Yakubovich-Popov lemma (Theorem 3.3.1), based on an idea of TR. I have
formulated a first draft of this theorem and its proof, where I initially only showed
statement a) for impulse controllable systems. The final formulation of the theorem
was done by TR.

The results of Sections 3.4 and 3.5 were mainly obtained by myself with some
corrections and improvements by TR. Similarly as for Theorem 3.3.1, statement a)
of Theorem 3.4.9 was initially only formulated and proven for impulse controllable
systems, the generalization was done by TR. Finally, TR showed (a more general
version of) Lemma 3.4.7 which led to shortened and better understandable proofs of
Theorem 3.4.9 (shown by me) and Theorem 3.5.3 (shown by TR in a more general
version) which I have included.

Section 3.6 is based on some remarks I wrote in an initial draft of this work. In
particular, I made comments about the structure of the spectral factors. This part of
the work was strongly improved by TR. In particular, the relation to outer systems
was found by TR. Finally, I improved the formulation and the proof of Theorem 3.6.4
to let it also be valid for all solutions of the descriptor Lur’e equation (not only the
stabilizing and anti-stabilizing ones).

The results of Section 3.7 were almost solely found by TR. Finally, I did corrections
of this section and slightly improved the formulation.
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Moreover, large parts of Section 3.8 were obtained by TR. In particular, this in-
cludes Theorems 3.8.3, 3.8.7, and the previous auxiliary lemmas, as well as the state-
ments on the existence and uniqueness of the optimal control, i. e., Proposition 3.8.4
and Corollary 3.8.5, as well as Remark 3.8.6. An initial version of Theorem 3.8.9 was
proven by me, with strong improvements by TR. Moreover, Lemma 3.8.8 was shown
by TR. Furthermore, the results on “lossless” optimal control in Theorem 3.8.11 were
shown by TR. On the other hand, the results for optimal control with free terminal
condition were shown by me, i. e., those of Subsection 3.8.2.

An initial draft of Section 3.9 was written by TR. However, I performed a large
amount of extensions and corrections. All statements about cyclo-dissipativity were
added by me. Moreover, I added the remarks about Lyapunov functions and the pole
locations of bounded real and positive real transfer functions. Finally, I rearranged
the whole structure of the section to improve readability.

A first incomplete draft of Section 3.10 was written by TR. However, I completed
the proof of Lemma 3.10.3 by applying the idea of feedback regularization. Further-
more, I proved how to construct left and doubly normalized coprime factorizations,
i. e., statements b) and c) in Theorem 3.10.5 and all other statements that are related
to these.

Finally, Section 3.11 was mainly obtained by TR with corrections and formulation
improvements performed by myself.

Chapter 4

This chapter is based on an idea by PB. All theoretical results of this chapter were
obtained by me but proofread and improved by PB. I received further assistance with
the implementation and testing of the algorithm for the computation of the eigen-
vectors of skew-Hamiltonian/Hamiltonian pencils by PJ during a summer internship
under my guidance in 2012. Subsection 4.4.8 is based on her internship report that
was written under my guidance. In particular, the computational results of this
subsection were obtained by PJ.

Chapter 5

The idea and results of this chapter were completely obtained by me.

Chapter 6

The idea of Section 6.2 was inspired by PB by making me aware of [GO11]. All
theoretical and computational results were obtained by myself, but proofread and
improved by PB.
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The idea of Section 6.3 was obtained by me. However, I received assistance by RL
during a summer internship under my guidance in 2013. In particular, details of the
algorithm like the choice of design parameters and the computational results were
worked out by RL. This subsection is based on the internship report that was written
under my guidance.

Magdeburg, 27th January 2015

Matthias Voigt
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