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The cavity-optomechanical radiation pressure interaction provides the means to create entangle-
ment between a mechanical oscillator and an electromagnetic field interacting with it. Here we show
how we can utilize this entanglement within the framework of time-continuous quantum control,
in order to engineer the quantum state of the mechanical system. Specifically, we analyze how to
prepare a low-entropy mechanical state by (measurement-based) feedback cooling operated in the
blue detuned regime, the creation of bipartite mechanical entanglement via time-continuous entan-
glement swapping, and preparation of a squeezed mechanical state by time-continuous teleportation.
The protocols presented here are feasible in optomechanical systems exhibiting a cooperativity larger
than 1.

I. INTRODUCTION

Quantum control plays a crucial role in modern quan-
tum experiments across different fields. In optomechan-
ics alone its applications range from feedback cooling of
the mechanical motion [1], mechanical squeezing [2, 3]
and two-mode squeezing [4] to back-action elimination
[5, 6] with possible applictions in gravitational wave de-
tection. Importantly for quantum information processing
and communication, it can also be used to robustly gen-
erate entanglement between remote quantum systems, as
has been demonstrated recently for spin qubits [7]. At the
same time entanglement itself can be an essential compo-
nent to facilitate control of quantum systems, e. g., as a
resource for teleportation [8] when employed as a means
for remote state preparation. In optomechanics, pulsed
entanglement between a mechanical oscillator and the
electromagnetic field [9] has recently been demonstrated
in an electromechanical setup [10]; state preparation (and
verification) of an arbitrary mechanical quantum state
(e. g., a Fock state) is yet to be accomplished (see, how-
ever, [11]). Typical quantum control protocols are op-
erated in a time-continuous fashion and often rely on
continuous measurements which are capable of tracking
the quantum state of the controlled system. The result-
ing measurement record—and the so-called conditional
quantum state inferred from it—is then used as a basis
for the applied feedback [12]. Thus, the control proto-
col’s success critically depends on the precision of the
employed measurement. The most essential prerequisite
for quantum limited feedback control turns out to be the
regime of strong (linearized, thermal) cooperativity. This
regime has been witnessed in several experiments in the
past few years [13–18]. Recently, monitoring a mechani-
cal oscillator with a measurement strength matching its
thermal decoherence rate (equivalent to a cooperativity
above 1) and measurement-based feedback cooling to an
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FIG. 1. Different optomechanical setups considered in this
article: (a) single homodyne detection for feedback cooling
(non-unit efficiency is modeled by a beam-splitter before a
perfect detector, marked by the yellow box; see Sec. IIIA),
(b) time-continuous teleportation, (c) time-continuous entan-
glement swapping, (d) detail of the entanglement swapping
setup. The green (dark gray) dashed boxes mark the time-
continuous Bell measurement setups, the orange (light gray)
box in (d) marks the auxiliar stabilizing measurements.

occupation number of several phonons has been demon-
strated in [19].

In this article we explore protocols which ex-
ploit optomechanical entanglement as a resource for
measurement-based time-continuous control of cavity-
optomechanical systems (see Fig. 1 for the different se-
tups being considered). The presented protocols rely on
the fact that for a laser drive appropriately (blue) de-
tuned from the cavity resonance, the radiation-pressure
interaction generates entanglement between the mechan-
ical oscillator and the cavity output light. We will show
that due to this fact it is in principle possible to feedback-
cool the mechanical motion to its ground state, even
though the optomechanical interaction effects heating of
the mechanical mode in this particular regime. This
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stands in contrast to common feedback-cooling schemes
which operate on cavity resonance [1, 19]. The scheme
presented here is based on standard homodyne detec-
tion to monitor a single quadrature of the output light,
and feedback by (phase and amplitude) modulation of
the driving laser. The feedback signal is calculated by
applying linear–quadratic–Gaussian (LQG) control from
classical control theory, which attains the optimal cool-
ing performance for the chosen configuration. Beyond
cooling, entanglement-based protocols for quantum con-
trol can be used to achieve more sophisticated quantum
state engineering. We study in detail two optomechanical
implementations of time-continuous Bell measurements
[20]: Time-continuous teleportation allows for prepara-
tion of a mechanical oscillator in a general Gaussian
(squeezed) state, while time-continuous entanglement-
swapping can be used to prepare two remote mechani-
cal systems in an (Einstein–Podolsky–Rosen) entangled
state. Both schemes generate dissipative dynamics which
drive the mechanical system(s) into the desired station-
ary state. They are shown to work if the effective mea-
surement strength is on the same order as the mechani-
cal decoherence rate (i. e., for a optomechanical cooper-
ativity of around 1), which is the same condition that
holds for ground-state cooling [14, 15], observation of
back-action noise [13, 18], and ponderomotive squeezing
[16, 17], all of which have been achieved experimentally.
Although we here consider optomechanical systems only,
the presented methods are very versatile, applicable to
different (continuous and discrete) physical systems, and
can be extended to describe more complex topologies,
such as multiple interferometric measurements and quan-
tum networks [20].

The results on time-continuous teleportation and en-
tanglement swapping have been published in parts in [20].
Here we provide an extended treatment focusing on an
optomechanical implementation and present a detailed
derivation of the resulting equations.

The manuscript is organized as follows: In Sec. II we
summarize and illustrate the central results concerning
cooling, mechanical squeezing, and bipartite mechanical
entanglement generation. We start this section by dis-
cussing the phase diagram of the optomechanical steady
state, emphasizing its unique features for blue detuned
laser drive. Sec. III presents in detail all technical as-
pects in the derivation of our results. Some background
information about quantum stochastic calculus and LQG
control is presented in the appendices A and B.

II. CENTRAL RESULTS

A. The cavity-optomechanical system

In this article we consider a cavity optomechanical sys-
tem with a single mechanical mode oscillating at a res-
onance frequency ωm. The cavity has a resonance fre-
quency ωc and a [full width at half maximum (FWHM)]

decay rate κ, and is driven by continuous-wave laser light
at a frequency ωl. In a linearized description and in a
frame rotating with ωl, the system is described by the
effective Hamiltonian [21]

Hsys = ωmc
†
mcm −∆lc

†
l cl + g(cm + c†m)(cl + c†l ), (1)

where cm and cl are bosonic annihilation operators of
the mechanical and the optical mode respectively. ∆l =
ω0 − ωc is the detuning of the driving laser with re-
spect to the cavity, and g is the optomechanical coupling
strength. In writing this Hamiltonian we implicitly as-
sumed that the cavity is driven strongly, such that the
radiation-pressure interaction can be linearized around
a large classical intracavity amplitude. The coupling
strength is then given by g = g0[2κP/~ω0(κ2 + ∆2)]1/2

with the single-photon coupling g0 and the input laser
power P . To work with the linearized description we
assume the existence of a unique classical steady state
with a large intracavity photon number, thus neglect-
ing effects of bistability [21, 22]. Additionally we assume
g0 � κ, ωm, which is needed to safely neglect nonlinear
radiation pressure effects [21].

The linearized radiation-pressure Hamiltonian Hom =

g(cm + c†m)(cl + c†l ) can be decomposed into two terms:
a beam-splitter like interaction g(cmc

†
l + c†mcl) which is

resonant for ∆l = −ωm (red detuned laser drive) and ef-
fects cooling of the mechanical motion, and a two-mode
squeezing term g(cmcl + c†mc

†
l ) which is dominant for

∆l = ωm (blue driving) and is responsible for creation
of optomechanical correlations and entanglement. For
a resonant drive (∆l = 0) we retain the full Hamil-
tonian ∝ gxmxl, which is commonly associated with
quantum non-demolition (QND) measurements of har-
monic oscillators [23, 24] and is the interaction typically
used for measurement-based feedback control of these
systems [25–27]. The optical and mechanical quadra-
ture operators we define as xi = (ci + c†i )/

√
2 and

pi = −i(ci− c†i )/
√

2 (i ∈ {m, l}) which leads to canonical
commutation relations [xi, pj ] = iδij . In the following it
will be convenient to collect them into the vector opera-
tor X = (xm, pm, xl, pl)

T.

B. The optomechanical phase diagram

Optomechanical sideband cooling and entanglement
creation in steady state have been analyzed in detail in
the literature [28–31]. Both phenomena are captured by
the standard optomechanical master equation (MEQ) for
the quantum state ρ, given by [28]

ρ̇(t) = Lρ(t) = −i[H, ρ(t)] + κD[cl]ρ(t)

+ γ(n̄+ 1)D[cm]ρ(t) + γn̄D[c†m]ρ(t)
(2)

where L is the so-called Liouville operator. Here γ de-
notes the (FWHM) width of the mechanical resonance,
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and n̄ the mechanical bath’s mean phonon number. Opti-
cal and mechanical decoherence is described by the Lind-
blad operators D[c]ρ = cρc† − 1

2ρc
†c − 1

2c
†cρ. As our

system is Gaussian, its state is fully characterized by the
first and second moments of X, i. e., the mean values
〈X〉(t) = tr[Xρ(t)] and the symmetric covariance ma-
trix

Σ(t) = Re
(
〈XXT〉(t)

)
−〈X〉(t)〈XT〉(t). (3)

(Throughout this paper we will often omit the explicit
time argument for the sake of brevity if no ambiguity
exists.) The linear equations of motion of 〈X〉 and Σ are
given by (App. B)

d

dt
〈X〉(t) = F〈X〉(t), (4a)

d

dt
Σ(t) = FΣ(t) + Σ(t)FT + N. (4b)

The 4×4 matrices F and N describe the system’s dynam-
ics and noise properties respectively, and are algebraically
connected to the Liouvillian in the MEQ (2).

Provided the system is stable, it will in the long-term
assume a steady state, limt→∞ ρ(t) = ρss, where ρss is
determined by the condition Lρss = 0. The stability of
a linear system can be assessed by applying the Routh–
Hurwitz (RH) stability criterion [32] which is fulfilled iff
all eigenvalues of F have negative real parts. If a stable
steady state exists the means 〈X〉ss:=tr[Xρss] = 0 will
vanish, while the steady-state covariance matrix Σss is
given by the solution to the so-called Lyapunov equation,
which is obtained from (4b) by setting its left-hand side
to zero, i. e., FΣss + ΣssFT + N = 0. This equation
can readily be solved to obtain steady-state properties
such as the mean mechanical occupation number nss

m =
〈c†mcm〉ss or logarithmic negativity Ess

N [33, 34]. In this
section we will mainly be concerned with these steady-
state properties of optomechanical systems.

