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Abstract

Stroke is one of the leading causes to disability in the western world. The effects of stroke are many and

in many cases include impairment of motor, sensory input, emotion, language, perception and cognitive

functions. Impairment of motor functions usually involvesparalysis or paresis on one side of the body.

One crucial component in rehabilitation following a strokeis the restoration of mobility of which walking

is an essential part. For almost 50 years Functional Electrical Stimulation (FES) has been applied to

restore motor function and to improve gait. In 1961 Libersonused functional electrical stimulation to

elicit the withdrawal reflex during the swing phase.

This work is concerned with the technological development of a new system for FES-assisted gait train-

ing for stroke patients. The system is based on an inertial sensor system consisting of 2 inertial sensor

units mounted to each foot. Algorithms for estimation of foot orientation, detection of gait phases and

estimation of movement parameters as well as strategies formultichannel FES-assisted gait training have

been developed. The algorithm for gait phase detection usesall possible information from one inertial

sensor to detect four distinct gait phases. The gait phases are represented as states in a state machine and

the transitions are governed by logical functions. The detection system was validated by use of an insole

foot pressure measurement system. In experiments involving five hemiplegic subjects, it was found that

the detection system worked robustly, meaning that all gaitphases were detected and no critical failure

in the phase detection occurred.

Based on the gait phase detection algorithm and the estimation of foot orientation, an algorithm for

estimation of movement parameters like step length and footclearance was developed. The method takes

into account known constraints of the movement, like initial and end conditions in order to improve the

accuracy. The estimated movement parameters were comparedwith measurement from an optical motion

analysis system for 5 stroke patients walking on a treadmill. The results showed that the movement

parameters could be estimated from inertial sensor data with a high accuracy.

Furthermore, on basis of the gait phase detection algorithm, a multichannel stimulation strategy for

stroke patients walking on a treadmill was developed and implemented in a laboratory set-up. Gait

analysis measurements with an optical motion analysis system for two stroke patients showed that the

electrical stimulation had an immediate positive effect on the gait pattern. Furthermore, a closed-loop

strategy was derived in order to control movement parameters the estimated by the inertial sensor system.

By evaluating the movement parameters after a completed stride the stimulation intensity was found for

the next stride. The closed-loop strategy was successfullytested in simulation. In experiments with one

stroke patient having a drop foot, the strategy was successfully applied to control the maximum sagittal

angle of the foot by stimulation of tibialis.
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In summary, inertial sensors have proven to be suitable for the exact control of FES-assisted gait training

in a clinical environment. The developed system is reliable, robust, easy to mount on a patient and does

not require re-calibration before use.
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Zusammenfassung in deutscher Sprache

Ein Schlaganfall führt in der Regel zu massiven Störungen des zentralen Nervensystems und oftmals

zur Invalidität des Betroffenen. Als Folge der Hirnschädigungen kommt es häufig zur Beeinträchti-

gung motorischer und sensorischer Funktionen, zu Ausfällen in der Sprache sowie zu einer gestörten

Wahrnehmung. Ein einseitiger Schlaganfall bezüglich des Gehirns führt in der Regel zu einer halb-

seitigen Lähmung der gegenüberliegenden Körperseite. DieLähmung kann dabei vollständig oder teil-

weise (paretisch) sein. Ein wichtiger Bestandteil in der Rehabilitation nach Schlaganfall stellt die Mobil-

isierung der Patienten dar. Die Unterstützung des Gehens mittels Funktioneller Elektrischer Stimulation

(FES) der paretischen Muskeln wurde erstmals von Liberson et al. 1961 bei Schlaganfallpatienten mit

Fußheberschwäche praktiziert. Die Stimulation wurde dabei mittels eines einfachen Fußkontaktschalters

getriggert. Der Elektrostimulation lassen sich sowohl prothetische als auch ein therapeutische Effekte

nachweisen.

Die Dissertation beschäftigt sich mit der technologischenEntwicklung und Erforschung eines neuartigen

Therapiesystems für das FES-unterstützte Gangtraining bei Schlaganfallpatienten. Das Training findet

auf einem Laufband mit teilweiser Gewichtsentlastung des Patienten statt. Grundlage der Entwicklung ist

ein Inertialsensorsystem bestehend aus zwei Miniaturinertialsensoren, die an beiden Schuhen des Patien-

ten angebracht sind. Jeder Sensor besteht aus 3 Beschleunigungs- und 3 Winkelratensensoren mit orthog-

onaler Anordnung. Im Rahmen dieser Arbeit wurden Algorithmen entwickelt zur Gangphasenerkennung

und zur Schätzung der Orientierung sowie der Raumtrajektorie des Fußes basierend auf den Inertialsen-

sordaten. Unter Ausnutzung der gewonnenen Informationen wurde eine geregelte mehrkanalige funk-

tionelle Elektrostimulation realisiert, bei der die Stimulation mit dem Gang exakt synchronisiert ist und

ausgewählte Gangparameter, wie z.B. der Grad der Fußhebung, gezielt beeinflusst werden können.

Das Gangphasenerkennung mit Intertialsensoren erlaubt die Unterscheidung von 4 Gangphasen (Be-

lastungsantwort, Standphase (Fußflachphase), Vorschwungphase und Schwungphase) sowie die Reg-

istrierung von 3 Gangereignissen (initialer Bodenkontakt, Ablösung von Ferse und Zehen vom Boden).

Der entwickelte Algorithmus funktioniert robust für verschiedene Patienten ohne individuelle Anpas-

sungen. Die Sensoren müssen lediglich in Zeitabständen vonmehreren Monaten kalibriert werden. Am

Patienten ist keine Kalibrierung der Sensoren notwendig, so dass das System nach einer einfachen Mon-

tage der Sensoren an den Außenseiten der Schuhe sofort einsatzbereit ist. Die Gangphasenerkennung

mittels Interialsensoren wurde in einer klinischen Studiemit 5 Schlaganfallpatienten erfolgreich getestet

und die Ergebnisse mit einem kommerziellen Gangphasenerkennungssystem mit Drucksensoren unter

der Fußsohle verglichen.
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Für die Schätzung der Orientierung des Fußes wurde ein Kalman-Filter verwendet. Als Vergleichsmes-

sungen für die aus den Winkelraten berechneten Sensorlagenwurden die statischen Beschleunigungsmes-

sungen in den Standphasen des Ganges herangezogen. Zur Bestimmung der Raumkurve des Fußes wurde

eine Doppelintegration der gemessenen Beschleunigungen durchgeführt. Um den Einfluss von Offset-

fehlern der Beschleunigungsmessungen auf die Berechnung der Raumkurve zu reduzieren, wurde die

Raumkurve offline nach jedem Schritt ermittelt unter Berücksichtigung bekannter Randbedingungen,

wie z.B. der Geschwindigkeit des Fußes in den Standphasen. In einer klinischen Studie mit 5 Schlagan-

fallpatienten konnte die hohe Genauigkeit der Raumkurvenschätzung nachgewiesen werden. Konkret

betrachtet wurden die aus der Raumkurve abgeleiteten Kenngrößen Schritthöhe und Schrittweite. Als

Referenzmesssystem wurde ein optisches Messsystem verwendet.

Neben der exakten zeitlichen Synchronisation der Elektrostimulation mit dem Gang erlaubt das entwick-

elte System auch eine gezielte Anpassung der Stimulationintensität, um gewünschte Sollwerte für aus-

gewählte Gangparameter zu realisieren. Bei dem vorgestellten Regelungskonzept werden nach jedem

Schritt die gemessenen Kenngrößen des Ganges mit den Sollvorgaben verglichen. Anschließend wer-

den die Stimulationsintensitäten für den nächsten Schrittangepasst. Während eines Schrittes werden die

Stimulationsintensitäten konstant gehalten. Um die Machbarkeit einer solchen Regelung zu demonstri-

eren, wurden experimentelle Untersuchungen mit einem Schlaganfallpatienten mit ausgeprägter Fußhe-

berschwäche durchgeführt.

Zusammenfassend lässt sich feststellen, dass ein hochgenaues und zuverlässiges System zur Gang-

phasenerkennung und Bewegungsschätzung mittels Inertialsensoren realisiert werden konnte. Für den

späteren klinischen Einsatz spricht ferner die einfache und schnelle Anbringung der Sensoren am Pa-

tienten. Das System eignet sich sehr gut für die Regelung derElektrostimulation beim Gangtraining von

Schlaganfallpatienten.
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1. Introduction

1.1. Stroke

Stroke is one of the leading causes to disability in the western world. The effects of stroke are many

and often include impairment of motor and sensory input, emotions, language, perceptions and cognitive

functions. Impairment of motor functions involves paralysis or paresis on the contralateral body side of

the lesion. Damage to the neural pathways results in abnormal regulation of spinal motorneurons and

causes a degradation of the voluntary movements. Typicallythe muscles extending the leg, the calf and

the quadriceps, are spastic and the muscles of flexion, the anterior tibialis and the hamstrings are weak

or inactive.

One crucial component in the rehabilitation of stroke is therestoration of mobility in which walking is

an important component. The time and degree of recovery of walking function after stroke were studied

prospectively in a population of 804 consecutive acute stroke patients in Copenhagen [39]. In this study

it was reported that at the time of admission to rehabilitation 51 % of the subjects had no walking

functions and 12 % needed assistance in ambulation. After rehabilitation, only 18 % of the participants

still had no walking function and 11 % required assistance. Apersistent, long-term disability remaining

in approximately 10 to 20% of stroke survivors is Upper MotorNeuron-Drop Foot (UMN-DF). UMN-

DF typically involves an inability to dorsiflex the foot during the swing phase of gait (drop foot) as well

as a loss of normal knee flexion, inability to push-off, and spasticity of the calf muscle group in the stance

phase [89].

1.1.1. Neuropathological Changes

Stroke is defined through rapidly developing clinical signsof focal disturbance of cerebral function

lasting more than 24 hours with no other apparent cause than avascular origin [81].

Stroke is either occlusive (due to closure of a blood vessel)or haemorrhagic (due to bleeding from a

vessel). Insufficiency of blood supply is termed ischaemia; if it is temporary, symptoms and signs may

be found with little or no pathological evidence of tissue damage. Ischaemia does reduce the blood
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supply and is thereby deprives tissue of oxygen, glucose andprevents the removal of potentially toxic

metabolites such as lactic acid. When ischaemia is sufficiently severe and prolonged, neurons and other

cellular elements die. Haemorrhage may occur at the brain surface. Alternatively, hemorrhage may be

intraparenchymal causing a blood clot or haematoma within the cerebral hemispheres, in the brainstem,

or in the cerebellum. An infarction in the middle cerebral artery causes the most frequently stroke

syndrome with contralateral weakness, sensory loss and visual field defect. Weakness and sensory loss

affect the face and the arms more than the legs because these are controlled by both hemispheres.

1.1.2. Epidemiology and Risk Factors

The WHO MONICA project of 12 224 registered stroke patients in eleven countries [84] identified the

highest attack rates in men in Finland and Russia. The attackrates were three times higher in those

countries compared to those found in Italy and Germany. In women, the highest attack rates were also

seen in Russia, where stroke events were more than three times higher than in Italy. It was also shown

that stroke incidence rate was higher in men compaired to women, and in half of the countries twice as

many men suffered of stroke compaired with women. In the same study smoking and elevated blood

pressure explained 21 % of the variation in stroke incidencein men and 42 % in women [84].

A meta-analysis of 22 studies indicated that smoking can double the risk of an ischaemic stroke [81].

Subjects who stop smoking reduced this risk by 50 %. For middle-aged women who smoke, the relative

risk for stroke may be as 2.6 times higher as for aged-matchednon-smokers. Lowering high blood

pressure can substantially reduce the risk to vascular complications and overall mortality, depending

on the magnitude by which blood pressure is lowered. In addition to decreasing blood pressure and

smoking cessation, lifestyle modification includes additional factors to reduce the risk of stroke e.g.

regular physical activity and use of a low salt, low saturated fat, high fruit and vegetable diet rich in fibre

[27].

1.2. Functional Electrical Stimulation

An important feature of Upper Motor Neurone Lesions (UMNL) is that electrical excitability of the

associated peripheral nerves is still intact, thus facilitating the use of Functional Electrical Stimulation

(FES) to restore or enhance motor functions. Electrical stimulation for the correction of spastic drop foot

in hemiplegia was first applied by Liberson et al. [43] in 1961. When the patient lifted the heel to take

a step, the stimulator was activated. Stimulation was stopped when the heel contacted the ground. This

was the first ever use of stimulation, and the terminology Functional Electrical Stimulation (FES) was

born. Later many applications of FES have followed both for stroke and in paraplegia. FES can either

be used as an orthotic device as in a foot drop stimulator, which the patient has to use permanently or as

a part of a rehabilitation program. Studies have shown that astatistical improvement of the gait speed
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can be achieved through the use of FES in gait rehabilitation[72, 92]. Other effects of FES are increased

muscle strength and a reduction of spasticity [16]. As stroke patients normally still have their sensory

nerves intact, they can feel a pain when the muscles are electrically stimulated. The pain threshold is

individual to each patients and for some patients who have a low pain threshold, FES cannot be applied.

Apart from provoking contraction of skeletal muscles, FES is used in other neuroprosthetic devices, e.g.

the cochlea implant, the phrenic pacemaker, and the sacral anterior root stimulator for bladder control

(see Rushton [73] or Stein et al. [85] for an overview). Applications of FES in paraplegia with the aim

of motor function restoration include cycling [76, 86], walking [22], rowing [15, 35], standing-up and

sitting-down [68, 69] and standing [37].

The underlying neurophysiological principle of FES is the generation of action potentials in the uninjured

peripheral lower neurons by application of low levels of pulsed electrical current to the nerves. Muscle

contractions can be artificially released by electrical stimulation of efferent (motor) nerves innervating the

paralysed muscles or by electrical stimulation of afferent (sensory) nerves provoking reflexes via intact

reflex arcs. An example of the latter is the stimulation of theperoneal nerve to elicit the withdrawal

reflex. Stimulation can follow either through percutaneousstimulation of peripheral nerves by needle

electrodes through the skin, or as in this work through transcutaneous stimulation with surface electrodes.

Charge-balancing can be realised either by means of a capacitor or using biphasic stimulation pulses. The

stimulator used in this work is current controlled and therefore delivers constant biphasic current pulses.

The current pulses usually have a duration between 10 and 500µs and an amplitude between 0 and

125 mA.

The muscle force produced by FES depends on the number of recruited motor units and the activation

rate. A motor unit is a single motor neuron and the group of muscle fibres (of the same type) innervated

by it. When the pulse charge (pulsewidth× pulse amplitude) is sufficiently high and the neuron is close

to the electrode, the motor neuron will be polarised above threshold and an electric action potential will

be released. The muscle force increases with the number of recruited motor units (spatial summation),

and therefore modulation of pulsewidth or pulse amplitude can be used to control muscle force. The

muscle force can also be controlled by modulation of the stimulation frequency (temporal summation).

The traditional method for neuromuscular stimulation employs a train of brief rectangular stimulating

current pulses, at frequencies typically between 10 and 100Hz.

Although FES can elicit strong and effective muscle contractions, there are significant limitations. Nor-

mally, muscles contain a mixed population of slow fatigue-resistant (type 1), fast fatigue-resistant (type

2A) and fast fatiguable (type 2B) motor unit types. The termsfastandslowrefer to the contractile speed

of the muscle fibres. Compared with the physiological recruitment order (the Hennemannsize principle

[30]), recruitment with FES is thought to be inverted [24]. When low muscle forces are desired, and thus

low intensity electrical stimulation pulses are applied, mainly rapidly fatiguing large motor units which

are close to the electrodes are activated. This is because the fast fatiguable fibres of type 2B motor unit

are associated with large-diameter nerve axons, which havea lower firing threshold to externally applied
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stimulation. With increasing intensity of the pulses, alsosmall neurons (related to slow fatigue-resistant

(type 1) and fast fatigue-resistant (type 2A) motor units) with higher firing threshold and neurons which

are located further away from the electrodes are recruited.In addition to this, at a constant stimulation

intensity and for the same electrode position, the same motor units are activated all the time. With FES,

the action potentials of different motor units are triggered simultaneously. This is different from the CNS

which activates motor units asynchronously.

1.3. Outline of the Thesis

The work in this thesis is concerned with the development of asystem for contolled FES-assisted gait

training for stroke patients by means of inertial sensors.

• In Chapter 2, the state of the art in FES-assisted gait training and Foot Drop stimulation is reviewed.

• In Chapter 3, an introduction and descriptions of the sensorsystems and the stimulator used within

this thesis are given. The physical principles of an inertial sensor unit are explained as well as how

an inertial sensor unit is calibrated. Furthermore, technical features of the stimulator RehaStim

are discussed and its different operation modi are explained. Moreover, a brief description and

technical details are given for the Lukotronic optical motion analysis system and for the Parotec

foot insole pressure measurement system.

• In Chapter 4, an algorithm for obtaining the orientation of an inertial sensor unit is derived based

on an Extended Kalman Filter (EKF). The EKF is an indirect filter in which the error between

the estimated orientation based on an integration of the angular velocity and the real orientation is

estimated in the filter. The acceleration measurement is used in the stance phase of the gait to give

the real orientation of the sensor under the assumption thatthe sensor is not accelerated.

• In Chapter 5, a novel algorithm for online detection of gait phases is presented. The algorithm

exploits all possible information derived from an inertialsensor unit. Four distinct gait phases are

represented as states in a state machine. The transitions between the states are governed by logical

functions based on the angular velocity, orientation and acceleration of the sensor. The robustness

of the algorithm was tested in a clinical study involving 12 hemiplegic stroke patients. During

the tests all parameters of the gait detection algorithm were held constant. Furthermore, for five

hemiplegic patients out of the total twelve, reference datawere recorded with a foot insole pressure

measurement system and gait phases detected by means of thissystem were compared with those

detected with the inertial sensor unit.

• In Chapter 6, a method for estimating the three dimensional trajectory of the foot during gait is

described using data from an inertial sensor unit. Based on this trajectory, gait movement param-

eters of gait like step length and foot clearance are computed. The accuracy of these calculations
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is improved by the introduction of start and stop constraints on the movement. For validation pur-

poses, measurements with an optical motion analysis systemwere performed with five patients

and the estimated movement parameters were validated. The advantage of using a full inertial

sensor unit (3 accelerometers and 3 gyroscopes) instead of areduced sensor (2 accelerometers and

1 gyroscope) was demonstrated.

• In Chapter 7, a prototype system for FES-assisted gait training is described. The system consists

of an inertial sensor system with two inertial sensor units,a standard laptop and an 8-channel

stimulator unit. The gait phase detection system describedin Chapter 5 was implemented and runs

online on a laptop using the Linux operating system. The detected gait phases form a basis for

the stimulation pattern generator i.e. the synchronisation of the stimulation with the gait cycle.

Strategies for stimulation of muscles as well as for closed-loop stimulation are presented in this

chapter. The proposed FES-assisted gait training system based on inertial sensor was successfully

tested on 12 hemiplegic subjects and the feedback control strategy was successfully applied to one

patient.

Conclusions and recommendations for future work are given in Chapter 8.

1.4. Contributions of the Thesis

The main contribution of the thesis consists of the development of algorithms by means of an inertial

sensor unit in the application of FES-assisted gait training. The different algorithms developed through-

out the thesis are connected together and depend upon each other, but the contributions can be divided

into the following parts:

On-line Gait phase detection:A new algorithm for online gait phase detection has been developed. The

algorithm requires that the sensor is mounted to the outsideof the foot. Beside an initial calibration of the

inertial sensor to estimate biases on the gyroscopes and accelerometers, no extra calibration or adaption

of the sensor is required for each patient individually. Thealgorithm takes advantage of the information

derived from the inertial sensor such as the angle between foot and ground and velocity of the foot as

well as the acceleration and angular velocity directly measured by the sensor. This algorithm represents

a novelty as it is the first algorithm using a full inertial sensor unit. The feasibility and robustness of the

algorithm has been verified in experiments with stroke patients.

Calculation of movement parameters by means of a full and reduced inertial sensors.A new al-

gorithm for calculation of gait movement parameters based on the 3D-movement trajectory of the foot

during gait has been developed. The algorithm uses the already detected gait phases for start and stop
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times. The acceleration is integrated two times in order to obtain the foot position. The accuracy of the

estimation is improved by using constraints on the integration i.e. that the velocity is zero at the start and

at the end of the integration. The estimation of movement parameters was investigated for a full inertial

sensor and for a reduced inertial sensor unit with only 3 sensors (1 gyroscope and 2 accelerometers). The

novelty of this work lies in the experimental validation of the proposed methods and comparison of the

different algorithms. The algorithms were experimentally tested on 5 patients who were walking on a

treadmill and the movement parameter estimations were compared with measurements from an optical

3D motion analysis system.

Developement of a closed-loop FES-assisted gait training system: A new strategy for FES-assisted

gait training was developed. The developed stimulation strategy depends on the gait phase detection

algorithm. The gait cycle is divided into 11 subparts, and each stimulation channel can be uniquely

programmed to be active in selected parts. The gait cadence is observed and the stimulation pattern

is scaled to the gait cadence. A new closed-loop control strategy was derived in order to control the

stimulation intensity with the aim to achieve desired movement parameter. The open loop control strategy

was successfully tested on 12 hemiplegic patients, whereasthe feasibility of the closed-loop control

strategy was demonstrated on one stroke patient. This was the first time that an inertial sensor unit was

used in the application to closed-loop FES-assisted gait.

1.5. Publications

The results presented in this thesis have previously been partly published in the following articles:

1. Negård, N.-O., Kauert, R., Andres, S., Schauer, T. and Raisch, J. Gait phase detection and step

length estimation of gait by means of inertial sensors, InProc. of the 3rd European Medical&

Biological Engineering Conference, Prague, Czech Republic. Oct. 2005.

2. Negård, N.-O., Schauer, T. and Raisch, J. Robust Nonlinear Control of Knee-Joint Angle: A Sim-

ulation Study, InProc. of the 3rd Wismar Symposium on Automatic Control, Hansestadt Wismar,

Germany. Sep. 2003.

3. Negård, N.-O., Schauer, T.,Kauert, R. and Raisch, J. An FES-assisted gait training system for

hemiplegic stroke patients based on inertial sensors, InProc. of the 6th IFAC Symposium on Mod-

elling and Control in Biomedical Systems, Reims, France. Sep. 2006.

4. Negård, N.-O., Schauer, T., Gersigny, J., Hesse, S. and Raisch, J. Application Programming

Interface and PC control for the 8 channel stimulator MOTIONSTIM8, In Proc. of the 10th Annual

Conference of the International Functional Electrical Stimulation Society (IFESS 2005), IFESS,

Montreal, Canada. Aug. 2005.
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5. Negård, N.-O., Schauer, T.,Raisch, J.,Schumacher, S. and Hömberg, V. Control of FES-assisted

gait training after stroke using inertial sensors., InProc. of the 11th Annual Conference of the

International Functional Electrical Stimulation Society(IFESS 2006), IFESS, Zao, Japan. Sep.

2006.

