Supporting Information

Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems

Pandian Sokkar, Eliot Boulanger, Walter Thiel, and Elsa Sanchez-Garcia*

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

esanchez@mpi-muelheim.mpg.de

Figure S1. Mapping virtual sites in chorismate mutase. The fine-grained atoms that form a virtual site are encircled. The CG atom types of the virtual sites are also shown.

Figure S2. Mapping virtual sites in p-hydroxybenzoate. The fine-grained atoms that form a virtual site are encircled. The CG atom types of the virtual sites are also shown.

Figure S3. Mapping virtual sites in FADOOH. The fine-grained atoms that form a virtual site are encircled. The CG atom types of the virtual sites are also shown.

Figure S4. Hydrogen bonding between the prephenate substrate and the protein environment in a QM/MM/CG snapshot (hydrogen bond criteria: distance cutoff: 3 Å, angle cutoff: 20°)

Figure S5. Hydrogen bonding between the prephenate substrate and the protein environment in a QM/MM snapshot (hydrogen bond criteria: distance cutoff: 3 Å, angle cutoff: 20°)

Table S1. Activation barriers and reaction energies from single point QM/MM/CG energy calculations at the B3LYP/6-31G* level of theory (QM region) on AM1/MM/CG geometries along the potential energy scan. $\Delta\Delta E^{\ddagger}$: activation energy, $\Delta\Delta E$: reaction energy.

Snapshot	Standard QM/MM (kcal/mol)		QM/MM/CG ^a (kcal/mol)	
	$\Delta \Delta \mathbf{E}^{\ddagger}$	ΔΔΕ	$\Delta\Delta E^{\ddagger}$	ΔΔΕ
1	11.4	-17.4	13.4	-17.9
2	13.2	-15.2	12.9	-15.4
3	15.0	-16.8	-	-
4	13.4	-16.1	12.3	-20.6
5	9.6	-20.6	8.5	-21.7
6	13.8	-16.3	12.2	-15.9
7	11.0	-19.4	13.4	-16.7
8	12.2	-17.7	13.9	-17.3
9	12.7	-15.4	12.9	-14.0
10	8.9	-20.1	8.2	-20.8
Mean STDEV	12.1 1.9	-17.5 1.9	12.0 2.1	-17.8 2.7

^aPol-CG water with 10 Å MM water

Table S2. Computing times for the chorismate mutase system.

	A	M1	DFT		
System	t / step (s)	Savings (%)	t / step (s)	Savings (%)	
QM/MM	0.36	-	195.02	-	
QM/MM/CG					
0 Å TIP3P	0.18	49	137.82	29	
5 Å TIP3P	0.17	52	135.45	31	
10 Å TIP3P	0.20	46	157.24	19	
15 Å TIP3P	0.19	47	140.56	28	
19 Å TIP3P	0.24	33	149.06	24	
QM/MM/pol-CG					
0 Å TIP3P	0.24	33	152.56	22	
5 Å TIP3P	0.24	33	150.21	23	
10 Å TIP3P	0.25	31	159.83	18	
15 Å TIP3P	0.26	28	163.94	16	
19 Å TIP3P	0.29	19	173.33	11	

 Table S3. Computing times for the PHBH system

	AM1		DFT		
System	t / step (s)	Savings (%)	t / step (s)	Savings (%)	
QM/MM	1.04	-	882.5	-	
QM/MM/pol-CG	0.54	48	505.3	43	

Table S4. Average time for one single QM (DFT) gradient evaluation (in s) and computational savings (percent, in parenthesis) for QM/MM/CG relative to full atomistic calculations (see text) of a glycine – water system.

		Time for single QM gradient evaluation (s)			
	_	6-31G*	SVP	6-311G(2df,2pd)	TZVPP
	BLYP	18.8	19.1	62.2	67.9
Atomistic	BP86	18.5	18.6	63.2	68.1
Atomistic	B3LYP	19.9	20.1	77.6	88.3
	BHLYP	20.0	26.8	91.3	92.1
	BLYP	4.5 (76)	4.5 (76)	14.5 (77)	16.5 (76)
15 Å CG	BP86	4.5 (76)	4.5 (76)	14.8 (77)	15.8 (77)
water	B3LYP	5.5 (72)	6.1 (70)	30.8 (60)	35.1 (60)
	BHLYP	5.8 (71)	5.8 (78)	30.8 (66)	34.9 (62)
15 Å pol-CG	BLYP	7.2 (62)	7.1 (63)	23.0 (63)	25.5 (62)
	BP86	6.9 (63)	6.9 (63)	22.4 (65)	24.6 (64)
water	B3LYP	8.6 (57)	8.9 (56)	39.1 (50)	44.8 (49)
	BHLYP	8.7 (56)	8.2 (69)	37.8 (59)	43.2 (53)

Table S5. Average time for one single AM1 energy and gradient evaluation (in s) and computational savings (percent, in parenthesis) for QM/MM/CG relative to full atomistic calculations (see text) of a glycine – water system.

QM method	QM/MM (s)	QM/MM/CG ^a (s)	Savings ^a (%)	QM/MM/CG ^b (s)	Savings ^b (%)
AM1	0.29	0.07	76	0.11	62

^aGLY + 15 Å TIP3P water (inner region) + 15 Å CG water (outer region)

Force field parameters for type D particles in pol-CG water

The charged sites of pol-CG water (type D particle) do not have LJ-interaction terms in the Martini CG force field v2.1P. However, in the CG/FG multi-scale methodology, the type D particles interact with FG charges directly. Hence, to avoid polarization catastrophe, we assigned the following LJ-parameters to type D particles:

R_{min} (van der Waals radius): 2.5 Å

Emin (well depth): 0.00025 kcal/mol

^bGLY + 15 Å TIP3P water (inner region) + 15 Å pol-CG water (outer region)