The characteristic features of an optomechanical sys-
tem’s steady state can nicely be illustrated by plotting
a phase diagram with respect to the laser detuning ∆l

and the optomechanical coupling g, as depicted in Fig. 2
for an optomechanical system in the resolved sideband
regime (κ < ωm) for a high-Q (Q = ωm/γ) mechani-
cal oscillator. The grey background depicts the regions
of instability, given by the corresponding Routh–Hurwitz
criterion, where no steady state exists. The first thing to
note is that the system is unstable in nearly all the right
half-plane, i. e., for blue detuned laser drive, while for red
detuning the system becomes unstable only for appre-
ciably high optomechanical coupling. Centered around
the first mechanical sideband at ∆l = −ωm where the
beam-splitter part of the optomechanical interaction is
resonant, lies the region where nss

m < 1 (dashed purple
line) and thus ground-state cooling is possible. Right
at the border of stability, for a similar detuning, we
find regions of large steady-state entanglement between
the intracavity field and the mechanical resonator (col-
ored in turquoise/blue) [31]. On the opposite side of

the phase diagram, around the blue mechanical sideband
at ∆l = ωm, we also expect to observe optomechani-
cal entanglement due to the effect of the optomechani-
cal two-mode squeezing dynamics. However, there the
formation of a steady state is inhibited by the optome-
chanical instability which is due to parametric ampli-
fication of the amplitude of both the mechanical and
the optical mode [21]. The connection of laser cool-
ing, entanglement generation, and the instability region
has been analyzed in detail in [31]. Although no steady
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FIG. 2. (Color online) Upper plot: Steady-state phase dia-
gram of an optomechanical system for κ = ωm/2, Q = 5 ·106,
n̄ = 3.5 · 105. The gray hatched area depicts unstable re-
gions where no steady-state exists. The dashed purple (dark
gray) line shows regions of ground state cooling of the me-
chanical oscillator, here nss

m < 1. The turquoise/blue (gray
unhatched) area shows optomechanical entanglement (loga-
rithmic negativity Ess

N ), with largest values close to the insta-
bility region. The orange (light gray) line encloses the regions
where the conditional mean mechanical occupation number
〈c†mcm〉ssc < 1 for a measurement of the optical phase quadra-
ture, i. e., φ = π/2. The right axis shows the corresponding
optomechanical cooperativity, given by C = 4g2/(n̄ + 1)γκ.
Lower Plot: Cut through the phase diagram at g = ωm/10,
depicting the conditional phonon number 〈c†mcm〉ssc for LO
phases φ = π/2 (orange [light gray] line) and φ = 0 (green
[dark gray] line). The dashed purple line again shows the
mean occupation number for the unconditional state for side-
band cooling.

state exists for a blue-detuned laser drive, various alter-
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native approaches permit to work with the resonantly
enhanced two-mode squeezing dynamics of the optome-
chanical interaction. Pulsed optomechanical entangle-
ment creation, for example,—which does not require to
be operated in a stable regime—has been analyzed in
detail in [9], and has been experimentally demonstrated
(for an electromechanical system) in [10]. Working with
a continuous-wave blue-detuned laser drive on the other
hand, is still possible if we employ stabilizing feedback
which inhibits the exponential growth of the optomechan-
ical system’s quadratures. One possible type of feedback
is measurement-based feedback using homodyne detec-
tion, which we will consider in the following.

By adding a homodyne detector to our setup [measur-
ing a single light quadrature defined by the local oscilla-
tor (LO) angle φ], we can condition the optomechanical
system’s state on the resulting photo-current I(t), which
leads to a stochastic master equation (SME) in the Itō
sense (see [12, 35] and Sec. III A)

dρc(t) = Lρc(t) dt+
√
ηκH[eiφcl]ρc(t) dW (t). (5)

ρc is the so-called conditional quantum state, which de-
scribes our knowledge of the system given a specific mea-
surement record I(t). The effect of conditioning is de-
scribed by the operator H[s]ρc = (s− tr[sρc])ρc + ρc(s−
tr[sρc])

†. H is thus nonlinear in ρc, as is expected for a
measurement term. I(t) can be expressed as

I(t) dt =
√
ηκ〈cle−iφ + c†l e

iφ〉c(t) dt+ dW (t), (6)

where dW is a Wiener increment with dW (t)2 = dt, and
0 < η < 1 is the efficiency of the detection. Here and
in the following we denote by 〈A〉c(t) = tr[Aρc(t)] the
expectation value with respect to the conditional state.
In contrast to the conditional state ρc which solves a
SME, we will call the solution of a standard MEQ [such
as (2)] the unconditional state, which we denote by ρ.

Gaussian conditional quantum states are fully de-
scribed by the mean vector X̂(t) = 〈X〉c(t) and covari-
ance matrix

Σ̂(t) = Re
(
〈XXT〉c(t)

)
−〈X〉c(t)〈XT〉c(t), (7)

defined with respect to ρc. Their equations of motion
are given by a linear stochastic differential equation and
a (deterministic) matrix Riccati equation respectively,

dX̂(t) = FX̂(t) dt+ K(t)
[
I(t)−HX̂(t)

]
dt, (8)

d

dt
Σ̂(t) = FΣ̂(t) + Σ̂(t)FT + N

−
[
Σ̂(t)HT + M

][
Σ̂(t)HT + M

]T
, (9)

where H describes the homodyne measurement and M
is related to the system’s noise properties (see App.
B). K(t) is a time-dependent gain factor which depends
on Σ̂(t). For a one-dimensional system [with a two-
dimensional phase space (x, p)] these equations allow us
to give a simple graphic interpretation of the SME (5)

in terms of a phase-space description (see Fig. 3): The
conditional trajectory X̂ (blue line) is determined by the
measurements I(t) and therefore follows a random walk
in phase space. The covariance matrix Σ̂ (turquoise el-
lipse) on the other hand evolves deterministically, in-
dependent of the measurement results. Averaging over
all possible phase-space trajectories recovers the broad
Gaussian distribution described by the standard MEQ
(2) [or equivalently, equations (4)]. For an unstable sys-
tem (e. g., in the blue detuned regime), the blue line will
spiral outwards, leading to a growing unconditional co-
variance. The conditional covariance matrix Σ̂, however,
may still possess a (finite) steady state. This is due to the
fact that the exponential growth is tracked by the condi-
tional mean, with respect to which the covariance matrix
is defined. The steady-state conditional covariance ma-
trix Σ̂ss can be found in analogy to Σss by setting the
left-hand side of equation (9) to zero and by solving the
resulting algebraic Riccati equation [12].

FIG. 3. (Color online) Schematic comparison of the mas-
ter equation (2) and the stochastic master equation (5) for
a single mode Gaussian system in phase space. The condi-
tional state with a covariance Σ̂(t), depicted by the turquoise
(small, off-centered) elipse, moves through phase space on a
trajectory given by a realisation of X̂(t) (blue [dark gray]
line). Averaging over many sample paths recovers the broad,
unconditional distribution, determined by Σ(t) (purple [large,
centered] ellipse).

Having obtained Σ̂ss we can easily evaluate the con-
ditional state’s mean mechanical occupation number,
depicted in Fig. 2(a) for a measurement of the phase
quadrature of the light field, i. e., φ = π/2. We find
a large region where 〈c†mcm〉ssc < 0.4 for all detunings
−ωm . ∆l . ωm (orange line). In the region around
the red sideband ∆l ≈ −ωm this effect can mainly be at-
tributed to passive sideband cooling of the mirror, which
we discussed above. However, we now also find a re-
gion of low occupation on the opposite (blue) sideband
at ∆l ≈ ωm. In this region the reduction of the condi-
tional phonon number, which at the same time means
an increase of the mechanical state’s purity, is due to
correlations between the mechanical oscillator and the
light field. These correlations allow us to extract infor-
mation about the mechanics from the homodyne mea-
surement. We will see in the next section that in the
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sideband-resolved regime κ < ωm this effect is strongest
for ∆l ≈ ωm where the two-mode squeezing, entangling
term of the optomechanical Hamiltonian is resonant.

To illustrate how the choice of the LO phase influ-
ences the conditional mechanical occupation we plot a
cut through Fig. 2(a) at a fixed optomechanical coupling
g = ωm/20 in Fig. 2(b). If we choose to measure the opti-
cal amplitude quadrature we find that on resonance we do
not have a reduction of the conditional phonon number.
For a detuned laser drive (|∆l| & ωm) however, we again
find regions of 〈c†mcm〉ssc < 1. This is easily explained by
noting that on resonance (∆l = 0) only the optical phase
quadrature couples to the mechanical oscillator, while
the amplitude quadrature contains noise only. Measur-
ing the amplitude quadrature therefore does not allow
us to make inferences about the mechanical motion. In
general there will be an optimal LO angle, depending on
all system parameters (especially g, ∆l, κ) at which we
obtain maximal information about the mechanical mo-
tion. Thus, homodyne detection at this particular angle
yields the minimal conditional occupation. Typically—
especially in the weak-coupling regime where g < κ—
the optimal angle corresponds to the optical quadrature
which is anti -squeezed by the optomechanical interaction
and thus features the best signal-to-noise ratio. We will
see in the next section how these features of the optome-
chanical phase diagram connect to feedback cooling of
the mechanical oscillator.

C. Optomechanical Feedback Cooling

Now that we discussed the conditional optomechani-
cal state in detail, the question arises whether it can be
realized via feedback, i. e., whether we can prepare the
unconditional state of the system such that it resembles
the conditional state.

Consider the setup depicted in Fig. 1(a), where the re-
sults from a homodyne measurement of the cavity output
light are fed back to the optomechanical system in a suit-
able manner, such that the mechanical system is driven
to a low entropy steady state. This situation has been an-
alyzed in [25–27, 30]. However, the regime discussed for
feedback cooling is typically restricted to resonant drive
and the bad-cavity regime κ > ωm. In this section we
will discuss that feedback cooling can also be effectively
operated in the sideband-resolved regime κ < ωm, and
even on the blue sideband ∆l = ωm, which is normally
affiliated with heating. Here we will show that we can
harness the entanglement created by the optomechanical
two-mode squeezing interaction for a measurement-based
feedback scheme, which enables us to cool the mechanical
motion to its ground state.

Feedback onto the mechanical system can either be ef-
fected by direct driving through a piezoelectric device
[36], or by modulation of the laser input, as we will as-
sume in the following. This type of optical feedback
can be described by adding an additional time-dependent

term

Hfb = −i
√
κ[ε(t)∗cl − ε(t)c†l ] =

√
2κ[up(t)xl + ux(t)pl]

(10)
to the Hamiltonian, where ε(t) = ux(t) + iup(t) ∈ C
is the complex amplitude of the feedback signal, and
|ε(t)|2 accordingly is the incoming photon flux. To choose
an appropriate feedback strategy we employ quantum
linear quadratic Gaussian (LQG) control [37], which is
designed to minimize a quadratic cost function as de-
scribed in App. B. Applied to feedback cooling the ba-
sic working principle is the following: From the mea-
surement results of the homodyne detection we calcu-
late the system’s conditional state ρc(t), whose evolution
is described by (5). Based on this state we can then
determine the optimal feedback signal ε(t) which min-
imizes the steady-state mechanical occupation number
〈c†mcm〉ss = 1

2 [〈x2
m + p2

m〉ss − 1]. This of course means
that the final occupation number depends on the condi-
tional state (more specifically on the covariance matrix
Σ̂), and thus on the chosen LO angle for the homodyne
detection as we discussed above. A suitable cost function
for this problem is given by

h(xm(t), pm(t), ε(t)) = hm
[
xm(t)2 + pm(t)2

]
+ |ε(t)|2,

(11)
with hm > 0. Note that h also includes a contribution
by the feedback signal ε, which precludes feedback strate-
gies with unrealistically high feedback strength. The pa-
rameter hm therefore effects a trade-off between feedback
strength and final occupation number nss

m: high values of
hm result in low occupation number possibly requiring
large |ε| and vice versa. The mean photon flux in the
feedback signal can be calculated as described in App.
B. For the parameters used in this section we find that
on average |ε|2 is small compared to the overall driving
strength in typical experiments. Only in the region of
κ → 0—where almost no photons enter the cavity—the
required |ε|2 may increase dramatically. We note that in
order for LQG control to work correctly, certain observ-
ability and controllability conditions need to be satisfied
[12], which is indeed the case for our system. Addition-
ally, we assume here that the feedback is instantaneous.
In practice this means that any feedback delay τ should
be small on the typical timescales of the system, i. e.,
τ � 1/ωm, 1/κ.