6. Schauer, T., Negård, N.-O., Nahrstaedt, H. and Raisch, J.Regelung von Peroneus-Stimulatoren zur

Kompensation von Fußheberschwäche nach Schlaganfall.ORTHOPÄDIETECHNIK, 60(2):78-83,

2009
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2. State of the Art in FES-Assisted Gait Training

2.1. Summary

This chapter gives an overview of Functional Electrical Stimulation (FES)-assisted gait training and

mainly represents a literature review with discussions. Section 2.2 outlines the advantages of FES-

assisted gait training in comparison to other types or gait training e.g. treadmill training with partial

bodyweight support. In Section 2.3, a description of normalgait and terminology of this are given. In

Section 2.4 existing sensors, methods and algorithms for gait phase detection are presented. An intro-

duction to FES-assisted gait training as well as the muscle selection, stimulation parameters and timing

of the electrical stimulation is given in Section 2.5. Furthermore, different approaches and strategies

for closed-loop control the stimulation intensity during gait are outlined in Section 2.6. The application

of inertial sensors for motion estimation and the accuracy of such sensors are reviewed in Section 2.7.

Finally, a discussion of open research issues in FES-assisted gait training are given in Section 2.8

2.2. Gait Rehabilitation after Stroke

Following stroke, it is necessary to start rehabilitation as soon as possible. In Europe, the Bobath training

approach is the most used training concept applied for stroke rehabilitation. This method is based upon

repetitive exercises of single movements in preparation for gait, while gait itself is not so much practised.

In the last decade, a new form of gait training with use of a treadmill and Partial Body Weight Support

(PBWS) has been brought into clinical practice for patientswith neurological impairment caused by

stroke [32, 98], spinal cord injury [5] or other neurological diseases e.g. cerebral palsy [77]. In this novel

approach patients use an overhead suspension system which supports a percentage of the body weight

while the patients walk on a treadmill. The reduction of weight makes it possible for the patients to carry

their remaining weight adequately, i.e. without knee collapse and excessive hip flexion during the single

stance period of the affected limb. The body weight support is reduced as the walkingability increases,

allowing more and more realistic gait training. This training regime allow the practice of a complete gait

cycle with many repetitions in an early stage of the gait rehabilitation. Use of harness support minimises

the delay before the patients can start the walking training. In addition, PBWS gait training is providing
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Table 2.1.: Walking mobility criteria for levels of ambulation

Criterion Description
1. Physiologic ambulator Endurance, strength of level of assistance required make the ambulation not

functional. May require assistance to stand. (Walks for exercise only)
2. Limited household Walks in the home but limited by endurance, strength or safety (Walks rarely in

ambulator the home/never in community.)
3. Independent household Walks continuously for distancesthat are considered reasonable for inside the

ambulator home. May require assistance with stairs inside and curbs, ramps outside the
home. A wheelchair may be used outdoors. (Walks occasionally in home/
rarely in community)

4. Limited community Walks outside the home and can manage doors, low curbs and ramps.
ambulator A wheelchair may be used for long distances. (Walks regularly in the home/

occasionally in community)
5. Independent community Walks for distances of approximately 400 meters at a speed at least 50 % of

ambulator normal. Can manage all aspects of walking safely including curbs, stairs and
doors. (rarely/never uses wheelchair)

an environment that discourages the development of compensatory strategies compared to gait training

with walking aids which favours an asymmetrical gait pattern. In a study by Hesse et al. [32] it was

shown that patients could practise a more favourable gait onthe treadmill with a higher rate of symmetry

and a prolonged stance phase on the affected side.

Repetitions of gait movements are assumed to lead to an activation of central gait pattern generators. The

background for this theory is based upon experiments in adult spinalized cats and incompletely lesioned

primates, showing an entrainment of presumed spinal and supra-spinal pattern generators by locomotor

therapy [36]. The central pattern generator activation hasnot been shown for human beings but the

plasticity of the brain allows relearning. Recently a largestudy [31] compared the Bobath program

and a task-specific motor re-learning program in 61 acute stroke patients. Their results showed that

patients who were trained with PBWS treadmill training stayed fewer days in hospital and their general

improvements in motor functions and walking mobility criteria (see Table 2.1) were significant better as

for the patients in the Bobath group.

PBWS treadmill training can also be enhanced by functional electrical stimulation. In a study by Hesse

et al. [33] the effects of the combined use of functional electrical stimulation and treadmill training in

hemiparetic patients were studied. Threadmill training with functional electrical stimulation was shown

to be superior to traditional physiotherapy with regard to restoration to gait function. On the other hand,

it has never been proven that functional electrical stimulation itself has positive effects. But clearly the

use of functional electrical stimulation has several advantages in treadmill training as the stimulation can

improve and support the movement and ease the manual labour for the physiotherapists.

The first usage of electrical stimulation to improve gait wasdone by Liberson et al. [43]. Peroneal nerve

stimulation was used to elicit the withdrawal reflex in orderto achieve dorsiflexion throughout the swing
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phase. About 10% - 20% of chronic stroke patients develop a Upper Motor Neurone Drop Foot (UMN-

DF). This means an inability to dorsiflex the foot during the swing phase of gait. For these patients a

permanent drop foot orthosis can be a useful alternative to mechanical braces.

2.3. Description of Normal Gait

As this thesis is concerned in a broad way with gait and rehabilitation of gait, a short introduction to the

gait and its definition is given in this section. There are several definitions and descriptions of gait as

well as its phases in the literature. The most common definitions have been derived by Perry [65] and

are therefore used within this thesis.

Walking is the most convenient way for human beings to travelshort distances. As the body moves

forward, one limb typically provides support while the other limb is advanced and prepares for the role

to be the supporting limb. The Gait Cycle (GC) in its simplestform comprises swing and stance phase.

The stance can furthermore be divided into 3 parts, initial double-limb support, single-limb support and

terminal double-limb support. Each double-limb support period lasts for 10 % of the GC, while the swing

phase typically endures 40 % of the GC and single double-limbperiod typically represents 40% of the

gait cycle. Slight variations occur normally in the percentage of stance and swing related to gait velocity.

The duration of stance decreases normally as walking velocity increases. As velocity increases, double-

limb support time decreases. Running constitutes forward movement with no periods of double-limb

support. The term ipsilateral is used to describe the same side of the body, and the term contralateral is

used to describe the opposite side of the body or the oppositelimb. The direction of walking is referred

to as the line of progression.

A stride is the equivalent of a GC. The duration of a stride is the time between sequential initial floor

contacts by the same limb. A step is recognised as the interval between sequential floor contacts by

ipsilateral and contralateral limbs. Two steps make up eachGC, which is roughly symmetric in normal

individuals.

2.3.1. Functional Tasks of Gait

The gait can be divided into eight functional parts, these are sub phases. Each of the eight sub gait phases

has a functional objective and a critical pattern of selective synergistic motion to accomplish this goal.

The sequential combination of the gait phases enables threebasic tasks, which are Weight Acceptance

(WA), Single-Limb Support(SLS) and Limb Advancement(LA).

Task A: Weight Acceptance

The first functional task is Weight Acceptance. In this functional task two phases are involved, Initial

Contact and Loading Response. The demand for immediate transfer of body weight onto the limb as

10
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Figure 2.1.: Gait phases and functional tasks during gait according to Perry [65].

soon as it contacts the ground requires initial limb stability and shock absorption while simultaneously

preserving the momentum of progression.

Task B: Single-Limb Support

The second functional task is the single-limb support. Primarily two phases are associated with the

single-limb support, midstance and terminal stance. When the contralateral foot starts the swing phase,

the single-limb support intervals begins for the stance limb. Midstance is the first half of the single- limb

support phase, begins as the other foot is lifted and continues until the body weight is aligned over the

forefoot. Terminal stance completes the single-limb support until the other foot strikes the ground.

Task C: Limb advancement

This task can be divided into four phases: Pre-swing, initial swing, midswing and terminal swing. Pre-

Swing is the final phase of stance and the second double stanceinterval in the gait cycle. The weight

is transferred from one side to the another, but this leg is not actively contributing to this, instead it is

preparing for the swing. Initial swing begins with the foot lift from the floor and ends with the swinging

leg opposite of the stance leg. Midswing begins when the swinging leg is opposite of the stance leg and

ends when the swinging leg is in a vertical position. Terminal-swing concludes the swing when the foot

strikes the floor.

2.3.2. Gait Phases

The gait cycle can be described in the phasic terms of initialcontact, loading response, midstance, ter-

minal stance, pre-swing, initial swing, midswing and terminal swing (see Figure 2.1). The stance pe-

riod consists of the first five phases: initial contact, loading response, midstance, terminal stance and

preswing. The swing period is primarily divided into three phases: initial swing, midswing and termi-

nal swing. Pre-swing, however, prepares the limb for swing advancement and could in that sense be

considered as a component of the swing phase.

Initial Contact is an instantaneous point in time which occurs in the moment as the foot touches the

ground. Most of the motor functions of the leg which occur during initial contact are for the preparation

11
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of the loading response that follows the initial contact.

TheLoading Responsephase takes up about 10 % of the gait cycle and constitutes theperiod of initial

double-limb support. During this phase the whole foot becomes in touch with the ground. While this

is done all the body weight is transferred onto the stance limb. This phase ends at the time as the

contralateral leg is lifted off the ground.

Midstancerepresents the first half of single-limb support. This phaseoccurs in the range from 10 % to

30 % of the gait cycle. It begins when the contralateral foot leaves the ground and continues as the body

weight travels along the length of the foot until it is aligned over the forefoot.

Terminal Stanceconstitutes the second half of single-limb support. This phase begins with the heel rise

and continues until the contralateral foot touches the ground. Terminal stance happens in the range 30 %

to 50 % of the gait cycle. During terminal stance the body weight is moving ahead of the forefoot.

Pre-swingis the terminal double-limb support period and this phase takes place during the last 12 % of

the stance phase in the range between 50 % and 62 %. This phase begins as the contralateral foot comes

in contact with the ground and ends as the toe looses contact with ground. During this period, the body

weight is transferred onto the contralateral side.

The Initial Swing phase takes place in the range from the 62 % to 75 % of the gait cycle. This phase

starts as the toe lifts of the ground and continues until the maximum flexion of the knee is achieved.

Midswingoccurs in the second third of the swing period in the range from 75 % to 85 % of the gait cycle.

This phase begins at the moment as the knee is maximal flexed and ends in the moment as the tibia is in

a vertical position.

Terminal Swingtakes place in the range from 85 % to 100 % of the gait cycle. Thephase starts at the tibia

passes beyond perpendicular sagittal orientation and continues until the knee fully extends in preparation

for heel contact.

2.4. Gait Phase Detection

The task of a Gait Phase Detection (GPD) system is to identifythe phases of gait based on some sensory

input mostly for the purpose to trigger electrical stimulation in a drop foot stimulator or in FES-assisted

gait training. GPD is especially important for drop foot orthoses, as there is a need to detect the gait

phases robustly for all possible situations in daily life. For FES-assisted treadmill training, where the

patients are consequently either walking forward or standing, the requirements on a gait phase detection

system are weaker. A gait phase detection system for foot drop has to detect the intention to take a step

and at the same time it has to exclude other daily life non-walking tasks e.g. sitting down and standing

up. In gait phase detection systems developed so far, the gait cycle is divided into two or more phases.

12
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The number and definition of these phases varies. As already described in Section 2.3, normal gait is

usually divided into as much as eight gait phases for each leg. This division is hard to fulfill and to detect

with a sensory system. Normally, in a gait phase detection system, four or less gait phases are detected

depending on the sensors used.

2.4.1. Gait Phase Detection: Sensors and Robustness

The first sensor taken into use, and still the most frequentlyused sensor in gait phase detection systems, is

the foot switch. The fact that foot switches are mounted beneath the foot imply that mechanical wear will

degrade the performance after a while, and as reported by Willemsen et al. [100], they are quite unreliable

and susceptible to mechanical failure. The inadequacy of footswitches in detecting foot contact events

was shown in [50]. On average, the foot switches detected heel contact falsely 1.3-7.6% of the time. In

a paper by Taylor et al. [88] a questionnaire were done among the users of the Odstock Dropped Foot

Stimulator (ODFS) and nearly 40 % of the patients reported problems related to the stimulator’s foot

switches.

These facts lead to the desire to use more reliable sensors ingait phase detection. Another goal is to

improve the robustness and accuracy of detection. But the concept of accuracy can be somewhat difficult

to define as transitions between phases occur gradually, andmight be interpreted differently by different

investigators who are manually detecting gait events e.g. by evaluating a video. Therefore, no sensor

can be considered completely accurate in the detection of gait events, and comparison between different

sensor systems and detection algorithms can only show relative differences.

So far, besides the simple foot switch, combinations of manual switches, foot switches, force sensitive

resistors, inclinometers, goniometers, gyroscopes, accelerometers and ENG (electroneurography) have

been proposed as sensory systems to detect gait phases, and consequently to control the timing of the

stimulation sequences in FES-assisted training systems. The usage of 2 or 3 foot-switches has been re-

ported by Chen et al. [11] and insole force measurement was applied in [23]. A switch sensor at the

heel of the affected side can be used to trigger quadriceps stimulation on the disabled foot during the

stance phase [11]. More extensively equipped with sensors were the subjects in the study described in

[20]. In addition to foot switches and angle measurement by use of goniometers, acceleration was also

measured at the hip joint. All this information was used in a machine learning regime. In [100], four

accelerometers were used to measure the radial and tangential acceleration of the shank segment. A

rule based algorithm was developed to detect four distinct gait phases with the emphasis on detecting

heel-off as this is essential in a peroneal nerve stimulator. This algorithm worked well for three out

of four patients, but for the forth patient the heel-strike was constantly detected too early due to dis-

turbances. An approach using accelerometer sensors was described in Williamson and Andrews [101].

Three accelerometers were attached in the tibial crest region. Two of the accelerometers were oriented

in the horizontal direction and the last one in the vertical direction. Force-sensitive resistors were used
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to generate reference signals of gait phases from the foot-floor contact pattern. In this paper an Adaptive

Logic Network (ALN) was applied in order to detect gait phases from the accelerometer measurements.

A remarkable high accuracy of the proposed sensor system wasachieved by comparing the detection

based on accelerometers mounted on the shank with a traditional FSR sensor system. The heel strike and

the toe off detections were reported to have an accuracy of 99 % and 96 % respectively. As the data were

sampled with a frequency of 33 Hz, this accuracy means that only 1 out of 10 samples missed with one

sample at 99% accuracy.

Other alternatives for triggering stimulation like goniometers measuring hip, knee and ankle angles have

also been proposed [60]. Recently, the interest in using a combination of gyroscopes and accelerome-

ters by use of Inertial Sensor Units (ISU) and reduced ISUs has grown for the purpose of detecting gait

phases. Kotiadis et al. [40] used an inertial sensor system.Although using a complete ISU with 3 gyro-

scopes and 3 accelerometers, only the 2 accelerometers in the sagittal plane and the gyroscope measuring

angular velocity in the sagittal plane were considered in that work. Contrary to the work in this thesis,

the sensor was fixated on the shank segment just below the knee. A similar placement of tilt sensors

in [14] showed that this sensor configuration leads to a bad differentiation between gait movement and

standing up/sitting down. A similar study was done by Sabatini et al. [75]where spatial gait parameters

were estimated in addition to the temporal parameters. In a reduced ISU two accelerometers and one gy-

roscope collect the most valuable information, the additional sensors in a complete ISU might improve

the robustness and accuracy. Furthermore, a complete ISU would provide a more accurate estimation

of foot velocity and position which could possibly be used for transitions rules between states in a gait

phases detection system. To the author best knowledge, no GPD system utilising all gyroscopes and

accelerometers in an inertial sensor unit has been developed until now.

Another method is described in Strange and Hoffer [87] to detect the transition between swing and stance

phase by exploiting an afferent nerve input. By implanting nerve-cuff electrodes in cats they were able to

detect the transitions between stance and swing with a relability of 99%. Later, similar detection systems

have been applied in human beings [29]. By attaching the nerve-cuff to the peroneal nerve and using a

switching circuit, stimulation followed through the same electrode. Such systems are invasive and only

detect two phases. A major disadvantage of these sensors is that force sensitive resistors have to be used

in a calibration procedure in order to train an adaptive logic network. In [10] a system using EMG signals

was used for triggering stimulation. Electrodes at the tibialis anterior are used to sense voluntary motion.

This signal is rectified and integrated. When the processed signal exceeds a threshold the stimulation is

initiated on two other electrodes, and continuing for as long as the patient maintains the EMG signal.

Closely related to real-time gait phase detection systems are offline gait analysis systems measuring

temporal and spatial gait parameters. Such a system was developed by Aminian et al. [2] who attached

gyroscopes to the shank. A method applying wavelets was designed to detect heel-strike and toe off

events. In similarity to [101], the detected events were compaired with data recorded from FSR attached

to the heel and to the toe. In the study, the participants weredivided into two groups; one consisting

of young and one of elderly people. Heel strike detection based upon gyroscopes was found to have a
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systematic delay of 10 ms with regard to FSRs with a confidenceinterval between 7 and 13 ms. A similar

study was performed by Jasiewicz et al. [38]. An algorithm searches in windows to find peaks in either

acceleration data or in gyroscope. The sensor, a reduced ISUwith one gyroscope and two accelerometers,

was mounted to the foot and shank segments, and the detected gait phases were compared with gait

phases gained from foot switches. The results were similar to those found in [2] for subjects with normal

walking pattern. For patients with abnormal gait pattern, alarger deviation in the detection of the two

events was observed for events detected with the data from the shank segment.

2.4.2. Methods of Gait Phase Detection

In methodology there are mainly two approaches to detect thegait phases. The first is a rule based

approach in which the gait phases are defined as states of a finite state machine and the transitions

between the states are functions of the sensory input [14, 40, 64, 75, 100]. An example of a rule based gait

phase detection system can be found in Papas et al. [64]. In this approach one gyroscope and three FSRs

were applied. One FSR was placed underneath the heel while the two others were placed underneath

the metatarsal heads since the foot is not always symmetrically loaded. The gyroscope was attached to

the heel and was applied to calculate the tilt angle relativeto the ground. This was done by filtering

and integrating the gyroscope signal. Drift was avoided by resetting to zero when all force resistive

sensors were loaded. The gait detection algorithm divided the gait cycle in four different gait phases:

stance, heel-off, swing and heel-strike. These phases were represented as states in a state machine, and

the transitions were governed by a knowledge-based algorithm. The algorithm allowed 7 transitions

between states (See Figure 2.2). The gait phase detection system was validated by use of a 3D motion

analysis system. It was reported that the GPD system had a systematic delay compared with motion

analysis system in the worst case of 90 ms. The correlation was reported to be good but no numbers were

given indicating the variance of the detection.

The second approach is from the methodology completely different compared to the first. Instead of

having clearly defined rules for transitions, the detectionsystem is represented as a black box where the

gait phases are the outputs and sensory information are inputs [60, 83, 101]. Such black-box systems are

usually related to machine learning techniques, fuzzy logic systems or neural networks. Normally, such

systems have to be trained in advance by using a known reference. Such reference can be transitions

which are found by manually evaluating video data. The advantage of such systems is that they can be

trained to accurately and robustly detect gait phases for one subject. On the other hand, the disadvantage

of those systems is that they have to be trained for each subject separately with some sort of reference

detection system, possibly by foot switches or manually by ahand switch. This is a time-consuming

procedure that has to be redone as the gait rehabilitation progresses and consequently the gait changes.

That makes this approach difficult to implement in a clinical setting.
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Figure 2.2.: Gait phase detection system represented as a state machine. The gait phases are represented
as 4 states and 7 transitions [64].

2.5. FES-Assisted Gait Training Systems

In this section, a review of FES-assisted gait training is outlined. The focus will be on surface stimulation

approaches applied to stroke patients. A summary of studiesis given in Table 2.2.

FES-assisted gait systems can be used for rehabilitation purposes for acute hemiplegic stroke patients or

as a permanent orthosis called Drop Foot Stimulator (DFS) for chronic drop foot patients. The techno-

logical aspects for both DFS and FES-assisted gait trainingsystems are similar e.g. the stimulation is

synchronised to the gait phases. FES-assisted gait training systems are usually applied in the rehabili-

tation a short time after stroke, and are usually applied to patients who can ambulate independently on

a treadmill with partial body weight support. The general idea of FES-assisted gait training is that the

gait movement should be repeated many times in order to relearn walking. In a metastudy by Robbins

et al. [72] all relevant articles on the usage of FES to relearn gait were investigated in order to conclude

on the effects of FES on gait. The results of the study showed that the usage of FES gives a statistical

improvement on the gait speed. Furthermore, an increased muscle strength was shown to be significant.

On the other side, the overall functional ability was not significantly improved. A further metastudy by

van Peppen et al. [92] confirms this saying that while there ismoderate evidence that FES has a positive

effect on gait speed and muscle strength, it could not be proved that FES increases the scores on Activity

of Daily Living (ADL).

As already mentioned in Chapter 1, 20 % of stroke survivors develop a long term disability to dorsiflex

the foot during the swing phase of gait. In 1961 Liberson et al. [43] developed the first orthosis based on

electrical stimulation for patients with drop foot. In their innovation the withdrawal reflex was employed

to achieve dorsiflexion throughout the swing phase. A heel switch was mounted in the sole of the shoe

to synchronise the stimulation to the peroneal nerve duringthe swing phase. When the pressure released
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Table 2.2.: Stimulated muscle groups or nerves using surface electrodes in FES-assisted gait training:
Q - quadriceps, H - hamstrings, G - gluteus maximus, TA - tibialis anterior, S - Soleus, P -
peroneal nerve. The last column indicates the number of patients participating in the study. If
the study is of pure technical nature it is marked with (T).

Source Q H G TA S P Patient type N / Study type
Liberson et al. [43] × Hemiplegic 7
Vodovnik et al. [99] Hemiplegic T
Kralj et al. [41] × × × Paraplegic 3
Bogataj et al. [7] Paraplegic T
Malezic et al. [48] × × × × × Stroke and Brain damaged18
Hesse et al. [33] × × × × × Hemiparetic 11
Bogataj et al. [6] × × × × × Stroke 1
Chen et al. [11] × × Hemiplegic 1
Taylor et al. [89]/ODFS × Hemiplegic 151
O’Keeffe and Lyons [62] × Hemiplegic -
Granat et al. [25] × Hemiplegic 19
Quintern et al. [67] × Hemiplegic 38
Hansen et al. [28] × Hemiplegic 1
Lyons et al. [47] × Hemiplegic 1
Sepulveda et al. [80] × Hemiplegic 1

off the heel-switch at heel off the delivery of stimulation started and continued until thethe heel-switch

closed at heel strike. Clearly, the system lacked sophistication and delivered stimuli in a crude fashion

compared to the natural activation of the neuromuscular system. In this case study, seven hemiplegic pa-

tients participated, and in all subjects a considerable improvement of the gait was shown when they used

the foot drop orthosis. A good survey paper by Lyons et al. [46] describes the technological developments

in neural protheses for the correction of upper motor neurone drop foot since 1961.

