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Abstract: We study the possible existence of gravitational phase transitions from AdS to dS
geometries in the context of higher-curvature gravities. We use Lanczos-Gauss-Bonnet (LGB)
theory with a positive cosmological constant as a toy model. This theory has two maximally
symmetric vacua with positive (dS) and negative (AdS) constant curvature. We show that a phase
transition from the AdS vacuum to a dS black hole geometry takes place when the temperature
reaches a critical value. The transition is produced by nucleation of bubbles of the new phase
that expand afterwards. We claim that this phenomenon is not particular to the model under
study, and shall also be part of generic gravitational theories with higher-curvature terms.
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1 Introduction

The simultaneous existence of different AdS/dS vacua is quite a common feature in many gravi-
tational theories. It is usually the result of coupling the metric to scalar fields [1, 2] or p-forms
[3–7]. This may give rise to a set of possible non-zero vacuum expectation values of the corre-
sponding fields, contributing to the vacuum energy density or cosmological constant. Moreover,
there are various mechanisms that may drive transitions between different vacua. These may
be either a quantum tunneling process –an instanton [8–10]– or a thermally activated transition
[11–15], possibly through thermalon mediation [16]. In most cases, these processes are directed
from the high (dS) to the low (AdS) energy density vacua, minimizing energy as expected. There
are instances, though, where the opposite is true, and the transition proceeds from an AdS to a
dS geometry [17, 18]. In this article we would like to show a very simple scenario in which both
vacua exist in the absence of any sort of matter, they are degenerate, and thermal effects may
drive the system to undergo such a phase transition.

The existence of several vacua is in fact a well known feature of higher-curvature theories of
gravity [19–21]. Among them, Lovelock theories play a prominent role since they yield second-
order field equations (see [22, 23] for a recent review). Thereby, they provide a specially suitable
and tractable playground that captures many important features that are rather generic in the
context of higher-curvature gravities. Among them, the existence of new branches of black hole
solutions, in correspondence with the set of vacua with different cosmological constants that pop
out as soon as higher-curvature terms are brought into place.

We showed in [24] that phase transitions among different vacua are possible and indeed
generic [25]. In analogy to the Hawking-Page process, above a critical temperature Tc some of
the Lovelock higher-curvature vacua shall decay by nucleating a bubble that hosts a black hole.
The process is very similar to the thermalon mediated one discussed in [16], in that bubbles are
thermally nucleated. They separate space in two regions with different effective cosmological
constants, in which black holes form in the interior. The thermalon in higher-curvature gravity
differs from the one discussed in [16] in two important ways. On the one hand, the cosmological
constant increases in the former at the end of the process. On the other, and most importantly,
bubbles in higher-curvature theories are made of no matter, but of the gravitational field itself.
After nucleation, dynamical instability of the bubble may trigger its expansion so that the interior
phase will grow, ultimately filling the universe with the new cosmological constant. Sometimes,
however, the instability may trigger its contraction, in which case the bubble would collapse.
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Naively, a naked singularity would form at the endpoint of the process. However, the contracting
system becomes unstable well before that happens [25].

Even though the framework used in analyzing these transitions is completely general, pre-
vious works mostly focused on the case where both intervening branches where asymptotically
AdS. This triggered the discussion about a suitable holographic interpretation of these gravita-
tional phase transitions. Even though it is still unclear to us, we pointed out in [24, 25] that
the whole process resembles that of quantum quenches in strongly coupled field theory (see, for
instance, [26]).

The present article is aimed at bridging one of the gaps in this line of research by considering
the possibility of AdS to dS gravitational phase transitions. To that end we will consider the
simplest non-trivial gravity possessing all the necessary ingredients, namely, the Lanczos-Gauss-
Bonnet (LGB) theory with a positive bare cosmological constant.1 The case involving a bare
negative cosmological constant has been already analyzed in [24], where no AdS to dS transition
was found: bubble configurations exist but they are all non-static; see [25]. In the canonical
ensemble, whether or not the transition takes place can be decided by evaluating and comparing
the Euclidean action among the various smooth classical configurations satisfying the appropriate
boundary conditions. This same on-shell Euclidean action can be used to compute the proba-
bility of bubble formation at a given temperature. We discuss the dependence of the critical
temperature –below which the AdS vacuum is the thermodynamically preferred configuration–
on the LGB coupling constant, λ. Even though for small temperatures the AdS vacuum seems
stable, it is actually metastable. There is always a probability for a bubble to be nucleated.

