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PERSPECTIVES & VIEWS

Trajectories without quantum uncertainties

Eugene S. Polzik and Klemens Hammerer

Quantum uncertainties set by the
Heisenberg uncertainty principle
determine fundamental limits on
measurement precision. With rapid
developments of sensitivity of mea-
surements these limits have been
approached in various types of
measurements including measure-
ments of fields, time, acceleration,
and position. It is commonly ac-
cepted that the balance between
the amount of information obtained
from the measurement and the back
action of the measurement can be at
best balanced such that they result
in the standard quantum limit of
the position measurement [1–5].
Ideas for circumventing this limit
have been put forward based on
frequency-dependent squeezing [6],
variational measurement [7], the
use of Kerr media [8], dual mechan-
ical resonators [9, 10], the optical
spring effect [11], stroboscopic
measurements [5], or two-tone
measurements [1, 2, 12–14]. How-
ever, all those approaches are
limited to measurements of a single
quadrature operator of a system
and hence are intrinsically limited
to measurements of a signal in a
single quadrature of the field to
be measured which implies that
the phase of the signal needs to be
known in advance. In practice the
phase of the signal to be detected
is likely to be unknown in advance
and therefore another approach is
desirable.

A new approach to back action
cancellation has been demonstrated
in Wasilewski et al. [15] where a care-

fully engineered quantum measure-
ment on two entangled spin sys-
tems has led to partial cancelation
of the quantum noise of measure-
ment for a sensor of magnetic fields.
The basis for this approach has
been an experimental demonstra-
tion of an Einstein-Podolsky-Rosen
(EPR) state of two atomic spin os-
cillators [16], one of which has an
effective negative mass. Such an
entangled EPR state can also be
created in a hybrid system involv-
ing a nano-mechanical oscillator
and an atomic spin ensemble with
an effective negative mass [17]. A
general theoretical frame for such
an approach has been very recently
formulated [18, 19]. Following these
works, proposals for back action
evading measurements employing a
Bose-Einstein-condensate [20] or a
two-tone drive [21] to realize an os-
cillator with an effective negative
mass have been put forward, and
the all-optical implementation sug-
gested in [18, 19] has been studied
further [22].

In this paper we show how us-
ing the entangled state of a positive
and a negative mass oscillator one
can predict the quantum trajectory
of the magnetic or mechanical os-
cillator measured relatively to a spe-
cially chosen origin with, in princi-
ple, arbitrarily low uncertainty. Our
goal is to develop an intuitive physi-
cal picture for this new approach to-
wards metrology below the standard
quantum limit, and to illustrate it on
the basis of the measurements re-
ported in [15].

We base our discussion on three
principles. First, we state that a tra-
jectory should be defined with re-
spect to some physical origin. Sec-
ond, we treat this physical origin
as a quantum object. Finally, we al-
low this object to have an effec-
tively negative mass. Under these
three conditions the trajectory de-
fined with respect to this origin can
be known to arbitrary precision at
any time. Besides being of funda-
mental interest, this approach opens
the way towards force and accelera-
tion measurements at new levels of
sensitivity.

According to the rules of quan-
tum mechanics the precision to
which we can know the position
X of any object is restricted in
several ways. First and foremost
Heisenberg’s principle requires that
the uncertainties of position and its
conjugate variable, momentum P,
have to fulfill at any time �X�P ≥
�/2 as a consequence of the canon-
ical commutator [X, P] = i�. This
does not of course forbid that the po-
sition takes on an arbitrarily sharp
value at a particular instant time,
provided the momentum is totally
blurred at the same moment. Such
a squeezed state of motion has been
demonstrated for a massive har-
monic oscillator in the form of a
trapped ion [23]. However, as the
system evolves – e.g. X(t) = X(0) +
t P(0)/m for a free particle of mass
m – the large uncertainty in momen-
tum will cause a large uncertainty
in position at later times. Therefore
the trajectory of a freely evolving
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Figure 1 Trajectories for various quantum states. Upper row - quantum states of the sys-
tem, lower row - trajectories. From left to right: coherent state, squeezed state, EPR state
with positive mass(frequency), EPR state with negative mass (frequency).

quantum particle cannot be known
to arbitrary precision for arbitrary
times, as further explained in Fig. 1.