After the first development of Liberson, many hard-wired single channel system followed in the seven-

ties and eighties [99]. One problem that was frequently reported was the occurrence of a reflex spasm

provoked by electrical stimulation. Vodovnik et al. [99] described a DFS system where they proposed

to solve this problem by filtering the onset activation signal by a low-pass filter in order to enable a soft

onset and a soft stop of the stimulation current. Other innovations described by Vodovnik et al. [99]

were:

• use of both manual and conventional foot switch triggering.

• use of electromyography (EMG) for triggering ES rather thanusing foot switches.

The paper of Vodovnik et al. from 1978 was of pure technical character and no experiments with patients

were described.
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In 1983, the first use of multichannel FES was proposed by a group at the University of Ljubljana in

Slovenia [41]. In this paper, they demonstrated the usage ofa three channel portable stimulator. The

stimulator incorporated a radio link between the heel-switch and the stimulator. The three stimulation

channels enabled different muscle groups to be controlled independently, such asankle dorsiflexors,

knee flexors and knee extensors. A drawback of the system was that the clinician was required to make

multiple adjustments to optimise the delay settings for each of the three stimulation channels following

detection of the heel-off event. The stimulator system described in the paper was experimentally tested

on 3 SCI patients.

In the paper by [7] from 1984, the first use of microcontroller/microprocessor technology in a FES-

assisted gait training system was reported. Bogataj’s system consisted of a 6-channel stimulator and

a control unit with an embedded stride analyser. On the control unit there was an array of 16 switches

which were used to refine the stimulation pattern. By using 8 switches for the swing phase and 8 switches

for the stance phase for every stimulation channel, a refinement of the stimulation pattern was possible.

The increments were scaled in time to the duration of the swing and stance phases by the stride analyser.

The stride analyser was also used to display vital parameters of the gait like the number of steps, the

mean stride time and the swing/stance duration. As for many multichannel stimulation devices this was

only suitable for clinical use.

In the early nineties the Ljubliana group developed a new 2-channel microprocessor based DFS [48].

This stimulator had in addition to the stimulation part, a programmable stride analyser. The clinicians

could independently program all the stimulation parameters for each channel via the programmer unit.

The subjects could only adjust the current amplitudes. As for the earlier 6-channel stimulator unit by

[7], the duration of the stimulation sequence was adapted tothe subject’s cadence. Two foot-switches

could be connected to the stimulator unit and if additional stimulation channels were required a cascade

arrangement of the stimulators was possible. In addition, the programmer unit gathered parameters of

gait like the number of strides recorded in a session, the duration of left and right stride as well as the

duration of swing and stance phase. Recording of gait parameters is useful because it allows the clinician

to assess how the DFS is performing in a home environment. In this study 11 stroke and 10 Traumatic

Brain Injured (TBI) patients were stimulated during gait. Different stimulation combinations of peroneal

nerve, hamstring, quadriceps, triceps brachii, and gluteus maximus were applied. The purpose of the

clinical evaluation was to determine the stimulators performance in therapeutic and orthotic use. The

main efforts was directed to the evaluation of the flexibility of the program to different stimulation ap-

proached. It was concluded that the stimulator proved to be adequate for the restitution of gait in stroke

and TBI patients because the nature of the stimulator units alarge variety of stimulation sequences and

parameters could be adapted to a large patient group.

In a study by Hesse et al. [33] from 1995 the effects of the combined use of functional electrical stim-

ulation and treadmill training in hemiparetic patients wasdescribed. Muscle stimulation to the affected

lower limb muscles were applied using surface electrodes. The stimulator provided a selection of the

stimulation within eight stance phases and eight swing phase increments for every channel (See Figure
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2.5). The durations of the phase increments were updated corresponding to the cadence. The peroneal

nerve was stimulated by use of surface electrodes for the dorsal flexion and moderate eversion during

the swing and initial stance phase in ten subjects. The quadriceps muscle was stimulated for the knee

extention in the terminal swing and the first part of the stance phase. The hamstring was stimulated for

the knee flexion in the pre and initial swing phase. Finally, the gluteus maximus was stimulated for hip

extention throughout the stance phase. In total 11 patientsparticipated in this study, divided into two

groups, where the first group consisted of 4 patients who received treadmill training besides conven-

tional physiotherapy. In the second group, a single case A-B-A study was applied, where phase A was

15 treadmill/stimulation treatments, phase B conventional physiotherapy for 15 days and last phase A

was consisting of another 15 treadmill/stimulation treatments. The first four patients improved their gait

ability considerably during the additional treadmill training. After the study one patient was completely

independent, two patients needed verbal support and one patient was still dependent on intermittent sup-

port. In the seven patients assessed in the A-B-A study the functional ambulation category improved

during the two A phases, and remained fairly constant in the Bphase. The Rivermead score and the Ash-

worth score indicated no differences between the two therapy treatments in muscle strength and spasticity

in the A-B-A study.

In 1999, Taylor et al. [89] described the use of a single-channel hard wired stimulator, the Odstock Drop

Foot Stimulator (ODFS). This stimulator had incorporated afew new innovative solutions. Stimulation

of the hemiplegic leg could be controlled by a heel-switch worn on either the hemiplegic or nonhemi-

plegic side. When the switch was on the nonhemiplegic side, stimulation was initiated by heel strike and

terminated by heel rise. Furthermore, miniature potentiometers were introduced in order to allow adjust-

ment of both the rate at which the stimulation was ramped up attoe-off and the rate at which stimulation

was ramped down at heel-strike. In this study 151 patients divided into 3 groups of stroke, MS and ISC.

After the patients had got their drop foot stimulator fitted,they used it on a daily basis. An assessment of

Physiological Cost Index (PCI) and speed of walking was madeinitially and after four and a half months.

The stroke patients showed a statistically significant improvement in both measurement parameters. The

immediate effect of using the stimulator was also shown to be statistically significant, with an increase in

walking speed of 12 % and a decrease in effort of 18 %. For the stroke patients a short term “carry-over”

effect when not using the stimulator was shown after four and a half months.

The tibialis anterior is the major muscle controlling dorsiflexion of the ankle joint. During the swing

phase of gait the typical EMG activity pattern of tibialis anterior has two peaks; at the initial swing

and the loading response. In [61] an optimisation scheme wasintroduced in order to find the optimal

stimulation pulse width of the tibialis anterior. This was done by comparing the value of the natural

EMG profile with the EMG profile developed from electrical stimulation. A stimulation pulse width

trajectory which produced an EMG pattern similar to a natural pattern was found by optimisation. It was

shown that this optimised stimulation pattern resulted in asignificantly higher dorsiflexion range than the

normal trapezoidal stimulation. Additionally, only half of the stimulation charge had to be applied which

led to reduced muscle fatigue. The experiment described in this paper was performed on one 23 year old
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healthy subject who was seated in a CON-TREX MJ isokinetic dynamometer. As the experiment was

not performed during walking no conclusions can be drawn on whether the improvements could also be

expected in walking.

In 2000, Lyons et al. [47] implemented a similar “natural” activation envelope to the one described in [61]

in form of a look-up table in a stimulator. By observing the duration of the swing phase, the stimulation

envelope was scaled in time whereas the shape and amplitude stayed constant. The stimulation envelope

was applied to a 52 year old hemiplegic patients. The resultsshowed that using the “natural” stimulation

envelope, a 76 % increase in dorsiflexion range was obtained for this specific patient.

A study by Quintern et al. [67] showed that the stimulation offlexor reflex afferents during gait retraining

of non-ambulant hemiplegic stroke patients improved the rehabilitation of gait. The inclusion criterion

of the study was that the patients should be able to stand without the help of a therapist but they should

not be able to walk more than 10 metres. Patients who did not have a positive flexion reflex response on

electrical stimulation were excluded. The study followed two groups both receiving gait training; one

with electrical stimulation, and one without. The main result of the study showed that the walking speed

in the FES group was significantly higher than in the other group.

An alternative to treadmill training is the application of robot-like walking machines. Examples of these

are the Gait Trainer GT I developed by Hesse et al. [34] and distributed by the company Reha-Stim

GmbH1 and the Lokomat developed by Colombo et al. [13] and distributed by the company Hocoma

AG Medical Engineering2. These are machines that in principle are moving the disabled limbs on a

predefined path. They are expensive and take up a lot of space but represent a real alternative to treadmill

training for severe hemiplegic patients who are not able to walk independently even with partial body

weight support. A multicentre study (DEGAS) was recently performed in Germany [66] in order to eval-

uate the effects of repetitive locomotor training on the GT I in subacutestroke patients. The patients were

divided into two groups. Group A received 20 minutes of locomotor training and 25 minutes of physio-

therapy whereas Group B received 45 minutes of physiotherapy. Primary outcome measures were gait

ability and Activity of Daily Living (ADL). The results showed that significantly more patients in Group

A compared to Group B could walk independently (at least 75 onthe Barthel index) after four weeks of

training. Recently, the GT I has also been enhanced with functional electrical stimulation [57, 90]. The

latter study involved training with two patients for a period of 4 weeks. By the end of the training period,

both patients showed improvements in the scores on the Barthels index, and improvement of balance and

in functional ambulance. In a 6-month follow up assessment further improvements on ambulation and

balance were found. Further randomised studies are needed to evaluate whether combined training with

FES on an electromechanical trainer is superior to trainingon an electromechanical trainer alone.

1http://www.reha-stim.de
2http://www.hocoma.ch/
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2.5.1. Stimulation Sites and Stimulation Parameters

In DFS and in the FES-assisted gait relearning with the use ofPBWS and treadmill training, the choice

of which muscles to stimulate is an important question. The following list shows the most common

stimulation sites during FES-assisted gait training:

• Stimulation of the peroneal nerve during the swing phase in order to elicit the withdrawal reflex.

The withdrawal reflex is causing ankle dorsiflexion, knee flexion and hip flexion. The stimulation

is usually prolonged to the end of the swing phase. [6, 33].

• Stimulation of the soleus muscle in order to provide or correct the push-off in the terminal stance

and in the pre-swing phase.

• Stimulation of the quadriceps muscle for correction of kneeextension in the terminal swing, initial,

and midstance phases [11, 42].

• Stimulation of the hamstring muscles in order to establish or correct knee flexion in the pre-swing

and initial swing phases.

• Stimulation the gluteus maximus muscle throughout the stance phase to enable weight shift to the

affected lower limb.

Care has to be taken to find the best placement of electrodes. Especially the placement of the surface

electrodes for peroneal nerve stimulation has been reported in the literature to cause some problems

[9]. In Figure 2.3 the electrode positions of the major muscle groups as well as the peroneal nerve are

depicted. The placement of the electrodes has to be done witha trial and error approach in order to

find the optimal response to obtain balanced dorsiflexion andeversion of the foot. This time consuming

task has to be performed before each session. To achieve a more precise stimulation, usually smaller

electrodes are used compared to muscle stimulation. For theperoneal nerve stimulation is the active

electrode placed over the common peroneal nerve, just belowthe head of fibula. The other electrode is

located approximately 5 cm below, slightly forward of the active electrode over the motor point of tibialis

anterior [9]. Quintern et al. [67] used other stimulation sites in order to elicit the withdrawal reflex. They

stimulated either the sole of the foot, dorsum of the foot or lateral to medial aspect of the knee joint. The

placement of the electrodes for muscle stimulation is easier than the placement of electrodes for eliciting

the withdrawal reflex. The active quadriceps electrode is placed above the knee and slightly medially

in order to recruit the vastus medialis. The active electrode is placed midway up the thigh and 3 cm to

the lateral side. The active electrode for gluteus maximus is placed below the dimples at the top of the

sacrum. The other electrode is placed approximately one hand’s breath below the active electrode. The

active hamstring electrode is placed over the centre of the muscle. The other electrode is placed at the

bottom of the hamstring, just above the back of the knee. The active calf muscle electrode is placed

above the widest part of the calf muscle and the indifferent electrode is placed towards the bottom of the

calf muscle.
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Figure 2.3.: The figure shows the most common stimulation sites: The left figure shows the stimulation
of gluteus maximus, hamstrings and to the calf group. The upper right figures shows the
stimulation sites of the quadriceps. The lower left figure shows the most common position
of the electrodes of the peroneal nerve stimulation [9].

The type of stimulation pattern is dependent of how the gait phases are detected. When using a single

foot switch at the heel as Liberson et al. did, the stimulation is ramped up at the toe off event and ramped

down after the heel strike event as illustrated in Figure 2.4. When more advanced gait phase detection

system are used, the possibility to refine the stimulation pattern can be achieved as well. In Figure 2.5

an example of a stimulation pattern used for hemiplegic patients is shown where both the swing and

the stance phases were each divided into 8 time periods whichalso were scaled in time according to the

cadence. This stimulation pattern was applied by Bogataj etal. [6]. In addition to the timing and duration

of the stimulation there are a few other parameters that can be set e.g. the current amplitude, the frequency

and the pulse width. The pulses are normally biphasic and typical values for the current amplitude are

between 10 mA to 50-60 mA. The pulse width lies between 10 and 500 µs. Normally either the current

amplitude or the pulse width is kept constant and the other one is varied to achieve the desired movement.

For the stimulation to be effective, it must produce a strong muscle contraction withoutdiscomfort and

muscle fatigue. Regarding the frequency, there is a difference whether the peroneal nerve or a muscle

is stimulated. The applied stimulation frequency of the peroneal nerve has an impact on the withdrawal

reflex response with regard to habituation. An increasing habituation was found in the studies of Hesse

et al. [33] and Malezic and Hesse [49] when a stimulation frequency of 20 Hz was applied. This meant
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Figure 2.4.: An example of a stimulation pattern when a heel and a toe switch is applied. The stimulation
is ramped up at toe off and continued until heel strike when the stimulation is ramped down.

that an increased stimulation intensity had to be applied, subsequently until the highest allowed level was

reached. The stimulation frequency was then shifted to 60 Hzwhich was shown to provide a sustained

activation with less habituation [49]. In the same study, the EMG signals of the tibialis anterior, soleus,

biceps femoris and rectus femoris were recorded in several tests where frequencies of 20, 50 and 100

Hz were applied. The EMG measurements showed an increased ratio of peak amplitudes between the

tibialis anterior and the soleus in favour of dorsiflexion with increased stimulation from 20 to 50 Hz, but

decreased at 100 Hz. For the biceps femoris and rectus femoris there was no big differences between

the different stimulation frequencies. At the end, a frequency of 60Hz was chosen which gave a better

dorsiflexion for all patients. With this frequency the dorsiflexion remained stable without too much

habituation. In the article of Field-Fote [19], the stimulation of the peroneal nerve was in the range 50-80

Hz, but no special attention was payed to investigate the effects of different frequencies. In both these

studies the investigations were done with paraplegic patients.

In a study of stroke patients by Quintern et al. [67] a frequency of 40 Hz was used to elicit the withdrawal

flexor reflex. In muscle stimulation, usually a lower frequency (20Hz) is used. Fatigue poses less of a

problem for intermittent stimulation burst, like stimulation during the swing phase of walking, compared

to other applications were continuous stimulation are applied e.g. standing up or sitting down. In [17]

it was shown that an increase of stimulation frequency from 50 Hz to 60 Hz had no influence on the

fatigue for FES-cycling but even though the power output increased with 25 %. As stimulation pattern

for FES-cycling is similar to pattern for FES-assisted gait, this result should be valid for FES-assisted

gait as well.
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Figure 2.5.: Stimulation pattern for FES-assisted gait training used by Bogataj et al. [6]. Both swing and
stance phases are divided into 8 time intervals which are scaled to the cadence. Selected time
intervals are used to refine the stimulation pattern.

2.6. Control Approaches for Drop Foot Stimulators and FES-Assis ted

Gait Training

One aspect of DFS and FES-assisted gait training systems that has received little attention in the liter-

ature is closed-loop control of the stimulation intensity.In all the approaches described in the previous

sections the intensity of the stimulation was either pre-programmed before the session started and then

kept constant throughout the session, or a fixed pattern was programmed and adapted to the gait cadence.

These approaches with a preprogrammed stimulation intensity represent a disadvantage that the stimula-

tion intensity usually is chosen to large in order to achievethe desired movement. By using sensors and

by giving feedback (closed-loop control) from the motion, amore desired movement can be achieved

with use of less stimulation which will in turn reduce the fatigue and prolong the time the stimulation

can be applied. In this section, closed-loop control of stimulation will be reviewed. When using the term

“control” in the application of DFS and FES-assisted gait training, the adaptation of either the stimulation

intensity (pulse width or current amplitude) or the length of the stimulation burst is meant.

Control systems for adaption of stimulation intensity in FES-assisted gait training can be classified in

two methods: Classical feedback and adaptive feed forward control. Feedback control is based upon

continuous measurements of joint angles which are used to readjust the stimulation intensity in order

to follow a predefined angle trajectory. Due to non-linearities between stimulation intensity and angle

trajectories such as time delay which is causing a limited bandwidth, this method is not very useful in

FES-assisted gait training. Feed forward control means that a stimulation pattern is chosen beforehand.
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The stimulation pattern can be changed after a completed step based upon measurements of the move-

ment. A cycle to cycle controller of the gait is a special caseof adaptive feed forward control. By using

this strategy, information from the last stride is used to adapt the stimulation intensity in the next stride.

Common to both strategies is that some sort of sensory information such as that from goniometers, force

sensitive resistors, accelerometers or inertial sensors has to be present.

Feedback Control of Angle Trajectories

In this section, different strategies found in the literature which are dealing with the control of hip, knee

and ankle joint are reviewed. An FES-system for preventing drop foot and for compensation of the

quadriceps weakness in hemiplegic patients was developed by a group in Taiwan [11]. The system con-

sists of three Force Sensitive Resistors (FSR), two attached to the affected foot as well as one attached to

the healthy foot. Additionally, three magneto-resistive angular position sensors were applied to measure

knee and ankle joint angles. The stimulation of the quadriceps was related to the FSRs on the affected

side. The tibialis anterior stimulation was triggered by the FSR on the unaffected side. If a drop foot was

detected, meaning that the toe-strike event happend beforethe heel-strike event, the pulse duration of the

tibialis anterior was increased. This work was later extended by a fuzzy logic controller [12].

Another closed-loop control approach to drop foot was reported in [55]. The ankle joint angle was

measured with a goniometer and a force sensitive resistor was used to detect the heel contact with ground.

The intensity of the stimulation was adjusted according to an embedded control law which was not closer

described in the paper.

In the neuroprothesis system “WALK!” developed by Fuhr and Schmidt [23] an Integral (I)-controller

with a dead zone was applied in the late swing phase and throughout the stance phase to control the knee

extension in paraplegic subjects. The knee angle was measured with a goniometer. If the knee angle was

lying between two threshold values the stimulation intensity was kept constant. Furthermore, if it was

detected that the knee was hyper-extended the intensity waslowered through an I-controller. When the

knee joint was more flexed than the lower threshold, the intensity was increased through an I-controller

similar to the first one but with a lower gain.

Adaptive Feed Forward control

As already mentioned, the second approach to control the intensity of stimulation during gait is on a

stride to stride basis i.e. the stimulation intensity for the next step is based on information from the

previous strides. Related to this is cyclical control of lower limbs. Such control can be performed in

a set-up where the patients are sitting on a bench where the shank can be freely moved or the patients

are sitting on a bicycle seat restricting the movement of hipand knee angle to the sagittal plane. The

first attempt described in the literature to control a singlelimb movement in a cycle to cycle manner
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by use of functional electrical stimulation applied to the quadriceps group was done by Veltink [93].

In his experiments the patients were sitting on a bench such that the lower limb could swing freely

and the knee angle was measured with a goniometer. By applying cyclical stimulation with the same

time period as the free swinging leg, a cyclical movement could be produced. A PID-controller was

designed to achieve a constant maximum knee angle. The time-discrete PID controller adapted the burst

time whereas the pulse width and current amplitude were keptconstant. The experiments showed that

the controller compensated for the influence of fatigue for at least 150 cycles. After 150 cycles, the

controller was saturated and the maximum knee angle decreased.

An extention of the single limb movement has been done in [95]where a two degree of freedom move-

ment was considered in simulation. Later the same concept were experimentally validated [21]. The SCI

injured patients were standing in a stand device with arm support. In the stand frame, the movement

of the free swinging limb was fixed to the sagittal plane. The ankle, knee and hip joint of the other leg

were locked. Additional support was provided from a bicyclesaddle. Stimulation were applied to the

hip flexor, hamstring and quadriceps in order to generate a cyclical movement. The optimal stimulation

onsets and burst durations of the three muscle groups were identified experimentally. First the stimu-

lation of the hip flexor was found by gradually increasing theburst duration until a desired hip range

movement was achieved. Hamstring stimulation was added in order to achieve sufficient foot clearance

in the forward swing. Quadriceps was then added to achieve knee extention. The hamstring and quadri-

ceps stimulation were kept constant, while the hip flexor stimulation was adapted using a discrete PID

controller working on a cycle to cycle level. The authors concluded that stimulation patterns for the

major swing phase objectives during gait can be achieved in paraplegic subjects. Furthermore, slowly

time-varying system characteristics such as fatigue were compensated by using a slowly varying cycle to

cycle PID controller, and a desired swing of leg for a prolonged period of time was successfully main-

tained. A neuro-fuzzy control strategy for the same set-up was studied in van der Spek et al. [91]. No

large differences between the PID and neuro-fuzzy controller were observed.

Another method to cyclically control one or two segments of the leg is with use of a two stage neural

network control system was persuaded by Abbas and Triolo [1], Riess and Abbas [71]. An extention of

this work to two limb cyclical control were done by stimulating the peroneal nerve, hamstring quadriceps

and gluteus [63]. They used a set-up similar to Veltink et al.[95]. Cyclical control of one and two

segments of the leg by use of a two stage neural network was demonstrated. A first layer of the neural

network, the Pattern Generator (PG) generated a periodic signal, typically consisting of over-layered

sinusoidal functions. Usually this parts is kept constant during experiments, which means this part is only

producing a periodic signal. The next layer of the neural network the Pattern Shaper (PS) shaped this

periodic signal by using angle measurement from knee joint compared with pre-defined angle trajectory.

In this approach the peroneal nerve, hamstring quadriceps and gluteus were stimulated. The peroneal

nerve stimulation and the gluteus stimulation were kept to aconstant value, while the hamstring and

quadriceps stimulation were set by the neural PG/PS controller. The objective of the controller was to

track predefined knee and hip joint angle trajectories.
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Figure 2.6.: Conceptual scheme for adaptive tuning of a two channel drop-foot stimulator using move-
ment parameters derived from inertial sensor movement sensor Veltink et al. [96]. sn rep-
resents a stimulation channel whereasmn represents a movement parameter.mre f is the
reference movement parameter.

