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The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated.
In previous works, the first–order trace solutions that are generated by the spatially projected gravi-
toelectric part of the Weyl tensor were given together with extensions and applications for accessing
the nonperturbative regime. We here furnish construction rules to obtain from Newtonian solutions
the gravitoelectric class of relativistic solutions, for which we give the complete perturbation and
solution schemes at any order of the perturbations. By construction, these schemes generalize the
complete hierarchy of solutions of the Newtonian Lagrangian perturbation theory.
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I. INTRODUCTION

In previous work of this series of papers we laid down
the foundations of the Lagrangian perturbation theory
by writing Einstein’s equations in 3 + 1 form for a sin-
gle dynamical variable. We investigated its first–order
solutions for the trace and antisymmetric parts, we ex-
trapolated this solution in the spirit of Zel’dovich’s ap-
proximation in Newtonian cosmology, and we provided a
definition of a nonperturbative scheme of structure for-
mation [L1]. We then studied the average properties of
this latter in relation to the Dark Energy and Dark Mat-
ter problems in [L2]. Here, we proceed by providing the
gravitoelectric subclass of relativistic n–th order pertur-
bation and solution schemes. As in previous work we
restrict our attention to irrotational dust continua for
simplicity. The generalization to more general matter
models is scheduled.
The problem of perturbation solutions in general rel-

ativity has been addressed by a plethora of works. In
cosmology the ‘standard approach’ is based on the gauge–
invariant ‘Bardeen formalism’ (for a selection of key–
references on standard perturbation theory see [4], [34],
[28], [19]). A covariant and gauge–invariant approach has
been proposed [22, 23], together with various other ap-
proaches not listed here (some being discussed within a
variational framework in a recent paper [29]). The reason
for existence of various approaches is due to an ambigu-
ity of the choice of perturbation variable, the choice of
a ‘background’, but also due to different philosophies,
e.g. the standard gauge–invariant approach compares
the physical manifold with a reference ‘background man-
ifold’, while others solely operate on the physical man-
ifold. The conceptual difference of our framework lies

in the fact that we no longer consider a reference back-
ground manifold. All the quantities are now defined on
the physical space section. All orders of the perturbations
are defined on the physical manifold, not with respect
to a zero–order manifold (that was interpreted as the
background manifold in standard perturbation theory).
Moreover, we are perturbing a single dynamical variable
which, intuitively, is the square root of the spatial met-
ric using the ‘Cartan formalism’. As a consequence, the
issue of gauge–invariance does not arise; covariance or
diffeomorphism invariance is guaranteed for a given fo-
liation of spacetime by using Cartan differential forms.
We shall address the representation of the perturbations
in other foliations of spacetime in a follow–up article.
A similar point of view has also been taken in previous

work, i.e. the pioneering work by Kasai presents a rel-
ativistic generalization of the ‘Zel’dovich approximation’
[45], and follow–up works with his collaborators presents
a class of second–order perturbation solutions [27, 40];
see also the earlier papers by Tomita [42–44], as well as
the series of papers by Matarrese, Pantano and Saez [31–
33]. These works are all in a wider sense concerned with
the relativistic Lagrangian perturbation theory and con-
centrate on an intrinsic, covariant description of pertur-
bations. Still, the present work takes another angle and
goes beyond some concepts of these latter works through
the following elements:

• We consider, as in [L1, L2], a formalism that al-
lows to write the Einstein equations within a flow–
orthogonal foliation with a single dynamical vari-
able comprising the spatial Cartan coframe fields.
These furnish the conceptual generalization of the
Lagrangian deformation gradient being the single
dynamical variable in the Newtonian theory. One
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advantage of this approach is that only perturba-
tions of this variable are considered, which enti-
tles us to express all other physical quantities as
functionals of this variable. Thus, it is possible to
leave the strictly perturbative framework and to
construct nonperturbative models by injecting the
deformation solutions at a given order of expansion
of the Einstein equations into the functional defini-
tions of these fields, without a posteriori expanding
the functional expressions. This in turn provides
highly nonlinear approximations for structure for-
mation (e.g., the density field is known through an
exact integral of the perturbation variable; the met-
ric as a bilinear form maintains its role as a measure
of distance, i.e. as a quadratic expression; the cur-
vatures are the general defining functionals for the
given perturbed space, etc.);

• We provide construction rules to derive relativis-
tic perturbative solutions from the known Newto-
nian solutions at any order of the perturbations: we
have to additionally study the traceless symmetric
part of the equations having no obvious Newtonian
analog, and which is fundamentally linked to the
traceless Ricci tensor and the physics of gravita-
tional waves. In the present work, however, we re-
strict our attention to that subclass of the traceless
symmetric perturbations that are generated by the
spatially projected gravitoelectric part of the Weyl
tensor. We show that this part, in turn, can be
constructed from the tidal tensor of the Newtonian
theory. For this purpose we employ a division of the
governing equations into gravitoelectric and grav-
itomagnetic parts;

• We give the perturbation and solution schemes to
any order of the perturbations for the gravitoelec-
tric part of the Lagrange–Einstein system. These
schemes will cover the full Newtonian hierarchy of
the Lagrangian perturbation theory using a restric-
tion rule that we will define. This allows us to con-
struct the leading–order modes of relativistic solu-
tions at any order.

• We perform a strictly intrinsic derivation, i.e. with-
out reference to an external background space. In
the literature on Lagrangian relativistic perturba-
tions mentioned above, although starting with the
Cartan formalism, the nonintegrability of the Car-
tan deformations is given up for the building of
solutions, hence implicitly introducing a reference
background space for the perturbations.

Before we start, let us recall our strategy (for details
the reader is directed to [L1]). In the Newtonian theory
the Lagrangian picture of fluid motion allows to repre-
sent Newton’s equations in terms of a single dynamical
variable, the Lagrangian deformation gradient built from
the trajectory field. For this system the general pertur-

bation and solution schemes at any order are provided in
[20].
Einstein’s equations within a flow–orthogonal foliation

of spacetime can be formulated in terms of equations for
the gravitoelectric and gravitomagnetic parts of the spa-
tially projected Weyl tensor. Subjecting the gravitoelec-
tric subsystem of equations to a “Minkowski Restriction”,
i.e. by sending the Cartan coframes to exact forms, we
obtain the Newtonian system in Lagrangian form [L1],
[14]:Sect. 7.1. In this paper we investigate the reverse
process, i.e. the transposition from integrable to non-
integrable deformations, which enables us to construct
a gravitoelectric subclass of the relativistic perturbation
and solution schemes that corresponds to the Newtonian
perturbation and solution schemes.
While the Newtonian system furnishes a vector the-

ory, where the gravitational field strength is determined
by its divergence and its curl (the trace and antisymmet-
ric parts of the Eulerian field strength gradient), the so
generalized schemes deliver nontrivial solutions for the
tracefree symmetric part that is connected to the grav-
itoelectric part of the spatially projected Weyl tensor,
whose Newtonian counterpart is the tidal field tensor.
The paper is structured as follows. Section II recalls

the equations of Newtonian and relativistic cosmology
for an irrotational dust matter model. We highlight a
formal correspondence between the Newtonian equations
and the relativistic gravitoelectric part of the equations
by employing a geometrical restriction procedure, named
Minkowski Restriction. In Section III we investigate per-
turbation and solution schemes at any order n of the
perturbations by explicitly paraphrasing the Newtonian
schemes. Section IV explains the reconstruction rules
and provides explicit examples. Finally, Section V sums
up and discusses perspectives.

II. EQUATIONS OF MOTION AND
CONSTRAINTS

In this section, after setting notations, we recall the
Einstein equations, written in 3 + 1 form and expressed
through a single dynamical variable, represented by Car-
tan coframe fields as functions of local coordinates in the
3−hypersurfaces. This recalls the parts of [L1] relevant
to this paper.

A. Notations and Technicalities

We employ the differential forms formalism for its com-
pactness and anti–symmetric properties, and its spatial
diffeomorphism invariance. We also project to the com-
mon coefficient formalism in which we work out the so-
lutions.
We consider a set of a differential k−forms ka. The

coefficients of these fields can be expressed in the ex-
act basis {dX i} of the cotangent space at a given point,
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ka = kai1...ikdX
i1 ∧ ... ∧ dX ik , where ∧ is the wedge

product, the antisymmetrization of the tensorial prod-
uct A ∧ B = A ⊗ B − B ⊗ A. Their exterior derivative
yields dka = kai1...ik|ipdX

i1 ∧ ... ∧ dX ik ∧ dX ip . For

general forms we choose the letters a, b, c · · · as counter
indices (they refer to the non–exact basis), while the let-
ters i, j, k · · · are reserved for coordinate indices (they
refer to the exact basis). The Hodge dual is denoted by
a star and defined in N−dimensional space by:

∗ka =

√
g kai1...ik
(N − k)!

ǫi1...ikjk+1...jN
dXjk+1 ∧ ... ∧ dXjN ,

with ǫi1...ikjk+1...jN
the Levi–Civita pseudo–tensor.