The final mechanical occupation is found by first cal-
culating the steady-state variances (∆xm)2 and (∆pm)2

for a closed feedback loop as outlined in App. B. nss
m

is then given by nss
m = 1

2 [(∆xm)2 + (∆pm)2 − 1] (for
〈xm〉ss = 〈pm〉ss = 0).

In Fig. 4 we plot the steady-state occupation numbers
of the feedback-cooled mechanical mode against the laser
detuning ∆l, for the bad-cavity regime (upper plot) and
the sideband-resolved regime (lower plot), for two differ-
ent coupling strengths g. For each detuning the homo-
dyne phase φ is chosen such, that the occupation number
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FIG. 4. (Color online) Steady-state mechanical occupa-
tion number nss

m minimized with respect to the LO angle φ
against detuning of the driving laser ∆l (a) in the bad-cavity
regime (κ = 4ωm) and (b) in the sideband-resolved regime
(κ = ωm/2), for detection efficiencies η = 1 (solid lines) and
η = 8/10 (dashed lines). Different colors/gray levels denote
different coupling strengths g. Other parameters: Q = 5 ·106,
n̄ = 3.5 · 105, hm = 100

is minimized.1 Note that we keep g constant while vary-
ing ∆l (or κ). This means that the driving laser power
has to be adjusted accordingly. In the bad-cavity regime
κ > ωm we find that driving on resonance is favorable
for both values of g. In this case the optimal LO phase
is φ = π/2, as discussed in the previous section. This
is the usual regime for feedback cooling [1, 19], which is
inspired by the idea of quantum non-demolition measure-
ments [38], as they are commonly used in gravitational
wave detection.

For micro-mechanical systems, however, the sideband-
resolved regime κ < ωm is typically more relevant. In
this regime the picture changes completely. For weak
coupling (g < κ) we find two pronounced dips at both me-

1 This can be achieved in a systematic way by finding the “optimal
unravelling”, see [12]. Here we simply use a simplex method for
optimization.

chanical sidebands (∆l = ±ωm), where nss
m is locally min-

imal and clearly lies below the value on resonance. It is
obvious from the figure that cooling works best on the red
sideband (∆l = −ωm), where we have a cumulative ef-
fect from passive sideband and feedback cooling (see also
Fig. 5). However, even on the blue sideband (∆l = ωm)—
which is commonly associated with heating—we find an
appreciable reduction of the mechanical occupation by
feedback cooling. As we discussed in the previous section,
we can attribute this effect to large optomechanical corre-
lations, which allow for a good read out of the mechanical
motion and thus a good feedback performance. If we in-
crease the coupling strength to g = 0.3κ we see a peak
appearing around the blue sideband (which we attribute
to ponderomotive squeezing of the output fields), push-
ing the occupation number above the value at ∆l = 0.
For both regimes we plot graphs for two different detec-
tion efficiencies η = 1 (lossless detection) and η = 8/10.
Clearly, non-unit detection efficiency leads to a notice-
able degradation of feedback-cooling performance. Only
at the red sideband and in the sideband-resolved regime,
where the effect of sideband cooling dominates, the final
occupation number is virtually unaffected.

Figure 5(a) shows the mechanical occupation for three
detunings ∆l = 0,±ωm plotted against g. For ∆l = −ωm
we show, additionally to the closed-loop feedback solu-
tion (red solid line), the solution for sideband cooling
(red dashed line). While for ∆l = 0 and ∆l = −ωm the
occupation number steadily decreases—in the depicted
range—for growing g, for ∆l = ωm a clear minimum is
visible in the weak coupling regime at g ≈ κ/10. This
minimum lies well below the value for ∆l = 0 (but still
above the value for the red sideband). This means that
there exists a considerably large parameter regime where
a detuned operation significantly improves the perfor-
mance of feedback cooling. Note that all curves rise dras-
tically in the strong-coupling regime, where g/κ & 1 (not
shown in the plot). In Fig. 5(b) we plot nss

m against cavity
linewidth κ for constant coupling g. Again we find that
feedback on the sidebands works best in the sideband-
resolved regime, while in the bad cavity regime working
on resonance yields (slightly) better performance. Again,
the occupation number is minimized with respect to the
homodyne phase φ at each point in the plot.

In summary we illustrated that feedback cooling in the
resolved-sideband regime is a viable option for cooling the
mechanical oscillator into its ground state. It turns out
that in this regime driving the system on the blue me-
chanical sideband yields a lower mechanical occupation
number than operating on resonance. As an extension
of this protocol we will show in the next section, that a
similar setup operating at the same working point can
be used to remotely prepare a squeezed mechanical state
via time-continuous teleportation.
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FIG. 5. (Color online) Steady-state mechanical occupation
number nss

m minimized with respect to φ for different driv-
ing frequencies ∆l = 0,±ωm, corresponding to a laser drive
on the mechanical sidebands and on resonance (represented
by different colors/gray levels). Solid lines represent feedback
cooling, while the dashed line (for ∆l = −ωm only) corre-
sponds to sideband cooling without feedback. (a) nss

m against
coupling g for fixed cavity decay rate κ = ωm/2 (sideband
resolved regime). (b) nss

m against κ for g = ωm/10 (weak
coupling regime). Other parameters for both (a) and (b):
Q = 5 · 106, n̄ = 3.5 · 105, hm = 100, η = 1

D. Time-continuous optomechanical teleportation

Time-continuous teleportation is facilitated by what
we call a time-continuous Bell measurement [20], as de-
picted in Fig. 1(b): The output field A of an optome-
chanical system (denoted by S) is mixed with a sec-
ond field B on a beam-splitter. The resulting fields are
then sent to two homodyne detection setups which mea-
sure the Einstein–Podolsky–Rosen (EPR) quadratures
x+ = xa + xb and p− = pa − pb where xa, xb and pa,
pb are the amplitude and phase quadratures of the re-
spective fields. The field B is prepared in a pure state
of Gaussian squeezed white noise, which we denote by
|M〉, where M ∈ C characterizes the squeezing (see App.

C); |M | describes the absolute increase/reduction of the
anti-/squeezed quadrature, while arg (M) determines the
squeezing angle. Provided the optomechanical system–
field interaction creates entanglement between the me-
chanical mode and the outgoing light field, the state of
B can be teleported to the mechanical oscillator by ap-
plying (instantaneous) feedback proportional to the mea-
surement results of the Bell measurement (I±). This ef-
fectively generates dissipative dynamics which drive the
mechanical system into a steady state coinciding with the
input light state. In Sec. III B we derive the constitutive
equations of motion (the conditional master equation and
feedback master equation) for a generic system. In this
section we will focus on the optomechanical implementa-
tion. Technical details are discussed in Sec. IIID 1.

In order to successfully implement continuous telepor-
tation in optomechanical systems we need to appropri-
ately design our measurement setup. To do this we first
need a clear picture of the system’s dynamics: In the
regime g � κ � ωm and for a blue drive with ∆l = ωm
the optomechanical interaction is Hom ≈ g(cmcl + c†mc

†
l ).

Under the weak-coupling condition (g � κ) the cavity
follows the mechanical mode adiabatically. We will see
that in this regime we effectively obtain the required en-
tangling interaction between the mirror and the outgo-
ing field. Moreover, the mechanical oscillator resonantly
scatters photons into the lower sideband at ωc = ω0−ωm.
Spectrally, the photons which are correlated with the me-
chanical motion are therefore located at this sideband
frequency. We thus set up our Bell measurement in the
following way: Firstly, we choose the center frequency
of the squeezed input light located at the sideband fre-
quency ωc. Secondly, we now use heterodyne detection
to measure quadratures at the same frequency.

In Sec. IIID 1 we show that after adiabatic elimination
of the cavity mode and a rotating-wave approximation,
the evolution of the conditional mechanical state ρ(m)

c in
a rotating frame with ωm (neglecting the mechanical fre-
quency shift by the optical-spring effect, see Sec. IIID 1)
is described by the SME

dρ(m)
c = γ−D[cm]ρ(m)

c dt+ γ+D[c†m]ρ(m)
c dt

−
√
ηg2κ

2

{
H[iµη+c

†
m]ρ(m)

c dW+ −H[νη+c
†
m]ρ(m)

c dW−

}
,

(12)

where we defined γ− = γ(n̄+ 1) + 2g2Re(η−), γ+ = γn̄+
2g2Re(η+) and η± = [κ/2 + i(−∆l±ωm)]−1. The second
row describes passive cooling and heating effects via the
optomechanical interaction, as has been derived before
in the quantum theory of sideband cooling [28, 29]. The
third row describes the time-continuous Bell measure-
ment, where the squeezing parameter M is encoded in
µ = 1−α and ν = 1+α, with α = (N+M)/(N+M∗+1)
(App. C). The parameter N > 0 is connected to M via
|M |2 = N(N + 1). η is the detection efficiency as before.
The measured photo-currents of the Bell measurement
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are

I+ dt = −i
√
ηg2κ/2 〈η+c

†
m −H. c.〉dt+ dW+, (13a)

I− dt =
√
ηg2κ/2 〈η+c

†
m + H. c.〉dt+ dW−, (13b)

where dW± are correlated Wiener increments whose
(co-)variances are given by

w1 dt:=(dW+)2 = [N + 1 + (M +M∗)/2] dt, (14a)

w2 dt:=(dW−)2 = [N + 1− (M +M∗)/2] dt, (14b)
w3 dt:= dW+ dW− = −[i(M −M∗)/2] dt, (14c)

as is shown in Sec. III B. For the choice ∆l = ωm we
have η+ = 2/κ and η− = 1/(κ2 +2iωm). Thus I± approx-
imately correspond to measurements of the mechanical
quadratures pm and xm respectively. We model the feed-
back as instantaneous displacements of the mechanical
oscillator in phase space, where the feedback strength is
proportional to the heterodyne currents I±(t). This is de-
scribed by Hamiltonian terms I±(t)F±, where F± = F †±
are generalized forces. The feedback operators we choose
to be F+ = −

√
2g2κ η+ xm and F− = −

√
2g2κ η+ pm,

which generate a displacement in pm and xm respectively.
The prefactors of F± (i. e., the feedback gain) we chose
such that they match the measurement strength of the
Bell detection. The corresponding feedback master equa-
tion (in the same rotating frame) can be written as

ρ̇(m) = γ(n̄+ 1)D[cm]ρ(m) + γn̄D[c†m]ρ(m)

+ (4g2/κ) {λ1(ε)D[J1(ε)] + λ2(ε)D[J2(ε)]} ρ(m), (15)

where ε = [1 + (4ωm/κ)2]−1 quantifies the suppression
of the counter-rotating interaction terms (i. e., the op-
tomechanical beam-splitter). This suppression is large
(ε � 1) in the sideband-resolved regime where κ � ωm
and small (ε ≈ 1) in the bad-cavity regime (κ & ωm).
The effective Lindblad terms are determined by λi and
Ji, which are obtained (see App. D) from the eigenvalue
decomposition of the positive matrix

Λ =

(
w2

η −
1
2 (1 + ε) −w3

η + i
2 (1 + ε)

−w3

η −
i
2 (1 + ε) w1

η −
1
2 (1 + ε)

)
.