All the approaches for cyclic control of lower limb movementdescribed so far have been for free swing-

ing leg in a static position. Veltink et al. [96] proposed a new adaptive tuning strategy for cycle to cycle

adaption of stimulation during gait. The scheme is depictedin Figure 2.6. Movement criteria were de-

fined on the level of walking cycle. Two channels were stimulated: the deep peroneal nerve and the

superficial peroneal nerve. Movement criteria for both the stimulation channels were defined on the level

of walking cycle, e.g. sagittal and coronal foot orientation before foot landing. For each new step, stim-

ulation parameters were determined in advance from the movement criteria using an inverse model of

the relation between stimulation and movement parameters.This relation was assumed to be static and

nonlinear. The parameters of this relation are recursivelyidentified and updated, using the applied stim-

ulation parameters and resulting movement parameters in every walking cycle. The proposed strategy

was implemented and tested in simulations. In the simulations it was shown that a static linear model

with only one parameter yielded the best model adaption and control performance. No experiments have

been undertaken to prove this concept in real life.

2.7. Application of Inertial Sensors for Motion Estimation

Recently, the usage of inertial sensors in biomedical systems has become popular. One reason for the

popularity is that a complete ISU with three accelerometersand three gyroscopes is not sensitive in regard

to how the sensor is mounted to the body. An example for the usage of combination of accelerometers

and gyroscopes is given in [52]. By the use of four uniaxial accelerometer and one gyroscope mounted to

both the thigh and shank segment the kinematics in the sagittal plain were obtained. Later, an extention

to this work were done by [82] who used a sensor pack consisting of 5 ISUs in order to estimate knee
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and hip joints. For both studies Root Mean Square (RMS) errors between Vicon and the body-mounted

sensors were reported to be 5.2 % (fast walking) and 1.9 %(slow walking) in percentage of the maximal

angle. Application of body-mounted sensors have several advantages to other measurement systems.

Such systems can obtain the same data as optical and ultrasound 3D motion analysis systems, but are

easier to take into use. Another example of angle joint estimation is demonstrated by Moreno et al. [54]

who used two ISUs connected to the shank and to the foot respectively. In addition were gait events

like heel strike and heel-off detected. In [45] it was demonstrated that inclination angle of human body

segments in activities of daily living can be accurately estimated by use of an ISU.

2.7.1. Stride Length and Stride Velocity Estimation

Miyazaki [53] proposed an ambulatory monitoring system using a piezoelectric gyroscope strapped just

above the knee. Based on a model of gait and with the assumption that the gait is symmetric, the

approximate stride length was estimated using simple trigonometry as well as the lengths of the body

segments. A calibration over a known distance was performedto determine the coefficients of a linear

regression in order to improve the accuracy. Tests were performed with multiple subjects on a 40 meter

long test track. The maximum error for normal subjects was±15 % whereas for patients with abnormal

walking pattern the maximum error was±25 %. By using a double segment gait model taking both the

thigh and shank movements into consideration and by measuring both the angular velocity of the thigh

and shank Aminian et al. [2] reported an error of±7 %.

A slightly different approach was pursued by Sabatini et al. [75]. They useda simplified ISU with two

uniaxial accelerometer and one gyroscope measuring in the sagittal plane. The ISU was attached to the

instep of the foot. The angle was estimated by integration ofthe angular velocity and the gravity com-

ponent was subtracted in order to find the unbiased acceleration which was integrated twice to obtain the

position. As with some of the stride modelling techniques [2, 53] this concept does also assume that the

foot motion is primarily in the sagittal plane. This assumption will work properly for people with normal

walking pattern, but for patients with abnormal walking pattern the accuracy will decline. However, these

methods have an advantage because they measure step length directly and do not make further assump-

tions about the user’s height, gait, or walking environment. An enhancement of the method proposed

by Sabatini et al. [75] was done by Veltink et al. [97]. They proposed to use a complete ISU measuring

acceleration and angular velocity to reconstruct 3D movement of a foot during gait. In that paper, the

sensory signals were recorded using a data-logger and the data were later processed offline for analysis

purposes of the gait.
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2.8. Summary and Conclusions

Treadmill training is a task-specific approach in walking rehabilitation for a range of neurological dis-

eases. Several studies shows that this training regime decreases the time for improvement of walking

abilities compared to traditional physiotherapy. It cannot be concluded that PBWS treadmill training is

superior to traditional training, but it can be seen as a complimentary treatment to the traditional training.

Several studies have shown that by the use of treadmill training the scores are better in ambulatory skills.

On the other hand, the general motor functions are equal compared to the patients who went through

traditional training.

Since the sixties many studies on FES-assisted treadmill training have been conducted, yet this is still

not standard practise. For drop foot the situation is slightly different and a few commercial systems

are on the market. But most of the closed-loop strategies foradapting stimulation intensity during gait

have never found a way into clinical use. One reason for this is that mounting of sensory systems like

goniometers is very time consuming and not realistic in a clinical setting. Furthermore, calibration of

sensors takes time making it difficult to take such systems into clinical use. For a system to betaken into

clinical use, the applied stimulation must be easy tunable or automatically tuned, not too many sensors

should be necessary and they should be easily mountable suchthat physiotherapists are able to take it

into use without help from engineers or scientists.

In Chapter 5, a new gait phase detection system is described.In this approach an inertial sensor mounted

to the foot is used to detect gait phases. This gait phase system offers an advantage over the foot switches

as more than two phases are detected. In addition the problemof mechanical wear is eliminated as the

sensor is mounted with braces to the outer side of the foot. Nocalibration of the sensor is needed as the

implemented algorithm detects the sensor’s orientation and the parameters of the algorithm are tuned to

fit a variety of patients. In Chapter 7 the gait phase detection system is used to trigger the stimulation in

an FES-assisted gait training system. The use of inertial sensors in FES-assisted gait training has several

advantages compared with traditional foot switches. Thereis no need to calibrate the sensors before use

like finding appropriate thresholds and at the same time theycan be used to monitor the progress of the

training by examining the temporal and spatial informationgiven by the inertial sensors.

Regarding a feedback strategy on a stride to stride basis by controlling objective like hip range, stride

length and foot clearance, the disadvantage of the cycle objectives is that there are no possibilities to

apply feedback within a stride and to react to disturbances occurring within a stride as a result of the

slow adaptation. This is also the case for the adaptive feed forward controller by [63]. On the other hand

it is actually more important in FES-assisted treadmill training that these variables are kept constant than

that a predefined trajectory is followed i.e. that fatigue iscompensated. A controller on a stride to stride

basis has the ability to do that. In Chapter 7, a new control scheme is described where information from

an inertial sensor is used in a feed forward manner. The sagittal foot angle before heel strike is used as a

measurement for how well the step is performed. In the next step the stimulation of the tibialis anterior

is changed in order to reach a preferred reference value.
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3.1. Summary

This chapter gives an introduction to the stimulator and themeasurement systems used within this thesis.

In Section 3.2 the Inertial Sensor is explained in detail. The operation modes of the stimulator RehaStim

are explained in Section 3.3. Section 3.4 contains technical specification and working principle of the

LUKOtronic motion analysis system are given. At last, in Section 3.5 the technical specifications and a

description of the Parotec foot insole pressure measurement system are given.

3.2. Inertial Sensor System

If one tri-axial accelerometer and one tri-axial gyroscopeare mounted approximately in the same point

they form an inertial sensor, also called Inertial Motion Unit (IMU) or an Inertial Sensor Unit (ISU). If

the sensor is correctly calibrated, the acceleration in three orthogonal directions and the angular velocity

around these axes are measured. By using a calibrated ISU andif the initial position and orientation are

known, it is theoretically possible to derive the orientation of the sensor. Orientation can be found by

integration of angular velocity. The gravity can be extracted from the acceleration measurement using

the known orientation, and the sensor position can be found by integrating the acceleration twice. In the

following sections the physical principles behind accelerometers and gyroscopes are explained.

3.2.1. Accelerometers

There are in principle two types of accelerometers, mechanical and solid-state. In this section the me-

chanical accelerometer is explained. This is the original accelerometer and has been developed over

decades. A mechanical accelerometer is exploiting the inertia of a mass. When a force is acting on

a mass it will accelerate. This is also known as Newton’s second law of motion which states that to

accelerate a massma forceF is needed. In equation form this becomes

F = ma. (3.1)
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A single accelerometer works as a damped spring system (see Figure 3.1). The spring is connected

to a housing and a mass. When the mass is displaced the distance ∆x the spring will restore a force

proportional to the displacement

F = k∆x. (3.2)

An acceleration of the housing will cause the mass to be displaced by

∆x =
ma
k
. (3.3)

In this way the problem of measuring acceleration has been turned into measuring the displacement of

the mass connected to the spring. Typically an electrical signal ua is measured which is related to the

m m

Accleration a

x0 x0 ∆x

Figure 3.1.: A single axis accelerometer.

physical quantities

ua = ka(a− g) + ba (3.4)

whereka is representing the scaling factor,ba is the offset,g is the gravity constant whereasa is the sensor

acceleration. By mounting three single accelerometers together all in orthogonal directions, a tri-axial

accelerometer can be constructed. The gains and offsets as well as the orientation of the sensitive axis

with respect to the housing can be found by the calibration algorithm described by Ferraris et al. [18].

3.2.2. Gyroscopes

Gyroscopes or angular rate sensors can be constructed in different ways. Most common are spinning

rotor gyroscopes, laser gyroscopes and vibrating mass gyroscopes. For navigation purposes the most

common used gyroscopes are conventional spinning rotor andlaser gyroscopes. The vibrating mass

gyroscopes are small, inexpensive and have a low power consumption.

A schematic view of a typical vibrating mass gyroscope is depicted in Figure 3.2. The vibrating mass

gyroscope has a vibrating element, and when the gyroscope isrotated it is influenced by the Coriolis

acceleration. This is causing a secondary vibration orthogonal to the original vibrating direction. By
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Figure 3.2.: A gyroscope consists of a mass that is vibratingdue to an actuatorract. When the gyroscope
is rotated around the axis perpendicular to the plane shown in the figure, the mass is displaced
in the direction perpendicular to the rotation and to the direction of vibration.

sensing the secondary forcefcor in the directionrcor, the rate of turn can be detected. This is done by

sensing the displacement of the mass perpendicular to the vibration direction. The force sensed is only

apparent in the sensor coordinate system, not in the inertial coordinate system. The magnitude of the

Coriolis force fcor is given by:

fcor = 2 ·m · v · ω (3.5)

wherem is the mass,v the momentary mass speed andω the angular velocity. Thus the displacement

caused by the Coriolis force is proportional to the angular velocity and is used therefore as a measure of

angular velocity. In order to induce and detect the vibration of the test mass, a piezo-electric actuator is

often used. Therefore vibrating gyroscopes are often called “piezo”, “ceramic”, or “quartz” gyroscopes,

although in fact vibration and detection do not necessarilyuse the piezo effect.

A tri-axial gyroscope can be assembled using three single axis gyroscopes. As for the tri-axial accelerom-

eter, a method for obtaining the gain, offset and the sensitivity axis is once again described in Ferraris

et al. [18].

3.2.3. The RehaWatch TM Inertial Sensor System

The portable inertial sensor system RehaWatchTM produced by the German company HASOMED GmbH1

was applied in this work. Figure 3.3 shows the inertial sensor system. The RehaWatch inertial system

consists of one Digital Signal Prosessing (DSP) unit, two inertial sensor units and two foot braces. The

braces can be easily mounted outside the shoes. The technical specifications of the inertial system are

listed in the Table 3.1. The inertial sensor system is intended for offline use, and is equipped with an

USB interface for exchanging data with an external PC. A protocol for online reading of the sensor data

was specially provided by the producer of the sensor.

1www.hasomed.de
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Figure 3.3.: Inertial sensor system: On the left the RehaWatch inertial sensor system is shown. On the
right a brace and an ISU mounted on a foot are shown.

Table 3.1.: Technical specifications of the RehaWatch inertial sensor system.

Gyroscopes Accelerometers
Degrees of freedom 3 3
Operating range (OR) ± 900 [deg/s] ± 50 [m2/s]
Linearity 0.1 [% of OR] 0.2 [% of OR]
Bias stability 5 [deg/s] 0.02 [m2/s]
Scale factor stability 0.5 [deg/s] 0.02 [m2/s]
Noise 0.7[ deg/s] 0.01 [m2/s]
Alignment error 0.1 [deg] 0.1 [deg]
Bandwidth 50 [Hz] 30 [Hz]
Sampling rate 500 [Hz] 500 [Hz]

3.3. Stimulation Device and Pattern Generator

The portable stimulation device RehaStim proTM employed in this work is produced by the German

company HASOMED GmbH. The current-controlled 8 channel stimulator is a certified medical prod-

uct and possesses two independent current sources which aremultiplexed to 4 outputs each. The main

processor of the stimulator is an ultra-low-power 16-bit RISC mixed-signal processor from Texas Instru-

ments (MSP430F169). There are two independent stimulationmodules hosting each one of the current

sources. Each stimulation module owns another microprocessor (MSP430F149) which is responsible for

the pulse generation timing. The stimulation module A has the stimulation channels 1 to 4, stimulation

module B has the stimulation channels 5 to 8. Since both modules function independently simultaneous

pulse generation on module A and B is possible.
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Figure 3.4 shows the stimulator device. The device is operated by a touch panel with illumination. The

technical specifications are listed in the Table 3.2. Noticethat the RS232 and USB interfaces share the

same UART interface of the MSP430 so that multiplexing must be applied when using both interfaces

at the same time. In the PC-controlled configuration the USB interface is employed for communication

with the PC and the RS232 is free. The stimulator possesses additional inputs and outputs which are not

used here. Galvanic isolation between high voltage generation/electrodes and the rest of the stimulator

electronics has been realised for safety reasons.

Figure 3.4.: Portable 8 channel stimulator

Table 3.2.: Technical details of the stimulation device.

Current 0. . . 126 mA in 2 mA steps
Pulsewidth 0, 20. . . 500µs in 1µssteps
Frequency see Section 3.3.1
Pulse form biphasic
Channels 8 (2 times 4 on two modules)
Serial ports RS232 and USB with galvanic isolation
Digital and analogue I/O 8 pins which can be assigned individually as

12-bit analogue inputs (8 available), 12-bit
analogue outputs (2 available) or digital in-
puts/outputs (8 available)

Sensor supply 5 V/ 100 mA

Figure 3.5 shows the form of a delivered bi-phasic pulse on anideal resistive load. Current amplitude

and pulsewidth are defined in the figure. Notice that there is afixed pause of 100µs between the two

phases of the pulse. At the end of the pulse the remaining charge on the electrodes and skin is removed

by an active shortcut (change of electrode polarity for 1µs).
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Figure 3.5.: Definition of pulsewidth and current amplitudefor a biphasic pulse.

3.3.1. Pulse Generation Modes

The stimulator offers different modes of stimulation pulse generation. An Application Programming

Interface (API) is provided which enables the development of customised stimulator applications using

the different modes of pulse generation. Moreover, a serial communication protocol is available so that

the pulse generation can also be controlled by sending commands with 115200 Bauds from an external

device, preferably a PC.

The following modes of pulse generation are available:

• Single Pulse Mode:On an external command or an API function call the stimulatorgenerates

a single pulse on a specified channel with desired current amplitude and pulsewidth. The stim-

ulator will generate the pulse immediately after processing the command. Complex stimulation

patterns may be generated by sending more than one command. The application program inside

the stimulator or the external device (PC) are responsible for controlling the stimulation timing,

i.e. the stimulation pulse interval. Therefore, the API of the stimulator provides a 16-bit timer with

a resolution of 1 ms.

• Continuous Channel List (CCL) Mode: Using this mode, the generation of complex patterns is

greatly simplified. The main processor and the processors ofthe stimulation modules control the

pulse generation by means of timer-interrupts. A list of stimulation channels has to be specified,

on which pulses or even pulse groups (doublets or triplets) will repeatedly be generated. Figure 3.6

defines the main stimulation periodt1 and the inter-pulse timet2 of doublets and triplets with the

help of an example. The channel list is repeatedly processedwith time periodt1. Pulse generation

takes place on the selected channels, ordered by the channelnumbers. For each selected channel

a time slot of 1.5 ms is reserved, even if current or/and pulsewidth are zero for the channel or if

the pulsewidth is smaller than 1.5 ms. At least 1.5 ms pass between the stimulation of different
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channels of one module. The stimulation modules A and B process the channel list in parallel with

a time offset of 0.6 ms. Module A generates pulses on the channels 1 to 4 if applicable, and module

B generates pulses on the channels 5 to 8 if applicable. The inter-pulse timet2 of doublets and

triplets is fixed for all channels and is set during an initialisation step. When doublets or triplets

have to be generated the channel list will be processed two orthree times more with periodt2.

Stimulation takes place only on the channels on which doublets or triplets have to be generated.

Second pulses
of doublets

Second pulses
of doublets
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Figure 3.6.: Example for the Continuous Channel List Mode ofthe stimulator. The channel list encloses
the channels 1, 3, 5 and 6. The main stimulation frequency is 1/t1. Doublets are generated
on the channels 3 and 5 with a frequency 1/t2. The grey bars indicate some communication
periods in which the actual stimulation settings are transferred from the main controller to
the stimulation modules. Stimulation pulses are represented by black bars where the same
width and amplitude have been assumed for simplicity.

The main stimulation frequency is specified by the periodt1. Some channels of the channel list

can be assigned to a lower frequency which has the periodnt1 wheren is a positive integer.

The CCL mode must be initialised by an API function call or a command (external control). Used

channels, main timet1, inter-pulse timet2 and the maximal size of pulse groups must be chosen at

this stage. The minimal possible inter-pulse timet2 depends on the maximal number of channels
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assigned to the individual stimulation modules as follows

t2 ≥ 1.5 ms·max(nchA, nchB) (3.6)

wherenchA andnchB are the number of selected channels of stimulation modules Aand B respec-

tively. The minimal possible periodt1 depends ont2 and the maximal sizenpg of pulse groups

used (npg = 1 for single pulses,npg = 2 for doublets,npg = 3 for triplets). The constraint fort1 is

then

t1 ≥ npg · t2 + 1.5 ms (3.7)

where the 1.5 ms above results from a communication between the main processor and the stimula-

tion modules as indicated in Figure 3.6. The periodt1 can be changed in the range 3. . . 1023.5 ms

in 0.5 ms steps subject to the constraint (3.7), andt2 can be altered in the range 3. . . 16 ms in 0.5 ms

steps subject to the constraint (3.6). Using all 8 channels,a minimal group timet2 of 6 ms can be

achieved, i.e. a doublet or triplet frequency of 180 Hz. Whenonly doublets and single pulses with

a frequency of 180 Hz are applied (npg = 2), a minimal value of 13.5 ms for periodt1 is obtained,

i.e. a maximal possible main frequency of 74.1 Hz.

Another API function call or external command deactivates the CCL mode. When the CCL mode is

active, the pulse parameters (pulsewidth, current amplitude and group mode (single pulse, doublet

or triplet) of the selected channels can be altered by a corresponding API function call or an

external command. The new parameters will be used from the next processing of the channel list

onwards.

The main processor controls the frequency 1/t1 by which the channel list is processed. Each time

the stimulation cycle repeats, the main processor sends theactual stimulation settings to the two

stimulation modules which then generates the individual pulses on the selected channels. The

processors on the stimulation modules guarantee that specified pulsewidths and inter-pulse times

of the doubles and triples are realised.

• One Shot Channel List (OSCL) Mode:Just as in the Continuous Channel List Mode a channel

list is defined by an initialisation step. However, processing of the channel list is not automatically

repeated so that the time periodt1 is no longer relevant. Instead, the channel list will be processed

once and pulses and/or pulse groups are generated only if a special API function call or an external

command are issued. Pulse parameters (pulsewidth, currentamplitude and group mode of the

selected channels) are specified by the API function call or the external command.

The OSCL mode offers the possibility to control the main stimulation frequency from an applica-

tion program running in the stimulator or from an external device while the inter-pulse time of the

doublets and triplets is realised by the stimulation modules.

The (OSCL) Mode was applied in the work described in Chapter 7.
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3.4. Optical Motion Analysis System

The LUKOtronic AS 202 measurement system from the company LUKOtronic Lutz-Kovacs-Electronics

OEG2 was used as a reference measurement system in Chapter 6 and for motion analysis purposes in

Chapter 7. In this section the technical specifications and the functionality of the system are summarised.

The AS 202 is a portable measurement system for capturing 3D-movements in real time. The system

can be deployed everywhere and is not fixed to one room. The measurement unit consists of one mea-

surement beam which is connected to a laptop (see Figure 3.7). Two marker chains with active markers

are connected to the body. The markers are activated throughan RF-link. During the measurement,

1

5

2

3

4

Figure 3.7.: LUKOtronic AS 202 measurement system: (1) The measuring beam with three cameras. (2)
The transmitter control box. (3) Active infrared markers connected in a chain. (4) USB cable
between laptop and measurement beam. (5) Standard laptop with driver software

the active markers are transmitting light impulses in the infrared spectrum. One marker at the time is

active such that each marker can unambiguously be identified. The measurement beam with the three

cameras is powered up by the USB connection whereas the transmission control unit is powered up by a

rechargeable battery. The cameras are sensing the 3D positions of the active markers. From the marker

positions, the movement of the patients can be calculated and graphically displayed within the PC soft-

ware. The position data can also be stored and exported to ASCII such that they can be read by some

external software e.g. M/S . The technical specifications of the LUKOtronic AS 202 are

listed in Table 3.3.
2www.lukoctronic.com
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Table 3.3.: Technical data of the LUKOtronic AS 202 system.

Sum Sample Rate 1200 Hz
Number of Markers 48
Measurement Range 5-7 Meter
Resolution 0.1 mm
Opening Angle 20 degrees
Transmission Frequency 433 MHz
Opening Angle Marker ± 90 degrees
Weight 2.4 Kg

3.5. Insole Pressure Measurement System

The in-shoe pressure measurement system Parotec (see Figure 3.8) from the company Paromed Medizin-

technik GmbH3 was used in the validation of the gait phase detection in Chapter 5 as well as for analysis

in Chapter 7. The measurement system Parotec consists of twoinsole foot sensors and a control unit box.

Each of the foot insole sensors has 24 piezoresistive microsensors embedded in hydrocells measuring the

sum of the horizontal and shearing forces acting on the cell.Each hydrocell consists of an incompressible

fluid preserved in a constrained polyurethane pack that can only be deflected at the top and bottom. The

design allows a pressure measurement that unifies the normaland tangential components of the force

applied. The microsensor consists of a Wheatstone bridge circuit fixed onto a silicone membrane that

deflects under pressure into an evacuated chamber. This allows for the measurement of loads between

the foot and the supporting material and is considered to be selfcompensating against changes in temper-

ature. Different insole sizes are available with the sensors placed in the correct relative position for each

foot size. For the online measurement mode the sampling rateis 60 Hz, whereas for offline measurement

sampling rates up to 250 Hz are possible. The pressure sensors work with a resolution of 2.5 kPa in a

range of 600 kPa.

3www.paromed.de
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Figure 3.8.: Parotec insole pressure measurement system.
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4. Estimation of Sensor Orientation

4.1. Summary

Aim: The aim of the work presented in this chapter was to develop analgorithm for obtaining the

orientation of an inertial sensor mounted to the foot duringgait. The orientation of the foot is of high

importance in later chapters as it is employed in gait phasesdetection and for the estimation of movement

parameters.