In most perturbation approaches the bilinear metric
form is considered as the dynamical variable. In this
article, we consider the matter model “irrotational dust”
and employ a 3+1 flow–orthogonal foliation of spacetime,
for which the 4– and 3–metric bilinear forms read:

(4)g = −dt⊗ dt+ (3)g with (3)g = gij dX
i ⊗ dXj , (1)

where X i are Gaussian normal coordinates, here equiv-
alent to the Newtonian Lagrangian coordinates. The
resulting split of the system of equations (Arnowitt–
Deser–Misner (ADM) system) is composed of 6 equa-
tions of motion and 4 constraint equations. In this fo-
liation the 4 Cartan one–forms can be restricted to a
t−parametrization of 3 spatial one–form fields.
In general relativity a spatial description of the fluid

continuum in terms of vector–valued trajectories is im-
possible, unless we move to a higher–dimensional embed-
ding vector space. To describe the fluid intrinsically (i.e.
without reference to an embedding vector space), it is
necessary to introduce nonexact forms, known as the Car-
tan spatial coframe fields ηa = ηaidX

i, with a = 1 · · · 3.
The Cartan formalism permits to switch between a non–
exact basis and the coordinate basis. A key–element is
the freedom of choice of the normalization of the non–
exact basis. In order to obtain equations that are for-
mally closer to the Newtonian ones, we do not choose
orthonormal (Cartan) coframes η̃

a as is common in the
literature, but more general ones η

a that we will call
adapted coframes. The reader is directed to [L1, L2] for
additional informations and implications related to this
choice. Formally, this means that the spatial metric form
is decomposed as:

(3)g = Gabη
a ⊗ η

b , (2)

where Gab is constant in time: Gab = Gab(X). Note that,
if coframes become exact forms η

a = dfa, the counter
indices become coordinate indices, since the functions fa

can be used to define global coordinates xi = fa→i. In
this case the metric can be brought (by a spatial diffeo-
morphism) into the form:

(3)g = δijdx
i ⊗ dxj , (3)

which defines a flat spacetime (see the proof in ap-
pendix A).

The exact functional for the density is given as in the
Newtonian approach: ̺J = ̺i, where the index i marks
the initial conditions and J is defined as coefficient func-
tion of the 3−volume form, normalized by the determi-
nant of the initial metric:

J =

√
g√
G

, (4)

with
√
g d3X the 3−volume form on the exact basis,

g := det(gij(X, t)) and G := det(Gij) = det(gij(X, ti)).
We have the relation:

ǫabc
6

η
a ∧ η

b ∧ η
c =

ǫijk
6

JdX i ∧ dXj ∧ dXk , (5)

where J = det(ηai).
Below, we first recall the basic systems of equations

governing an irrotational dust continuum in the La-
grangian formulation of the Newtonian theory. Then,
after presenting Einstein’s theory formulated in the La-
grangian frame, we list the counterpart of the gravito-
electric subsystem of equations in the latter theory.

B. Newtonian Theory

In the Lagrangian picture of self–gravitating fluids a
family of trajectories, xi = f i(Xk, t), labelled by their
Lagrangian coordinates {X i}, i = 1, 2, 3, is introduced
[13, 17]. It furnishes a one–parameter family of diffeomor-
phisms, parametrized by the Newtonian time t, between
the Eulerian, {xi}, and the Lagrangian coordinates. Reg-
ular solutions of the Lagrange–Newton system of equa-
tions have to obey four evolution equations. The three
components of the trajectory field (also position field)
f i(Xk, t) are the only dynamical variables. Other fields
are conceived to be represented as functionals of the tra-
jectory field like the velocity and acceleration fields, the
density and vorticity fields, etc.,

vi:= ḟ i , ai := f̈ i , ̺ = ̺i(J/Ji)
−1,

ωi= (ωi
kf i

|k)(J/Ji)
−1, (6)

where the overdot denotes time–derivative along the tra-
jectories. J = det(f i

|k) is the Jacobian of the coordi-
nate transformation and Ji the initial Jacobian, spatial
derivatives with respect to Lagrangian coordinates being
abbreviated by a vertical slash |. The acceleration field
ai is identified with the gravitational field strength gi,
respecting equivalence of inertial and gravitational mass.
Once a given field is represented as a functional of the
deformation field, it can be written in the Eulerian frame
by inserting the inverse of the transformation f i. Note
that Ji can be set to 1 if we require xi = X i at initial
time. The closed Lagrange–Newton system is defined by
the nonlinear gravitational evolution equations (7) and
(8) for the deformation gradient, see [20]:

δijdf̈
i ∧ df j = 0 , (7)

1

2
ǫijkdf̈

i ∧ df j ∧ dfk = (Λ− 4πG̺)d3f , (8)
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with Λ the cosmological constant, G the gravitational
constant, Eq. (7) corresponds to the three field equa-
tions for the Eulerian curl, whereas Eq. (8) corresponds
to the field equation for the Eulerian divergence of the
gravitational field strength. In the above equations the
exact integral for the density (third equation of (6)) has
to be inserted to reduce the number of variables. For
Λ = 0 the system does not explicitly contain the Jaco-
bian, provided J 6= 0. Regular solutions are characterized
by J > 0. Since, in the Newtonian theory, the Cartan
coframe fields are exact forms, Eq. (4) reads:

J :=
ǫijk
6

df i ∧ df j ∧ dfk =
ǫijk
6

JdX i ∧ dXj ∧ dXk

⇐⇒ J := Jd3X = d3f ; J = det(fk
|i) , (9)

where d3X is the Lagrangian volume 3−form. The coef-
ficients of these equations are equivalent to the following
coefficient equations for the deformation gradient df i in
Lagrangian coordinates:

δij f̈
i
|[pf

j
|q] = 0 , (10)

1

2
ǫijkǫ

pqr f̈ i
|p f

j
|q f

k
|r = ΛJ − 4πG̺J . (11)

An alternative to express Equation (10) reads:

δkrǫpq[jǫ
ilmf̈r]|if

p
|l f

q
|m = 0 . (12)

Expressed in terms of the Newtonian tidal tensor,

E i
j =

1

2J
ǫabcǫ

iklf̈a
|jf

b
|kf

c
|l −

1

3
(Λ− 4πG̺) δij ; (13)

E[ij] = 0 ; Ek
k = 0 , (14)

Equations (14) correspond to the Lagrange–Newton sys-
tem of equations {(10), (11)}.

C. Einstein’s Equations in Lagrangian form

We here formulate the Einstein equations in terms
of Cartan coframe fields as they are transported along
the flow lines (here spacetime geodesics). The system
of equations we obtain will be called the Lagrange–
Einstein–System.
In terms of coframe fields, the irrotational dust contin-

uum is governed by the following evolution and constraint
equations:

Gab η̈
a ∧ η

b = 0 ; (15)

1

2
ǫdbc

(

η̇
a ∧ η

b ∧ η
c
)

˙

= (−Ra
d + (4πG̺+ Λ) δad)Jd

3X ; (16)

ǫabc η̇
a ∧ η̇

b ∧ η
c = (16πG̺+ 2Λ−R) Jd3X ; (17)

ǫabc

(

dη̇a ∧ η
b + ω

a
d ∧ η̇

d ∧ η
b
)

= 0 , (18)

where the equations are, respectively, the irrotationality
condition on the gravitational field (15), the equation of

motion (16), the energy constraint (17) and the momen-
tum constraints (18). For irrotational matter flows, as is
assumed throughout this paper, the first equation can be
replaced by the kinematical irrotationality condition:

Gab η̇
a ∧ η

b = 0 . (19)

Nevertheless, we consider the double time–derivative ex-
pression for two reasons: (i) in the Newtonian limit we
want to reproduce the field equations, which involve a
second time–derivative; (ii) for a general system, this
equation is always true because of the conservation of
the vorticity 2−form, ω = Gab η̇

a ∧ η
b = ωi; for the

Newtonian case, ω = d
(

vidX
i
)

= ωi (see Appendix B
in [20]). Nevertheless, it is important to note that the
3+1 foliation formalism cannot describe a non–zero vor-
ticity. The description of a non–zero vorticity will require
a 1 + 3 threading of spacetime (see, e.g. [25]) .
The combination of the trace of the equation of motion

and the energy constraint straightforwardly leads to the
Raychaudhuri equation:

1

2
ǫabcη̈

a ∧ η
b ∧ η

c = (Λ− 4πG̺) Jd3X . (20)

To derive the above equations we have implicitly used the
Cartan connection one–form and the curvature two–form
that we do not need explicitly in what follows:

ω
a
b := γa

cbη
c, (21)

Ωa
d :=

1

2
Ra

bcdη
c ∧ η

d , (22)

with the connection and curvature coefficients γa
cb and

Ra
bcd in the nonexact basis, respectively. The 3–Ricci

tensor can be expressed through the curvature two–form:

Ra
dη

d ∧ η
b ∧ η

c = δdbΩa
d ∧ η

c − δdcΩa
d ∧ η

b . (23)

We employ the Hodge star operation to obtain the coef-
ficient equations in the exact basis dX i:

Gab η̈
a
[iη

b
j] = 0 ; (24)

1

2J
ǫabcǫ

ikl
(

η̇ajη
b
kη

c
l

)

˙= −Ri
j + (4πG̺+ Λ) δij ; (25)

1

2J
ǫabcǫ

mjkη̇amη̇bjη
c
k = −R

2
+ (8πG̺+ Λ) ; (26)

(

ǫabcǫ
iklη̇ajη

b
kη

c
l

)

||i
=
(

ǫabcǫ
iklη̇aiη

b
kη

c
l

)

|j
, (27)

where a double vertical slash denotes the covariant spa-
tial derivative with respect to the 3–metric and the spa-
tial connection is assumed symmetric. As before, the first
equation can be replaced by the irrotationality condition:

Gab η̇
a
[iη

b
j] = 0 . (28)

Again, the trace of the equation of motion and the energy
constraint leads to the Raychaudhuri equation:

1

2J
ǫabcǫ

ikℓη̈aiη
b
kη

c
ℓ = Λ− 4πG̺ . (29)
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The system {(24) − (27)} consists of 13 equations,
where the first corresponds to the irrotationality condi-
tion (3 equations), the second to the symmetric evolution
equations (6 equations), subjected to 4 constraint equa-
tions that are the ADM constraints (1 equation for the
energy constraint, and 3 equations for the momentum
constraints). Thus, the first 9 equations furnish evolution
equations for the 9 coefficient functions of the 3 Cartan
coframe fields.
The above system is equivalent to the results developed

in [L1] in a different basis: in the first paper the choice
of the standard orthonormal coframes has been made,
whereas since [L2] the choice of the adapted coframes is
preferred for reasons of allowing to construct a formally
closer Newtonian analogy.