In Lorentzian signature, the dynamics of the bubble can be analyzed. Once produced, it
will expand and the dS vacuum will take over changing the asymptotics of the spacetime in
finite proper time. This entails a quite interesting scenario in which thermal AdS can decay
into a black hole dS geometry. At least two novel features occur, in comparison to the AdS to
AdS phase transitions studied earlier in [24, 25]. The thermalon does not exist above a threshold
temperature T? that is a function of λ. In particular, this implies that there is a critical value, λ?,
above which the thermalon free energy is always positive. Moreover, when the bubble expands, it
ends up reaching the cosmological horizon in finite proper time, which prevents the possibility of
choosing reflecting boundary conditions as in the case of AdS (even though the starting geometry
is AdS).

2 Thermalon in quadratic (LGB) gravity with Λ > 0

The LGB theory of gravity is given by the following action

I =
1

16πG

∫
ddx
√
−g

(
R− (d− 1)(d− 2)

L2
+

λL2

(d− 3)(d− 4)
R2

)
− I∂ , (2.1)

where R2 amounts to the combination, R2 = R2−4RµνR
µν+RµνλρR

µνλρ, which guarantees that
the equations of motion are second order in d ≥ 5 spacetime dimensions. Notice that the bare
cosmological constant is positive, Λ = (d−1)(d−2)/2L2 > 0, and we have a single dimensionless
coupling, λ, while dimension-full parameters are the Newton constant and the characteristic
length, L. We take λ > 0 which is the natural sign inherited, for instance, from string theory
embeddings of (2.1). The additional boundary term, I∂ , is necessary in order to have a well

1We refer to the cosmological term in the action as bare to distinguish it from the effective cosmological constants
giving the curvature of the different vacua; see (2.4).
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defined variational principle (see [24] for further details). It plays a fundamental role in the
phase transitions discussed in this letter, as we will explain below.

Black hole solutions for this theory can be readily obtained by means of a simple spherically
symmetric ansatz of the form

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2

d−2 , (2.2)

where dΩ2
d−2 is the metric of a unit round sphere. The equations of motion can be readily solved

and two branches of solutions emerge [19–21]:

f±(r) = 1 +
r2

2λL2

(
1±

√
1 + 4λ

(
1 +

M±
rd−1

))
, (2.3)

where M± is the (properly normalized) mass parameter of the spacetime [19]. The dS case under
consideration has been analyzed in detail in [27]. Notice that the only branch admitting a black
hole solution (i.e., a smooth event horizon) is that with the minus sign. Each of the two branches
in (2.3) is associated with a different value of the effective cosmological constant,

Λ± = −1±
√

1 + 4λ

2λL2
. (2.4)

It is immediate to see that Λ− is positive, while the negative Λ+ is afflicted by the Boulware-
Deser (BD) instability [19]. We shall consider in what follows Euclidean static bubble solutions
(i.e., thermalons) with either branches in the outside/inside. The only possibility that entails
a regular Euclidean section –to be considered as a saddle point of the path integral– is that
hosting a negative branch solution in the interior of the bubble, since only that branch displays
event horizons cloaking singularities (see Figure 1). This means that the asymptotics fixing

(a)

r =0

β+

r = 8

T+Μ+ = 0

(b) β+

T+

r = 8r= a

r= rH

β−

Μ− Μ+

Thermal anti-de Sitter

Black hole inside a bubble

Figure 1: The thermalon: Euclidean section for the bubble hosting a (negative branch; f− in
(2.3)) black hole in its interior with (positive branch; f+ in (2.3)) AdS asymptotics.

the boundary conditions in the path integral is that of the positive branch; i.e., we deal with
asymptotically AdS geometries. Notice that the reversed configuration is singular. Therefore, a
gravitational phase transition mediated by thermalon nucleation from dS to AdS is forbidden in
LGB theory with Λ > 0.