Methods: An Inertial Motion Unit (IMU) measures angular velocity andacceleration in three orthogonal

directions. In principle, the orientation can be obtained directly by integration of the angular velocity

measured with the gyroscopes. However, an integration willunavoidably drift off after a short time due

to timevarying biases in the gyroscope measurements. Fortunately, the accelerometers can under the

assumption that the sensor is not accelerated, measure the earth’s gravity vector, which serves as a fixed

orientation reference and enables the determination of twoindependent angles.

To fuse the information from the gyroscopes and the accelerometers a Kalman filter is used. Kalman

filters are frequently applied to estimate not directly measureable states of a linear dynamic system,

by using measurements linearly related to the state but corrupted by white noise. The Kalman filter is

stochastic optimal with respect to a quadratic function of the estimation error. An Extended Kalman

Filter (EKF) is a Kalman filter in which states of a nonlinear dynamic system can be estimated. A model

of the error between the estimated orientation from the direct integration of the measured angular velocity

and the measured orientation from the accelerometer was developed. The measured error based on the

accelerometers was used as a reference measurement in the Kalman filter update only during the foot flat

phase in order to correct the estimate based on the integration of the angular velocity.

By use of the orientation between the sensor and a global coordinate system, the angle between the sensor

and the ground in the walking direction can be easily calculated. This is done under the assumption that

the sensor is mounted such that the sensors x-axis lies in thesagittal plane. Especially in the gait phase

detection algorithm described later, the accurate angle between foot and ground is of high importance.

A linear filter was used to estimate the angle offset between the sensor and the foot during the foot flat
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phase.

Results: The Kalman filter was successfully applied. Even though the heading was drifting off, the ori-

entation could be estimated for a very long time. No specific evaluation was performed to validate the

accuracy of the obtained orientation, but the results presented in the following chapters give the supposi-

tion that an accurate orientation estimate can be achieved by the developed approach.

Conclusions:An indirect Kalman filter for obtaining the orientation of the foot using an inertial sensor

has been developed and is suitable.

Contribution: The author developed the methods, and implemented the experimental software. Further-

more, the author planned and ran the experiments. Parts of this work are published in [56].

4.2. Introduction

The determination of position and orientation of moving objects is of interest in a variety of fields. Typi-

cally, in navigation systems, the Global Positioning System (GPS) is used in combination with an Inertial

Navigation System (INS), consisting of an Inertial Motion Unit (IMU) mounted on the vehicle, to esti-

mate the position and if required the orientation. In the application considering human motion the usage

of GPS is not beneficial as the resolution of the GPS measurement is not good enough for this purpose

and usually only one single IMU or more IMUs are used. An inertial measurement unit is composed of

one tri-axial accelerometer and one tri-axial gyroscope. Integration of angular velocity measured by the

gyroscope will lead to an increasing error in the estimated orientation. Even a small offset on the gyro-

scope signal will lead to large integration errors over short time. Moreover, if an absolute orientation is

required instead of a change in orientation, a reference orientation has to be obtained at least once during

a recording. Algorithms for integration of the angular velocity can be found in [8].

Orientation can also be estimated by combining the measurements from gyroscopes and accelerometers.

This approach is applied in the automotive field and for the assessment of human balancing [4]. A

tri-axial accelerometer measures the earth’s gravity vector if the sensor is not exposed to acceleration.

The gravity vector is a measure for the orientation of the sensor in relation to an earth fixed coordinate

system. The accelerometers do not contain any information about the rotation around the gravity vector

and do not give a complete description of the orientation. Typically, a state estimator, i.e. a Kalman

filter is used to fuse the information from both gyroscopes and accelerometers by using the acceleration

as measurement update. The accelerometers inevitably measure both the body acceleration as well as

the gravity component, but general assumptions on the humanmovement is made such that the body

acceleration can be filtered out. When only accelerometers and gyroscopes are used, no information

about the rotation around the vertical axis (the sensor heading) is known, and this state will unavoidably

drift off. To avoid this drifting, a measurement of the earth magneticfield by magnetometers can be used
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[51, 74].

A Kalman filter using an IMU for orientation estimation can bedesigned in a several ways. The states

in a Kalman filter can be chosen to be any representation of theorientation. In [44] they used rotation

matrices and vectors to represent the orientation while as in [51] and [74] the orientation is represented

by quaternions. The filter can be designed in an indirect or a direct filter. When the states in the Kalman

filter are the orientation then it is called a direct filter. When the error between estimated orientation

obtained by a pure integration and the the measured orientation from the accelerometers are the states in

the Kalman filter it is called an indirect filter.

In this chapter an Extended Kalman Filter (EKF) is designed that fuses the information from a tri-axial

accelerometer system with a tri-axial gyroscope system in order to measure orientation of the foot during

gait. In Section 4.3 the theoretical background and the EKF algorithms are presented. Furthermore, in

Section 4.4 the main filter structure is presented and the error model is deduced. In Section 4.5 the angle

between foot and ground is found based on the estimated orientation and a slow filter estimating the

angle between the sensor and the foot. At last an experimental evaluation of the extended Kalman filter

is given in Section 4.6.

4.3. Extended Kalman Filter (EKF) Equations

A Kalman filter is an optimal way to estimate states for linearsystems based on measurements and

knowledge of stochastic parameters of the system and measurement noise. The Kalman filter is optimal

in the sense that the expectation value of the estimate is notbiased and that the variance of the estimate is

minimal. The use of a Kalman filter for nonlinear system is called Extended Kalman Filter (EKF). This

filter is no longer optimal, but has been applied successfully in many applications. The algorithm can be

found in many books e.g. [26], and is shortly outlined here.

Given the continuous stochastic system

ẋ(t) = f (x(t), u(t), v(t)) (4.1)

wheref (x(t), u(t), v(t)) is a nonlinear vector function of the state vectorx(t), the input vectoru(t) and the

white noise vectorv(t) which is the plant noise with the covariance matrixQ. The measurementsz(k)

are done at discrete time instantst = ts · k with the sample timets

z(k) = h(x(k)) + w(k) (4.2)

whereh(x(k)) is a function of the states andw(k) is the white measurement noise described with the

covariance matrixR.
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This system can be made time-discrete by help of the forward Euler method

x(k + 1) = fk(x(k), u(k), v(k)) (4.3)

(4.4)

where

fk(x(k), u(k)) = x(k) + tsf (x(k), u(k), v(k)) (4.5)

The Extended Kalman Filter algorithm can be summarised likethis: .

1. Initialisation of the error covariance matrix̄P(0) and the initial statēx(0):

x̄(0) = E{x(0)} (4.6)

P̄(0) = E{(x(0)− x̄(0))(x(0) − x̄(0))T }

Here,E{∗} is the expectation operator

2. Compute the Kalman filter gain

K (k) = P̄(k)H(k)T
(

H(k)P̄(k)H(k)T + R
)−1

(4.7)

3. Compute the posteriori state estimate

x̂(k) = x̄(k) + K (k) (y(k) − H(k)x̄(k)) (4.8)

4. Update the posteriori error covariance matrix after new measurement:

P̂(k) = (I − K (k)H(k)) P̄(k) (4.9)

5. Update the a priori estimate

x̄(k+ 1) = x̂(k) + tsf (x̂(k), u(k), 0) (4.10)

6. Update the a priori error covariance matrix

P̄(k+ 1) = Φ(k)P̂(k)Φ(k)T + V(k)QV(k)T (4.11)

In the algorithm the following notation is used:

Φ(k) =
∂fk(x(k), u(k), 0)

∂x(k)

∣

∣

∣

∣

∣

x(k)=x̂(k)
, V(k) =

∂fk(x(k), u(k),w(k))
∂w(k)

∣

∣

∣

∣

∣

x(k)=x̂(k)
(4.12)
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and

H(k) =
∂h(x(k))
∂x(k)

∣

∣

∣

∣

∣

x(k)= x̄(k)
(4.13)

In the case no measurement is available,H(k) is set to zero. It will then follow that the Kalman filter

gainK (k) becomes zero and thatx̂(k) = x̄(k) andP̂(k) = P̄(k). It will then follow that the EKF becomes

a state predictor.

4.4. Design of a Filter for Orientation Estimation

An indirect Kalman filter was designed to estimate the orientation of the IMU by combining the tri-axial

accelerometer and a three-axial gyroscope by using a model of the IMU. The structure of the algorithm

is depicted in Figure 4.4. The state of the Kalman filter is theerror in the orientation. The orientation

is in first place calculated by an independent strap down integration, where basically the angular speed

is integrated in 3 dimension. The correction state update isdone by the acceleration measurement. The

indirect filter has the advantages that:

• The error state model is not that non-linear as the real statemodel.

• The parameters of the model can be treated as stochastic processes.

Acceleration

measurement

measurement

Gyroscope

ω
B
meas

Integration

Kalman

filtererror

Orientation

gmeas q̃y

qq̂

q̃

β̂, q̃

Figure 4.1.: Block structure of the orientation estimation

In the following, a model which describes the sensor output is presented which considers the output of

the sensor system affected of uncertain states driven by white noise. By considering the model of the

sensor output of both the gyroscopes and accelerometers theerror model is derived.
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4.4.1. Sensor Signal Model

The sensor is assumed to be attached to a human body segment i.e. the foot that rotates and translates

with respect to a global coordinate frame. The measured gyroscope signals, represented as the vector

ωB
meas= [ωB

meas,x ω
B
meas,y ω

B
meas,z]

T are assumed to be the sum of angular velocityωB, a slowly varying

biasβ and random white noiseξε.

ωB
meas= ω

B + β + ξε. (4.14)

The spectrum of the gyroscope offset has a low cut-off frequency in comparison with the bandwidth of

the kinematic signals that are to be measured. The slowly varying bias in the gyroscope measurements

is modelled as a first order Markov process driven by a white noise vectorξβ

β̇ = −Tβ−1β + ξβ. (4.15)

Tβ is the diagonal matrix with the time constants of the Markov processes on the diagonal axis. A tri-

axial accelerometer measures acceleration, the gravity plus a white noise component, all in the sensor

coordinate frame. The accelerometer signals are modelled as the sum of the linear acceleration vector

aB, the gravity vectorgB and white noiseξa

aB
meas= aB + gB + ξa. (4.16)

The superscriptB is used to indicate that the signals are expressed in the sensor coordinate system.

4.4.2. Representation of Orientation

Rotation of a body in 3D space is fully described with three parameters. Rotation is always defined

between two coordinate frames. We define two coordinate systems, one system fixed to the sensor or

body-fixedB and one global coordinate systemI . The latter is always fixed once defined and thezI -axis

is always pointing in vertical direction. Rotation can be represented in several ways; the most important

representations are [79]:

• Rotationmatrix: 9 parameters, 6 constraints

• Euler angles: 3 parameters

• Angle axis parametrisation: 4 parameters

• Euler parameters (Quaternions): 4 parameters, 1 constraint

• Euler Rodriguez parameters: 3 parameters
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Minimal representations with only three parameters alwayscontain a singularity. The most common

Euler angles definitions, also called the roll-pitch-yaw isnot defined for a pitch angle of±90 degrees.

However in many practical application, e.g. marine vehicles, this parameter region is not likely to be

entered. An advantage of the Euler parameters is their computational efficiency, in opposite to Euler an-

gles. The Euler angles are computed by numerical integration of a set of nonlinear differential equations.

This involves computation of a large number of trigonometric functions.

zI

θ

xB

zB

k

xI

yI

yB

Figure 4.2.: Orientation systems: Illustration of the rotation between two coordinate systems represented
as one axis and one angle.

In this work we use the Euler parameter representation or unit quaternion. In the following an introduc-

tion to quaternions is given and the connection with spatialrotation is explained.

The Euler parameters (unit quaternion) are defined as

q =






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ε
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

∈ R4 (4.17)

whereη is called the scalar part of the quaternion whileε is the vector part. Quaternions form a group

whose underlying set is the four dimensional vector spaceR
4 with a multiplication operator⊗ that con-

tains both the dot and cross product. The quaternion productbetween two quaternionsq1 and q2 is

defined by:
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where

q1 =


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The product can be written as:
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ε1 η1I + S(ε1)





























η2

ε2















(4.20)

= F(q1)q2 (4.21)

or as















η

ε















=















η2 −εT
2

ε2 η1I − S(ε2)





























η1

ε1















(4.22)

= E(q2)q1 (4.23)

The quaternion product betweenq andq∗ results in the identity quaternionqid

qid = q∗ ⊗ q = q ⊗ q∗ =















1

03x3















(4.24)

The time derivative of the identity quaternion gives

q̇id = q̇∗ ⊗ q + q∗ ⊗ q̇ = 0 (4.25)

from which this useful relation is obtained by postmultiplication byq

q̇∗ = −q∗ ⊗ q̇ ⊗ q∗. (4.26)

To rotate a vectorxB by the rotation encoded inq, the following quaternion multiplication can be carried

out

x̃I = q ⊗ x̃B ⊗ q∗, x̃B =















0

xB















, x̃I =















0

xI















(4.27)

Furthermore, a very usefull feature of quaternions is that in similarity to rotation matrices, a series of

sequential rotations can be simplified to one rotation by multiplication i.e. ifq1 andq2 are unit quaternion

then the combined rotation that is resulting from the rotation q1 followed by the rotationq2 correspond

to the rotationq3 = q2 ⊗ q1.

Their relation to the angle-axis parametrisation is:

η ≡ cos
(

θ

2

)

(4.28)

ε ≡



























ε1

ε2

ε3



























= k sin
(

θ

2

)

(4.29)
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They are constrained by the condition

qTq = η2 + εTε ≡ 1 (4.30)

hence the name unit quaternion. The relation between the quaternion and the rotation matrix is

R(η, ε) = I3x3 + 2ηS(ε) + 2S2(ε). (4.31)

The quaternion extracted fromR−1 = RT is denotedq∗ and is defined as

q∗ ≡















η

−ε















. (4.32)

The quaternion representation of a rotation is related to angle-axis parametrisation. Euler’s displacement

theorem tells that any rotation can be expressed as a simple rotation by the angleθ around one axisk. A

rotation matrixRI
B between a global coordinate systemI and the body systemB can be obtained by the

following equation from the axisk and the angleθ

RI
B = cos(θ)I + S(k) sin(θ) + (1− cos(θ))kkT (4.33)

= I + S(k) sin(θ) + S2(k)(1− cos (θ)) (4.34)

whereI is the identity matrix andS is the skew symmetric matrix defined as:

S(k) =



























0 −k3 k2

k3 0 −k1

−k2 k1 0



























k =



























k1

k2

k3



























. (4.35)

4.4.3. Kinematics

To continuously derive the orientation we need an expression for the time derivative of the rotation

matrix. Given two coordinate systemsI and B where the rotation between them is represented by the

rotation matrixRI
B, the time derivative of the rotation matrix is given as

ṘI
B = S(ωI

IB)RI
B = RI

BS(ωB
IB) (4.36)

whereωI
IB is the angular velocity between systemI andB. The same relation can be found using the

quaternion representation. If the quaternionqIB = [η εT ]T represents the rotation between the system

I andB, andωIB is the angular velocity of systemB relative to systemI , the time derivative ofqIB for
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systemI becomes:

q̇IB =
1
2















0

ωI
IB















⊗ qIB (4.37)

=
1
2















−εT

ηI − S(ε)















ωI
IB. (4.38)

The same kinematics can be described in system B:

q̇IB =
1
2

qIB ⊗















0

ωB
IB















(4.39)

=
1
2















−εT

ηI + S(ε)















ωB
IB. (4.40)

4.4.4. The Error Model of the Orientation

Even though quaternions have many advantages as representation of orientation, there is a weakness in

connection with the Kalman filter. The constraint on the fourparameters makes the four parameters

linearly dependent upon each other. By an implementation ofall four parameters as states in a Kalman

filter a singularity in the covariance matrix would occur because of this linear dependency. A possible

solution (out of others) to avoid this singularity is to use atruncated representation of the quaternion.

This is accomplished by using the error of the orientation instead of the direct orientation.

We now proceed to find the dynamic equation of the error in orientation will be deduced as well as

the equation for the inertial navigation system. The goal ofthis section is to deduce the dynamics of

the error caused by the bias on the gyroscope measurement. Inthe following the quaternionqIB which

is representing the rotation from the inertial systemI to the sensor coordinate systemB is q, and the

estimated orientation from the direct integration of the gyroscope signal is represented byq̂ and which

is found by using Equation (4.39)

˙̂q =
1
2

q̂ ⊗















0

ωB
meas















. (4.41)

Here,ωB
measis the angular velocity measured directly from the gyroscopes. Given that the integration is

not perfect, the obtained orientationq̂ can be assumed to be the rotation from systemI to an unknown

systemB̂. The rotation error between the sensor systemB andB̂ is denoted̃q as illustrated in Figure 4.3.

Since this rotation error also represents a rotation, we mayrelateq̃, q andq̂ by

q̃ = q∗ ⊗ q̂ (4.42)

whereq̃ is the orientation error of which the dynamics is to be derived. The time derivative of Equation
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B

q̃

q

B̂

q̂

I

Figure 4.3.: Relation between the global coordinate systemand the sensor fixed coordinate system when
there is and error in the orientation.

(4.42) is found by using the chain rule:

˙̃q = q∗ ⊗ ˙̂q + q̇∗ ⊗ q̂ (4.43)

which by using Equation (4.26) can be written as

˙̃q = q∗ ⊗ ˙̂q − q∗ ⊗ q̇ ⊗ q∗ ⊗ q̂. (4.44)

From Equation (4.37) the kinematics forq̂ andq is given through

˙̂q =
1
2















0

ωI
meas















⊗ q̂ =
1
2

q̂ ⊗















0

ωB
meas















(4.45)

q̇ =
1
2















0

ωI















⊗ q =
1
2

q ⊗















0

ωB















(4.46)

Using these relations the error state becomes:

˙̃q = q∗ ⊗
1
2















0

ωI
meas















⊗ q̂ − q∗ ⊗















0

ωI















⊗ q ⊗ q̃ (4.47)

=
1
2















0

ωB
meas















⊗ q∗ ⊗ q̂ −















0

ωB















⊗ q∗ ⊗ q ⊗ q̃ (4.48)

=
1
2















0

δω















⊗ q̃ (4.49)

whereδω is defined from

ωB
meas= ω

B + δω (4.50)
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The error model is in component form















˙̃η
˙̃ε






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





=
1
2
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











0 −δω
T

δω S(δω)


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










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









η̃

ε̃















(4.51)

Sinceη̃ = cos(̃θ/2), and assumed that the error is small, the following approximation that ˜η ≈ 1 can be

used. This results in:
˙̃ε =

1
2
δω +

1
2

S(δω)ε̃ (4.52)

By substitutingδω = β + ξε the dynamics of the error becomes

˙̃ε =
1
2
β +

1
2

S(β)ε̃ + (I − S(ε̃))ξε (4.53)

4.4.5. Total Model Used in Kalman filter

The states which are estimated by the Kalman filter are the vector part of the quaternion error and the

bias vector on the gyroscope:

x =















ε̃

β















(4.54)

By putting together the model equation for the bias and the dynamical model of the quaternion error, the

following continuous differential equation for the states in the Kalman filter can be written as

ẋ =















1
2β +

1
2S(β)ε̃

−T−1
β
β















+















1
2(I − S(ε̃))ξε

ξβ















(4.55)

= f (x(t), v(t)) (4.56)

with

Tβ =



























Tβ 0 0

0 Tβ 0

0 0 Tβ



























(4.57)

To use this model in a Kalman filter, it has to be in a time-discrete form. By using the forward Euler

method with the sampling timets, the following difference equation is derived

x(k + 1) = x(k) + tsf (x(k), v(k)) (4.58)

x(k + 1) =















ε̃ + ts1
2β + ts1

2S(β)ε̃

β − tsT−1
β
β















+















ts(I − S(ε̃))ξε
tsξβ















. (4.59)

The linearised error matrixV(k) and the error covariance matrix of the process noisev(k) become:

V(k) =















ts1
2(I3x3 − S(ˆ̃ε(k))) 03x3

03x3 tsI3x3















,Q(k) =















I3x3 · σ
2
ε 03x3

03x3 I3x3 · σ
2
β















(4.60)
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The linearised transition matrix becomes:

Φ(k) =















I3x3 + ts1
2S(β̂(k)) ts1

2I3x3 − ts1
2S(ˆ̃ε(k))

03x3 I3x3 − tsT−1
β















(4.61)

4.4.6. The Initial Orientation

When an integration of the angular velocity is started, the initial orientation of the sensor in relation to

a global system must be found. As only the tri-axial accelerometer gives a direct measurement of the

orientation, this is applied for this purpose. Under the assumption that the sensor is not accelerated mean-

ing that the patients have to stand still as the integration starts, this can be done. As already mentioned,

the acceleration measurements only give partial information about the orientation; the angle about the

vertical axis (heading) is not contained in the acceleration measurement. From that it follows that the

global coordinate system has to be chosen at the moment when the integration starts.

The acceleration measurement of the unaccelerated sensor gives the gravitation vector in the sensor

coordinate system. This vector is here denoted asgmeas. The global system is defined such that thezI -

axis is pointing in opposite direction of the gravity vector. ThexI -axis andyI -axis have to be orthogonal

in respect to each other as well as to thezI constructing a right handed coordinate system. ThexI axis

is chosen to be the projection of the sensorsxB on the global horizontal plane. This means that at the

beginning of the integration the yaw angle (heading) in a roll-pitch-yaw representation would be zero.

To find the initial orientation of the sensor, the axis of which the body system is rotated in relation to

the global system is found as well as the corresponding angle. With this knowledge the initial rotation

formulated as a quaternion can be easily found. The rotationfrom the body system to the global system

is along the axis orthogonal to the globalzI axis and orthogonal to the normalised gravity vectorgmeas.

By using the cross product, the axisk init can be found

k init =
gmeas× zI

||gmeas× zI ||
(4.62)

with zI = [0 0 1]T . Now, as the axis of rotation is found, the next step is to find the angle to rotate. This

is the angle between the vectorzI andgmeas. This angle is found by the cosine relation

cos(θinit ) =
zI Tgmeas

|zI | · |gmeas|
(4.63)

The initial orientation can now be represented by a quaternion

q̂init =















cos(θinit
2 )

k init sin (θinit
2 )















(4.64)

Note that by the calculation of̂qinit , both the initial orientation i.e. the sensor’s orientation in relation to
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the global system, as well as a definition of the global systemI , are simultaneously found.

4.4.7. Measurement Equation

The measurements from the accelerometers are used to make anestimate of the orientation error and

are included in the Kalman filter through the measurement equation. The gravitation vectorgmeasis the

measured acceleration in the sensor systemB. This vector is pointing in the opposite direction of the

zI -axis. The corresponding gravitation vectorĝ by the pure integration is found by this equation.