D. Equivalence of the two gravitoelectric sets of
equations in the Minkowski Restriction

We will now discuss the link between parts of the rela-
tivistic system and the full Newtonian system. Formally,
this link is provided by the Minkowski Restriction.

1. Definition of the Minkowski Restriction

Let ηα be Cartan one–form fields in a 4−dimensional
manifold (Greek letters are used in 4 dimensions). A
set of forms η

α is said to be exact, if there exist func-
tions fα such that ηα = dfα, where d denotes the exte-
rior derivative operator, acting on forms and functions.
The Minkowski Restriction (henceforth MR) consists in
the replacement of the nonintegrable coefficients by in-
tegrable ones, ηαν → fα→µ

|ν , keeping the speed of light

c finite. With this restriction, the Cartan coframe coef-
ficients yield the Newtonian deformation gradient, and
the local tangent spaces all become identical and form
the global Minkowski spacetime. The Newtonian limit

could be defined as MR of Einstein’s theory and addi-
tionally sending c to infinity. In the flow–orthogonal
foliation, employed in this paper, the 4−dimensional
coframes reduce to η

α = (dt,ηa), and their MR reads
dfα = (dt,dfa→i). Note that c and the signature are
carried by the 4−dimensional metric coefficients; c is set
to 1 throughout this paper. We will need the inverse MR

and use it as a rule to construct relativistic Lagrangian
solutions from known Newtonian solutions. (For the MR

of the metric compare appendix A, and the remark on
the Newton–GR “dictionary” in appendix B).

2. Gravitoelectric equations

[L1] noted that a part of Einstein’s equations, namely
{(15), (20)}, are related to the gravitoelectric part of the
spatially projected Weyl tensor. This tensor is tracefree

and represented by the 3 one–form fields Ea (see [L1]
Eq. (A23)):

Ea = −η̈
a +

1

3
(Λ− 4πG̺)ηa ; (30)

then, the irrotationality condition (15) and the trace
equation of motion (20) are generated by

Gab E
a ∧ η

b = 0 ; ǫabcE
a ∧ η

b ∧ η
c = 0 . (31)

These two equations are therefore referred to as the grav-
itoelectric part of Einstein’s equations. A projection of
the gravitoelectric one–form fields and Equations (31),
using the Hodge star operator, yields to their coefficient
representation:

Ei
j = − 1

2J
ǫabcǫ

iklη̈ajη
b
kη

c
l +

1

3
(Λ − 4πG̺) δij ; (32)

E[ij] = 0 ; Ek
k = 0 . (33)

(Note that Eij := δbiGbaE
a
j = GaiE

a
j .) This just pro-

vides a rewriting of {(24), (29)}. (A remark on the grav-
itomagnetic part of the spatially projected Weyl tensor
can be found in appendix B.)

3. Executing the MR

Sending the spatial Cartan coframes to exact forms,
i.e. executing the MR, their coefficients ηai are restricted
to the Newtonian deformation gradient fa

|i. The gravito-

electric system of equations in the form of Equations (33)
then reduces to the Newtonian system in the form of
Equations (14); note the conventional sign change be-
tween the gravitoelectric part of the spatially projected
Weyl tensor Ei

j and the Newtonian tidal tensor E i
j . This

operation closes the system, reducing the number of free
functions from nine (ηai(X

k, t)) to three (f i(Xk, t)). A
consideration of the MR for the remaining equations,
yielding nontrivial Newtonian analogs, will not be needed
in this paper, but will be the subject of forthcoming work.

Considering only the gravitoelectric equations is not
enough to determine the nine functions of the coframe
coefficients. The relativistic aspects contained in the re-
maining gravitomagnetic equations will lead to a richer
structure of the solutions and also to constraints on so-
lutions of the gravitoelectric system. A follow–up work
will explicitly consider both parts in the framework of
first–order solutions.

To conclude: the Lagrange–Einstein gravitoelectric
equations are (up to nonintegrability) equivalent to their
Newtonian analogs, whereas the gravitomagnetic equa-
tions have no obvious Newtonian counterpart (this issue
is more subtle than the mere absence of a gravitomag-
netic analogy, as we explain in the follow–up paper).
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III. CONSTRUCTION SCHEMES FOR
RELATIVISTIC PERTURBATIONS AND

SOLUTIONS AT ANY ORDER

We now turn to the main part of this paper and con-
struct the gravitoelectric subclass of nth–order relativis-
tic perturbation and solution schemes through general-
ization of the known Newtonian schemes. This allows
furnishing relativistic inhomogeneous models for large–
scale structure formation in the Universe. The successful
Lagrangian perturbation theory in Newtonian cosmology
is well–developed. We will here generalize the perturba-
tion and solution schemes of Newtonian cosmology given
in the review [20], whose essential steps will be recalled
in this section, followed by their relativistic counterparts.
All schemes are applied to the matter model ‘irrota-

tional dust’. It is possible to extend the present schemes
by employing the framework for more general fluids in a
Lagrangian description that will be developed in forth-
coming work. Most of the known representations are
focused on writing equations in terms of tensor or form
coefficients. Our investigation will be guided by the com-
pact differential forms formalism as before. However, we
will also project to the coefficient form in parallel to ease
reading.

A. General n–th order perturbation scheme

As in standard perturbation theories, we decompose
the perturbed quantity into a Friedmann–Lemâıtre–
Robertson–Walker (FLRW) solution and deviations
thereof, which are expanded up to a chosen order n of
the perturbations. Contrary to the standard perturba-
tion theory, we do not perturb the metric globally at the
background space, but we perturb the Cartan coframes
locally:

η
a = ηaidX

i = a(t)

(

δai +
∑

n

P a(n)

i

)

dX i , (34)

in the local exact basis dX i. Notice that with this ansatz
we choose to perturb a zero–curvature FLRW model, but
it is possible to encode an initial first–order constant cur-
vature in the coefficient functions Gab in the following lo-
cal metric coefficients, which can be calculated from the
above coframe ansatz:

gij = Gabη
a
iη

b
j . (35)

Furthermore, we can link these results to the ones ob-
tained for the orthonormal coframes η̃

c (compare also
corresponding remarks in [18] and [26]). Indeed, the met-
ric bilinear form can be written as:

g = δcd η̃
c ⊗ η̃

d = Gab η
a ⊗ η

b . (36)

From this identity, we conclude:

Gab = δcd η̃caη̃
d
b , (37)

where the η̃ca are the coefficients of the projection of
η̃
c onto the basis η

a. In the next subsection, we will
specify the coframes we consider in such a way that the
initial coframe perturbations vanish. From now on, we
will call these coframes adapted coframes to distinguish
them from the orthonormal ones (see also appendix A).

B. Initial data for the perturbation scheme

We choose initial data in formal correspondence with
the Lagrangian theory in Newtonian cosmology and gen-
eralize these initial fields to the relativistic stage. This
has obvious advantages with regard to the aim to give
construction rules that translate the known Newtonian
solutions to general relativity. For the initial data set-
ting in the Newtonian case see [20].

1. Fundamental initial data

Let the three one–form fields Ua = Ua
idX

i be the ini-
tial one–form generalization of the Newtonian peculiar
velocity–gradient, obtained by the inverse MR. Accord-
ingly, let Wa = W a

idX
i be the initial one–form general-

ization of the Newtonian peculiar–acceleration gradient.
Our solutions will be written in terms of these initial
data. They determine the initial values of the coframes
as follows:

ηai(ti) = δai , (38)

η̇ai(ti) = Hiδ
a
i + Ua

i ; Hi := ȧi ; ai := 1 ; (39)

η̈ai(ti) = äiδ
a
i +W a

i . (40)

Equation (38) implies that the coframes we will work
with from now on are initially equal to the exact La-
grangian coordinate basis: η

a(ti) = δai dX i. This in
turn provides the initial metric coefficients in the form:

Gij = gij(ti) = Gabδ
a
iδ

b
j . (41)

In view of the flow–orthogonal foliation, we have the
irrotationality constraint:

ω = Gabη̇
a ∧ η

b = 0 =⇒ GabU
a ∧ δbjdX

j = 0 . (42)

This implies for the coefficient functions: U[ij] = 0. (We

used the implicit definition Uij := δbiGbaU
a
j .)