In addition to being required for the variational principle to be well defined, boundary terms
play a fundamental role in the description of weak or distributional solutions to the equations

– 3 –



of motion. When considering a co-dimension one surface, Σ, splitting the spacetime manifold
in two, it is convenient to rewrite the action also as two bulk and one surface contributions,
according to the spacetime splitting. We may then write (see [25] for details),

I = I− + IΣ + I+ − I∂ , (2.5)

where the bulk contributions, I±, have the same form as (2.1), whereas the bubble term can be
in turn split into two terms, each one corresponding to either side. Both are formally the same
as the original boundary term, I∂ , except for the fact that they are evaluated at the position of
the bubble,

IΣ = I+
∂ − I

−
∂ . (2.6)

This action is well adapted to the problem we are interested in as now the variation of the bulk
terms still results in the usual Lovelock field equations, whereas the variation of the surface
terms yields the junction conditions along Σ. The latter amount to continuity conditions on the
canonical momenta of the theory,

Π+
ij = Π−ij . (2.7)

We are interested in non-singular static configurations as the one displayed in Figure 1. Being
static, the Euclidean sections have the form

ds2 = f±(r±)dt2± +
dr2
±

f±(r±)
+ r2
±dΩ2

d−2 , (2.8)

where the ± signs correspond to the outer/inner regions. Projecting from either side of the bubble
onto the timelike hypersurface Σ, which we define parametrically as t± = T±(τ), r+ = r− = a(τ),
we get

ds2
Σ = dτ2 + a2(τ) dΩ2

d−2 , (2.9)

where the radial coordinate has to be continuous across the junction. For the orientation we are
interested in –gluing the interior dS black hole with the exterior AdS asymptotics–, we can just
take a single-valued radial coordinate r = r±. Furthermore, we have chosen

f±Ṫ
2
± +

ȧ2

f±
= 1 , (2.10)

ensuring that the physical length of the time circle is the same as seen from both sides. In
particular, in the case of a static bubble, a = a?, it relates the periodicities, β±, between the
inner and outer Euclidean time coordinates,

√
f+(a?)β+ =

√
f−(a?)β−. This condition ensures

the continuity of the metric in the sense that there exists a change of coordinates relating the
inner/outer metrics at the bubble location.

The junction conditions (2.7) have just diagonal components related by a conservation equa-
tion that constrains them in such a way that only the ττ component matters,

Π+
ττ (a, ȧ) = Π−ττ (a, ȧ) . (2.11)

The remaining components correspond to the τ derivative of the former [28, 29],

d

dτ

(
ad−2 Π±ττ (a, ȧ)

)
= (d− 2) a2ȧΠ±ii (a, ȧ) . (2.12)
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The momenta Π±ττ (a, ȧ) are computed in terms of the extrinsic and intrinsic curvatures of the
bubble (see [25] for a detailed discussion), yielding, in Lorentzian signature,

Π±ττ (a, ȧ) =

√
ȧ2 + f±(a)

a

∫ 1

0
dξ

[
1 + 2λ

L2

a2

(
ȧ2 + 1− ξ2(f±(a) + ȧ2)

)]
. (2.13)

When these are plugged into (2.11), the junction condition can be easily seen to admit a more
intuitive expression in terms of a potential, Vth(a),

1

2
ȧ2 + Vth(a) = 0 , (2.14)

from which the transverse components of the junction conditions –see (2.12)– just amount to
ä = −V ′th(a). We can work out explicitly the form of Vth(a),

Vth(a) =
1 + 4λ

24λ

[
ad−1 f−(a)− f+(a)

M+ −M−
+

4λ

1 + 4λ

M−f−(a)−M+f+(a)

M+ −M−
+

8(a2 + 2λ)

1 + 4λ

]
. (2.15)

The bubble dynamics is governed by the Minkowskian version of the junction conditions. The
thermalon is nothing but its Euclidean static solution, a(τ) = a?, with Vth(a?) = V ′th(a?) = 0. It
should be noticed that even though the thermalon possesses five parameters (M±, β± and a?),
there are four equations relating them: two coming from the junction conditions, one from the
matching of the thermal circles at the bubble location and one from the usual Hawking condition
to avoid deficit angles at the black hole event horizon, fixing β−. All in all, the configuration has
a single free parameter that, in the canonical ensemble, is taken to be the inverse temperature
measured by an asymptotic observer, β+. All physical quantities can be written in terms of it.
The general expressions are not particularly enlightening.