Fortunately there is a quantum
trick which can be played to fight
the quantum conspiracy. Note first
that the measurement of a position
X necessarily is the measurement of
a relative distance X − X0 between
the particle and the origin at X0.
Whereas usually this point of refer-
ence is taken to be a classical object,
we consider a quantum reference
frame [24, 25]. This point of refer-
ence is considered as a quantum
degree of freedom on equal footing
with the variable of the system to be
measured, such that [X0, P0] = i�.
That is to say, measurement and
knowledge of the position of a par-
ticle always implicitly refers to a
relative distance X − X0 between
two systems. Assume now that this
relative position is measured at time
t = 0. The relative position at future
times assuming a free evolution is
then given by X(t) − X0(t) = X(0) −
X0(0) + t[P(0)/m − P0(0)/m0]. As-
sume now that the “quantum origin”
is a very special sort of particle,
namely one with a negative mass,
the physics of which will be detailed
below. Moreover, let the mass be
of equal magnitude as the one of
the particle to be measured but of
opposite sign, m0 = −m. Under this

assumption the free evolution of the
relative position is

X(t) − X0(t) = X(0) − X0(0) + t[P(0)

+ P0(0)]/m. (1)

Nota bene, the relative position
now couples to the sum of the mo-
menta P + P0. This is an important
point because those are commuting
quantities, [X − X0, P + P0] = 0,
such that they can be known
simultaneously with arbitrary pre-
cision. The states which possess
reduced – or even vanishing – vari-
ances of relative position and sum of
momenta are entangled states of two
systems, and coincide with the states
considered in the famous Einstein-
Podolsky-Rosen argument on the
ostensible incompleteness of quan-
tum theory [26]. In order to simplify
notations in the following discus-
sion we will assume that the position
and momentum variables X, X0 and
P, P0 can be scaled such as to be di-
mensionless1. Therefore, we assume

1 In case the two systems are harmonic os-
cillators of a given frequency ω the di-
mensionless canonical coordinates can be
naturally introduced by scaling position
and momentum to the respective zero
point fluctuations xZPF = √

�/mω and
pZPF = √

�mω.

a canonical commutator [X, P] =
[X0, P0] = i which implies that the
variance of each of these canonical
variables equals 1/2 for uncorrelated
minimum uncertainty states, that
is zero point fluctuations. In this
convention, the degree of entangle-
ment of an Einstein-Podolsky-Rosen
state can be characterized by the so-
called EPR variance �EPR = Var(X −
X0) + Var(P + P0) < 2 [27, 28]. Mak-
ing an extra crucial assumption of
the negative mass of one of the two
EPR entangled particles (serving as
a quantum reference frame) allows
the relative position to be known to
arbitrary precision at all times. Note
that generation of an EPR entangled
state between a particle and the ori-
gin particle with a regular positive
effective mass leads to the same un-
certainty of the relative position as in
the case of a classical origin system
(Fig. 1).

We can determine X − X0 in
principle but can we actually learn
about the relative position without
disturbing it? As discussed above,
if we measure by some means the
relative position X − X0 we will
necessarily disturb the conjugate
variable, that is P − P0. But this vari-
able does not couple to the relative
position at later times in case of the
negative mass origin particle, see
Eq. (1). The back action effect of the
measurement therefore cannot spoil
the knowledge we acquired about
the relative position. Under the con-
ditions considered here the relative
position can thus be known and
measured to any desired accuracy
at any time. Since a relative position
is all we can ask for we conclude
that it is possible to have quantum
trajectories without quantum uncer-
tainties. Accordingly, any signal (of a
field or force) leaving its trace in the
position or momentum of either of
the two oscillators can in principle
be sensed without quantum limits
through repeated measurements of
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the otherwise noiseless quantities
X − X0 and P + P0.

Consider now a repeated or
time-continuous measurement
of the relative position X − X0.
If the backaction noise is can-
celled the strength of the meter
can be increased indefinitely and
hence the meter noise contribution
can be negligible. In this case the
relative coordinate and momen-
tum for the two oscillators can be
measured arbitrarily well. The pre-
cision of this measurement is given
by the entanglement condition
Var(X − X0) + Var(P + P0) < 2. The
equality achieved for uncorrelated
systems in a pure state corresponds
to two units of vacuum noise
Var(X − X0) = Var(P + P0) = 1. This
benchmark exactly corresponds to
the optimal performance attain-
able in conventional, back action
non-evading measurement: There
the optimal balance between meter
and back action noise achieved at
the standard quantum limit con-
sists of one unit due to the system
uncertainty, half a unit due to the
meter uncertainty and another half
unit due to the measurement back-
action, that is two units of vacuum
noise in total [29, 30]. In the partic-
ular back-action evading scheme
suggested here a measurement
sensitivity below the SQL implies
entanglement of the two posi-
tive and negative mass oscillators
employed as sensors.