Remark:

From (37) and (38), it is interesting to notice the follow-
ing relations that hold to zeroth and first order (the full
initial data are considered to be first order, as was also
the choice in the Newtonian schemes [20]):















G(0)

ij = δij ;

G(1)

ij = 2P̃ij ;

2P̃(ij) = G(1)

ij + 2P(ij) ;

(43)
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where P̃ij = P̃ij(ti). We are thus able to rederive some
results from the ones obtained in previous works that
used orthonormal coframes. For example, the Ricci cur-
vature tensor at first–order can be obtained by injecting
the identities (43) into (93) of [L1]. We can so obtain the
adapted coframes from the orthonormal ones and vice–
versa (compare also appendix A).

2. Relativistic counterpart of the Poisson equation and

consequences for Wa

In the Newtonian approach the initial peculiar–
acceleration and the density inhomogeneities are linked
through the Poisson equation. In order to generalize this
equation to the relativistic case, we note the following rel-
ativistic generalization of the Newtonian field strength
gradient that follows from inspection of the Lagrange–
Einstein system (for details the reader can always consult
[L1]):

F i
j := Θ̇i

j +Θi
kΘ

k
j

= −Ri
j −ΘΘi

j + (4πG̺− Λ) δij +Θi
kΘ

k
j , (44)

with the 3−Ricci tensor coefficientsRij whose trace is the
Ricci scalar R, and Θij the expansion tensor coefficients.

According to the energy constraint, R+ Θ2 − Θk
ℓΘ

ℓ
k =

6πG̺ + 2Λ, the symmetry of the expansion tensor and
Ricci curvature, it is straightforward to show that the
relativistic gravitational field coefficients Fij respect the
following field equations:

Fk
k = Λ− 4πG̺ ; F[ij] = 0 . (45)

In terms of the coframe fields, the relativistic gravita-
tional field can be written as follows:

F i
j =

1

2J
ǫabcǫ

iklη̈ajη
b
kη

c
ℓ . (46)

(For an alternative derivation using a Newton–GR “dic-
tionary” see appendix B).
Hence, inserting the coframe perturbations and evalu-

ating this expression at initial time, we get the following
relations (note that the zero–order fields trivially satisfy
the second constraint):

Fk
k(ti) = Λ− 4πG̺i =

Λ− 4πG̺Hi(1 + δi) = 3äi + δkaW
a
k ;

F[ij](ti) = δb[iGbaW
a
j] = W[ij] = 0 . , (47)

with the initial density contrast δi. Thus, the deviation
one–form fields Wa obey the following equations that
generalize the Poisson equation for the inhomogeneous
deviations off the zero–order solution:

∗ 1

2
ǫabcW

a ∧ δbjdX
j ∧ δckdX

k = −4πGδ̺i ;

GabW
a ∧ δbjdX

j = 0 , (48)

with δ̺i = ̺i−̺Hi, implying for the coefficient functions:

− 1

4πG
δkaW

a
k = δ̺i = ̺Hiδi ; W[ij] = 0 . (49)

3. Summary of initial data

We summarize the set of initial data, determined by
our choice of the basis and subjected to the constraints.
We assume in perturbative expansions, without loss of
generality [20], that the initial data {(50) − (52)} are
first order. We drop the index (1) for notational ease
and denote the initial data for the comoving perturbation
form coefficients by P a

i(ti) =: P
a
i. We set:

• for the initial deformation and the initial general-
izations of the Newtonian velocity and acceleration
gradients:











P
a(n) = 0 ∀n ,

Ua(1) = Ua, U[ij] = 0 ;

Wa(1) = Wa, W[ij] = 0 ,

(50)

• where the coefficients are related via the initial val-
ues of the time–derivatives of the deformation:

{

Ṗ
a
i = Ua

i ;

P̈
a
i = W a

i − 2HiU
a
i ,

(51)

• together with additional initial constraints that are
to be respected (a relation to the initial metric,
to the initial density contrast, and the four ADM
constraint equations evaluated at initial time):























Gij = Gab η
a
i(ti)η

b
j(ti) = Gabδ

a
iδ

b
j ;

4πGδ̺i
(1) = −W ;

HiU = −R(ti)

4
−W ;

(

Ua
jδ

i
a

)

||i
=
(

Ua
iδ

i
a

)

|j
;

(52)

Here and in the following we use the abbreviations
δkaU

a
k =: U , δkaW

a
k =: W for the trace expres-

sions.

• the initial Ricci curvature as found from the equa-
tion of motion (25):

Ri
j(ti) = −(W i

j +HiU
i
j)− δij(W +HiU)

−ǫabcǫ
ilkUa

jU
b
lδ

c
k ; (53)

• equating this expression with the initial Ricci ten-
sor as calculated from the initial metric,

Ri
j(ti) = G i(1)

[j|b]G
b|a(1)

a +G
b|a(1)

j G i(1)
[b|a] +Ga(1)

b|j G [b|i](1)
a

+
1

2
Ga(1)

[a|b]G
b|i(1)
j − 1

2
Ga|b(1)

a G i(1)
[j|b] +

1

2
G(1) a

b|[j G
(1) b|i
a] +

2G
(1) [a|i]
[j|a] + 2G

(2) [a|i]
[j|a] − 2G(1) a

b G
[b|i](1)
[j|a] − 2G(1) i

a G
[b|a](1)
[j|b] ,

(54)

we determine the first–order part of the initial met-
ric (which is a derived quantity),

2G
(1) [i|k]
[k|j] = −HiU

i
j −W i

j − (HiU +W ) δij , (55)
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• as well as the second–order part of the initial met-
ric (which later appears in the perturbation and
solution schemes):

2G
(2) [i|k]
[k|j] = f(U i

j ,W
i
j) , (56)

where the function f can again be derived by equating
(54) and (53). All further orders vanish.
The initial data given in (50) are exhaustive: in our

ADM split, the system of equations {(24) − (27)} con-
tains 9 second–order equations of motion for the coframes
subjected to 4 constraints. A general solution therefore
contains 18 coefficient functions encoded in Uij and Wij

that reduce to 12 functions for solutions of the irrotation-
ality conditions (24), which these latter are represented
by the 6 constraints U[ij] = 0 and W[ij] = 0. The general
solution is further subjected to the 4 ADM constraints
resulting in corresponding constraints on Uij and Wij .

C. Gravitoelectric Perturbation Scheme

We now recall the general Lagrangian perturbation
scheme of Newtonian cosmology and generalize it to a
gravitoelectric scheme in relativistic cosmology. By con-
struction, this latter will already contain the known La-
grangian perturbation scheme at any order in the geo-
metrical limit of exact deformation one–forms.

1. Recap: Newtonian Theory

The general perturbation scheme has been fully devel-
oped in [20]. Our approach only slightly differs in terms
of the initial conditions: we formulate them such that
they are formally closer to the relativistic approach. Fol-
lowing the general ansatz (34), we introduce three co-
moving perturbation forms dP i of the three components
of the comoving vector perturbation fields P i(X i, t):

df i( ~X, t) =: a(t)dF i( ~X, t) = a(t)
(

dX i + dP i( ~X, t)
)

,

(57)
and decompose the perturbation gradient field on the
FLRW background order by order:

dP i =

∞
∑

m=1

ǫmdP i(m) . (58)

It is, of course, possible to consider perturbations of the
position fields f i, because the Newtonian equation can
be expressed in a vectorial form. The relativistic equa-
tions are, however, tensorial and we, therefore, consider
the representation in terms of the gradient of the fluid’s
deformation.
In order to provide unique solutions of the Newto-

nian system, suitable boundary conditions have to be
imposed. For the cosmological framework the require-
ment of periodic boundary conditions for field deviations

from a Hubble flow is a possible choice [16]. This trans-
lates into an integral constraint on the perturbations: in-
tegration over a compact spatial domain M implies the
following:

ˆ

M

dP i =

ˆ

∂M

P i = 0 ; P i =

∞
∑

m=1

ǫmP i(m). (59)

Recall now that Ui = dU i = U i
|jdX

j and Wi = dW i =

W i
|jdX

j are the initial one–form peculiar–velocity gra-
dient and the initial one–form peculiar–acceleration gra-
dient. The fields W i are determined nonlocally by the
following set of equations, equivalent to Poisson’s equa-
tion:

W i
|i = ∗1

2
ǫijkdW

i ∧ dXj ∧ dXk = −4πGδ̺i ;

δijdW
i ∧ dXj = ∗d

(

W idX i
)

= 0 . (60)

In view of the restriction to irrotational flows, we addi-
tionally impose the constraint:

δijdḟ
i ∧ df j = 0 =⇒ δijdU

i ∧ dXj = ∗d
(

U idX i
)

= 0 .
(61)

Without loss of generality, we can choose the following
general set of initial data that can be obtained in the
Newtonian theory or, else, from the Minkowski Restric-

tion of ((50)–(52)):

• for the initial deformation, peculiar–velocity and
peculiar–acceleration:











dP
i(n) = 0 ∀n ;

dU i(1) = dU i, U[i|j] = 0 ;

dW i(1) = dW i, W[i|j] = 0 ,

(62)

• together with the definition of the Lagrangian met-
ric coefficients and the initial data relation to the
density perturbation:







gij = δklf
k
|if

l
|j ;

δ̺i
(1) = δ̺i = ̺Hiδi = − 1

4πG
W k

|k .
(63)