3 Gravitational AdS to dS phase transition

The usual thermodynamic picture of the black holes dynamics can be readily described in a
semiclassical approach to the quantization of gravity. We can formally define the canonical
ensemble at temperature 1/β+ as given by the path integral over all asymptotically AdS metrics
identified in Euclidean time with period β+,

Z =

∫
Dg e−Î[g] ≈ e−Î[gcl] , Î = −iI . (3.1)

The dominant contributions come from the saddle points, i.e. classical solutions of the field
equations, gcl. The simplest saddles correspond to static manifolds that can be trivially rotated
back and forth between their Lorentzian and Euclidean sections.

As explained previously, the action in this case has several bulk and surface contributions
that have to be all taken into account. Despite their complicated form, it turns out that, once
the junction conditions are imposed, the Euclidean action has the expected form of a free energy
(multiplied by the inverse temperature)

Î = β+F = β+M+ − S , (3.2)

generalizing the analogous result that originated the thermodynamic approach to black holes.
The inverse temperature β+ corresponds to the periodicity in the outer time coordinate whereas

– 5 –



0.5 1.0 1.5 2.0
T

- 40

- 20

0

20

40

60

80

F

Figure 2: Free energy of the bubble configuration, as compared to the thermal vacuum Λ+

(F = 0), as a function of the temperature T = β−1
+ for several values of the LGB coupling,

λ = 0.1, 0.2, 0.4, 0.8, 1.35 (from bottom to top in y-intercept), in five dimensions (L = 1). The
dashed line indicated the locus of the points where the different curves end (black dots), whose
threshold temperature is called T?.

the entropy is unchanged by the presence of the bubble [25]. The relation between the various
quantities is such that the first law of thermodynamics is also verified.

We can now plot the free energy as a function of the temperature and analyze the global
and local stability of the different solutions (see Figure 2). For each value of the temperature,
the saddle with the lowest value of the free energy will be the dominant one. The first thing
we notice is that the thermalon configuration exists only for a limited range of temperatures
for each λ. Above some threshold temperature, T?, which decreases with λ, the thermal AdS
vacuum would be the only available static solution, thus being in this respect stable. A caution
remark is necessary at this point since we shall remind the reader that in this toy model the AdS
vacuum Λ+ is BD unstable. This may not be the case in higher-curvature Lovelock gravities
where analogous thermal phase transitions from AdS vacua free of BD instabilities to a dS black
hole geometry should be possible. Besides, we would expect on general grounds weakly turbulent
(nonlinear) instabilities of the form first discussed in [30].

Maximal temperature for the thermalon happens when the mass of the interior spherically
symmetric black hole with dS asymptotics reaches its upper bound given by the Nariai threshold
[22]. The black hole with dS asymptotics inside the bubble may have negative specific heat when
measured by the inner parameters M− and β− (see Figure 3; dashed line). However, this is not
problematic because it is not the relevant quantity in the thermodynamical description of the
system. In fact, when analyzing the behavior of M+ and β+, as observed in the asymptotic
region, the specific heat of the whole system –in the temperature range for which the thermalon
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λ = 0.173
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Figure 3: Phase diagram, where T stands for β−1
+ and λ for the LGB coupling. The upper

(respectively lower) solid curve corresponds to T?(λ) (respectively, Tc(λ)). Both merge at λ? =
1.13821 (in five dimensions, L = 1). Beyond λ? there is no thermalon configuration. Between
both lines there is the region where the thermalon free energy is negative and the transition is
favored. In grey at the bottom we have the region of positive free energy of the thermalon. The
dashed line separates the (upper–yellow/lower–green) regions with negative/positive black hole’s
specific heat. In white at the top the region where no thermalon is dynamically possible.

exists– turns out to be always positive. This is easily seen from the negative convexity of its free
energy, F (T ). Therefore, we can say that the presence of the bubble stabilizes the black hole.

Let us focus in the five dimensional case. Regarding the sign of the free energy, we can
distinguish two different regimes depending on the value of the LGB coupling (see Figure 3).
For small enough values, λ < λ? = 1.13821, the free energy of the thermalon is positive at low
temperatures, while it changes sign as we go to higher temperatures. For higher values of λ,
on the other hand, the free energy remains positive for the whole range of temperatures of the
thermalon. In the latter case, then, the dominant saddle is always the Λ+ vacuum, whereas in
the former it is so except for a limited range of intermediate temperatures, T ∈ (Tc, T?). In this
range the thermalon is the dominant saddle and the nucleation process is favored. When reaching
the critical temperature the thermalon will form, but it will not remain in equilibrium for long.
Even though thermodynamically stable, this configuration is dynamically unstable. Our bubble
sits at a maximum of the potential and it eventually expands reaching the asymptotic region in
finite proper time, thus changing the effective cosmological constant of the whole spacetime.