1 Noiseless trajectory for an
oscillator

The same logic just discussed for free
particles applies also to oscillators.
The time dynamics of a harmonic
oscillator is given by X(t) = X(0)
cos(ωt) + P(0) sin(ωt) and P(t) =
P(0) cos(ωt) − X(0) sin(ωt) where
we refer again to dimensionless
position and momentum variables.

Again, exact knowledge of X(0)
corresponding to the squeezed state
of the oscillator at t = 0 leads to
the trajectory which is very noisy
at t �= 2π/ω, 4π/ω... due to the
quantum noise of backaction of
the measurement of X(0) imposed
on P(0). As for a free particle, an
entangled EPR state between the
oscillator of interest and a refer-
ence oscillator leads to a noiseless
trajectory provided that the refer-
ence oscillator has an effectively
negative mass. Indeed, in this
case X(t) − X0(t) = [X(0) − X0(0)]
cos(ωt) + [P(0) + P0(0)] sin(ωt). The
commuting operators X(0) − X0(0)
and P(0) + P0(0) can be known
exactly and hence X(t) − X0(t) can
be also known exactly at any given
time.

As a specific example of two en-
tangled oscillators of which one can
exhibit a negative mass we provide
an illustration in terms of mag-
netic oscillators realized in atomic
ensembles. Consider two collec-
tive magnetic moments (spins) of
atomic ensembles [31] in a magnetic
field, see Fig. 2. One of the oscilla-
tors is oriented along the B-field and
hence precesses clockwise when
seen along its own mean orientation
Jx1 = Jx (upwards in the Fig.) at
the Larmor frequency ω, such that
J y1(t) = J y1(0) cos(ωt) + Jz1(0) sin
(ωt) and Jz1(t) = Jz1(0) cos(ωt) −
J y1(0) sin(ωt). For atoms with pos-
itive g-factors such rotation corre-
sponds to positive magnetic energy.
The other spin is oriented oppositely
to the B-field and hence precesses
counter-clockwise when seen along
its orientation Jx2 = −Jx (down-
wards in the Fig.), such that J y2(t) =
J y2(0) cos(ωt) − Jz2(0) sin(ωt) and Jz2

(t) = Jz2(0) cos(ωt) + J y2(0) sin(ωt).
Such rotation leads to the negative
magnetic energy and can be for-
mally obtained from the expressions
for the first spin by changing the
sign of the frequency ω. Physically

both spins precess clockwise when
seen along the common direction of
the B-field, that is in this common
reference frame

J y1(t) + J y2(t) = [J y1(0) + J y2(0)]

× cos(ωt) + [Jz1(0)

+ Jz2(0)] sin(ωt)

and

Jz1(t) + Jz2(t) = [Jz1(0) + Jz2(0)]

× cos(ωt) − [J y1(0)

+ J y2(0)] sin(ωt).

From the spin commuta-
tion relations [Jz1(0), J y1(0)] =
−[Jz2(0), J y2(0)] = Jx where we ap-
proximate Jx, the spin component
along the axis of atomic polarization,
as a classical variable. We infer that
[Jz1(0) + Jz2(0), J y1(0) + J y2(0)] = 0.
Hence the initial mutual orientation
of the two collective spins can be
measured and known beyond the
standard quantum limit.

The better than the standard
quantum limit correlation of the two
spins can be cast in the language of
the canonical oscillators by intro-
ducing the variables: X1 = J y1/

√
Jx,

X2 = −J y2/
√

Jx and P1 = Jz1/
√

Jx,
P2 = Jz2/

√
Jx which follow the

canonical commutation relation
[X1(2), P1(2)] = i with variances
Var(X) = Var(P) = 1/2 in the mini-
mal uncertainty state called a coher-
ent spin state (CSS). From the above
equations we obtain X(t) − X0(t) =
[X(0) − X0(0)] cos(ωt) + [P(0) + P0

(0)] sin(ωt). This relation implies that
if an entangled state of these two os-
cillators with Var[X(0) − X0(0)] → 0
and Var[P(0) + P0(0)] → 0 is created
at t = 0, the relative canonical co-
ordinate of one oscillator in the ref-
erence frame of the other one shall
have vanishingly small uncertainty
at all times Var[X(t) − X0(t)] → 0.
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Figure 2 Collective spin oscillators with an effective positive and negative
masses. The ensemble on the left is polarized along the magnetic field di-
rection with the blue cone representing the collective spin including its
transverse uncertainty. Excitation of the ensemble from a fully polarized state cor-
responds to the precession of the spin in the field with positive magnetic energy.
The ensemble on the right is polarized in the opposite direction and its excitation
corresponds to the precession with a negative magnetic energy, or an effective negative
mass.