ĝ = R̂TzI (4.65)

whereR̂ is the orientation found by the pure integration of the measured angular velocityωB
meas and

zI = [0 0 1]T . The axis of the error rotation goes through the axis orthogonal to the measured gravitation

vector as well as the axis orthogonal to the gravitation vector ĝ. This axis can now be found by applying

the cross product between the respecting vectors:

k̃ =
gmeas× ĝ
|gmeas× ĝ|

. (4.66)

Now as the axis of rotation is found, the next step is to find theangle to rotate. This is simply the angle

between the vectorŝg andgmeas, found by this equation:

cos(̃θ) =
ĝT · gmeas

|ĝ||gmeas|
(4.67)

Now the error orientation can be described by a quaternion:

q̃y =















cos
(

θ̃
2

)

k̃ sin
(

θ̃
2

)















, ε̃y =

[

k̃ sin

(

θ̃

2

)]

(4.68)

with the corresponding measurement matrixH(k)

H(k) =
[

I3x3χg,rest 03x3

]

. (4.69)

As the measurement based on the accelerometers is only validwhen the sensor is not accelerated, the

measurement in the Kalman-filter is only updated during the foot flat phase or more precisely during the

gyroscope restχg,rest which is defined and explained in Chapter 5. The measurement equation is given

by

yk = H(k)xk + w(k) (4.70)

wherew(k) is the measurement noise vector related to the measurementof the error orientation.
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Table 4.1.: Parameters of the Kalman filter.

σβ [s] σε[rad/s] Tβ[s] σr

0.01 0.01 100 0.05

4.4.8. Implementation Issues

The model of the orientation error is based on the assumptionthat the error remains small. Because of

the unknown bias in the gyroscope measurement, the estimated error will after a while drift off. To avoid

this the estimated error and bias from the Kalman filter are fed back to the integration ofωB
meas. This is

done at fixed time interval of 10 seconds.

Filter Parameters

Parameters of the extended Kalman filter are the initial error covariance matrix̄P(0), the initial a priori

state vector̄x(0), as well as the covariance matricesQ of the process errorv(k) and the covariance

matrix to the measurement errorw(k), namelyR. The initial error covariance matrix is chosen to be a

diagonal matrix. Larger values indicate that there is a larger discrepancy between initial state estimates

and real values. For increasing measurement noise variances, the EKF will trust the internal model

predictions more than the measurements. Smaller corrections of the a priori state estimate are generated

by discrepancies between the measurement and the predictedoutput. The noise covariance matrixQ

is set according to Equation (4.60) whereas values of the standard deviationσε andσβ to the white

noise processesξε andξβ are listed in Table 4.1. The noise covariance matrixQ is very much a tuning

parameter, when small values are chosen will this result in alow bandwith filter which is good for slow

moving signals. High values will result in a high bandwidth filter that can track fast moving signals but

with a high noise. The initial error covariance matrixP̄(0) and the initial state vector̄x(0) were chosen

to be:

P̄(0) =






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


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












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








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1 s2 0 0 0 0 0

0 1 s2 0 0 0 0

0 0 1 s2 0 0 0

0 0 0 1 rad2/s2 0 0

0 0 0 0 1 rad2/s2 0

0 0 0 0 0 1 rad2/s2
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
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


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












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Figure 4.4.: In the gait phase detection algorithm the anglebetween the sensorsxB axis and the global
coordinate systemsxI andyI is denotedϕ. The angle between foot and the horizontal ground
is denotedϕ f oot.

4.5. The Angle between Foot and Ground

In the gait phase detection algorithm explained in Chapter 5, the angle between the sensor’sxB-axis and

the ground is denoted asϕ as shown in Figure 4.4. The angle is defined as positive in anticlockwise

direction seen from the right side. More preciselyϕ is the angle between the sensor’sxB axis and the

plane constructed by thexI andyI axes of the global coordinate system. In the foot flat phase the angleϕ

is nearly constant but the angle is depending on how the sensor is mounted. The angleϕ f f is introduced

as the offset such that the angleϕ f oot between the foot and ground is zero during the foot flat phase.The

ϕ f oot can be calculated as

ϕ f oot = ϕ − ϕ f f . (4.72)

The angleϕ f f is only depending on how the sensor is mounted, and once the sensor is fixated, the angle

remains constant. In order to allow a variation of the mounting, the angleϕ f f is estimated during the

foot flat phase through the following filter

ϕ f f [k] = (ϕ f f [k − 1] + α ∗ ϕ[k])/(1+ α) (4.73)

calculating recursively the mean of the angle. The forgetting factorα was chosen to be very small

(≤0.005).

4.6. Evaluation of the Extended Kalman Filter

As no experimental validation of the EKF has been performed,some experimental results will briefly be

shown in this section. In Figure 4.5 the elements of the estimated orientation are plotted in the upper
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graph. In the middle graph is the c rest is plotted. The periodin which the Kalman filer update is active

χg,rest is one. In the lower graph the bias states are plotted. From the figure it can be seen that during

the period in which the Kalman filter update are performed, the biases are changing, whenχg,rest is zero

and no measurement update are performed the biases stay constant. In Figure 4.6 the same plot is shown

with a smaller time scale.

In Figure 4.7 the biasϕ f f between the sensor and foot is shown in the upper graph whereas the sagittal

angle between the foot and groundϕ f oot is shown in the lower graph. It can be observed that the biasϕ f f

converges after ca. 2.5 seconds.
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Figure 4.5.: Upper graph shows the elements in the quaternion, η (solid line), first vector component (dot-

ted), second vector component (dashdotted) and the third vector component (dashed). The

lower graph shows the corresponding bias elements: first element (dotted), second (dashdot-

ted) and third element (dashed).
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Figure 4.6.: Upper graph shows the elements in the quaternion, η (solid line), first vector component (dot-

ted), second vector component (dashdotted) and the third vector component (dashed). The

lower graph shows the corresponding bias elements: first element (dotted), second (dashdot-

ted) and third element (dashed).
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Figure 4.7.: Results of the bias angle estimation during gait. Upper graph shows the bias on the angle

ϕ f f . In the lower graph the sagittal angle between foot and ground ϕ f oot is shown.
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4.7. Discussion and Conclusions

In this chapter an indirect extended Kalman filter was developed to estimate the orientation of an inertial

sensor. The extended Kalman filter was developed for the usage in an FES-assisted gait training system

with the sensor mounted to the foot. Information from the gait phase detection system developed in

Chapter 5 was used to decide whether the sensor was at rest. When the sensor was at rest, the accelerom-

eter measurement was used as orientation measurement in theKalman filter. No experiments has been

conducted in order to directly validate the accuracy of the Kalman filter in this chapter, but the EKF is

used extensively in the following chapters of this thesis. In Chapter 5, the angle between foot and ground

plays an important role in the gait phase detection algorithm. In Chapter 6, a method for finding the

3D movement of the foot is developed and experimentally verified with an optical measurement system.

Furthermore, in Chapter 7 an FES-assisted gait training system based on the gait phase detection system

is developed. In that chapter a closed-loop control loop is developed, where electrical stimulation applied

to the tibialis anterior is used as the plant input and the maximum angle between the foot and the ground

is used as feedback variable.
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5.1. Summary

Aim: The work presented in this chapter aims to develop a robust gait phase detection system for use

in FES-assisted gait rehabilitation by means of inertial sensors. The target is to show that one robust

algorithm can work for a variety of subjects without the needto tune the parameters individually for each

patient.

Methods: By help of braces inertial sensors can be easily mounted on the feet in short time. A new Gait

Phase Detection algorithm based on an Inertial Sensor Unit was developed (GPD-IS). From all the in-

formation one inertial sensor delivers, four distinct gaitphases were detected: foot flat, pre-swing, swing

and loading response. The inertial sensor system applied inthis chapter consists of 2 sensor units making

it possible to detect the gait phases on both sides. Five stroke patients with different pathological gait

patterns were chosen to validate the algorithm. To validatethe detection algorithm the insole pressure

measurement system Parotec manufactured by the company Paromed GmbH1 was used. This system

consists of a foot insole with 24 hydro-cells making it possible to measure the distributed pressure un-

derneath the foot. All patients walked with a parachute harness support on a treadmill for at least 3 min,

and the detected phases from the GPD-IS were compared with the obtained gait phases from the Parotec

system.

Results: In five hemiplegic subjects, all strides were detected by theGPD-IS in walking tests on a mo-

torised treadmill. In the comparison with the insole pressure measurement system, which is similar to the

traditional force resistive sensors used for triggering electrical stimulation during gait, no large time dif-

ferences in the detection of the events were found, but a systematic delay of the toe off event was found.

The heel strike event was systematically detected earlier than that of the reference system. For the two

other events no systematic bias of the event detection couldbe found. For one patient the detection of the

loading response phase failed for more than 20% of the steps on the affected body side using the GPD-IS

algorithm. The variations of the event detection for each individual patient were small indicating a high

1www.paromed.de
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repeatability of the detection.

Conclusions: The developed gait phase detection system has been shown to work robustly for five

hemiplegic patients. The errors in the event detection compared to the reference system are limited and

it can be concluded that in an FES-assisted gait training system the obtained gait phases from the inertial

sensor can be used to trigger the stimulation.

Contribution: The author developed the methods and implemented the experimental software. Further-

more, the author planned and ran the experiments. Parts of this work are published in [56].

5.2. Motivation

There are several reasons for using an inertial sensor for gait phase detection. The sensor can with the

help of a special made brace be attached on the foot outside the patient’s shoe in a short time (half a

minute for a trained person). This makes it more attractive for therapists to take it into use compared

to traditional foot switches which have to be attached underneath the foot. This had the consequence

that the patients had to take off the shoes in order to attach the sensor. In addition, a full inertial sensor

possesses an advantage over similar sensors also containing gyroscopes and accelerometers; not only the

raw signals angular velocity and acceleration can be used inan algorithm for detecting gait phases but

also values derived from the orientation of the sensor such as the angle between foot and the ground as

well as the acceleration without the gravity component expressed in the global coordinate system. The

goal here was to develop an algorithm which will work for a wide variety of patients without having the

need to tune the parameters of the algorithm for each patientindividually.

Within this chapter methods for obtaining gait phases basedon the inertial sensor and the validation

of those methods with a foot insole pressure reference measurement system are presented. A robust

algorithm for estimating four distinct gait phases by usingall available information from the inertial

sensor is explained in Section 5.4. Furthermore, in Section5.5 an experimental validation of the obtained

phases from GPD-IS is described. In this section a referencealgorithm for detection of gait phases based

on the insole foot pressure measurements, the experimentalsetup and the experimental procedure are

described. Experimental results from the comparison of thegait phases from GPD-IS with the obtained

phases from the reference measurement system are given in Section 5.6. Finally, the results are discussed

in Section 5.7.
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5.3. Introduction

There are many different definitions and description of gait. The most commonlyused reference on gait

has become the book by Perry [65]. She defines the gait phases based on its functional tasks. Since a

measurement of the gait with foot switches or gyroscopes andaccelerometers can only detect events that

are caused by some repetitive patterns in the movement and inthe measured signals, the phases detected

from sensors differ from those based on functional tasks. Perry describes fivestance phase periods and

three swing phase periods. The stance phase periods are as follows: initial contact, loading response,

mid-stance, terminal-stance, and pre-swing. The swing phase periods are initial-swing, mid-swing, and

terminal-swing. Initial contact is defined as the moment when the foot touches the floor. The loading

response is the reaction of the limb as it absorbs the impact.The period of single limb support during

which the body progresses over a stationary foot is mid-stance. Terminal-stance is the period in the gait

cycle in which the body moves ahead of the supporting foot andweight begins to fall on the contralateral

limb. The final stance phase period, pre-swing, is the transitional period of double support, during which

the limb is rapidly unloaded in preparation for swing. Initial swing is the point in which the limb is

lifted from the floor and initial advancement of the thigh is assumed to achieve toe clearance and forward

propulsion. During mid-swing, the limb is advanced furtherin order to achieve a vertical tibial position.

Continued tibial advancement toward full knee extension, deceleration of the thigh, and maintenance of

the foot position are included in the terminal swing. These completes the full cycle from initial contact

to terminal swing.

Stance

Loading

T3

Swing

T2

T6

T1 T4

T5

swing
Pre

response

Figure 5.1.: Gait phase detection system represented as a state machine. The gait phases are represented

as four states where six transitions between the states are possible.

Four distinct gait phases are detected in the algorithm described here (GPD-IS) (cf. Figure 5.1). These

four phases are the foot flat, pre-swing, swing and loading response phases. The phase transitions can be

seen as gait events; the transition from foot flat to pre-swing is the heel off event, the transition between

pre-swing and swing is the toe off event. Furthermore, the transition from swing to loading response
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is the initial contact/heel strike whereas the transition between loading response and foot flat is the full

contact event. The transitions between the phases will in this work be based upon characteristics in

the sensor signals and not on functional tasks. Shortly described, the heel strike event is detected by a

peak in acceleration, full contact is detected by a low amplitude in both gyroscope signals and in the

accelerometer signals. The heel off event is detected by increasing amplitude in the signals andthe toe

off event is detected by a change in the rotational movement of the foot.

Pre
swing

Pre
swing

Pre
swing

contact
Initial

contact
Full

contact
Full

contact
Initial

Swing
Loading
Response

Terminal
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swing

Terminal
swing

Toe off Heel off
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[% Gait Cycle]

Events

Perry

GPD-IS

Events
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GPD-IS

Swing
Loading
Response

Toe offHeel off

Right Foot flat

Foot flat

swing
Pre

Mid
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Initial

swing
Initial

stance
Mid

stance
Terminal

swing
Pre

swing
Mid

swing
TerminalLoading

response

response
Loading

Figure 5.2.: The first row shows the gait phases as defined by Perry [65], the second shows the gait phase

definition used in this work (GPD-IS) whereas the last row indicates the corresponding gait

events.

In Figure 5.2 a comparison of the phases gait phases by Perry and the phases used within this work is

shown. The initial contact event initiates the loading response phase in both definitions. In the definition

by Perry, the loading response lasts until the contralateral side toe lifts off. In GPD-IS, the next event de-

tected is the full contact which also ends the loading response phase and starts the foot flat phases. Perry

uses the notation stance which is divided into middle stanceand terminal stance, and in the middle stance

the weight is shifted from heel to toe, and the contralateralfoot is progressing beyond the stationary foot.

The next phase that is detected by GPD-IS is the heel off event. This event initiates the pre-swing phase.

This is occurring at the same moment as the terminal stance phase starts according to Perry. The phase

between heel off and toe off is within this work called the pre-swing phase, whereas Perry divides this

phase in terminal stance and pre-swing. In the terminal stance the weight moves ahead of the foot, and

in the pre-swing phase the contralateral side has its initial contact, and the weight is shifted to the other

side.
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Figure 5.3.: Block structure of the algorithm used in the gait phase detection based on inertial sensors
(GPD-IS).

5.4. Methods

5.4.1. Detection Algorithm

The algorithm developed in this chapter detects the gait phases for one side under the assumption that the

sensor is mounted on the side of the foot with braces in such a way that the sensor’sxB axis is pointing

in forward walking direction, and the sensorzB axis is pointing towards the direction of gravity when the

subject is standing. TheyB axis is pointing in the orthogonal direction of the two otheraxes, forming a

right handed coordinate system.

In Figure 5.3 the structural scheme of the developed gait phase detection system based on inertial sensors

(GPD-IS) is depicted. The block “Kalman filter” is referringto the Kalman filter developed in Chapter 4

where a method for orientation estimation of the sensor withrespect to a global coordinate system was

proposed. In the gait phase detection algorithm, the orientation of the sensor is applied to transform the

measured acceleration into the global coordinate system. The measured accelerationaB
measis the sum of

the real acceleration of the sensoraB, the gravity componentgB and an unknown biasγ

aB
meas= aB + gB + γ. (5.1)

The unknown bias is in this section taken to be as zero in contrary to Chapter 6 where this bias is

calculated offline. The sensor’s accelerationaI
f oot in the global coordinate system without the gravity
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component can be calculated by this equation

aI
f oot = RaB

meas− gI . (5.2)

HereR is the rotation matrix representing the orientation of the sensor in relation to the global coordinate

system andgI is the gravity component.

Based on the angular velocity and the acceleration measurement a coarse detection is performed whether

the sensor is at rest or if it is moving. This is done independently for the angular velocity measurement

and the acceleration measurement. These coarse detectionsare denoted asχa,rest for the accelerometers

andχg,rest for the gyroscopes, where the logical value 1 means that the sensor is at rest and the logical

value 0 means that the sensor is indicating a movement. The algorithms are both for the gyroscopes

and the accelerometers similar in the structure but the parameters are different and only the detection of

χg,rest is outlined here.

The detection of gyroscope restχg,rest and acceleration restχa,rest

To each of the gyroscope sensorsωB =
[

ωB
x , ω

B
y , ω

B
z

]T
a logical variableχg,x, χg,y andχg,z is associated.

Each variable describes if this gyroscope is indicating rest or not. χg,x is the state in a state machine

containing 2 states; rest and not rest. Similar to the gyroscope for each accelerometer sensor the logical

variablesχa,x,χa,y andχa,z are associated.

For both states there is a condition for transition to the other one. Let the following functiong(i, x, δ,N)

is defined

f (x, δ) =















1 if x > δ

0 if x < δ















, g(i, x, δ,N) =
i

∑

j=i−N

f (x[ j], δ). (5.3)

The functiong(i, x, δ,N) is merely counting the number of samples for which the vector x is exceeding a

limit within the last N samples.

Transitions for single sensor detection of rest/movement

All the logical valuesχg,x, χg,y, χg,z, χa,x, χa,y, χa,z have the same conditions for transitions but with

different parameters. The transition from rest to movement forχg,x is as follows:

Tsingle,r→m : rest→ movement

The condition for the transition from rest to movement for the individual sensors is de-

pending on the angular velocity. When the angular velocity of the last N=25 samples ex-

ceeds a limit 6 times a transition to movement occurs:

g(i, ωB
x , δw,x,N) > 6
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Tsingle,m→r : movement→ rest

The condition for the transition from movement to rest for the individual sensors is depend-

ing on the angular velocity and its derivative. When the angular velocity of the last N=25

samples does not exceed a limit more than 2 times and the derivative of the angular velocity

does not exceed a certain limit the last 25 samples the transition to rest occurs
(

g(i, ωB
x , δw,x,N) 6 2

)

∧
(

g(i, ω̇B
x , δw,x,N) = 0

)

.

Transitions for detection of rest/movement based on all sensors

The transition ofχg,rest from rest to movement and vice versa can be described by usingthe logical vari-

ables of the separate sensors.

Tr→m : rest→movement

χg,y[i]

Tm→r : movement→ rest

χg,x[i] ∧ χg,y[i] ∧ χg,z[i]

The conditions for the transitions of the GPD-IS

The main state machine consists of four states. The transitions between the states in the gait detection

system are dependent on the coarse detection represented bythe logical variablesχg,rest andχa,rest.

The transitions between the states have the following conditions:

T1: foot flat→ pre-swing

In the foot flat phase, the only transition which can occur is the one to the pre-swing state.

This is done when bothχa,rest andχg,rest are indicating a movement and when the angle of

the foot in the sagittal plane is exceeding a certain limit innegative direction:
(

χa,rest
)

∧
(

χg,rest

)

∧
(

ϕ f oot < δϕ,T1

)

.

T2: pre-swing→ swing

In the pre-swing state the algorithm anticipates the transition to the swing state. The con-

dition for the transition to the swing phase is that at least one of the sensors is indicating

movement. The second condition for swing phase is that the rotational movement of the

foot in the sagittal plane is changing from clock wise to anticlockwise direction when seen

from the right side. To make this detection more robust, a change of sign from positive to
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negative for both the angular velocity as well as the derivative of the angular velocity is used.

The condition for the transition becomes:
(

χa,rest∨ χg,rest

)

∧
(

csign(ω̇B
y , δω̇,y) ∨ csign(ωB

y , δω,y
)

, where

csign(x, δ) =















1 if g(i − 22, x, δ, 3) > 2∧ g(i, x, δ, 3) > 2

else0















. (5.4)

T3: swing→ loading response

In the swing phase the algorithm awaits the transition to theloading response phase that

begins with the first contact of the foot with the ground. Thus, the algorithm is awaiting

for a peak in the accelerometer signals. This is detected evaluating the derivative of the

acceleration, the jerk. Furthermore, for several patientsthe foot might touch the ground

during the swing phase. This leads to a peak in the acceleration signal which can trigger the

transition to the loading response. In order to avoid such false transitions, the angle of the

foot in the sagittal plane has to exceed a certain threshold and in addition the velocity in the

horizontal level has to be limited:
(

|ȧI
f oot| > δȧ,T3

)

∧
(

ϕ f oot > δϕ,T3

)

∧
(

|vI
f oot,(x,y) | < δv,T3

)

.

T4: loading response→ foot flat

After the loading response the next phase is foot flat which begins when both front and rear

part of the foot touch the ground. This event is detected whenboth the gyroscopes and

accelerometers are indicating rest. The transition condition becomes

(χg,rest) ∧ (χa,rest).

T5: pre-swing→ foot flat

In the case when the subject lifts the heel and then puts it back on the ground a transition

is introduced. This event is detected when both the accelerometers and the gyroscopes are

indicating rest. Furthermore, to avoid a premature transition back to foot flat phase the

sagittal angle has to exceed a certain limit. The transitioncondition becomes
(

χa,rest
)

∧
(

χg,rest

)

∧
(

ϕ f oot > δϕ,T5

)

.

T6: swing→ foot flat

In certain gait patterns the loading response is not detected, as this transition is detected by

large peaks in the acceleration. If this is the case, a directtransition from swing to foot

flat is useful. This event is detected when both the accelerometers and the gyroscopes are

indicating rest. Further requirements are that the rotational velocity around theyB- axis
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and its derivative are approximately zero and that the sagittal angle is larger than a negative

threshold:
(

χa,rest
)

∧
(

χg,rest

)

∧
(

|ω̇B
meas,y| < δω̇,sw

)

∧
(

|ωB
meas,y| < δω,T6

)

∧
(

ϕ f oot > δϕ,T6

)

.

Table 5.1.: Parameters of the gait phase detection algorithm.

δω,x δω,y δω,z δω̇,x δω̇,y δω̇,z

0.2[rad/s] 0.2[rad/s] 0.2[rad/s] 0.05[rad/s2] 0.05[rad/s2] 0.05[rad/s2]

δa,x δa,y δa,z δȧ,x δȧ,y δȧ,z

1.5 [m/s2] 1.5 [m/s2] 1.5 [m/s2] 0.15[m/s3] 0.15 [m/s3] 0.15 [m/s2]

δϕ,T1 δȧ,T3 δϕ,T3 δv,T3 δϕ,T5 δω,T6 δω̇,T6 δϕ,T6

-2 [◦] 1.73 [m/s2] -2 [◦] 0.45 [m/s] -2 [◦] 0.1 [rad/s] 0.005 [rad/s2] -2 [◦]

5.5. Experimental Validation

5.5.1. Experimental Procedure

An experimental study was carried out in order to quantify the detection success ratio and its accuracy.

A group of five stroke patients with different gait pathologies were recruited. Despite their impairments

all patients were all able to walk on a treadmill with a parachute harness independently.

Subject information as hemiplegic side, gender and walkingspeed is given in Table 5.2. The walking

experiments were performed on a motorised treadmill from Woodway2. The treadmill speed can be man-

ually adjusted. Before committing the experiments described here, all the subjects had been familiarised

with the treadmill and were comfortable walking on it. All patients were for safety reasons walking

with a parachute harness. Before each measurement, the patients were standing still on the treadmill.