For efficient detection (η = 1) we obtain λ1 = (2N +1)+
O(ε) and λ2 = O(ε), which means that in the sideband-
resolved regime the jump operator J2(ε) contributes only
weakly. In zeroth order in ε the dominating dissipative
dynamics are generated by J1(0) ∝ −i(2N + 1 −M −
M∗)xm + (1 + M − M∗)pm. If we define as Uπ/2 the
local unitary which effects the canonical transformation
xm → pm, pm → −xm, we find by comparison with (C3)
that U†π/2J1(0)Uπ/2|−M〉 = 0. Taking into account rela-
tions (C2) one can easily show that Uπ/2| −M〉 = |M〉.
This means that |M〉〈M | is a dark state of D[J1(0)] and
thus in the ideal limit of γ = 0, ε = 0, η = 1 the steady
state of (15) is limt→∞ ρ(m)(t) = |M〉〈M |. Hence, the op-
tical input state is perfectly transferred to the mechanical
mode.

Moving away from the ideal case, the protocol’s per-
formance is degraded by mechanical decoherence effects
(γn̄ > 0), counter-rotating terms of the optomechan-
ical interaction which are suppressed by ε < 1, and
inefficient detection (η < 1) which leads to imperfect
feedback. Figure 6 shows the steady-state squeezing ζ
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FIG. 6. (Color online) Mechanical squeezing ζ against co-
operativity C: (a) Varying mechanical bath occupation n̄ =
0, 1/10, 1/2, ∞ (represented by different colors/gray lev-
els) and unit detection efficiency η = 1; The solid (dashed)
lines represent a sideband resolution of κ/ωm = 1/10 (1). (b)
Different detection efficienies η = 1, 9/10, 7/10, 6/10 (repre-
sented by different colors/gray levels) and κ = ωm/10; Here
the solid (dashed) lines represent n̄ = 0 (∞). In both plots the
horizontal solid line at ζ = −6dB (corresponding toN ≈ 0.56)
shows the squeezing level of the input light and the vertical
dashed line the critical cooperativity Ccrit ≈ 2.7.

transmitted to the mechanical mode for different param-
eters plotted against the optomechanical cooperativity
C = 4g2/(n̄ + 1)γκ. In the upper plot we assume per-
fect detection efficiency η = 1 and find that in this case
there exists a critical value Ccrit(N) = 1/[

√
N(N + 1)]

determined by the input squeezing N above which the
resulting mechanical state is squeezed for any thermal
occupation number n̄. The lower plot clearly shows that
this is no longer true if we assume non-unit detection
efficiency η. We find that below a certain critical value
ηcrit(N, n̄) we can no longer transfer squeezing to the me-
chanical oscillator, but we rather heat it instead. (This
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is even true for a zero-temperature mechanical environ-
ment, as illustrated in the plot.) In this general case
it can be beneficial to chose a modified feedback gain,
i. e., use feedback operators F̃± = σF± with σ 6= 1. In
the parameter regime we consider however the resulting
improvement negligible.

E. Time-continuous optomechanical entanglement
swapping

We now replace the squeezed field mode with a second
optomechanical cavity, as is depicted in Fig. 1(c). The
goal of this scheme is to generate stationary entanglement
between the two mechanical subsystems. This is again
facilitated by a time-continuous Bell measurement—
measuring the output light of both cavities—plus feed-
back [20]. The implementation is akin to the teleporta-
tion protocol presented above: Both cavities are driven
on the blue sideband to resonantly enhance the two-mode
squeezing interaction, and their output light is sent to
the Bell detection setup which operates at the cavity res-
onance frequency ωc. Feeding back the Bell detection
results I± corresponding to the x+ and p− quadratures
of the optical fields to both mechanical systems dissipa-
tively drives them towards an entangled state. There
is a slight complication, however. A single Bell measure-
ment only allows us to separately monitor two of the four
variables (xm,1, pm,1, xm,2, pm,2) needed to describe the
quantum state of the mechanical systems.2 Combined
with the fact that we drive the system on the blue side
of the cavity resonance (and thus in an unstable regime)
this means that we cannot actively stabilize the system
and—depending on the driving strength and sideband
resolution—no steady state may exist. To compensate
for this we extend the setup by two additional heterodyne
detectors, measuring x− and p+ with outcomes I ′∓. The
effective measurement strength of this stabilizing mea-
surements with respect to the Bell measurement is set
by the transmissivity υ of the beam-splitter in front of
the heterodyne setup (see Fig. 1). Appropriate feedback
of all measurement currents I±, I ′± (for simplicity labeled
Ii, i = 1, . . . , 4, below) to both mechanical systems finally
allows us to stabilize them in an entangled state. Note
that this setup effectively realizes two simultaneous Bell
measurements of the pairs (x+, p−) and (x−, p+) with
detection efficiencies υ and 1−υ respectively. In the rest
of this section the two optomechanical systems are as-
sumed to be identical and all detectors to have the same
quantum detection efficiency η.

In Sec. IIID 2 we show that in an adiabatic approxi-
mation the conditional state of the two mechanical oscil-
lators ρ(m) in a rotating frame can be described by the

2 In the language of control theory this means that the complete
system is not observable (see for example [12]).

SME (setting ∆l = ωm)

dρ(m)
c = ε

4g2

κ

(
D[cm,1]ρ(m)

c +D[cm,2]ρ(m)
c

)
dt

+

2∑
i=1

{
γ(n̄+ 1)D[cm,i]ρ

(m)
c + γn̄D[c†m,i]ρ

(m)
c

}
dt

+
2g2

κ

4∑
i=1

(
D[Ji]ρ

(m)
c dt+

√
ηH[Ji]ρ

(m)
c dWi

)
, (16)

where we set (J1, J2) =
√
υ
(
cm,+, icm,−

)
, (J3, J4) =√

1− υ(icm,+, cm,−) and cm,± = cm,1±cm,2. The Wiener
processes Wi are uncorrelated with unit variance, i. e.,
dWi dWj = δij dt, and correspond to the photo-currents

Ii dt =
√

4g2/κ〈Ji + J†i 〉c dt+ dWi. (17)

The final steady state of this protocol depends on the
feedback operators Fi = F †i we apply. In ananolgy to
the previous section we choose (F1, F2) =

√
υσ(ic+ −

ic†+, c− + c†−) and (F3, F4) =
√

1− υ(c+ + c†+, ic− − ic†−),
which can realize independent displacements of all me-
chanical quadratures. This time we introduced an ad-
ditional gain parameter σ which we can vary in order
to optimize the amount of entanglement in the resulting
steady state. With these choices the FME for optome-
chanical entanglement swapping takes the form

ρ̇(m)
c = −i[Hfb, ρ

(m)
c ] + ε

4g2

κ
(D[cm,1] +D[cm,2]) ρ(m)

c

+

2∑
i=1

{
γ(n̄+ 1)D[cm,i]ρ

(m)
c + γn̄D[c†m,i]ρ

(m)
c

}
+

2g2

κ

4∑
i=1

{
D[Ji − iFi]ρ

(m)
c +

1− η
η
D[Fi]

}
, (18)

where the dynamics generated by the feedback is de-
scribed by Hfb = i[(1 + σ)υ − 1](2g2/κ)(c2m,+ + c2m,− −
H. c.). We can now analyze the stability properties
of the linear feedback system by evaluating the corre-
sponding Routh–Hurwitz criterion. In the case of no
stabilizing feedback (υ = 1) we find that the admis-
sible optomechanical coupling is limited from above by
4g2/κ < 1/(1− ε), which only gives an appreciably high
limit for values of ε ≈ 1 and thus in the bad-cavity regime.
The stabilization is caused by the counter-rotating beam-
splitter terms cm,ic

†
l,i+H. c. of the optomechanical Hamil-

tonian, which cool the mechanical systems. This cool-
ing effect, however, diminishes the amount of generated
steady-state entanglement. If we switch on the stabiliz-
ing feedback and thus choose υ < 1, we can rewrite the
RH criterion in the form [3 + (4g2/κ)−1 + ε] > 4υ >
[(1− ε)− (4g2/κ)−1]/σ (where we assumed ε < 1). These
inequalities are tightest in the limit ε → 0, g2/κ → ∞
where we have 3 > 4υ > 1/σ. For the rest of this sec-
tion we choose υ = 3/4 which ensures stability of the
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feedback system for any values of g2/κ and ε—and con-
sequently the sideband-resolution κ/ωm—as long as the
feedback gain fulfills σ > 1/3. In the stable regime and
for ε = 0, η = 1 we find a simple analytic expression for
the steady-state logarithmic negativity,

Ess
N = ln

( 1
2C(n̄+ 1)(3σ − 1)(4υ − 1) + 1

C(n̄+ 1)[3σ(σ − 1) + 1] + 2n̄+ 1

)
, (19)

where we again introduced the cooperativity C =
4g2/(n̄ + 1)γκ. Generally we can—for each set of pa-
rameters (C, n̄, ε, υ, η)—maximize the entanglement EN
with respect to the feedback gain σ. In Fig. 7 we plot
the resulting steady-state values in terms of logarithmic
negativity EN and EPR-variance

∆EPR = min
φ1,φ2

(
[∆(xφ1

m,1 − x
φ2

m,2)]2 + [∆(pφ1

m,1 + pφ2

m,2)]2
)
,

(20)
where xφm,i = (cm,ie

−iφ + c†m,ie
+iφ)/

√
2 and pφm,i =

x
φ+π/2
m,i are rotated mechanical quadratures. A Gaus-

sian state is entangled if ∆EPR < 2 [39, 40]. In the
first plot we assume a perfect detection efficiency η = 1
and consider different bath occupation numbers n̄. We
again see that there exists a critical cooperativity Ccrit

above which we are able to generate entanglement re-
gardless of n̄. From (19) we can deduce the expression
Ccrit(υ, σ) = 4/[3σ(1 + 4υ − 2σ) − (1 + 4υ)]. (As is evi-
dent from the plot, the Ccrit is independent of ε). For
the parameters used in the plot (taking into account
the optimization with respect to σ) we find Ccrit = 2.
Again, counter-rotating terms decrease entanglement but
are strongly suppressed by the sideband resolution. In
Fig. 7(b) we take into account losses and non-unit de-
tection efficiency, η < 1, which drastically reduces the
amount of achieved entanglement. As before we find a
critical loss value ηcrit(n̄, υ) (for the parameters chosen in
the plot slightly above 65%) below which entanglement
creation is prohibited.

III. DERIVATION OF CONDITIONAL AND
FEEDBACK MASTER EQUATIONS

We present here a brief (and informal) derivation of
the stochastic master equations (SME) and Markovian
feedback master equations (FME) we use throughout the
paper. A rigorous and complete account of the quantum
stochastic formalism and quantum filtering theory can
be found in the literature, e. g., [12, 41–45], and a brief
summary of the most important relations is given in App.
A.