The metric is Euclidean, since the coefficients can be
transformed to the coefficients δij with the help of the
to f inverse coordinate transformation.
Plugging the ansatz (57) into the Newtonian equations

{(7), (8)}, we find for the background Friedmann’s equa-
tion:

ǫijk 3
ä

a
dX i ∧ dXj ∧ dXk =

ǫijk (Λ− 4πG̺H)dX i ∧ dXj ∧ dXk

=⇒ 3
ä

a
= Λ− 4πG̺H , (64)
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and a full hierarchy of the perturbation equations:

δij dṖ
i ∧
(

dXj + dP j
)

= δija
−2dU i ∧ dXj ; (65)

ǫijk

[

(

D1dP
i
)

∧ dXj ∧ dXk +
(

2D2dP
i
)

∧ dP j ∧ dXk

+
(

D3dP
i
)

∧ dP j ∧ dP k

]

= −ǫijk
4πG

3
δ̺ia

−3dX i ∧ dXj ∧ dXk , (66)

where we defined the operator

Dℓ :=
d2

dt2
+ 2H

d

dt
− 4

ℓ
πG̺H . (67)

(The reader may note a difference in the numerical coef-
ficients to the reference [20], which we had to correct, see
appendix B.) Projecting with the Hodge star operator to
the coefficient form (and integrating Equation (65)), we
obtain:

P[i|j] =

ˆ t

ti

Ṗm|[iP
m
|j]dt

′ ; (68)

D1P
i
|i = −4πGδ̺ia

−3 (69)

−1

2
ǫijkǫ

lmn
[

P i
|l P

j
|mD3P

k
|n + 2δi|lP

j
|mD2P

k
|n

]

.

After splitting the equations (65) and (66) order by order,
we obtain n sets of equations. At first–order we get:

δijdṖ
i(1) ∧ dXj = 0 ; (70)

ǫijkD1dP
i(1) ∧ dXj ∧ dXk =

a−3ǫijkdW
i ∧ dXj ∧ dXk ; (71)

in coefficient form:

P (1)

[i|j] = 0 ; D1P
i(1)
|i = a−3W i

|i , (72)

i.e. a set of linear equations. The generic nth–order sys-
tem of equations will be written below with an implicit
summation over the order of perturbations in the source
terms:

A(p)B(q) =
∑

p+q=n

A(p)B(q) , (73)

A(r)B(s)C(t) =
∑

r+s+t=n

A(r)B(s)C(t) . (74)

Thus, at any order n > 1, the perturbation equations
read:

δijdṖ
i(n) ∧ dXj = −δijdṖ

i(p) ∧ dP j(q) ; (75)

ǫijkD1dP
i(n) ∧ dXj ∧ dXk =

−ǫijk

[

(

2D2dP
i(p)
)

∧ dP j(q) ∧ dXk

+
(

D3dP
i(r)
)

∧ dP j(s) ∧ dP k(t)

]

; (76)

in coefficient form:

P (n)

[i|j] =

ˆ t

ti

Ṗ (p)

m|[iP
m(q)

|j] dt′ ; (77)

D1P
i(n)

|i = −1

2
ǫijkǫ

lmnP j(s)
|mP k(t)

|n D3P
i(r)
|l

−
(

D2P
i(p)
|i

)

P j(q)
|j +

(

D2P
i(p)
|j

)

P j(q)
|i . (78)

The reader may consult the review [20] and references
therein for further details.

2. Einstein’s Theory

Assuming the perturbation ansatz (34) for the
coframes, and using the operator Dℓ as defined in (67),
the analogous expansion is performed: the zeroth order
again leads to the Friedmann equation, and the general
perturbation scheme reads:

GabṖ
a ∧ δbjdX

j +GabṖ
a ∧Pb = 0 ; (79)

ǫabc

[

D1P
a ∧ δbjdX

j ∧ δckdX
k

+ (2D2P
a) ∧Pb ∧ δckdX

k + (D3P
a) ∧Pb ∧Pc

]

= ǫabcW
1

3
a−3δaidX

i ∧ δbjdX
j ∧ δckdX

k .

(80)

In coefficient form and integrating (79) they become:

P[ij] = Gab

ˆ t

ti

Ṗ a
[iP

b
j]dt

′ ; (81)

D1P
i
i = −

(

(

D2P
i
i

)

P j
j −

(

D2P
i
j

)

P j
i

)

−1

2
ǫijkǫ

lmn
(

D3P
i
|l

)

P j
|mP k

|n +Wa−3 . (82)

Expansion order by order leads to the first–order gravi-
toelectric equations:

G(0)

ab Ṗ
a(1) ∧ dXb = 0 ; (83)

ǫabcD1P
a(1) ∧ δbjdX

j ∧ δckdX
k

= a−3ǫabcW
a ∧ δbjdX

j ∧ δckdX
k ; (84)

and the general nth–order, n > 1, set of nonlinear equa-
tions:

GabṖ
a(n) ∧ δbjdX

j = −GabṖ
a(p) ∧Pb(q) ; (85)

ǫabcD1P
a(n) ∧ δbjdX

j ∧ δckdX
k =

−ǫabc
[

2 (D2P
a(p)) ∧Pb(q) ∧ δckdX

k (86)

+ (D3P
a(r)) ∧Pb(s) ∧Pc(t)

]

.
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In coefficient form, this reads:

P (1)

[ij] = 0 ; D1P
i(1)
i = Wa−3 , (87)

and

P (n)

[ij] = G(r)

ab

ˆ t

ti

Ṗ a(s)

[i P b(t)
j] dt

′ ; (88)

D1P
i(n)

i = −1

2
ǫijkǫ

lmnP j(s)
m P k(t)

n

(

D3P
i(r)
l

)

−
(

D2P
i(p)
i

)

P j(q)
j +

(

D2P
i(p)
j

)

P j(q)
i . (89)

This provides equations for the perturbation fields at any
order n from solutions of order n− 1.
Comparing {(85), (86)} to the Newtonian equations

{(75), (76)}, we see (not surprisingly) that we arrive at
two equivalent sets of equations if we link the pertur-
bations Pa and dP i at any order via the MR – re-
call that the construction was done by inversion of the
MR: dP i = P i

|jdX
j 7→ P a

jdX
j = Pa; for the ini-

tial data: dU i = U i
|jdX

j 7→ Ua
jdX

j = Ua and

dW i = W i
|jdX

j 7→ W a
jdX

j = Wa. Therefore, we can
simply translate the formal solution scheme for the trace–
parts and the antisymmetric parts of the perturbations.
However, note already here that the inversion of the MR

produces a symmetric traceless component that is repre-
sented in Newtonian theory by the tidal tensor.

D. Gravitoelectric Solution Scheme

1. Recap: Newtonian Theory

We first recall the general solution scheme given in [20],
written for the perturbation gradients only.
The hierarchy begins with the first–order equations

{(70), (71)} which are uniquely determined by the con-
straint initial data (62). The general nth–order, n > 1,
solution scheme from Eqs. {(65), (66)}, reads:

δijdP
i(n) ∧ dXj = N

S
(n) ; (90)

ǫijkD1dP
i(n) ∧ dXj ∧ dXk = N

T
(n), (91)

uniquely determined by the source terms:

N
S

(n) := −δij

ˆ t

t0

dṖ i(p) ∧ dP j(q)dt′ ; (92)

N
T

(n) := −ǫijk

[

2
(

D2dP
i(p)
)

∧ dP j(q) ∧ dXk

+
(

D3dP
i(r)
)

∧ dP j(s) ∧ dP k(t)

]

.(93)

We have earlier demonstrated the formal equivalence be-
tween the Newtonian equations and the relativistic grav-
itoelectric equations. The generalization of the Newto-
nian solution scheme to obtain the corresponding rela-
tivistic scheme is now straightforward.

2. Einstein’s Theory

The perturbative gravitoelectric Lagrange–Einstein
system starts at n = 1 with the equations {(83), (84)},
uniquely determined by the corresponding constraint ini-
tial data (50). The nth–order, n > 1, gravitoelectric so-
lution scheme reads:

GabP
a(n) ∧ δbjdX

j = S
(n) ; (94)

ǫabcD1P
a(n) ∧ δbjdX

j ∧ δckdX
k = T

(n) , (95)

which is uniquely determined by the source terms:

S
(n) := G(r)

ab

ˆ t

t0

(

−Ṗa(s) ∧Pb(t)
)

dt′ ; (96)

T
(n) := −ǫabc

(

2 (D2P
a(p)) ∧Pb(q) ∧ δckdX

k

+(D3P
a(r)) ∧Pb(s) ∧Pc(t)

)

. (97)

The coefficient form of these equations is given by (87)–
(89).

IV. APPLICATION OF THE SOLUTION
SCHEME

In order to illustrate the use of the scheme {(94), (95)}
in practice, we will in what follows explicitly explain the
construction of relativistic solutions from Newtonian ones
for the general procedure and through examples, in Sub-
sections IVC and IVD, respectively. Before we do so we
explain the general systematics of solution scheme.

A. Systematics of the solutions

The n–th order scheme is a hierarchy of ordinary
second–order differential equations, sourced by an in-
homogeneity resulting from combinations of lower–order
terms. Thanks to the linearity of the ordinary differen-
tial equations (ODE), the solution is, at any order n, a
linear superposition of modes that we will label by l:

P i(n)

j =
∑

l

P i (n,l)

j . (98)

In the Newtonian case, and for the gravitoelectric rela-
tivistic part, the modes can be further separated into spa-
tial and temporal parts: P i (n,l)

j = ξ(n,l)(t)P i (n,l)

j (Xk).