About five seconds after the measurement was started, the treadmill was accelerated up to normal walk-

ing speed for the subject and was kept constant throughout the experiment. The subjects were walking

continuously with a constant treadmill speed for at least three minutes.

5.5.2. Experimental Setup

The measurement system Parotec from the company Paromed Gmbh1 was applied for validation of the

GPD-IS algorithm. The technical specifications for this system are summarised in Chapter 3. For the

2www.woodway.com
1Paromed Medizintechnik GmbH, www.paromed.de
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Figure 5.4.: Parotec sole with 24 hydro-cells.

Parotec system a serial data transfer protocol is defined, allowing an online communication between a

PC and the Parotec control unit. The protocol allows start and stop of the measurement as well as online

reading of the pressure signals. The signals from the Parotec system were sampled at a frequency of 60

Hz whereas the inertial sensor signals were sampled at 500 Hz. On the PC side the signals were collected

and synchronised as they were read in through a M/S program. The signals from the differ-

ent measurement systems were read into a buffer as they were arriving by a separate process/thread and

then the M/S program collected the last entries by a fixed sample time. Dueto this sampling

strategy the Parotec pressure signals are time delayed by a value between 0 and 16.67 ms.

5.5.3. Gait Phase Detection Based on Insole Pressure Measur ement

Based on the foot insole pressure measurement an algorithm was developed to detect exactly the same

phases as the gait phase detection system with inertial sensors. The gait phases are still represented as

states in a state machine, and logical rules are governing the transitions between the states. The idea

behind this algorithm is to compare the inertial sensor gaitphase detection system with a traditional gait

Table 5.2.: Subject data.

Subject male/female walking speed hemiplegic side
S1 M 1.18 [km/h] left
S2 M 2.32 [km/h] right
S3 M 1.18 [km/h] right
S4 M 1.35 [km/h] left
S5 M 0.98 [km/h] right
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Table 5.3.: Parameters of the gait detection validation algorithm.

δr,1 [N/cm2] δr,2 [N/cm2] δr,3[N/cm2] δr,4[N/cm2] δr,5[N/cm2]
1.25 0.41 0.50 1.66 0.83

phase detection system based on foot switches. From the 24 hydro-cells three meta signals are defined

meta_heel = 1
4

∑n=4
n=1 P(n) (5.5)

meta_mid = 1
6

∑n=12
n=7 P(n) (5.6)

meta_tot = 1
24

∑n=24
n=1 P(n) (5.7)

whereP(n) is the pressure from hydro-cell numbern defined in Figure 5.4. Four transitions are defined

which correspond to the transitionT1..T4 of the algorithm described in Section 5.4. Since the transitions

T5 andT6 do not correspond to any gait events but are merely introduced to hinder that the gait phase

detection is dead locked, they are not used in this detectionalgorithm.

T1: foot flat→ pre-swing

The foot flat phase is lasting until the heel lifts off the ground. The transition is detected as

the sum of all sensors measuring pressure underneath the heel sink below a certain threshold:

meta_heel< δr,1.

T2: pre-swing→ swing

The transition from pre-swing to swing is occurring at the moment the toe lift off the ground.

For simplicity the transition condition is that themeta_tot is below a certain threshold:

meta_tot < δr,2.

T3: swing→ loading response

The swing phase is lasting until the heel is touching the ground. The condition for this

transition is that themeta_heel is exceeding a certain limit which will occur for a normal

heel strike at the point where the heel first hits the ground. For the case when the foot hits

the ground flat or the toe hits the ground first, another condition is introduced where the sum

of all cells signals are used. The condition becomes:

meta_heel> δr,3 ∨meta_tot > δr,4.

T4: loading response→ foot flat

This transition happens in the moment the foot is flat on the ground, and the condition for

this transition is that the signals of the cells underneath the middle of the foot (meta_mid)
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exceed a limit:

meta_mid> δr,5.

5.5.4. Event Validation Procedure

In order to assess the accuracy of the GPD-IS event detection, a comparison with the foot insole reference

system was performed. As the measured signals from both the inertial sensor system and from the foot

insole system were read into the computer simultaneously. No additional synchronisation of the data was

necessary. The gait phase detection considered here is an online procedure but the validation followed

afterwards with an offline processing of the recorded data.

Firstly, the errors of the detection were assessed. For the GPD-IS system different errors can occur

i.e. complete steps can be missed, transitions can occur to early or single transitions can be completely

missed. The following error types can be distinguished:

False heel off (transition T5 occurred): During continuous gait the transition from foot flat to pre-

swing and back to foot flat should normally not occur. This transition exist merely for the case where

the patients are slightly moving the foot but do not intend totake a step. Consequently, the transition

sequence from foot flat to pre-swing and back to foot flat is during walking with a constant speed on a

treadmill considered as a detection error. The false detection of heel off was easily found by counting the

number of transitions from pre-swing to foot flat.

No loading response (transition T6 occured):Another possible error of the GPD-IS is the direct tran-

sition from swing phase to foot flat phase, i.e. the detectionof heel strike fails and the transition directly

to foot flat is detected. In some types of pathological gait the foot is hitting the floor very softly and con-

sequently no heel strike is detected. For this reason the transition from swing phase to foot flat phase has

been introduced. This transition is considered as a fault because a missing heel strike detection would in

some cases lead to a prolonged stimulation in an FES-assisted gait system.

Early heel strike: Furthermore, for many patients with pathological gait, thefoot on the paretic side can

often touch the ground in the swing phase. Depending on the movement of the foot, this often leads to

a peak in the accelerometer signals, which in turn are used todetect the heel strike. In order to prevent

such a premature transition two rules have been applied as described in Section 5.4. Despite these rules

such transition can happen and is defined as an error.

In addition to the error assessment, the accuracy is also validated in terms of the time difference between

the detected events from the inertial sensor system and the one from the foot insole based detection.

The events detected from the foot insole measurements were used as reference, and the time difference

between the reference event and the GPD-IS event was found bysearching in a window of± 300 ms

around the time of the reference event. If the event did not occur in this window, it was classified as not
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Figure 5.5.: Upper graph shows the angular velocityωB
meas(thin lines) and the detected gyroscope rest

χg (bold line). The lower graph shows the accelerationaI
f oot(thin lines) and the detected

accelerometer restχa(bold line).

detected. For the events that were successfully detected, the mean difference and the standard deviation

of the timing error between the reference events and the GPD-IS events were calculated.

Since the measurements started with zero treadmill velocity, the first three steps were excluded from the

analysis.

5.6. Experimental Results

The gait detection system (GPD-IS) was able to detect all gait phases for all five subjects. In Figure

5.5 the measured angular velocity and acceleration are shown for the left side of subject S4. In the

same figure, the detection of gyroscope restχg and acceleration restχa are shown. As observed in the

figure, the detection of rest by use of the gyroscopes is more reliable than the detection based on the

accelerometers. Therefore the former does also play a more important role in the GPD-IS algorithm.

In Figure 5.6 the gait phases detected by the GPD-IS are shownfor one subject together with the gait

phases detected by the foot insole system.

In Table 5.4 the total number of steps, the number of strides in which the loading response phase were not

detected, the number of strides in which early heel strike occurs, the number of false heel off, the number
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Figure 5.6.: Gait phases detected by the inertial sensor (solid line), and with the Parotec system (dashed
line).

of late toe off detection and early foot flat detections are summarised for all patients. It can be observed,

that especially for subjects S3 and S5 the loading response detection fails for many steps. The reason for

this detection failure was that the peak in the jerk was not evident enough. The heel strike detection is

influenced by the magnitude of the threshold. This thresholdwas tuned with the consideration in mind

that if the threshold was to high the heel strike detection could be missed. On the other hand, a too low

threshold would lead to a premature detection.
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Table 5.4.: Number of steps and detection errors. The table summarises the total number of steps, number
of steps with no detection of loading response, early heel strike, false detection of heel off,
late toe off detection and early foot flat detection for all patients.

S1 S2 S3 S4 S5
left right left right left right left right left right

Total steps 187 187 127 127 57 57 146 146 141 141
No loading response 0 0 0 0 7 0 0 0 6 20
Early heel strike 0 0 0 0 0 0 0 0 0 2
False heel off 0 0 0 0 0 0 0 0 0 0
Late toe off 0 0 0 0 0 0 0 0 0 1
Early foot flat 0 0 0 0 0 0 0 0 1 0
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Figure 5.7.: Example of exclusion rules for gait phase detection: The upper graph shows the online

estimated velocity in the horizontal plane (solid line) wherein the grey areas indicate that no

transitions to loading response can happen. The middle graph shows the angleϕ f oot between

the foot and the ground in the sagittal level. The grey bars indicate the area in which the

angle excludes a transition to loading response. The lower graph shows the absolute value of

the jerk‖ȧI
f oot‖, the threshold for detection of loading response as well as the detected gait

phases that are equivalent to Figure 5.6. The grey bars in this graph are the union of the grey

bars of the two upper graphs.

In Figure 5.7 four steps are shown for the right side of subject S5. In the third stride shown in the figure

the loading response is not detected as the peak in the jerk did not exceed the threshold limit. The same
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figure illustrates that the rules based on the angle between foot and ground as well as on the velocity do

prevent a too early detection of heel strike. This is the casefor the second and the forth step shown in the

figure.

For subject S5 one instance of a transition from swing to footflat is detected to early i.e. in the middle

of the swing phase. As for the heel strike detection rules could have been implemented to prevent this

early swing to foot flat detection. This is not done for the reason that if heel strike is not detected and if

simultaneously the velocity calculation is drifting off and hindering the transition from swing to foot flat,

no transition to foot flat would happen and the gait detectionsystem would be locked in the swing phase.

For all the subjects there was no false detection of heel off observed. The heel off detection is highly

dependent on threshold parameters. Especially the threshold parameterδϕ,T1 for the angleϕ f oot is im-

portant in the heel off detection and a small increase of this parameter can lead to arelative large increase

in the time of detection. It must be pointed out that this parameter and all other parameters have been

kept constant for all experiments described in this chapteras well as those described in Chapter 6.

The detection of toe off appears to be quite robust; only for subject S5 toe offwas detected late with GPD-

IS comparted with the reference system. In order to make thistransition more robust, the maximum in

the angular velocity as well as in the angle were used in the rules to detect this transition. When using

only one of these criteria this transition would not have been detected in more steps. Unfortunately, as

the peak in angle and in angular velocity do not occur at the same moment, the usage of both criteria

leads to a larger variation of the detection time for this event.
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Figure 5.8.: The time differences for the event detection between GPD-IS and reference system are illus-

trated with circles. The solid lines show the mean differences. The data are taken from the

left side of patient S4.
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Table 5.5.: Time shift between the detected events of the GDP-IS and the reference system: The table
shows the time differences between the events detected by the GPD-IS and the reference
system. The number are given in milliseconds and as the percentage of the reference stride
duration.

Heel off Toe off Init. contact Full contact

S1 left
-5.7±1.6% -8.1± 2.7 % 4.4± 2.5% -3.2± 2.5%
-97.4± 27.4 ms -140.8± 49.3 ms 76.8± 44.1 ms -54.7± 43.8 ms

right
-2.2±3.4% -2.0± 1.6 % 10.1± 2.6% 6.3± 5.2%
-39.3± 60.8 ms -33.8± 27.3 ms 173.7± 44.3 ms 116.3± 95.8 ms

S2 left
-0.7±1.3% -3.5± 1.9 % 2.8± 1.3% 1.1± 3.0%
-9.0± 18.7 ms -48.5± 29.6 ms 37.3± 18.8 ms 15.0± 40.0 ms

right
-11.5±6.6% -2.2± 0.8 % 1.1± 3.3% -10.6± 3.1%
-152.0± 94.3 ms -29.6± 11.5 ms 14.3± 43.2 ms -143.7± 45.4 ms

S3 left
-6.1±2.8% -0.6± 0.7 % 9.9± 4.1% 7.3± 2.9%
-133.5± 58.5 ms -12.7± 15.4 ms 217.1± 82.2 ms 163.2± 67.2 ms

right
3.1±1.9% -1.5± 1.4 % 2.1± 1.0% -4.3± 1.9%
69.2± 41.5 ms -32.9± 31.8 ms 46.6± 22.3 ms -94.3± 40.5 ms

S4 left
-3.6±1.2% -3.3± 1.1 % 4.5± 2.5% -4.5± 1.6%
-55.4± 17.9 ms -51.2± 17.0 ms 70.2± 38.6 ms -70.5± 24.2 ms

right
-5.9±2.1% -2.1± 2.4 % 6.8± 1.3% -1.3± 1.9%
-91.9± 32.6 ms -32.6± 37.3 ms 106.9± 22.1 ms -19.5± 29.8 ms

S5 left
-2.9±3.9% -2.5± 1.9 % 8.6± 2.1% 10.2± 4.3%
-61.7± 85.1 ms -53.9± 39.3 ms 184.3± 45.9 ms 223.4± 104.0 ms

right
5.4±1.7% -3.3± 1.5 % 0.7± 2.6% -5.2± 2.8%
117.6± 38.0 ms -71.3± 33.4 ms 14.5± 56.0 ms -117.6± 60.2 ms

In Table 5.5, the mean value and the standard deviation of thetime difference between the detected events

from the GPD-IS and the reference system are summarised for all subjects. The difference are given as

the percentage of the gait cycle as well as in milliseconds. In Figure 5.8 the time differences between the

GPD-IS and the reference system are plotted as a function of the strides for all four events for the left

side of patient S4.

The numbers in Table 5.5 demonstrate that the heel off event takes place later for the GPD-IS than for

the reference system. This is the case for the majority of thepatients. In average this event is detected

60 ms to late whereas 95 % of the detected heel off events (all patients) happend in the interval [-270

150] ms in relation to the reference system. In percentage ofthe duration of one complete step, the heel

off detection on the right side of subject S2 follows the reference system as the worst case in average

with a delay of 11.5 %.

From Table 5.5 it can be seen that the toe off event is detected later for the GPD-IS as for the reference

system for all subjects. On average this event follows 62 ms too late and the 95 % confidence interval

is [-167 43] ms. Although the inertial sensor based detection of toe off occurred later than the reference
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system, the mean difference was relatively low for all subjects, and the largest deviation was found for

the right side of subject S1 with a mean shift of 8.1 % with respect to the gait cycle.

The initial contact event was for all subjects detected earlier for the GPD-IS than for the reference system.

The event takes on average place 91 ms before the reference system and 95 % of the events happend in

the interval [-74 256] ms. The intersubject variation of themean error was relatively large, for the right

side of subject S5 the mean error was 0.7 %, whereas the mean error for subject S1 was 10.1 % on the

right side as the worst case.

For the full contact event, intersubject variability of thedetection was larger than for the initial contact

and toe off events and similar to the heel off event detection.. The 95 % confidence interval for the time

shift of the full contact event was [-260 250] ms, thus a largevariation of this event is evident but on

average the difference was only 6 ms.

The standard deviations of the timing error between the GPD-IS and the reference system for the different

subjects were in the range from 1.3 % to 5.2 % in the worst case.

Table 5.6.: The duration of the estimated phases by the GPD-IS and from the reference system. The

values are given as percentage of the duration of the complete stride.

Pre-swing Swing Loading resp. Foot flat

GPD-IS Ref. GPD-IS Ref. GPD-IS Ref. GPD-IS Ref.

S1
left 16.8 % 14.3 % 24.7 % 37.4 % 10.0 % 2.4 % 48.5 % 45.9 %

right 20.5 % 20.9 % 23.3 % 35.3 % 13.6 % 10.0 % 42.5 % 33.8 %

S2
left 26.1 % 23.2 % 33.4 % 39.7 % 14.1 % 12.6 % 26.3 % 24.5 %

right 22.9 % 32.3 % 34.8 % 38.0 % 14.8 % 3.2 % 27.4 % 26.5 %

S3
left 22.9 % 28.0 % 26.5 % 38.3 % 9.2 % 5.0 % 41.3 % 28.8 %

right 13.2 % 8.6 % 29.3 % 33.1 % 8.4 % 2.0 % 49.2 % 56.3 %

S4
left 17.6 % 17.7 % 36.2 % 44.0 % 12.2 % 3.1 % 34.0 % 35.2 %

right 14.4 % 18.2 % 19.6 % 28.7 % 9.2 % 1.1 % 56.7 % 52.0 %

S5
left 13.8 % 14.1 % 31.1 % 42.2 % 8.4 % 10.5 % 46.7 % 33.2 %

right 13.8 % 4.8 % 35.1 % 38.4 % 6.5 % 1.7 % 44.7 % 55.1 %
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Table 5.7.: The duration of the stance and swing phases estimated by the GPD-IS and by the reference

system. The values are given as percentage of the duration ofthe complete stride.

Swing Stance

GPD-IS Ref. GPD-IS Ref.

S1
left 24.7± 2.8 % 37.4± 2.8 % 75.3± 2.8 % 62.6± 2.8 %

right 23.3± 2.4 % 35.3± 3.8 % 76.7± 2.4 % 64.7± 3.8 %

S2
left 33.4± 2.0 % 39.7± 1.8 % 66.6± 2.0 % 60.3± 1.8 %

right 34.8± 2.4 % 38.0± 3.2 % 65.2± 2.4 % 62.0± 3.2 %

S3
left 26.5± 6.2 % 38.3± 2.8 % 73.5± 6.2 % 61.7± 2.8 %

right 29.3± 1.8 % 33.1± 2.5 % 70.7± 1.8 % 66.9± 2.5 %

S4
left 36.2± 1.5 % 44.0± 3.2 % 63.8± 1.5 % 56.0± 3.2 %

right 19.6± 2.2 % 28.7± 1.9 % 80.4± 2.2 % 71.3± 1.9 %

S5
left 31.1± 3.7 % 42.2± 3.4 % 68.9± 3.7 % 57.8± 3.4 %

right 35.1± 5.5 % 38.4± 2.7 % 64.9± 5.5 % 61.6± 2.7 %

After the transition times of the events have been found, also the duration of the phases can be calculated.

This information is especially of interest in a gait monitoring system. More specific is the relationship

between the duration of the phases on the hemiplegic side compared with the duration on the non affected

side of interest. In Table 5.6, the normalised durations of all phases are summarised for the GPD-IS and

for the reference detection system. In addition, the durations of swing and stance phases are summarised

in Table 5.7. Here, the stance phase is the duration between heel strike and toe off which is equivalent

with the sum of the durations of the loading response, foot flat and pre-swing phases.
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Figure 5.9.: The duration of the phases normalised for one gait cycle for subject S4. The light grey bars

are from the GPD-IS and the dark bars are from the reference system.
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Figure 5.10.: The duration of swing and stance (loading response+ foot flat + pre-swing) phases nor-

malised on one gait cycle for subject S4. The light grey bars are from the GPD-IS and the

dark bars are from the reference system.

In Figure 5.9 the duration of the gait phases is illustrated for subject S4, and in Figure 5.10 the duration

of the swing and stance (loading response+foot flat+ pre-swing) phase is illustrated. It can be observed

that the duration of the stance phase is longer for the GPD-ISthan for the reference measurement and

consequently the opposite is the case for the swing phase. Moreover, the coherence for the pre-swing

phase is good for all patients.
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Figure 5.11.: Stance duration as percentage of the gait cycle: Left graph shows the stance duration as

percentage of the gait cycle from GPD-IS compared with that obtained from the reference

system. Right plot shows the stance duration from GPD-IS compared with that obtained

from the reference system in seconds. Grey markers indicatethe left side of the patient and

black markers indicate the right side of the patient.
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The duration of the stance phaseDS tGPD−IS measured with the GPD-IS was for all patients longer than

the stance durationDS tREF measured with the reference measurement system. An assumption was made

that there is a linear relation between the estimated durations of stance and swing phase from GPD-IS

and the durations measured with the reference system. A regression analysis was performed where a

good coherence between the mean duration of the stance phasemeasured with the reference system and

the one calculated from the GPD-IS was found. Figure 5.12 compares the actual stance durationDS tREF

with the measured stance durationDS tGPD−IS for both the normalised and the real value. The linear

relation was found to be:

DS tREF = 0.87 · DS tGPD−IS. (5.8)

The correlation factor was r=0.96 and the RMSE was 57 ms.

Table 5.8.: The symmetry indexesS IS tanceandS ISwing calculated from the GPD-IS and from the refer-

ence system.

S Istance S ISwing

GPD-IS Ref. GPD-IS Ref.

S1 -1.0 -1.8 3.0 3.0

S2 1.4 -1.3 -1.8 2.2

S3 1.8 -3.8 -4.7 7.5

S4 -11.5 -12.0 29.7 21.1

S5 2.4 -3.3 -5.8 4.9

From the duration of the phases an index of symmetry can be calculated by the following equation:

S I =
Xle f t − Xright

Xle f t + Xright
· 100 (5.9)

whereXle f t is the temporal variable, i.e the duration of the stance phase of swing phase. The index of

symmetry lies in the range from -100% to 100% with perfect symmetry being equivalent toS I = 0. In

Table 5.8 the symmetry indexesS IstanceandS Iswing are summarised for all subjects. Only for subject S4

a noticeable asymmetry can be observed and the indexes foundby the GPD-IS were in accordance with

the indexes found by the reference system. For the other patients only small values of symmetry indexes

could be observed.
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Figure 5.12.: Average stride durations: The figure illustrates the duration of a stride measured with the

GPD-IS in relation with that measured with the reference system.

Table 5.9.: Duration of the stride and its standard deviation calculated from heel off in one step to the

heel off in the next step measured with the GPD-IS and the reference measurement system.

RGCT LGCT

GPD-IS Ref. GPD-IS Ref.

S1 1.72± 0.11 s 1.73± 0.13 s 1.72± 0.09 s 1.72± 0.09 s

S2 1.35± 0.11 s 1.35± 0.10 s 1.35± 0.12 s 1.36± 0.11 s

S3 2.21± 0.11 s 2.20± 0.12 s 2.21± 0.11 s 2.21± 0.11 s

S4 1.56± 0.04 s 1.56± 0.04 s 1.56± 0.03 s 1.56± 0.03 s

S5 2.18± 0.24 s 2.17± 0.12 s 2.17± 0.15 s 2.17± 0.15 s

In Table 5.9 Gait Cycle Time (GCT) (stride durations) from GPD-IS is compared with the gait cycle time

obtained from the reference measurement. Also, Figure 5.12illustrates the good coherence. The RMSE

was 12 ms and the correlation coefficient was r=0.99.

5.7. Discussion and Conclusions

The main aim of this work was to develop an algorithm based on the inertial sensor for detection of gait

phases in which no extra tuning of parameters has to be applied for individual patients. Several simi-

lar algorithms have been developed by other research groupsbased on accelerometers and gyroscopes.

However, to the authors knowledge this system is the first onebased on a complete inertial sensor unit

(three accelerometers and three gyroscopes). It was shown for five hemiplegic subjects that the detection
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system worked robustly and that all gait phases were detected and no critical error occurred that could

have been critical if the stimulation had been triggered accordingly to the detected gait phases in an

FES-assisted gait training system.