A. The homodyne master equation

We consider a situation similar to Fig. 1(a), where a
system S couples to the one-dimensional electromagnetic
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FIG. 7. (Color online) Two-mode mechanical steady-state en-
tanglement in terms of Ess

N and ∆EPR against cooperativity C,
maximized with respect to feedback gain σ: (a) Varying me-
chanical bath occupation n̄ = 0, 1/10, 1/2, ∞ (represented
by different colors/gray levels) for unit detection efficiency
η = 1; The solid (dashed) lines represent a sideband resolu-
tion of κ/ωm = 1 (1/10). (b) Different detection efficienies
η = 1, 9/10, 7/10, 6/10 (represented by different colors/gray
levels) and κ = ωm/10; Here the solid (dashed) lines repre-
sent n̄ = 0 (∞). The black vertical line shows the critical
cooperativity Ccrit = 2.

field A, which is initially in vacuum and is subject to
homodyne detection. We first assume unit detection ef-
ficiency, but will discuss the case of inefficient detection
at the end of the section. The system–field coupling is
mediated by the Hamiltonian3

Hint = i[s a†(t)− s†a(t)], (21)

where s is a system operator (e. g., a cavity creation
or destruction operator), and the light field is described
(in an interaction picture at a central frequency ω0) by
a(t) =

∫
dω a0(ω) e−i(ω−ω0)t [46], where a0(ω) is the

(Schrödinger) annihilation operator of the field mode at

3 Note that both operators s and a(t) have a dimension [s] =
[a(t)] =

√
Hz.
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ω. In a Markov approximation the field operators are
δ-correlated, and fulfill the commutation relations

[a(t), a†(t′)] = δ(t− t′). (22)

Under this approximation we can introduce the Itō incre-
ments dA, dA†, which (formally) obey dA(t) = a(t) dt,
etc., and the vacuum multiplication table given in App.
A.

The Schrödinger equation for the full system (S + A)
initially in the state |φ0〉 = |ψ0〉S |vac〉A can be written
in Itō-form as

d|φ(t)〉 =
{
−iHeff dt+ s

[
dA†(t) + dA(t)

]}
|φ(t)〉, (23)

where we used the fact that dA(t)|φ(t)〉 = dA(t)|φ0〉 =
dA(t)|vac〉 = 0 [35]. A homodyne measurement of an
electromagnetic quadrature x = a + a† with a result Ix
effectively projects the state of the light field onto the
eigenstate |Ix〉 of x, where x|Ix〉 = Ix|Ix〉 [47]. Projecting
(23) onto |Ix〉 leads to the linear stochastic Schrödinger
equation (SSE) [48]

d|ψ̃c(t)〉 = [−iHeff dt+ s Ix(t) dt] |ψc(t)〉, (24)

with the forward pointing Itō-increment d|ψ̃c(t)〉 =

|ψ̃c(t+ dt)〉 − |ψc(t)〉. |ψ̃c〉 is the unnormalized sys-
tem state which is conditioned on the homodyne photo-
current Ix. Ix is δ-correlated, i. e., 〈Ix(t)Ix(s)〉 = δ(t−s),
and its probability distribution is given (for a fixed time
t) by Υt(Ix) = |〈Ix|φ(t + dt)〉|2 [12, 47]. Using this, one
can show that Ix can be written as [12, 35]

Ix(t) dt = 〈s+ s†〉c(t) dt+ dW (t), (25)

where W is a classical Wiener process with dW (t)2 =
dt and E[dW (t)] = 0. Here the conditional expectation
value should be read as 〈A〉c(t) = 〈ψc(t)|A|ψc(t)〉. We
can introduce the classical stochastic process X̃ defined
by dX̃(t) = Ix(t) dt, which is statistically equivalent to
dA(t) + dA(t)†. This is due to non-demolition properties
of the measurement operator, see [44]. It obeys dX̃(t)2 =
dt.

The corresponding equation of motion for the unnor-
malized conditional state ρ̃c = |ψ̃c〉〈ψ̃c| can be deduced
from (24),

dρ̃c(t) = ρ̃c(t+ dt)− ρc(t)

= Lρc(t) dt+
[
sρc(t) + ρc(t)s

†] dX̃(t) (26)

where we used Itō calculus as presented in App. A. Here
the Liouvillian L is given by

Lρ = −i
(
Heffρ− ρH†eff

)
+ sρs†. (27)

Equation (26) is the quantum analog to the classical Za-
kai equation [49]. Note that although the Liouvillian is
trace-preserving (i. e., tr[Lρ] = 0), the second term in
(26) does not possess this property. The equation for the

normalized state ρc(t) = ρ̃c(t)/tr[ρ̃c(t)] is then found by
noting that

tr[ρ̃c(t+ dt)] = 1 + 〈s+ s†〉c(t) dX̃(t), (28)

where now 〈A〉c = tr[ρc(t)A] and we used tr[ρc(t)] = 1.
Thus we find

tr[ρ̃c(t+dt)]−1 = 1−〈s+s†〉c(t) dX̃(t)+[〈s+s†〉c(t)]2 dt,
(29)

which is obtained by expanding tr[ρ̃c(t+dt)]−1 to second
order in dX̃ (which leads to a first-order expansion in
dt). Using Itō multiplication rules this leads to

dρc(t) =
ρ̃c(t+ dt)

tr[ρ̃c(t+ dt)]
− ρc(t)

= Lρc(t) dt+H[s]ρc(t) dW (t), (30)

which is the desired result [12, 35]. The (nonlinear) mea-
surement term is given by

H[s]ρc =
(
s− tr[ρcs]

)
ρc + ρc

(
s− tr[ρcs]

)†
. (31)

It is clear from the derivation that under made assump-
tions the SSE (24) is equivalent to the SME (30). The
stochastic master equation is more general, however, as it
can accommodate for additional, unobserved decay chan-
nels (such as photon losses/inefficient detection or cou-
pling of a mechanical oscillator to a heat bath), as well
as for mixed initial states.

We can generalize the homodyne master equation in
several ways: Above we assumed a measurement of a spe-
cific light quadrature x = a + a†. To measure a rotated
quadrature xφ = ae−iφ + a†e+iφ we have to make the re-
placement s→ eiφs, which simply follows from replacing
a→ e−iφa. We can as easily obtain the SME correspond-
ing to heterodyne detection at a LO frequency ωlo 6= ω0

by substituting s→ ei∆lots, where ∆lo = ωlo−ω0. Below
we will discuss the situation where we split up the field
with a beam-splitter (with a splitting ration η : 1 − η)
and perform two simultaneous homodyne measurements
on its outputs. The measured modes A′, B after the
beam-splitter [see Fig. 1(a)] are related to A before the
beam-splitter via [50] a(t) =

√
η a′(t)+

√
1− η b(t), where

A′ and B are both initially in vacuum and are uncorre-
lated such that dA(t) dB†(t) = 0, etc. Plugging this
relation into (23) and projecting onto the quadratures
e−iφ1a′ + eiφ1a′†, e−iφ2b + eiφ2b† one can repeat above
steps and find

dρc = Lρc dt+
√
ηH[eiφ1s]ρc dW1

+
√

1− ηH[eiφ2s]ρc dW2, (32)

with uncorrelated Wiener processes Wi, i. e., dWi dWj =
δij . To model photon losses or inefficient photo-detectors,
we average over, say, the second measurement process,
and thus discard all information obtained from it. Due
to the fact that E[dW2] = 0, the equation of motion
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for the resulting conditional state—which is now condi-
tioned on the measurement results of the first channel
only—is obtained by dropping the last term in (32). The
beam-splitter transmissivity is then identified with the
efficiency of the photo-detection. Formally we can ob-
tain the same result from (30) by replacing s → √

ηs
in the measurement term, while keeping the Liouvillian
unchanged.

B. Time-continuous teleportation

1. Conditional master equation

We now extend the derivation of the homodyne
SME presented in the previous section to the Bell-
measurement setup depicted in Fig. 1(b). Again, a one-
dimensional field mode A [described by a(t)] couples to
a system S via (21). A is assumed to be in the vacuum
state. A second field mode, B [with a field operator b(t)]
is prepared in a pure squeezed state, parametrized by
M ∈ C, which we simply denote by |M〉. M describes
the degree and angle of squeezing, as described in App.
C. The Itō multiplication table for B is thus given by

× dB dB† dt

dB M dt (N + 1) dt 0
dB† N dt M∗ dt 0
dt 0 0 0

with the condition |M |2 = N(N + 1). A and B are
combined on a balanced beam splitter, whose output is
sent to two homodyne detection setups, which are set up
such that they measure the EPR operators x+ = (a +

a† + b + b†)/
√

2 and p− = i(a − a† − b + b†)/
√

2. We
call the continuous measurement of the two quadratures
x+ and p− a time-continuous Bell measurement [20]. To
find the corresponding SME, describing the state of S
conditioned on measurements of x+ and p−, we apply the
same reasoning as in the previous section. We start from
the Schrödinger equation (23) but now choose the initial
condition |φ0〉 = |ψ0〉S |vac〉A|M〉B . Using the eigenvalue
equation for squeezed states (C3), written as [dB(t) −
α dB(t)]|M〉 = 0 with α = (N +M)/(N +M∗ + 1), and
again dA(t)|vac〉 = 0, we can write

d|φ〉 =
{
−iHeff dt+ s

[
dA† − α dA+ dB − α dB†

]}
|φ〉

=
{
−iHeff dt+

√
1/2 s [µdX+ + iν dP−]

}
|φ〉,

(33)

where µ = 1 − α, ν = 1 + α and dX+(t) = x+(t) dt,
dP−(t) = p−(t) dt. Going from the first to the second line
we used the fact that a†+b = (x++ip−)/

√
2. We empha-

size that x+ and p− commute and can be measured si-
multaneously. We can thus directly project equation (33)
onto the EPR state |I+I−〉AB defined by x+|I+I−〉AB =

I+|I+I−〉AB and p−|I+I−〉AB = I−|I+I−〉AB . This
yields the linear stochastic Schrödinger equation

d|ψ̃c〉 =
{
−iHeff dt+

√
1/2 s[µdX̃+ + iν dP̃−]

}
|ψc〉,

(34)
where dX̃+(t) = I+(t) dt and dP̃−(t) = I−(t) dt are
again classical processes which possess the same statisti-
cal properties as their quantum counterparts. The photo-
currents I± (analogous to the previous section) can be
written as

I+ dt =
√

1/2〈s+ s†〉c dt+ dW+, (35a)

I− dt = i
√

1/2〈s− s†〉c dt+ dW−, (35b)

with Wiener increments dW±. Comparison to the out-
put of a single homodyne setup (25) shows that I± cor-
respond to two simultaneous homodyne measurements
with half efficiency. The (co-)variances of dW± are given
in equations (14) and directly follow from the defini-
tion of dX+, dP− and the multiplication tables for dA
and dB. We now repeat the procedure from the pre-
vious section which is now more involved due to fact
that we have to deal with two correlated random pro-
cesses. It is convenient to introduce the complex pro-
cess dY (t) = µdX̃+(t) + iν dP̃−(t), which obeys dY 2 =
2ζ dt:=−2N/M∗ dt and |dY |2 = 2 dt. We can then write
the Zakai equation corresponding to (34) as

dρ̃c = Lρc dt+
√

1/2
(
sρc dY + ρcs

† dY ∗
)
, (36)

with L defined in (27). To normalize this equation we
first calculate

tr[ρ̃c(t+ dt)] = 1 +
√

1/2
[
〈s〉c(t) dY (t) + H. c.

]
, (37)

which we use to obtain (by expanding to second order in
dY )

tr[ρ̃c(t+ dt)]−1 = 1−
√

1/2
[
〈s〉c(t) dY (t) + H. c.

]
+ (1/2)

{
[〈s〉c(t)]2ζ + [〈s†〉c(t)]2ζ∗ + 4|〈s〉c(t)|2

}
dt.

(38)

Combining this with (36) we find after some algebra

dρc = Lρc dt+
√

1/2
[
µ
(
s− 〈s〉c

)
ρc + H. c.

]
ρc dW+

+
√

1/2
[
iν
(
s− 〈s〉c

)
ρc + H. c.