This is due to the fact that (95) is an ODE and that its
coefficients only depend on time.
From the theory of second–order ODE’s it is known

(see, e.g., Section 2.1.1 of [37]), that an equation of the
form

f2 (a) y
′′ + f1 (a) y

′ + f0 (a) y = g (a) , (99)
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will have as the general solution:

y (a) = C1y1 (a)+C2y2 (a)+

a
ˆ

ai

G (a, s)
g (s)

f2 (s)
ds , (100)

where Green’s function G (a, s) is defined by

G (a, s) =
y2 (a) y1 (s)− y1 (a) y2 (s)

y1 (s) y′2 (s)− y′1 (s) y2 (s)
. (101)

Therefore, at any order, the solution will have two modes
l that are given by the homogeneous solution, known for
a given background model (in the examples we will ex-
plicitly give the solutions for the Einstein–de Sitter case,
henceforth EdS, and the Cold Dark Matter background
with a cosmological constant, henceforth ΛCDM). The
different modes of the particular solution can be calcu-
lated from the integral in (100) by setting g = T (n). As
integration is linear, the particular solution can be com-
puted for each subpart of the source separately, and those
parts appear as a P i (n,l)

j in the sum (106).
In order to study these subparts, we split the pertur-

bations into their trace, their symmetric tracefree part
and their antisymmetric part:

Pa =
1

3
PδajdX

j +Πa +Pa . (102)

Then, Equations {(88), (89)} read:

P
(n)

ij =

ˆ t

ti

1

3

(

G(r)

a[iΠ
a(t)

j] Ṗ
(s) −G(r)

a[iΠ̇
a(s)

j] P
(t)

)

+
1

3

(

G(r)

a[iP
a(t)

j] Ṗ
(s) −G(r)

a[iṖ
a(s)

j] P
(t)

)

+
(

G(r)

ab Ṗ
a(s)

[i Πb(t)
j] −G(r)

abP
b(t)
[i Π̇

a(s)

j]

)

+
(

G(r)

ab Π̇
a(s)

[i Πb(t)
j] +G(r)

ab Ṗ
a(s)

[i P
b(t)
j]

)

dt′ ; (103)

D1P
(n) = −2

3
P (q)D2P

(p) +Πb(q)
a D2Π

a(p)

b +Pb(q)
a D2P

a(p)

b

− 1

2

[

1

3

(

2

3
P (t)P (r) −Πa(t)

b Πb(r)
a −P

a(t)

b Pb(r)
a

)

D3P
(s)

+
1

3

(

−P (t)P
a(r)

b −P
a(t)

b P (r)
)

D3P
b(s)
a

+
1

3

(

−P (t)Πa(r)

b −Πa(t)

b P (r)
)

D3Π
b(s)
a

+
(

Πa(t)

c Πc(r)
b +Πc(t)

b Πa(r)

c +Πa(t)

c P
c(r)
b +Πc(t)

b Pa(r)

c

+Pa(t)

c Πc(r)
b +P

c(t)
b Πa(r)

c +Pa(t)

c P
c(r)
b +P

c(t)
b Pa(r)

c

)

(

D3Π
b(s)
a +D3P

b(s)
a

)]

. (104)

Hence, the trace and the antisymmetric parts are com-
pletely determined by the lower–order expressions of all
parts (four equations for four components of P i

j). What
is missing is an equation for the five components of
the tracefree symmetric term Πi(n)

j . Recall that the
gravitoelectric system is only closed after imposing the
MR, which then couples the tracefree symmetric time–
evolution to the one of the trace and encodes the spatial
dependence in a Poisson equation.

B. Reconstruction of GR solutions

In order to illustrate the scheme for the GR case, we
will discuss here how to reconstruct the full n–th order
solution from the recursive equations {(94), (95)}.

1. Trace part

The trace part is the main part that is given by the
hierarchy. In the absence of the tracefree symmetric term
Πi(n)

j , there is no antisymmetric term emerging and we
are left with a recursion relation for the trace:

D1P
(n) = −2

3
P (q)D2P

(p) − 1

9
P (t)P (r)D3P

(s) . (105)

2. Antisymmetric part

It may appear counterintuitive that a nonvanishing
antisymmetric part arises (starting from second order),
given our assumption of irrotationality due to the given
foliation of spacetime. However, this fact is known from
the Newtonian Lagrangian perturbation theory, where
antisymmetric parts arise, starting at second order, in
Lagrangian space, while no vorticity is created in Eu-
lerian space [15]. Our comoving setting corresponds to
the Lagrangian picture of fluid motion, and the antisym-
metric terms at order n satisfy and follow from the ir-
rotationality condition (94), given all subleading terms
p = 1 . . . n − 1. However, we need to reconstruct a part
of the tracefree symmetric term to recover all the Newto-
nian modes that have antisymmetric components, a prob-
lem to which we turn now.

3. Tracefree symmetric part

As our scheme does not separately provide a relation
that determines the five coefficients of the tracefree sym-
metric part (these equations are part of the gravitomag-
netic scheme), we have to reconstruct the relevant part
that complies with the Newtonian solutions. In order to
achieve this it suffices to realize that the one–form fields
Pa(Xk, t) become integrable in the MR, dP i(Xk, t), and
so also the tracefree symmetric part. Hence, in the MR,
the tracefree symmetric part of dP i(Xk, t) inherits the
time–evolution from the trace. With this in mind, and
due to the superposition property of our solution scheme,
we are entitled to split the general tracefree symmetric
coefficients Πij into a part that reproduces the tracefree

symmetric part ofPa(Xk, t) in theMR, denoted by EΠij ,

and another part HΠij . This is possible at any order:

Π(n)

ij =
∑

l m

ξ(n,l)(t)EΠ (n,l)

ij (Xk) + HΠ (n,m)

ij (Xk, t).

(106)
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The temporal coefficients ξ(n,l) are the same for the trace
and the tracefree symmetric gravitoelectric parts. For
the full GR solution there is in addition a contribution,
denoted by HΠij , which is related to gravitational waves.
We will investigate this part in the follow–up article.
For the time being we note that the superposition prop-
erty discussed above assures that the resulting individual
terms in the decomposition (106) are correct, if we use
only this gravitoelectric part of the tracefree symmetric
tensor in the hierarchy. Thus, even though the scheme
does not determine all the components of P i(n)

j without
solving the gravitomagnetic equations, it is consistent for
the terms it delivers. Moreover, by inspection of corre-
sponding perturbation and solution schemes that we de-
rived for the gravitomagnetic part [3], we can conclude
that the so–reconstructed solutions provide the leading–
order modes of the relativistic solutions at any order. Of
course, inserting the reconstructed solution into the full
set of Einstein equations will result in constraints on ini-
tial data in addition to the standard constraints. As an
example we will discuss the constraints in the first–order
scheme given below.

C. Example 1: recovering parts of the general
first–order solution

In order to illustrate the hierarchy we begin with the
first–order equations of the scheme {(94), (95)}, i.e. in
coefficient form (87). With the split in space and time
coefficients, the latter are the well–known solutions of the
equation (equivalent to the equation in the Newtonian
scheme [7, 9, 10]):

ξ̈ + 2Hξ̇ − 3

2
Hi

2Ωima−3ξ = Wa−3. (107)

For an EdS universe the modes are proportional to a,
a−3/2 and a0. Together with the initial conditions (51),
the solution for the trace found from (87) reads:

P (1) =
3

5

[

(Uti +
3

2
Wti

2)a −
(

Uti −Wti
2
)

a−
3
2 − 5

2
Wti

2

]

.

(108)

The antisymmetric part vanishes in view of (87), Pa(1)

i =
0. We then need to reconstruct the tracefree symmetric
part along the lines described in IVB3 to complete the
solution:

EΠ(1)

ij =
3a

5

(

EU tl
ij ti +

3

2
EW

tl

ijti
2

)

− 3

5a3/2

(

EU tl
ijti − EW

tl

ijti
2
)

− 3

2
EW

tl

ijti
2 . (109)

The notation tl stands for the traceless part. The initial
fields have been split accordingly:

Uij =: EU ij +
H Uij ; Wij =: EW ij +

H Wij , (110)

i.e. a part initializing the gravitoelectric, and the gravit-
omagnetic part, respectively.
We remark that in Newtonian theory the tidal tensor

is written in terms of the gravitational potential Φ:

− Eij = Φ,ij −
1

3
δij∇2Φ , (111)

where a comma denotes derivative with respect to Eu-
lerian inertial coordinates. If we consider the first–order
solution (here restricted to the growing mode solution for
notational ease),

EP i
j
(1) =

3

2
W i

jti
2 (a− 1) , (112)

the first–order gravitoelectric part of the spatially pro-
jected Weyl tensor assumes the form (note the conven-
tional sign difference of this geometrical definition with
the Newtonian (active) definition of Eij):

Ei
j
(1) =− Π̈i

j
(1) − 2HΠ̇i

j
(1)

=− 3

2
ti
2 (ä+ 2Hȧ)

(

W i
j −

1

3
Wδij

)