2 Experiment with magnetic
oscillators

We can illustrate the effect of en-
tanglement enhanced back action
evasion using the data obtained in
the experiment [15]. Consider two
magnetic oscillators as introduced
above. Initially the two ensembles
are prepared in a minimal uncer-
tainty state with opposite macro-
scopic spin directions as shown in
Fig. 3(a). After that a radio-frequency
magnetic field is applied to one of
the spin oscillators for a time τ , so
that it dynamically evolves following
a trajectory indicated with an arrow
starting from the initial zero point.
As shown in [15], the coordinate of
one of the oscillators with respect
to the other one can be measured
in a quantum nondemolition way
by sending a pulse of light through
the two ensembles. The result of

the measurement yields the values
of X1 − X2 = J 1

y /
√

Jx − J 2
y /

√
Jx and

P1 + P2 = J 1
z /

√
Jx − J 2

z /
√

Jx. The re-
sult of this experiment repeated
many times is shown in Fig. 3(b).
The red line starting at zero point
presents the mean displacement of
the oscillator (i.e. its trajectory) dur-
ing the time τ . The magenta circle
shows the standard deviation of the
distribution of the results. It is very
close to the purple circle which is
the calculated standard deviation for
the spins in the minimal uncertainty
state. These results demonstrate the
measurement of the trajectory of an
oscillator with the uncertainty being
very close to the standard quantum
limit.

In the next experiment an en-
tangled state between the two
oscillators is created. Figure 3(c)
from [15] presents measurements
of the EPR variance as a function

of time after the state is gener-
ated. The horizontal solid line cor-
responds to coherent state noise or
zero-point fluctuations of the spin
oscillator. The circles correspond to
the entangled state created at t = 0
by a measurement on the pulse of
light propagating through both en-
sembles. This prepares the neces-
sary EPR entangled state between
the positive and negative mass os-
cillator. The state has the EPR vari-
ance �EPR/2 = 0.7 immediately af-
ter the state is generated. After that
the radio-frequency magnetic field is
applied to one of the spin oscilla-
tors for a time τ , so that it has the
same classical dynamics as in the
first experiment. After that the mea-
surement of X1 − X2 and P1 + P2 is
performed. Figure 3(d) shows the
results of this series of trajectory
measurements. The standard devia-
tion of the trajectories is 0.84 of the
standard deviation defined by the
standard quantum limit for the spin,
a clear demonstration of back action
evading magnetometry catalyzed by
entanglement.

As proposed in [17] entangle-
ment can be generated between an
atomic spin oscillator with a nega-
tive mass described above and a me-
chanical oscillator coupled to light
via radiation pressure. With such an
entangled state a trajectory of the
mechanical oscillator can be mea-
sured with the precision beyond the
SQL as has been demonstrated for
two spin oscillators.

It is worth] noting that due to
the entanglement monogamy fea-
ture [32] the noiseless trajectory is
only observed in a unique refer-
ence frame whith which the parti-
cle is entangled. In all other refer-
ence frames the trajectory will be
completely undefined. In this sense,
different reference frames are not at
all equivalent which may present an
interesting case from the space-time
perspective.
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Figure 3 Trajectory beyond the standard quantum limit. (a) Two
magnetic oscillators. (b) Results of a series of measurements of
1 msec evolution of one spin in the reference frame of the other spin
for uncorrelated spins. (c) The EPR variance of the entangled state of the
two spin oscillators. (d) Same as in (b) but for an entangled state of the two
oscillators.

With measurements of fields,
time, acceleration and position
approaching or reaching the quan-
tum limits of precision strategies to
achieve back action evasion gain
practical relevance. The consider-
ations laid out above show that it
is in principle possible to attain
trajectories without quantum un-
certainties and measurements of
motion beyond standard quantum
limits are possible. It is likely that
there is another limit to the preci-
sion of the measurements described
in this paper which is analogous
to the Heisenberg limit and hence
scales with the number of particles
as 1/N. This limit which is far be-
yond the present technologies for
macroscopic objects discussed here
will be analyzed elsewhere.
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