]
ρc dW−

= Lρc dt+
√

1/2 {H[µs]ρc dW+ +H[iνs]ρc dW−} .
(39)

It can easily be checked that this is a equation of the
form (B1) and thus a valid Belavkin equation [51].

To conclude this section let us briefly discuss, as a
slight variation of above setup, the situation where in-
stead of the squeezed state |M〉B we use a displaced
squeezed state |M,β〉B = D(β)|M〉B (see App. C) as an
initial state of modeB, and thus as an input state for tele-
portation. Transforming the Schrödinger equation (23)
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into a displaced frame withD(β) shows that the structure
of the SSE (24) and the SME (39) remains unchanged, if
the measurement processes are replaced by appropriately
displaced versions, dX̃+ → dX̃+ −

√
1/2(β + β∗) dt and

dP̃− → dP̃−+i
√

1/2(β−β∗) dt. Consequently, the same
transformation has to be applied to the currents I± in
equations (35). A more rigorous derivation of the results
in this section is presented in [52].

2. Feedback master equation

We follow [53] to apply Markovian (i. e., instantaneous)
feedback proportional to the homodyne currents I± to
the system S. This procedure consists of three steps:
Converting the Itō-equation for the conditional state into
Stratonovich form [35], adding a feedback term, and con-
verting back to Itō-form in order to average over all pos-
sible measurement trajectories and to obtain an uncon-
ditional master equation. The feedback we model as gen-
eralized forces F± = F †± in the form of additional Hamil-
tonian terms which we write as K±ρI± = −i[F±I±, ρ].

We start by rewriting the SME (39) in terms of the
complex Wiener increment dWy = µdW+ +iν dW− (this
time including the detector efficiency η as discussed in
Sec. III A),

dρc = Lρc dt+
√
η/2

(
Gρc dWy + G†ρc dW ∗y

)
, (40)

where we defined Gρ = (s − tr[sρ])ρ and G†ρ = (Gρ)†.
The Stratonovich form of this equation is given by

(S) dρc = Lρc dt+

√
η

2

(
Gρc dWy + G†ρc dW ∗y

)
− η

4

(
Gρc dWy + G†ρc dW ∗y

)2
= L̄ρc dt+

√
η

2

(
Gρc dWy + G†ρc dW ∗y

)
,

(41)

with the definition L̄ = L − η
2 [ζG2 + ζ∗(G†)2 + 2G†G].

Here we used the fact that G†G = GG†. Adding feedback
terms [ρ̇c]fb =

√
1/2η[K+I++K−I−] and converting back

to Itō form yields

dρc = Lρc + (1/4η)
(
K+ dX̃+ +K− dP̃−

)2
ρc

+ (1/2)
(
K+ dX̃+ +K− dP̃−

) (
G dWy + G† dW ∗y

)
ρc

+
√

1/2η
(
K+ dX̃+ +K− dP̃−

)
+
√
η/2

(
G dWy + G† dW ∗y

)
ρc, (42)

where we chose an ordering KG to get a trace preserv-
ing master equation [53]. We can now average over all
possible measurement trajectories (i. e., over all classical
processes X̃+, P̃−, Wy) to obtain an unconditional (de-
terministic) master equation. A longish calculation leads

to

ρ̇ = Lρ+
1

2

{
w1 − w3

η
D[F+]− i[F+, sρ+ ρs†]

}
+

1

2

{
w2 − w3

η
D[F−]− i[F−, (is)ρ+ ρ(is)†]

}
+
w3

2η
D[F+ + F−], (43)

where we used the fact that 1
2 (K±)2 = D[F±] and

1
2 (K+K− + K−K+) = D[F+ + F−]−D[F−]−D[F+]. wi
are the (co-)variances of dW+, dW− and are given by
(14). Using the identity D[s+ iF±]ρ = D[s]ρ+D[F±]ρ+
i[F±, sρ+ ρs†] + i

2 [ρ, F±s+ s†F±] this can be written in
the more familiar form

ρ̇ = −i
[
H + (1/4)

{
(F+ + iF−)s+ s†(F+ − iF−)

}
, ρ
]

+ (1/2)
{
D[s− iF+]ρ+D[s− F−]ρ+

w3

η
D[F+ + F−]ρ

+

(
w1 − w3

η
− 1

)
D[F+]ρ+

(
w2 − w3

η
− 1

)
D[F−]ρ

}
.

(44)

If we consider again the situation where we use a dis-
place squeezed state |M,β〉B as input, we make the re-
placements dX̃+ → dX̃+ −

√
1/2(β + β∗) dt and dP̃− →

dP̃− + i
√

1/2(β − β∗) dt in equation (42). This only
changes the third line as all products dX̃2, dX̃ dWy,
etc. are unaffected. After taking the classical aver-
age this yields an additional Hamiltonian term Hcoh =√

2[Re(β)F+ − Im(β)F−] which has to be incorporated
into L in the FME (43).

Note that equation (44) is not necessarily a Lindblad
equation, as the prefactors to the operators D may in
general be negative. It can easily be brought into Lind-
blad form, however, see App. D.

C. Time-continuous entanglement swapping

1. Conditional master equation

Consider the setup depicted in 1(c): Two systems S1

and S2 couple to field modes A and B (described by
field operators a and b, both in vacuum) via interaction
Hamiltonians analog to (21). A and B are combined on
a 50:50 beam-splitter to form the combinations a ± b in
the outputs. These outputs are sent to a pair of beam-
splitters (with an uneven splitting ratio υ : 1− υ) and
subsequently to a total of four homodyne setups. If we
label the modes incident on the homodyne detectors as
Ci (described by field operators ci) for i = 1 . . . 4 [see Fig.
1(d)], we find the following relations to modes A and B,

a =
√
υ/2(c1 + c2)−

√
(1− υ)/2(c3 + c4), (45)

b =
√
υ/2(c1 − c2)−

√
(1− υ)/2(c3 − c4). (46)
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We now choose the LO phases of the four homodyne se-
tups such that they measure x+=c1 +c†1, p−=−i(c2−c†2),
x−=c4+c†4 and p+=−i(c3−c†3). These four measurements
allow us to simultaneously monitor both quadratures of
both systems (although with imperfect precision). The
measurement of x+ and p−, which we choose to have a
relative strength υ set by the beam-splitting ratio, realize
a Bell measurement as before, while the measurement of
the conjugate quadratures x− and p+, with a strength
1− υ, we will need for stabilization of S1 and S2.

To derive the SME we apply the same logic as before.
We start from the Schrödinger equation for the full sys-
tem (S1 + S2 + field modes),

d|φ〉 =
[
−iHeff dt+ s1 dA† + s2 dB†

]
|φ〉, (47)

with an initial state |φ〉 = |ψ(0)〉S1S2 |vac〉field and an ef-
fective Hamiltonian Heff = H

(1)
sys + H

(2)
sys − i

2

∑
i=1,2 s

†
isi.

We then rewrite this in terms of dX± and dP± and
project onto eigenstates corresponding to measurement
outcomes I±, I ′±. With the definition s± = s1 ± s2 we
find

d|ψ̃c〉 = −iHeff |ψc〉dt

+
√
υ/2[s+ dX̃+ + is− dP̃−]|ψc〉

+
√

(1− υ)/2[is+ dX̃− + s− dP̃+]|ψc〉 (48)

where |ψ̃〉 is unnormalized. As all electromagnetic field
modes are assumed to be in vacuum we find that the
measurement processes have unit variance, dX̃±(t)2 =

dP̃±(t)2 = dt, and that they are mutually uncorrelated,
i. e., dX̃+ dX̃− = dX̃+ dP̃+ = 0, etc. This can be shown
by expressing ci in terms of a, b and using Itō rules,
where we have to take into account vacuum noise enter-
ing through the open ports of the second pair of beam-
splitters (not explicitly introduced here). The homodyne
currents are given by

I+ dt =
√
υ/2 〈s+ + s†+〉c + dW+, (49a)

I− dt = i
√
υ/2 〈s− − s†−〉c + dW−, (49b)

I ′+ dt = i
√

(1− υ)/2 〈s+ − s†+〉c + dV+, (49c)

I ′− dt =
√

(1− υ)/2 〈s− + s†−〉c + dV−. (49d)

where the Wiener increments dW± and dV± obey a mul-
tiplication table corresponding to the one of dX̃± and
dP̃±. Following the derivation from Sec. IIIA with four
uncorrelated homodyne measurements with non-unit ef-
ficiency we can derive the corresponding SME

dρc = Lρc dt+
√
υ/2 {H[s+]ρc dW+ +H[is−]ρc dW−}

+
√

(1− υ)/2 {H[is+]ρc dV+ +H[s−]ρc dV−} , (50)

with Lρ = −i[H
(1)
sys +H

(2)
sys , ρ] +D[s1]ρ+D[s2]ρ.

These results can alternatively be derived in a similar
spirit but in a more formal way within the framework of
quantum networks, as for example presented in [50].

2. Feedback master equation

In this entanglement swapping scheme all four homo-
dyne currents, I± (Bell measurement) and I ′± (stabilizing
measurements), are fed back to both systems. (For con-
venience we will in the following label the photo-currents
by Ii, i = 1, . . . , 4, according to the light modes Ci they
correspond to.) We again describe this by the operations
K[Fi]ρIi = −i[FiIi, ρ] (i = 1, . . . , 4), where Fi = F †i now
act on the combined Hilbert space of S1 + S2. Using the
procedure from before it is straightforward to show that
the corresponding FME can be written as

ρ̇c = −i [H, ρ]− i

2

4∑
i=1

[
s†iFi + Fisi, ρc

]
+

4∑
i=1

{
D[si − iFi] +

1− η
η
D[Fi]

}
, (51)

with (si)
4
i=1 = (

√
υs+, i

√
υs−, i

√
1− υs+,

√
1− υs−).

Here we assumed that all detectors have the same effi-
ciency η.