=− 3

2
ti
2a

(

3

2
Hi

2 1

a3

)(

W i
j −

1

3
Wδij

)

=− 1

a2

(

W i
j −

1

3
Wδij

)

. (113)

We find

Eij
(1) = −

(

Wij −
1

3
Wδij

)

. (114)

The trace W does not derive from a potential due to
nonintegrability of the field. After executing the MR,
we obtain (up to the conventional sign difference), the
Newtonian tidal tensor (111).
Summarizing: given the formal analogy of the solution
schemes discussed in Section III D, the above solution
solves the gravitoelectric part of the corresponding rel-
ativistic equations (87). The tracefree symmetric part
(109), however, is only a part of the solution in the rel-
ativistic case. Eq. (102) in [L1] states that the first–
order equation for the relativistic tracefree symmetric
part reads:

Π̈(1)

ij + 3HΠ̇(1)

ij − a−2Π
|k(1)

ij |k

= −a−2

(

Tij + P (1)

|ij − 1

3
P

|k(1)

|k δij

)

, (115)

where Tij is the tracefree part of the initial Ricci ten-
sor. Plugging (108) and (109) into (115), we can check
whether our relativistic generalization satisfies the full
equation. Three modes appear in the equation: a−2,
a−1 and a−7/2. The equation has to be satisfied at
any time, thus each mode must lead to cancellation of
the coefficients. This leads to the following constraints
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(Hi := 2/3ti):

E
Tij = −Hi

EU tl
(ij) −E W tl

(ij) ;

EU
|k
(ij) |k = EU

k

k|ij ; EW
|k
(ij) |k = EW

k

k|ij . (116)

The first equation corresponds to the definition of the
tracefree part of the initial Ricci tensor, Eq. (53) in the
EdS case studied here. In view of the constraints U[ij] = 0
and W[ij] = 0 (cf. (50)), the other two conditions are
equivalent to:

EU
|k
ij |k = EU

k

k|ij ; EW
|k
ij |k = EW

k

k|ij . (117)

What we call gravitoelectric part in the decomposition
of initial conditions (110) is therefore determined to be
the one that solves (116). The part contributing to
the propagating gravitomagnetic part is then its com-
plement. This labelling is not completely unambiguous,
because in this scheme, the gravitomagnetic part com-
puted from the gravitoelectric part is not null, see be-
low for the first–order scheme. (Nevertheless, as we will
show in the follow–up paper, it generates a null dynami-
cal Ricci curvature tensor.)
In order to check how constraining these relations are,

beyond the constraints that we already have, we consider
the first and second time–derivatives of the momentum
constraints and evaluate them at initial time in order to
obtain constraints on the initial fields. Taking the sec-
ond spatial derivative of these equations and contracting
them with respect to one index, we get for Uij :

Uk
j|k = Uk

k|j ⇒ Uk
j|ik = Uk

k|ij ⇒ U
k|i
j|ik = U

k|i
k|ij .

(118)
The latter identity is solved by the gravitoelectric and
the gravitomagnetic parts independently. For the gravi-
toelectric part, we have:

EU
k|i
j|ik = EU

k|i

k|ij , (119)

which is equal to the once contracted spatial derivative of
the above constraint (117). We conclude that (117) and
the momentum constraints are compatible with but not
equivalent to our constraints. They have to be solved
independently in order for the solution to be compati-
ble with both the evolution equation and the momentum
constraints.
What they do constrain are derivatives of the gravit-

omagnetic part. To derive these constraints, let us first
note that the first–order expression for the magnetic part
can be found from Equation (107) in [L1]:

EHij = a(t)ǫsl(i
EΠ̇j)l|s . (120)

The solution for EΠij , cf. (109), shows that spatial
derivatives of the first–order magnetic part can be traced
back to spatial derivatives of Uij and Wij . Together with

the first–order momentum constraints, Ṗ i
i|j = Ṗ i

j|i, and

imposing the constraints (116), we get:

ǫuri ǫsl(i
EUj)s|lr = 0 ; ǫuri ǫsl(i

EWj)s|lr = 0 . (121)

Thus, via (109), this leads to

ǫuri EHij|r = 0 , (122)

i.e., the curl of EHij vanishes.
For its divergence the constraints (116) are not nec-

essary. Taking the divergence of (120), and using the

momentum constraints in the form EΠ̇i
l|is = 2/3Ṗ|ls, we

can show:

EHij
|i = 0 . (123)

By combining (122) and (123), we conclude that

∆0
EHij = 0 . (124)

Thus, the gravitomagnetic part that is generated by the
gravitoelectric part is a harmonic tensor field at first or-
der. This harmonic field can be constrained in the initial
conditions (removed) by topological conditions on the
perturbations. In an upcoming article, we will discuss
such conditions.

D. Example 2: constructing second–order solutions
for ‘slaved initial data’

Let us now write out the system {(94), (95)} explicitly
for n = 2. We simplify the first–order source by im-
posing the so–called ‘slaving condition’ U i

j = W i
jti (as

explained in [9, 10] and, for second order in [11]). This
is not necessary but increases readability. The sum of
(108) and (109) becomes:

P (1)

ij =
3

2
Wijti

2 (a− 1) . (125)

At second order (89) is simply

D1P
i(2)
i = −

(

D2P
i(1)
i

)

P j(1)
j +

(

D2P
i(1)
j

)

P j(1)
i , (126)

and we have the system:






ξ̈(2) + 2
ȧ

a
ξ̇(2) + 3

ä

a
ξ(2) =

3

4
ti
2
(

a−1 − a−3
)

;

C(2) = W i
jW

j
i −WW ,

(127)

with the source g(2)(t) =
3

4
ti
2
(

a−1 − a−3
)

.

In order to systematically determine the temporal co-
efficients of the hierarchy, it is useful to write the operator
D1 in terms of a. We find:

g (a) = ΩimHi
2 ×

((

1

a
+ a2c

)

P ′′(a) +
3

2

(

1

a2
+ 2ac

)

P ′(a)− 3

2a3
P (a)

)

,

(128)

where c = ΩiΛ/Ωim. For an EdS background, c = 0, the
homogeneous solution is

D (a) = aC1 + a−3/2C2 ; (129)
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Green’s function of Eq. (101) is

G (a, s) =
2

5

s
(

a5/2 − s5/2
)

ΩimHi
2a3/2

. (130)

Now, it is a matter of a simple integration and Eq. (100)
gives the second–order trace solution:

P (2) = 1C(2)a+2C(2)a−3/2+
9

8
ti
4

(

1 +
3

7
a2
)

C(2) . (131)

To find the spatial coefficients of the solution, we use
the initial values for the coframe and its time–derivative.
They have been chosen to vanish for all orders higher
than one in the hierarchy of solutions of Eqs. (89). There-
fore, we find the following system:

P (2)(ti) =
1C + 2C +

45

28
C(2)ti

4 = 0 ;

Ṗ (2)(ti) =
2

3ti
1C − 1

ti
2C +

9

14
C(2)ti

4 = 0 , (132)

which fixes all constants to be ∝ C(2). Thus, the second–
order trace solution reads:

P (2) = ξ(2)

+

(

WW −W i
jW

j
i

)

;

ξ(2)

+ =
9

4
ti
4

(

− 3

14
a2 +

3

5
a− 1

2
+

4

35
a−3/2

)

. (133)

After executing the MR this coincides with the second–
order Newtonian solution of [15].
The antisymmetric equation (94) still delivers Pa(2)

i =
0. This is due to the restriction to ‘slaved initial con-
ditions’, otherwise we would have a nonvanishing part
here. Thus, we only need the tracefree symmetric part
to complete the solution. The gravitoelectric part can be
written as

EΠ(2)

ij = ξ(2)

+ S(2)
ij , (134)

where the trace of S(2)
ij is given by

(

W 2 −W i
jW

j
i

)

ti
2.

The rest of its components can be determined from

the generalization S(2)
|ij → S(2)

ij , where S(2) is the so-

lution to the Newtonian Poisson equation ∆0S(2) =
(

(W k
|k)

2 −W i
|jW

j
|i

)

ti
2, and where ∆0 denotes the

Laplacian in local (Lagrangian) coordinates (see [15]).
To avoid passing by the generalization of the Newtonian
result, one can of course also insert EΠ(2)

ij into (134) and
solve the remaining relativistic equations of the gravito-

magnetic part to find the off–trace components of S(2)
ij .

The explicit derivation of the inhomogeneous second–
order term in this subsection illustrates that, using (100)
and (130), the calculation of the temporal evolution of
the general relativistic trace part is straightforward and
only involves the calculation of integrals. This can also
be easily extended to perturbations of a ΛCDM universe
model by noting that (129) becomes:

D (a) = a (2)F1

(

1

3
, 1,

11

6
;−ca3

)

C1 +

√

1

a3
+ cC2 ,

(135)

with the Gauss Hypergeometric function (2)F1. Greens’
function reads in this case:

G (s, a) =
2

5

s

ΩimHi
2

(

D+ (a, c) −D+ (s, c)

√

(1 + ca3) s3

(1 + cs3) a3

)

,

(136)

where D+ (a, c) is the first term in (135).