We effectively jump from one branch of solutions to another. This is important because
the final (dS) branch does not suffer from the pathologies characterizing the unstable LGB AdS
branch that was our initial asymptotics. Notice that (quantum) time scale for evaporation or
thermal instability of the dS black hole is much larger than the classical expansion time, the
former is order ~−1 as compared to the latter. The ranges of temperatures for which each of the
saddles is dominant can be represented in a diagram in terms of λ as shown in Figure 3.

We said that for low enough temperatures the dominant saddle is always the Λ+ vacuum.
This does not mean that the transition does not take place. The probability of bubble formation

in this situation is not zero but roughly e−Î [11–15]. Waiting long enough the bubble will form
and mediate a transition to the healthy branch of solutions. In this respect, we may say that the
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vacuum is metastable.
The only range of temperatures for which there is no transition is that of high temperatures

for which the thermalon configuration does not even exist. The threshold temperature for this
regime diverges as we approach small values of λ. At the same time, the free energy becomes
lower and lower in the range in which it is positive. This means that the thermalon is more
easily excited (the nucleation probability grows) as we go to lower values of λ, and that this
configuration is available for all temperatures in the limit of very small λ. This is a strong
indication that the AdS vacuum is more and more unstable as λ→ 0.

4 Discussion and outlook

We have described a novel scenario for transitions between AdS and dS asymptotics in higher-
curvature gravity, without involving any additional matter fields. The phenomenon discussed in
the present article is expected to take place in any higher-curvature theory as long as AdS and
dS branches are allowed at the same time. The framework described here is general enough as to
accommodate any series of higher-curvature terms, we would only need to adequately generalize
the junction conditions.

For illustrative purposes we have chosen LGB gravity as the minimal model where this kind
of transition takes place. For this theory we have all the necessary ingredients without the usual
complications of higher-derivative terms. In particular, we have explicit junction conditions
(given by momenta conservation in the Hamiltonian formalism) that enable us to construct the
thermalon configuration. Nonetheless, this example has to be taken with a grain of salt, as a
simple toy model, given that the theory has well known issues; namely, it generically violates
causality2 [31].

We are also truncating the effective action and analyzing the regime where the higher-
curvature corrections become of the same order as the Einstein-Hilbert term, precisely where the
rest of the higher-curvature series becomes relevant as well. In particular, the unstable vacuum
curvature diverges as we take the LGB coupling to zero. All these concerns would be dealt with
in a brane setup in string theory, where a consistent field theory limit is taken. In that respect,
the LGB action is a promising candidate given that it arises both in heterotic string theory and
in type II superstrings in the presence of wrapped probe D-branes.

This model might have as well interesting applications in the context of the gauge/gravity
duality. In addition to the well known AdS/CFT correspondence there is a proposal for a dS/CFT
duality [32]. The transition mechanism presented in this letter suggests a possible avenue for
a deeper understanding of both formulations by means of a framework where both types of
asymptotics appear on equal footing in a given gravitational theory. Notice, nonetheless, that
in all cases studied so far one of the vacua is unstable for some reason and we can always argue
that we have to stick to the other asymptotics. There may be more general cases of transitions
involving two perfectly healthy vacua in Lovelock theory.

The approach considered here is very different to other AdS/CFT descriptions of similar
transitions (see, for instance, [33]) where the boundary in which the CFT lives is always un-
changed, the transition taking place in the other asymptotic region of an eternal black hole. Our
description is completely insensitive to this other side and even if we try to describe it, the same
transition would happen there as well.

2This signals the existence of an infinite tower of higher-spin particles whose presence does not necessarily affect
the gravitational phase transitions discussed in this letter.
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In asymptotically AdS spacetimes, boundary conditions are of paramount importance. In
the case of transitions between two AdS vacua of different radii, one may argue that fixing the
asymptotics (by means of reflecting boundary conditions) would make the bubble bounce back
and collapse. In the case of AdS to dS transitions, though, this is actually impossible since the
formation of a dS horizon makes the expansion of the bubble irreversible from that moment
onwards [25].

This paper being a toy model, it seems clear that there are many avenues to improve our
results. Addition of matter seems a necessary step towards embedding it in string theory.
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