D. Optomechanical implementation

1. Time-continuous teleporation

Here we derive the stochastic and feedback master
equations for the optomechanical teleportation setup out-
lined in Sec. IID, following the lines of Sec. III B with
modifications accommodating the optomechanical imple-
mentation. The one-dimensional electromagnetic field A
couples to the cavity via the linear interaction Hint =

i
√
κ[cla

†(t) − c†l a(t)]. As before, A is assumed to be in
the vaccuum state, while B is in a pure squeezed state. In
this section we refer to several different rotating frames:
the frame of the driving laser rotating at ω0 (which is our
standard frame of reference), the squeezing frame which
defines the central frequency for the squeezed input light
at ωs, and the local oscillator frame at ωlo in reference to
which all measurements will be made. We therefore have
the relations

a(t) = alo(t)e−i∆lot, (52a)

b(t) = bs(t)e
−i∆st = blo(t)e−i∆lot, (52b)

with the definitions ∆lo = ωlo − ω0, ∆s = ωs − ω0. The
squeezed input state is then, in the squeezing frame, de-
fined by the eigenvalue equation

[
bs(t)− αb†s(t)

]
|M〉B =

0 with α = (N + M)/(N + M∗ + 1). The Schrödinger
equation of the full system in the LO frame can be writ-
ten as (neglecting for the moment the coupling to the
mechanical bath as this can easily added in the end)

d|φ〉 = −iHeff |φ〉dt+
√
κ
(

dA†lo + α dAlo

)
ei∆lotcl|φ〉

+
√
κ
(

dBloe−iδt − α dB†loeiδt
)

ei∆lotcl|φ〉, (53)
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where |φ〉 is the state describing the complete system
with an initial condition |φ0〉 = |ψ0〉S |vac〉A|M〉B and
δ = ∆lo − ∆s. If we now choose ∆s = ∆lo, i. e., δ = 0,
we can rewrite this as

d|φ〉 =
[
−iHeff dt+

√
κ/2 (µdX+ + iν dP−) cl e

i∆lot
]
|φ〉,

where dX+ =
√

1/2(alo + a†lo + blo + b†lo) dt and dP− =

i
√

1/2(alo−a†lo−blo +b†lo) dt, and µ = 1−α, ν = 1+α as
before. By comparing this to Schrödinger equation (33)
we can deduce that the heterodyne Bell measurement at
ωlo is described by SME (39) together with the expression
for the measurement currents (35) if we set s = cle

i∆lot.
Thus the master equation

dρc = Lρc dt+
√
κH[(µdW+ + iν dW−)cle

i∆lot]ρc (54)

together with the output equations

I+ dt =
√

1/2〈clei∆lot + H. c.〉c dt+ dW+, (55a)

I− dt = i
√

1/2〈clei∆lot −H. c.〉c dt+ dW− (55b)

provides us with a description of the conditional state
of the full optomechanical system (including the cavity
mode) conditioned on the heterodyne currents I±. What
we eventually seek to obtain, however, is an effective de-
scription of the mechanical system only. In the weak
coupling regime this can be achieved by adiabatically
eliminating the cavity mode, which corresponds to a per-
turbative expansion in the small parameter g/κ� 1. At
the same time it will be important to keep κ/ωm and
∆l/ωm constant in order to capture the dynamical back-
action effects of the cavity, which are crucial for a cor-
rect description of these systems. As this procedure is
well covered in the literature [26], we will only outline it
briefly and point out the most important differences from
earlier work. To be able to make the desired expansion
we must first transform (54) into the interaction picture
defined by the free Hamiltonian H0 = ωmc

†
mcm−∆lc

†
l cl,

dρ̃c = −ig
[
(cle

i∆lt + H. c.)(cme−iωmt + H. c.), ρ̃c
]

dt

+
√
κH[(µdW+ + iν dW−)cle

i(∆lo+∆l)t]ρ̃c

+ κD[cl]ρ̃c dt. (56)

(All operators marked with a tilde, e. g., ρ̃, are defined
with respect to this rotating frame.) Following [26] one
can show that the SME for the mechanical system (in the
rotating frame at ωm) can be written as

dρ̃(m)
c = −

√
2g2

[
x̃m, ỹρ̃

(m)
c − ρ̃(m)

c ỹ†
]

dt

+
√
g2κH[(−iµdW+ + ν dW−)ỹei∆lot]ρ̃(m)

c , (57)

where ρ̃(m)
c denotes the conditional state of the mechan-

ical subsystem. Here we also defined ỹ = η−cme−iωmt +
η+c
†
meiωmt and η± = [κ/2 + i(−∆l ± ωm)]−1.

Equation (57) does not give rise to a valid Lindblad
equation when averaged over all possible measurement

trajectories as ỹ is not a Hermitian operator. In order to
get a consistent equation we apply a rotating wave ap-
proximation (RWA) to both the dynamics generated by
the first commutator term and the measurement term.
Let us take a closer look at the first term in (56): Plug-
ging in the definitions of x̃m and ỹ we find resonant terms
of the form cmρ̃

(m)c†m, c†mcmρ̃(m), etc., and off-resonant
terms oscillating at e±2iωmt. The resonant terms have two
effects: First they give rise to cooling and heating (see
below), and second to a frequency shift of the mechan-
ical resonance frequency (optical spring effect), yielding
ωeff
m = ωm + g2 Im(η+ + η−). We have to account for this

frequency shift by changing to a different rotating frame
at ωeff

m , which we still denote by ρ̃(m) for simplicity.
We can now introduce a time coarse graining in the

form of δρ̃(m)
c =

∫ t+δt
t

dρ̃
(m)
c which we apply to the re-

sulting equation. We assume that it can be arranged such
that ρ̃(m)

c varies slowly on the timescale δt (and can thus
be pulled out from under all time integrals), while we still
average over many mechanical periods, i. e., δt ωeff

m � 1.
In the adiabatic regime the relevant system timescales are
given by g2/κ and n̄γ, the effective interaction strength
and mechanical decoherence rate respectively. Hence we
find that δt must fulfill ωeff

m � 1/δt � g2/κ, n̄γ. Al-
though equation (57) is valid for any ∆lo and ∆l, the form
of the resulting equation in RWA depends on the choice
of ∆lo. As we illustrate in the main text we drive the op-
tomechanical cavity on the blue sideband (ω0 = ωc+ωm),
but want the LO to be resonant with the scattered pho-
tons (ωlo = ω0 − ωeff

m ), and thus set ∆lo = −ωeff
m . For

the first term in (57) the RWA then simply amounts to
dropping all terms oscillating with e±2iωeff

m t (as they are
averaged out by the time coarse graining), which intro-
duces an error of order 1/(δt ωeff

m ). To treat the hetero-
dyne measurement we introduce the coarse-grained noise
increments δW (0)

± =
∫ t+δt
t

dW±, which obey (14) if one
replaces dt with δt. As we assumed that δt is small on
the relevant timescales of the system in the interaction
picture, we can now take the limit δt→ dt (and thus also
δρ→ dρ

(m)
c , δW (0)

± → dW
(0)
± ). We find an effective SME

for the mechanical system (valid for ∆lo = −ωeff
m only),

dρ̃(m)
c = γ−D[cm]ρ̃(m)

c dt+ γ+D[c†m]ρ̃(m)
c dt

+
√
g2κ/2 H[(−iµdW

(0)
+ + ν dW

(0)
− )η+c

†
m]ρ̃(m)

c , (58)

where we added mechanical decoherence terms, and de-
fined γ− = γ(n̄ + 1) + 2g2Re(η−) and γ+ = γn̄ +
2g2Re(η+). This equation generalizes the standard op-
tomechanical MEQ from [28]. In principle there exist
additional sideband modes centered at ±2ωeff

m , which in
RWA are not correlated with W (0)

± , nor do are they en-
tangled with the mechanical motion. We thus neglect
them.

To apply feedback we have to extract the modes cor-
responding to the filtered noise processes W

(0)
± from

the heterodyne currents I±. This can be achieved by
applying the coarse-graining procedure from above to
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(55a) and (55b), i. e., I(0)
± =

∫ t+δt
t

I± dt. Together with
〈cl〉c = −ig〈y〉c, which results from the adiabatic elimi-
nation, we find

I
(0)
+ dt ≈ −i

√
g2κ/2〈η+c

†
m −H. c.〉dt+ dW

(0)
+ , (59a)

I
(0)
− dt ≈

√
g2κ/2〈η+c

†
m + H. c.〉dt+ dW

(0)
− , (59b)

where we neglected contributions from higher sidebands,
introducing corrections on the order 1/(δt ωeff

m ). With
the identification s = −i

√
g2κ η+c

†
m the set of equations

(58), (59) is equivalent to the generic case discussed be-
fore. However, equation (58) additionally contains deco-
herence terms due to the coupling to the mechanical en-
vironment (γn̄D[c†m]+γ(n̄+1)D[cm]) and due to optome-
chanical back-action (2g2 Re(η−)D[cm]). For the choice
F+ = −

√
g2κη+(cm + c†m) and F− = i

√
g2κη+(cm − c†m)

(where the prefactors are chosen to match the operator
s), and after adding the appropriate decoherence terms,
the FME for optomechanical teleportation can be written
as

˙̃ρ(m) =
{
γ(n̄+ 1)D[cm] + γn̄D[c†m]

}
ρ̃(m)

+
4g2

κ

{
(1 + ε)D[cm] +

w3

η
D[xm + pm]

+

(
w1 − w3

η
− 1

)
D[pm] +

(
w2 − w3

η
− 1

)
D[xm]

}
ρ̃(m),

(60)

where ε = [1 + (4ωm/κ)2]−1 and we finally set ∆l = ωm.
By applying the diagonalization procedure from App. D
we can bring this into the form (15).

2. Time-continuous entanglement swapping

In this section we derive the SME (16) and FME (18)
which specify the generic case in Sec. III C for the op-
tomechanical implementation. Again, the goal is to de-
rive equations for the mechanical systems, which we ob-
tain by adiabatic elimination of the cavity and subse-
quent application of a RWA. As before the Bell detection
operates at the cavity frequency ωc detuned by ∆lo =
ωlo − ω0 with respect to the driving laser, and relations
(52) still apply. Following the logic from App. IIID 1 we
thus define si =

√
κ ei∆lotcl,i, which we use together with

the generic entanglement SME (50) and FME (49) as the
starting point for our approximations. Going to the ro-
tating frame with H0 =

∑
i(ωmc

†
m,icm,i −∆lc

†
l,icl,i) and

applying the adiabatic approximation procedure to (50)
leaves us with

dρ̃(m)
c = −

√
2g2

∑
i=1,2

[
x̃m,i, ỹiρ̃

(m)
c − ρ̃(m)

c ỹ†i

]
dt

+

√
g2κυ

2
H[(ỹ+ dW+ + iỹ− dW−)ei∆lot]ρ̃(m)

c

+

√
g2κ(1− υ)

2
H[(iỹ+ dV+ + ỹ− dV−)ei∆lot]ρ̃(m)

c , (61)

where ỹ± = ỹ1±ỹ2 with ỹi = η−cm,ie
−iωmt+η+c

†
m,ie

iωmt.
To apply a time coarse graining δρ(m)

c =
∫ t+δt
t

dρ
(m)
c we

first change to the frame rotating with ωeff
m (taking into

account the optical spring effect). If we choose ∆lo =
−ωeff

m we can drop the fast rotating terms in the first line
of (61). For the measurement terms (second and third
line) we again introduce δW (0)

± and neglect any sideband
modes. After taking the limit δt→ dt we end up with

dρ̃(m)
c = γ−{D[cm,1] +D[cm,2]}ρ̃(m)

c dt

+ γ+{D[c†m,1] +D[c†m,2]}ρ̃(m)
c dt

+
√
g2κυ/2 η+H[c†m,+ dW

(0)
+ + ic†m,− dW

(0)
− ]ρ̃(m)

c

+
√
g2κ(1− υ)/2 η+H[ic†m,+ dV

(0)
+ + c†m,− dV

(0)
− ]ρ̃(m)

c

(62)

where we introduced cm,± = cm,1 ± cm,2 and we added
mechanical decoherence terms. We apply the same coarse
graining to the measurement currents (49) and find, by
using si =

√
κei∆lotcl,i and 〈cl,i〉c = −ig〈yi〉c,

I
(0)
+ dt = −i

√
g2κυ/2 〈η+c

†
m,+ −H. c.〉c + dW

(0)
+ , (63a)

I
(0)
− dt =

√
g2κυ/2 〈η+c

†
m,− + H. c.〉c + dW

(0)
− , (63b)

I
′(0)
+ dt =

√
g2κ(1− υ)/2 〈η+c

†
m,+ + H. c.〉c + dV

(0)
+ ,

(63c)

I
′(0)
− dt = −i

√
g2κ(1− υ)/2 〈η+c

†
m,− −H. c.〉c + dV

(0)
− .

(63d)

One can clearly see that equations (62) and (63)
are equivalent to SME (50) and measurement cur-
rents (49) if we set s± =

√
g2κη+c

†
m,± and add

appropriate decoherence terms. We can therefore
use FME (51) directly, and together with the choice
(F1, F2) =

√
υβ(icm,+ − ic†m,+, cm,− + c†m,−), (F3, F4) =√

1− υ(cm,++c†m,+, icm,−−ic†m,−) we find equation (18).