V. SUMMARY AND CONCLUDING REMARKS

We have investigated gravitoelectric perturbation and
solution schemes at any order in relativistic Lagrangian
perturbation theory. These schemes cover the full hier-
archy of the Newtonian Lagrangian perturbation theory
if restricted to integrable Cartan coframe fields. Despite
the fact that the solution scheme presented in this work
gives on its own not all parts of the relativistic perturba-
tion solutions, it delivers an important part relevant to
the formation of large–scale structure. As is well–known
(see e.g. discussions in [30] and [3]), the fastest grow-
ing scalar modes of the GR solutions correspond to the
Newtonian modes, shown up to second order and, by in-
spection of the schemes we investigated, we showed this
to hold for the gravitoelectric part also beyond second
order. As we recover all the Newtonian terms with their
correct temporal evolution and their constrained spatial
coefficients, we also know that our solution contains all
terms that become important in the Late Universe. The
presented scheme is explicit enough to derive solutions at
any desired order by algebraic codes along the lines of the
reconstruction rules that we exemplified up to the second
order. We demonstrated the close formal correspondence
of the gravitoelectric Lagrange–Einstein system to the
Newtonian theory furnishing construction rules that also
allow to find other, nonperturbative relativistic solutions
from Newtonian ones.
The role of gravitational waves, corresponding to the

missing part in our scheme, has to be further explored.
The missing part, which we denoted by HΠij in the co-
efficients of the tracefree symmetric parts of the pertur-
bations, corresponds at first order to ‘free gravitational
waves’, i.e. that part of gravitational radiation that does
not scatter at the sources. This changes at higher or-
ders, since this part will couple to the sources starting
at second order. We shall investigate in detail the gen-
eral first–order scheme including gravitational waves in
the next article of this series, where we also identify the
transformations and restrictions that have to be imposed
to obtain the known solutions of the standard perturba-
tion theory, where perturbations are embedded into the
background spacetime.
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Appendix A: Equivalence of integrability of the
coframes and the flatness of space

The standard choice of orthonormal coframes η̃ain the
Cartan formalism implies for the spatial metric coeffi-
cients g̃ij = δabη̃

a
iη̃

b
j , with η̃ai(ti) 6= δai at initial time, in

order to have an initially nontrivial metric.
The alternative choice of adapted coframes η

a, used
in this article, represents the metric coefficients as gij =

Gabη
a
iη

b
j , where we are entitled to require ηai(ti) = δai

at initial time, encoding the initial metric into the coeffi-
cients Gab, i.e. Gij = Gabδ

a
iδ

b
j . This makes the compari-

son with the Newtonian choice of Lagrangian coordinates
to coincide with the Eulerian ones at some intitial time
more direct.
As we discussed in (36), the basic assumption is that

both coframe types describe the same metric form, i.e.
g = δcdη̃

c ⊗ η̃
d = Gabη

a ⊗ η
b, from which we infer:

Gab = δcd η̃caη̃
d
b , (A1)

where we denote with η̃ca the coefficients of the projection
of η̃c onto the basis ηa.
The MR applied to either of these coframes requires

them to be exact forms, η̃a = d̃f̃a or η
a = dfa. They

then define some global Eulerian coordinates, x̃a and xa,
respectively. In the MR, (A1) is equivalent to

Gab = δcd
∂f̃ c

∂xa

∂f̃d

∂xb
. (A2)

We infer from (A2) that the coefficients Gab just depend
on initial vector displacements after executing the MR.
They are related to the initial deformation gradient in
the orthonormal description, as can be seen by looking
at the metric equivalence relation in an exact Lagrangian
basis, g = g̃ijdX̃

i ⊗ dX̃j = gijdX
i ⊗ dXj:

g(Xk, ti) = δabf̃
a
|X̃i(X̃

k, ti)f̃
b
|X̃j (X̃

k, ti)dX̃
i ⊗ dX̃j

= δabf̃
a
|i(X

k, ti)f̃
b
|j(X

k, ti)dX
i ⊗ dXj

= Gab(X
k)δaiδ

b
jdX

i ⊗ dXj , (A3)

where a slash denotes derivative with respect to the coor-
dinates X i, as in the main text, and it is explicitly noted
otherwise. From (A2) we conclude that

g = Gabη
a⊗η

b = δcd
∂f̃ c

∂xa

∂f̃d

∂xb
dxa⊗dxb = δcddx̃

c⊗dx̃d ,

(A4)

which is the Euclidean metric.

Summarizing: execution of the MR leads, in either of
the chosen coframes, to a metric that is equivalent to the
Euclidean metric. The coefficients Gab can then be ex-
pressed in terms of initial vector displacements, cf. (A3).

Appendix B: Erratum and Remarks

We correct a mistake in the paper [20], add a clarifi-
cation to the paper [L1] concerning the gravitomagnetic
part of the spatially projected Weyl tensor.

1. Newtonian perturbation scheme, [20]

The perturbative system of equations derived from La-
grangian Newtonian theory leads to {(65),(66)}:

δij dṖ
i ∧
(

dXj + dP j
)

= δija
−2dU i ∧ dXj ; (B1)

ǫijk

[

(

(D − 4πG̺H)dP i
)

∧ dXj ∧ dXk

+
(

(2D − 4πG̺H)dP i
)

∧ dP j ∧ dXk

+

((

D − 4πG

3
̺H

)

dP i

)

∧ dP j ∧ dP k

]

= −ǫijk
4πG

3
δ̺ia

−3dX i ∧ dXj ∧ dXk , (B2)

where the operator

D :=
d2

dt2
+ 2H

d

dt
.

The numerical coefficients of this system differ from the
result presented in [20]: Equations (28a,b,c) and (28d).

2. Gravitomagnetic part of the spatially projected
Weyl tensor, [L1]

In [L1] the symmetrization of the spatial parts of the
Weyl tensor has not always been written explicitly, which
may lead to confusion. The idea of a not manifestly sym-
metric writing is best seen in the equations for the grav-
itoelectric part: its definition in (32) already assumes
that the field equations hold, which are then recovered
by the conditions (33). While having advantages, this
representation is implicit. The same applies for the grav-
itomagnetic part (see [L1]: Equations (70,73), where the
momentum constraints have been inserted and recovered
through an explicit symmetry condition). If we wish to
consider the original geometrical definition of these ten-
sors without inserting the field equations, then we have
to write, e.g. for the gravitomagnetic part (here written

http://www.bayern-france.org/
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for the adapted coframes used in this article):

Hij =− 1

J
ǫnklgn(iΘ(j)k)||l

=− 1

2J
ǫnklgn(iGab

(

(

ηaj)η̇
b
k

)

||l
+
(

ηakη̇
b
j)

)

||l

)

=− 1

2J
ǫnklgn(iGab

(

ηaj)||lη̇
b
k + ηaj)η̇

b
k||l

+ηak||lη̇
b
j) + ηakη̇

b
j)||l

)

,

(B3)

where gni = Gabη
a
nη

b
i. Employing the irrotationality

condition (28) and taking its covariant derivative,

Gab η̇
a
[iη

b
j]||k +Gab η

a
[j η̇

b
i]||k = 0 , (B4)

we obtain an expression for Hij that manifestly vanishes
with the passage to the Newtonian theory through the
MR (the covariant derivatives of the (now integrable)
coframes vanish):

Hij = − 1

J
ǫnklgn(iGab

(

ηaj)η̇
b
k||l

)

→ HN
j =

− 1
NJ

ǫnklGdeGabf
d
|nf

e
|(if

a
|j)

(

ḟ b
|kl − ḟ b

|mh m
,c f c

|kl

)

= 0 ,

(B5)

which is the result claimed in [L1]: Equation (84), and
which is expected in a concise execution of the Newtonian
limit [21].

3. Remark on the Newton–GR “dictionary”

The reader may have noticed that the Newtonian ten-
sors which correspond to the GR tensors in the MR dis-
play mixed indices, e.g. in Subsection IID 3 for the MR

of the gravitoelectric part Ei
j . We here explain why this

is the case.
Consider, e.g., the Newtonian field strength gradient,

ga,b, where a comma denotes derivative with respect to
Eulerian coordinates. We have on purpose denoted the
vector index by a counter index here, counting the num-
ber of vector components, and we have also used the
counter index for the Eulerian derivative, since both be-
come noncoordinate indices by executing the inverseMR,
i.e. by passing from the Newtonian deformation gradient
with respect to Lagrangian coordinates, fa

|k, to the non-

integrable coframe coefficients, ηak. This expresses the
fact that the vector embedding space disappears through
this operation; in the integrable case the components fa

can be considered as coordinate functions with the co-
ordinates xa→i. Now, the transformation of the field
strength gradient to Lagrangian coordinates involves the
inverse of the transformation fa, which we denote by
X i = hi(xb, t): ga,b = f̈a

|ih
i
,b, where we have also in-

serted the definition ga = f̈a. Denoting the coefficients
of the inverse of the coframes by e i

b , we see that the
inverse MR constructs the relativistic analogon to ga,b,

which is Fa
b := η̈aie

i
b . Projecting this latter field onto

the exact basis with the help of the coframes and their
inverse (the frames), we obtain a field with mixed in-
dices, Fa

be
i
a η

b
j = F i

j . The tensor coefficients are then
obtained by lowering an index with the spatial metric,
Fkj = gkiF i

j = Gabη
a
kη̈

b
j . For mixed indices, we obtain

(compare Equation (46)):

F i
j = e i

a η̈
a
j =

1

2J
ǫabcǫ

iklη̈ajη
b
kη

c
ℓ . (B6)
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