IV. CONCLUSION

In this article we discuss different measurement-based
feedback schemes which utilize entanglement as a re-
source in order to control the quantum state of mechani-
cal systems. We derive and discuss in detail the dynam-
ics of the optomechanical system under measurement and
feedback, specifically the situations of feedback cooling,
mechanical squeezing and generation of two-mode me-
chanical entanglement. The protocols are shown to be
feasible in current optomechanical systems which oper-
ate in the strong-cooperativity regime.
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Appendix A: Quantum stochastic calculus

The joint unitary evolution of a system S and a white-
noise electromagnetic field A can be described by a quan-
tum stochastic differential equation in Itō-form [41]

dU(t) =
[
−iHeff dt+ sdA†(t)− s† dA(t)

]
U(t), (A1)

with U(0) = 1, where s is a system operator, and the
effective Hamiltonian is given by Heff = Hsys − i 1

2s
†s,

where Hsys is the Hamiltonian describing the evolution
of S. A(t) and A(t)† are the bosonic annihilation and
creation processes acting on the Fock space of the elec-
tromagnetic field. The increments dA, dA† are forward-
pointing, dA(t):=A(t+dt)−A(t), and are (formally) con-
nected to the singular field operators a(t) [46] introduced
in Sec. III A by dA(t) = a(t) dt. The definition of the in-
crements leads to the property that they commute with
U for equal times, i. e., [U(t),dA(t)] = [U(t),dA†(t)] = 0.
If we assume that initially the electromagnetic field is in
the vacuum state, the increments obey the multiplication
rules

× dA dA† dt

dA 0 dt 0
dA† 0 0 0
dt 0 0 0

More generally two quantum stochastic processes X(t),
Y (t) obey the Itō product rule

d[X(t)Y (t)] = [dX(t)]Y (t) +X(t) dY (t) + dX(t) dY (t),
(A2)

again with dX(t):=X(t+ dt)−X(t), etc. The standard
chain rule is modified in a similar way. For a differen-
tiable function f , we have

df(X(t)) = f ′(X(t)) dX(t) +
1

2
f ′′(X(t)) dX(t)2, (A3)

which in particular leads to f(X(t + dt)) = f(X(t)) +
f ′(X(t)) dX(t) + 1

2f
′′(X(t)) dX(t)2. To convert between

the Itō and the Stratonovich formulation we can use
the following approach [35]. Consider the Stratonovich
stochastic differential equation

(S) dX(t) = AX(t) dt+ BX(t) dW (t), (A4)

with linear operators A and B, a Wiener process W (t)
with dW (t)2 = dt, and a initial condition X(0). This

equation has the formal solution

X(t) = T exp

{∫ t

0

[Ads+ B dW (s)]

}
X(0), (A5)

where T denotes the time ordered product. We can now
calculate the Itō increment dX(t) = X(t+dt)−X(t) and
find

dX(t) = {exp[Ads+ B dW (s)]− 1}X(t)

=
{

[A+ 1
2B

2] dt+ B dW (s)
}
X(t),

(A6)

where we expanded the exponential to second order and
used Itō rules. All stochastic differential equations in this
manuscript are assumed to be in Itō form unless noted
otherwise [and denoted by an (S)].

Appendix B: Quantum LQG control

In this section we briefly review the most important
equations of quantum LQG control, following closely the
presentation in [54]. Consider a Gaussian n-dimensional
open quantum system coupling to m vacuum field chan-
nels, m′ ≤ m of which are subject to homodyne detec-
tion. (In the remainder of this section, we will assume
that all channels are measured and thus m′ = m.4) The
joint evolution of system plus field is then given by (A1).
The system’s state conditioned on the outcomes of the
homodyne measurements is described by the stochastic
master equation (or quantum filter)

dρc = −i[H, ρc] dt+

m∑
i=1

D[Li]ρc dt+

m′∑
i=1

H[Li]ρc dWi,

(B1)
where dWi are Wiener processes with dWi dWj = δij dt
and the Hamiltonian is at most quadratic in the system’s
quadratures, which we collect into a column vector X =
(X1, . . . , X2n)T. The canonical commutation relations
can then be written as [Xi, Xj ] = iJij , where J is an
skew-symmetric real matrix. We can parametrize L =
(L1, . . . , Lm)T and H as L = ΛX and

H = 1
2X

TRX+
[
XTR̃u(t) + H. c.

]
, (B2)

where R ∈ Rn×n is symmetric, R̃ ∈ Cn×m and u(t) is
a m-dimensional input signal, which will later be used
as a control input. We can describe the system in terms
of a vector quantum Langevin equation and an output
equation [54]

dX(t) =
[
FX(t) + Gu(t)

]
dt+ dV (t), (B3a)

dY (t) = HX(t) dt+
[

dA(t) + dA(t)†
]
, (B3b)

4 The case m′ < m can be used to describe inefficient photo-
detection (see Sec. III A) or decoherence channels which cannot
be observed at all, e. g., phonon losses of a mechanical oscillator.
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with the definitions F = J[R + Im(Λ†Λ)], H = Λ + Λ†,
G = J(R̃ + R̃∗), and dV = iJ(ΛT dA† −Λ† dA), where
dA = (dA1, . . . ,dAm)T. We assume the field is in the
vacuum state ρvac, such that dAi(t) dAj(t) = δij dt. The
measurement currents from the homodyne measurements
are (formally) given by I(t) = dY (t)/ dt.

Using these definitions we can deduce the equations of
motion for the conditional mean values X̂ = tr[Xρc] and
symmetric covariance matrix Σ̂ = tr[XXTρc] − X̂X̂

T
.

We find [54]

dX̂(t) =
[
FX̂(t) + Gu(t)

]
dt

+ K(t)
[

dY (t)−HX̂(t) dt
]
, (B4a)

d

dt
Σ̂(t) = FΣ̂(t) + Σ̂(t)FT + N

−
[
Σ̂(t)HT + M

][
Σ̂(t)HT + M

]T
, (B4b)

where

K(t) = Σ̂(t)HT + M, (B5a)

N dt = Re
(
dV dV T

)
=

1

2
J(Λ†Λ + ΛTΛ∗)JT dt, (B5b)

M dt = Re
(
dV (dA + dA†)T

)
=

i

2
J(ΛT −Λ†) dt. (B5c)

Equations (B4) together with (B5) are known as the
Kalman–Bucy filter in classical estimation theory [55].
Assuming a stable system [12], the steady-state solution
of the conditional covariance matrix Σ̂ can be found by
setting the right-hand side of (B4b) to zero, and solving
the resulting algebraic Riccati equation. If instead we are
interested in the properties of the unconditional state, we
can solve the Lyapunov equation obtained from (B4b) by
dropping the last term. [The resulting equation can also
be obtained from (B3a) by application of Itō calculus.]

The goal of LQG control is to control a system in a
way that minimizes a quadratic cost function. In this
paper we only deal with the asymptotic control problem
for t→∞ as we are interested in the steady state of our
systems. We therefore want to find a feedback strategy
which minimizes the total cost [56]∫ ∞

0

E[h(X(t),u(t))] dt, (B6)

where we introduced E[·] = tr[ρ(0)ρvac (·)], the expecta-
tion value with respect to the initial state ρ(0) of the
system and the vacuum state of the field. We choose h
to be of the form

h(X,u) = XTPX + uTQu, (B7)

where P ≥ 0 and Q > 0 are both real, symmetric ma-
trices of appropriate dimensions. Under the assumption

of certain stability conditions [12] the optimal feedback
signal is given by [54]

u(t) = −C(t)X̂(t), (B8)

C = Q−1GTΩss, (B9)

with Ωss the solution of the algebraic Riccati equation

FTΩss + ΩssF + P−ΩssGQ−1GTΩss = 0. (B10)

In Sec. II C we need to calculate the steady-state covari-
ance matrix of a linear system including optimal feed-
back. This can be achieved by first noting that (due to
the separation principle [12]) we can write (B4a) as

dX̂(t) =
(
F−GC

)
X̂(t) dt+ K dW̃ , (B11)

where dW̃ is a Wiener process with dW̃ (t) dW̃ (t)T =
1m dt (the so-called innovations process). We also need
that [44, 57]

Re
(
E[(X(t)− X̂(t))(X(t)− X̂(t))T]

)
= Σ̂(t), (B12)

E[(X(t)− X̂(t))X̂(t)T] = 0, (B13)

where the first relation follows from the definition of X̂
and Σ̂, and the second from the orthogonality principle
[44]. We therefore find

Re
(
E[X(t)X(t)T]

)
= Σ̂(t) + E[X̂(t)X̂(t)T], (B14)

where the equation of motion for the last term on the
right-hand side Ξ(t) = E[X̂(t)X̂(t)T] can be deduced
from (B11), with a steady-state solution Ξss which fulfills

(F−GC)Ξss + Ξss(F−GC)T + KKT = 0. (B15)

The steady-state solution of the symmetric covariance
matrix of the controlled quantum system is thus given
by

lim
t→∞

Re
(
E[X(t)X(t)T]

)
= Σ̂ss + Ξss. (B16)

Finally, we want to estimate the magnitude of the ex-
pected feedback signal. We quantify this by E[uT(t)u(t)].
In the steady state we find

E[uT(t)u(t)] = E[X̂
T
CTCX̂] = tr[CΞssCT]. (B17)

Appendix C: Some basics on squeezed states

The field operator b(t) describing an ideal, white,
squeezed light field fulfills

〈b†(t)b(t′)〉(N,M) = N δ(t− t′), (C1a)
〈b(t)b(t′)〉(N,M) = M δ(t− t′), (C1b)
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with N > 0 and M ∈ C. For the quadratures x =
(b+ b†)/

√
2 and p = −i(b− b†)/

√
2 we therefore find

〈x2〉(N,M) = 1
2 (2N + 1 +M +M∗), (C2a)

〈p2〉(N,M) = 1
2 (2N + 1−M −M∗), (C2b)

1
2 〈xp+ px〉(N,M) = − i

2 (M −M∗). (C2c)

For a physically meaningful state the uncertainty product
must be (∆x)2(∆p)2 − 1

4 〈xp+ px〉2 ≥ 1
4 , which leads to

|M |2 ≤ N(N + 1) (where equality is valid for a pure
state). In addition the pure squeezed state |M〉 fulfills
the eigenvalue equation

[
(N +M∗ + 1)b− (N +M)b†

]
|M〉 = 0. (C3)

It follows that the displaced squeezed state |M,β〉 =
D(β)|M〉:= exp(βb† − β∗b)|M〉 fulfills the same equation
if we make the replacement b→ b− β.

Appendix D: Diagonalization of non-Lindblad terms

In general the feedback master equations in Sec. III are
not in Lindblad form as the prefactors of the operators
D can be negative. To cure this we can rewrite the non-
unitary part of the evolution in terms of R = (x, p)T as
ρ̇ =

∑
ij Λij

(
RiρRj − 1

2ρRjRi −
1
2RjRiρ

)
, where Λ is a

Hermitian matrix. By virtue of the eigenvalue decompo-
sition of Λ we can write ρ̇ =

∑
i λiD[Ji]ρ with Ji = vi ·R,

where λi and vi (i = 1, 2) are the eigenvalues and eigen-
vectors of Λ respectively.
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