In the literature several gait phase detection systems havebeen described and compared with reference

measurement systems. Due to different methods, measurements and subjects it is hard to compare our

results with those. In [101] gait phase detection based on accelerometers by use of machine learning

techniques was applied. The correlation with the gait phases based on force sensitive resistors were

almost perfect, but these were also used as a training signalfor the neural network and for this reason not

very suprising.

The finding that toe off detection is biased compared with the insole detection is inaccordance with the

results of Sabatini et al. [75] who found a bias of 35 ms on average for two healthy subjects. On the

contrary, Aminian et al. [2] found no significant difference. In contrast to this detection, offline methods

were applied to detect toe off. This difference indicates that the online detection of toe off introduces a

time delay. The fact that mean differences vary between 20 and 80 ms depending on the subject must

be ascribed to differences in the individual walking patterns of the patients.Furthermore, no systematic

correlation of the delay and the walking speed and the hemiplegic side could be seen.

The fact that the inertial sensor (accelerometer) can detect the heel strike event earlier than force sensors

is not in concordance with Williamson and Andrews [101] who found no difference making similar

comparisons. On the other side, [64] also found a mean delay of 90 ms of the heel strike event based

on force sensor compared with a video analysing system. Thisis not directly comparable but this also

indicates a real difference in the detection of heel strike.

Using a complete inertial sensor (3 gyroscopes and 3 accelerometers) for gait phase detection instead

of a simplified sensor with for instance only two accelerometers and one gyroscope can be considered

by many as not necessary. It must be pointed out that by using the complete inertial sensor several

advantages emerged. As an example, in [100] it was demonstrated that using only one accelerometer

lead to problems with a too early detection of heel strike forseveral patients. This has partially been

overcome by the algorithm described here by using the knowledge of the rotation, velocity and position

of the sensor. The question is whether the added sensors can be defended financially in a commercial

product

In the literature many systems for detecting gait phases based on machine learning techniques have been

proposed, implemented and successfully tested. The disadvantage of such systems is the time consuming

procedure of individually fitting the algorithm to each patient. The overall detection robustness and

accuracy might be better than that of a rule based detection systems for one specific patient when the

neural network has been trained. But the time consuming procedure cannot be defended in a clinical

setting where time is critical.
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Chapter 5. Gait Phase Detection

A gait event detection system is the key component for the automatic control for stimulation in an FES-

assisted gait training system. Furthermore, a gait detection system is an important component in an online

gait monitoring system, giving information about the symmetry, the relative relation between swing and

foot flat, as well as cadence and variance of the gait.
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6. Estimation of Movement Parameters

6.1. Summary

Aim: The work presented in this chapter describes methods for obtaining movement parameter estimates

based on an inertial sensor. Movement parameters considered here describe the gait on a stride to stride

basis. The movement parameters taken into account are the step length and foot clearance. Furthermore,

it was a goal to verify the accuracy of the calculated movement parameters with an exact reference mea-

surement system.

Methods: By means of the obtained orientation described in Chapter 4,the acceleration can be trans-

formed into a global coordinate system. The transformed acceleration can be integrated two times in a

global coordinate system in order to obtain the position of the sensor/foot. This integration is started at

the heel off event and is continued until the full contact event. Based onthe 3-dimensional trajectory of

the foot, the movement parameters step length and foot clearance are computed. The accuracy of the cal-

culation was improved by introducing start and stop constraints on the movement for the integration. For

validation purposes, reference measurements using an optical motion analysis system were performed

with five patients.

Results: In the comparison of the estimated movement parameters footclearance and step length with

the reference measurement system it could be shown that the mean errors for both of these values were

below 4 % for all subjects walking at least 50 steps on a treadmill. The variance of the estimation error

was also shown to be less than 4 % whereas the variance of the foot clearance error was in general higher

than the variance of the step length error.

Conclusions: The results have shown that foot movements and gait phases can be reconstructed from

an inertial sensor with an accuracy good enough to be used as feedback sensor in an FES-assisted gait

rehabilitation system as well as in a gait monitoring system.

Contribution: The author developed the methods, and implemented the experimental software. Further-

more, the author planned and ran the experiments. Parts of this work are published in [56].
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6.2. Motivation

Until now the timing of the stimulation in FES-assisted gaittraining has been synchronised with the

gait phases by foot switches, whereas the stimulation intensity has been pre-programmed or changed

online manually by the physiotherapist. As already shown inthe previous chapter, the inertial sensor

can similar to foot switches be applied to robustly detect gait phases. Furthermore, as described in this

chapter, more quantitative gait parameters like step length and foot clearance can be estimated. The

motivation to estimate these parameters is for gait performance monitoring as well as for online tuning

of the stimulation intensity which later will be described in Chapter 7. The algorithms described here

are not only expected to be relevant as feedback for automatic tuning but also to assess the quality of

gait with quantitative parameters. These can be used to observe the progression of a patient during the

rehabilitation. The advantages of the inertial sensors areobvious in contrast to a fully equipped opto-

kinetic motion analysis system, which is very expensive andis very time consuming to utilise.

Within this chapter methods for obtaining important movement parameters are described. An accurate

algorithm for estimating the movement parameters step length and foot clearance by taking start and stop

conditions for the movement into account is explained in Section 6.3. Furthermore, in Section 6.4 another

method for obtaining the movement parameters based on a reduced sensor with only two accelerometers

and one gyroscope is described. After this, in Section 6.5 anexperimental setup and a procedure for

making reference measurements with an optical motion analysis system are described. The results from

the comparison of the estimated movement parameters from the inertial sensor and from the reduced

sensor with the reference measurement system are given in Section 6.6. Finally, a summary is given in

Section 6.7.

6.3. Step Length and Foot Clearance

By use of the sensor orientation a three dimensional trajectory of the foot can be estimated through a

double integration of the acceleration in a global reference system as shown in Figure 6.1. In Figure 6.2

the structure for calculation of the movement parameters isshown. The first requirement for obtaining

a trajectory of the foot/sensor is to know the orientation of the sensor with regard toa global reference

system. The Kalman filter to obtain the orientation is described in Chapter 4. The orientation is in this

chapter described by the rotation matrixR. Since an endless integration of the acceleration would conse-

quently drift off, a new integration is performed for every step where the position and velocity are reset

to zero at the beginning of each step. The integration is started at the beginning of the pre swing phase at

the heel off event and is continued until the full contact event occurs asindicated in Figure 6.1. The start

time and stop time of integration for thekth step are indicated byTstart(k) andTstop(k) respectively, and

they were found by the algorithm described in Chapter 5. Due to not foreseeable errors in the integration,

the calculated trajectory is error-prone. To increase the accuracy of the estimation, known constraints of
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the movement are used to calculate an artificial biasγ for the acceleration measurement. By using the

biasγ, the trajectory estimation can be improved.

Foot clearance

H
ei

gh
t

Swing
response
LoadingPre swing

Toe offHeel off Heel strike

Full contact

Step length

3D trajectory

Walking direction

Figure 6.1.: To obtain a three dimensional trajectory of thefoot a double integration of the acceleration
is started at the heel off event and continued until the full contact event.
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aB
meas
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Acceleration
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measurement

detection
Gait phase
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SubtractionCoordinate

transformation

Kalman
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Integration
of acceleration
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Figure 6.2.: Block diagram of the three dimensional trajectory calculation.

6.3.1. Constraints

In order to improve the accuracy, constraints for the integration have been introduced based on the pre-

knowledge of the movement. In the foot flat phase the foot is almost at rest. The velocity of the sensor

can then be assumed to be zero relative to the treadmill band before heel off and after the full contact

events. These events also coincide with the start and stop ofthe integration respectively. Furthermore, by

the assumption that the patients are walking on horizontal surface, the position in the vertical direction
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is also zero at the beginning and at the end of the step. These constraints can be written as:

v(Tstart) = v(Tstop) = 0 (6.1)

sz(Tstart) = sz(Tstop) = 0 (6.2)

wherev(Tstart) is the velocity at the start andv(Tstop) is the velocity at end of the step respectively.

sz(Tstart) and sz(Tstop) are the vertical positions at the start and end of the step respectively. These

constraints would normally not be fulfilled by an integration of the acceleration due to measurements

errors, error in the orientation estimation, slowly varying biases and other unknown errors.

6.3.2. Algorithm

In order to fulfil the above given constraints an artificial bias on the acceleration measurement is intro-

duced giving the following measurement equation

aB
meas= aB + gB + γ (6.3)

whereaB
measis the measured acceleration,aB is the assumed true acceleration of the sensor,gB is the grav-

ity component andγ is the artificially introduced bias which will be calculatedby using the constraints.

The assumed true acceleration in the sensor coordinate system is transformed into the global coordinate

system (as defined in Section 4.4.6) by use of the estimated orientation of the sensor represented by the

rotation matrixR:

aI = RaB
meas− Rγ − gI . (6.4)

The gravity componentgI = [0 0 9.81]T m/s2 can easily be subtracted as it is constant in the global

coordinate system. The measured acceleration and angular velocity are sampled with the sampling time

h. The discrete measurements take place at sampling instantst = h · i and are denoted byaB
meas[i] and

ωB
meas[i]. Furthermore, the integration is replaced with a simple summation

∫ t1

0
f (t)dt ≈ h

N
∑

i=1

f [i] (6.5)

where the timet = h · i corresponds to the discrete sample indexi and whereN = t1/h. Equation (6.3)

can be integrated to find the velocityv̂[ j]. This is done by the summation

v̂[ j] = h
j

∑

i=1

(R[i]aB
meas[i] − gI ) − h

j
∑

i=1

R[i]γ. (6.6)

where j is the discrete sample index defined between 1 and N. The indexj = 1 corresponds to the contin-

uous time instantTstart andN =
Tstop−Tstart

h corresponds to the continuous time instantTstop. Furthermore,
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the position can be found by summation of the velocity

ŝ[ j] = h
j

∑

i=1

v̂[i] = h2
j

∑

i=1

















i
∑

l=1

(R[l]aB
meas[l] − gI ) −

i
∑

l=1

R[l]γ

















(6.7)

The velocity and position for which the artificial bias is notcompensated (γ = 0) are denoted asvb[ j]

andsb[ j] respectively

vb[ j] = h
j

∑

i=1

(R[i]aB
meas[i] − gI ) (6.8)

sb[ j] = h2
j

∑

i=1

















i
∑

l=1

(R[l]aB
meas[l] − gI )

















. (6.9)

From Equations (6.1) and (6.2) there are four constraints, three due to the velocity and one due to the

vertical position. The bias which consists of three elements cannot fulfil all constrains simultaneously.

The bias estimate ˆγ can be found by minimising sum of squared residuals

γ̂ = min
arg=γ

(

(v[N] − v̂[N])T (v[N] − v̂[N]) + (sz[N] − ŝz[N])2
)

. (6.10)

Using Equation (6.7), the following matrices are defined forj = N

K = h2
N

∑

i=1

i
∑

l=1

R[l] (6.11)

L = h
N

∑

i=1

R[i] (6.12)

where the matrixK can be subdivided in row vectors

K =



























k1

k2

k3



























. (6.13)

Now the condition for the bias can be written as















vb[N]

sb,z[N]















= Bγ (6.14)

with

B =















L

k3















. (6.15)
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The bias estimate is found by applying the standard least square method:

γ̂ = (BTB)−1BT















vb[N]

sb,z[N]















. (6.16)

After the bias estimate is calculated the acceleration can be summed up in order to obtain the velocity and

position by Equations (6.6) and (6.7) whereγ is replaced by its estimate. As the heading is not known as

closer explained in Chapter 4, the step length is calculatedfrom the position at the end of the step by

lstep{ŝ} =
√

ŝx[N]2 + ŝy[N]2. (6.17)

The foot clearance is defined as the maximum distance in the vertical direction:

f c{ŝ} = max (ŝz[ j]), j = 1...N. (6.18)

6.4. Movement Parameter Estimation - Sensor Reduction

With the assumption that the movement retains in the sagittal plane the movement parameters can be

estimated based on a reduced sensor. In this case only two accelerometers and one gyroscope are applied

for the calculation of the movement parameters. In the article by Sabatini et al. [75] algorithms for

estimating step length and foot clearance based on a simplified Inertial Motion Unit (IMU) consisting of

one gyroscope and two accelerometers are described. In thissection similar methods are used.

xB

Inertial sensor

zB

xI
ϕ

yI

zI

Figure 6.3.: Illustration of the sagittal angle of the footϕ. The angle between the sensorxB axis and the
global coordinate systemsxI andyI axes is denoted byϕ.

In this approach the global coordinate system is defined by the xI andzI axes whereasxI is pointing in

the treadmill walking direction andzI is pointing in the direction opposite the gravity. Movements in the

coronal and the frontal plane are ignored and the orientation of the foot is represented by the angleϕ (cf.
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Figure 6.3). The rotation of the foot can be expressed by the following rotation matrix:

R =















cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)















. (6.19)

The measured accelerationaB
meas= [aB

meas,x aB
meas,z]

T in the sensor body frame can in similarity to the full

sensor configuration be modelled as the sum of the true sensoraccelerationaB, the gravity component

gB and an artificial biasγ

aB
meas= aB + gB + γ, (6.20)

The measured acceleration can be transformed into the global coordinate system in order to obtain the

sensor/foot acceleration

aI
f oot = RaB

meas− gI − Rγ, (6.21)

wheregI = [0 9.81]T . The measured angular velocity around theyI -axis,ωB
y,meas, is used to estimate the

rotation of the foot represented by the angleϕ. Assumed that the foot is at rest during the foot flat phase,

the accelerometers measure solely the gravity. This means that the initial orientation of the foot before

a step can be estimated by calculation of the mean of the lastM samples before the heel of event which

starts the calculation of the 3D trajectory

ϕinit =
1
M

Tstart/h
∑

i=Tstart/h−M

tan−1













aB
meas,x[i]

aB
meas,z[i]













. (6.22)

HereTstart is the start time for the summation of the 3D trajectory. The foot angle can be computed

through a summation of the angular velocity from the start ofa step till the end of the step

ϕ[ j] = h
j

∑

i=1

ωB
y [i] + ϕinit (6.23)

Here it is assumed that the start of the stepTstart corresponds to the indexj = 1. It is assumed that the

angular velocity measurement is biased, that is

ωB
meas,y = ω

B
y + β, (6.24)

whereωB
y is the real angular velocity,ωB

meas,y is the measured angular velocity andβ is the bias. By the

assumption that the angleϕ returns to its initial value at the end of a step the followingconstraint on the

angle is defined

ϕ(Tstart) ≡ ϕ(Tstop) ≡ ϕinit . (6.25)

By summation of Equation (6.23) from the start of a step (i = 1) till the stop of a step (i = N) with
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N =
Tstop−Tstart

h it follows that

ϕ[N] = h
N

∑

i=1

ωB
y,meas[i] − h

N
∑

i=1

β + ϕinit = h
N

∑

i=1

ωB
y [i] + ϕinit . (6.26)

From the start and stop condition it is given that

h
N

∑

i=1

ωB
y [i] = 0. (6.27)

Now, β can be directly computed from (6.26) under the assumption that it is constant during a step

β =
1
N

N
∑

i=1

ωB
y.meas[i]. (6.28)

Whenβ is determined, the estimated angle can be found by summationof Equation (6.23) from (i = 1)

till ( i = N).

Similar to the previous section, it is possible to use start and stop constraints to improve the accuracy of

the velocity and position estimate:

v(Tstart) ≡ v(Tstop) ≡ 0 (6.29)

sz(Tstart) ≡ sz(Tstop) ≡ 0. (6.30)

The two dimensional velocity and position can be found by summation and double summation of the

acceleration respectively:

vb[ j] = h
j

∑

i=1

(R[i]aB
meas[i] − gI ) (6.31)

sb[ j] = h2
j

∑

i=1

















i
∑

l=1

(R[l]aB
meas[l] − gI )

















. (6.32)

The following matrices are defined:

K ≡ h2
N

∑

i=1

i
∑

l=1

R[l] (6.33)

L ≡ h
N

∑

i=1

R[i], (6.34)
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where the matricesK andL can be divided in row vectors

L =






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





l1
l2


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


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




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







(6.35)

Now the bias can be found by

γ =












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−1 
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
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



, (6.36)

where the condition, that the horizontal velocity at the start and end are zero and that the vertical position

at the start and end is the zero, has been used. Here, the velocity in the z direction is not used in the

constraints as for the full sensor. This could also have beensolved similar as for the full sensor, by using

the least squares method. The validation showed that the above implementation gave the best results.

In contrast to the full sensor, no Kalman filter is used to estimate the orientation of the sensor. The

Kalman filter is also not active during the step for the full sensor. It is only implemented in order to

estimate slowly varying biases. In this regard the two methods for estimating movement parameters for

full and reduced sensors are comparable.

6.5. Validation of the Estimated Movement Parameters

Five patients with different gait pathologies were recruited for a clinical study.All patients were walking

on a treadmill with parachute harness. Two inertial sensorswere mounted with brackets on the left and

the right foot. One marker of the LUKOtronic AS 202 motion analysis system was placed on the inertial

sensor, as seen in Figure 6.6, such that the markers were visible from behind the patients. The patients

were walking at their individual normal speed. In Table 6.1 the following subject information are listed:

walking speed, gender and lesion/disability. The LUKOtronic measurement system consists of2 marker

Table 6.1.: Subject data.

Subject Male/female Walking speed Hemiplegic side
S1 F 1.51 [km/h] left
S2 M 1.95 [km/h] right
S3 M 1.46 [km/h] left
S4 M 1.28 [km/h] right
S5 M 1.40 [km/h] right

chains, each having 5 markers. The markers were attached to the inertial sensor, the ankle joint, the knee

joint, the hip joint and to the pelvis. In this chapter, only the marker attached to the inertial sensor was

used in the analysis. The experiment started when the patients were standing at rest on the treadmill. The

data acquisition from the inertial sensors and the LUKOtronic measurement system was performed from
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two separate computers and the measurements were started separately but simultaneously in order to be

able to synchronise the measurements later. During the experiments reported here the optical motion

analysis system was sampled with a frequency of 100 Hz and theinertial sensor system was sampled at

a frequency of 500 Hz.

Reference measurement

The LUKOtronic camera system was placed 2-4 meters behind the patients and the system was aligned

with an inclinometer so that the LUKOtronicxL axis was pointing in the patients walking direction. The

zL axis was pointing in the direction opposite to the gravity and theyL axis was orthogonal to the other two

axes forming a right handed coordinate system. By this arrangement thezI axis of the global coordinate

and thezL axis of the LUKOtronic coordinate system coincide. The signals from the two measurement

systems were synchronised by manually looking at the peaks of the position in thezdirection.
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Figure 6.4.: Position measurement by the LUCOtronic motionanalysis system. The left graph shows the

x position measurement with the optical motion analysis system, the right graph shows the

same position time transformed.

The exact speed of the treadmillvtm was calculated from thex position of the reference measurement

during the foot flat phase. This was done by using least squares method applied to the following equation

pL,x = vtm · t. (6.37)

pL,x is the measuredx position in the all the foot flat phases. The referencex position was time trans-

formed in order to be able to calculated the step length

ptL,x = pL,x + vtm · t (6.38)
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whereptL,x is the transformedxposition of the marker,pL,x is the measuredxposition,vtm is the treadmill

velocity andt is the time.

In the left plot of Figure 6.4 the measuredx position pL,x is shown. The vertical bars indicate the start

and stop of a step. These are identical to the gait events heeloff and full contact detected by the gait

phase detection system based on the inertial sensor. The incline of the strait lines between the stop and

start of the step indicate the treadmill speed. In the right plot in Figure 6.4 thex position ptL,x after the

time transformation is shown. After the time transformation the incline of the line between stop and start

is zero. The step length is calculated as the difference in the position at the start of the step and at the

stop of the step from the time transformed position:

lREF
step = ptL,x(Tstop) − ptL,x(Tstart). (6.39)
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Figure 6.5.: Referencezposition measurement.

An example of the reference position measurement in thez direction is shown to the left in Figure 6.5

where the start and stop of steps are indicated by vertical lines. The position at start is used to transform

the position to the level of the inertial sensor.

ptL,z(t) = pL,z(t) − pL,z(Tstart). (6.40)

The transformed positionptL,z is shown to the right in Figure 6.5 and the maximum value of thetrans-

formed signal is used to calculate the reference foot clearance:

f REF
c = max{ptL,z(t)}, t ∈ [Tstart Tstop]. (6.41)
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Estimation of the marker position from the inertial sensor

As the motion analysis system marker was placed outside the housing of the inertial sensor, the measured

position differs from the estimated position by the inertial sensor whichis located inside the sensor

housing. In order to compare the estimated position of the sensor with the reference motion analysis

system the position of the marker was calculated from the estimated position of the sensor using the

assumption that the marker was exactly placed on the sensor’s xB axis as indicated in Figure 6.6.

xB

zB

Lx,side

LUCOtronic marker

yB

xI
yI

zI

Figure 6.6.: LUKOtronic marker in relation to the inertial sensor. The marker is placed at a distance

Lx,side from centre of the sensor coordinate system.

The estimated position of the LUKOtronic marker by the full inertial sensor is calculated by the following

relation

sm = ŝ+ R
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(6.42)

whereŝ is the estimated position of the full inertial sensor,sm is the estimated position of the marker,

R is the rotation matrix representing the orientation of the full inertial sensor andLx,side is the distance

between the centre of the sensor coordinate system and the marker. The lengthsLx,le f t andLx,right were

measured with a ruler and their values are given in Table 6.2.The lengths differ because the accelerom-

eters and gyroscopes were not mounted exactly in the centre of the housing. For the reduced sensor,

similar estimates for the marker position can be easily obtained.

Table 6.2.: The distance between the centre of the sensor coordinate system and the LUKOtronic marker.

Lx,right [cm] Lx,le f t [cm]

2.5 4.1
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6.6. Results

The mean errorEINS
sl between the measured step length and the estimated step length based on the inertial

sensors is calculated as follows:

EINS
sl =

1
Nsteps

Nstep
∑

k=1

(

l INS
step[k] − lREF

step[k]
)

(6.43)

whereNsteps is the number of steps. The standard deviationσINS
sl of the same error is computed as

follows:

σINS
sl =

√

√

√

1
Nsteps

Nsteps
∑

i=1

(

l INS
step[k] − lREF

step[k] − EINS
sl

)2
(6.44)

The mean errorEINS
f c and the standard deviationσINS

f c of the error of the foot clearance are defined similar

as for the step length.
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Table 6.3.: The mean error of the step lengthEINS
sl and the foot clearanceEINS

f c with respect to the refer-

ence system. The error is given in centimetre and in percentage of the total step length/foot

clearance measured with the reference system.

Subject Steps Side Move Par. Mean V. [cm] Mean V. Ref. [cm] Mean Error [cm] Std. Error [cm]

S1 50

right
lstep 54.61 54.70 -0.09 (-0.17 %) 0.48 (0.87 %)

fc 15.65 13.55 2.10 (15.48 %) 0.19 (1.23 %)

left
lstep 53.61 54.43 -0.82 (-1.51 %) 0.96 (1.77 %)

fc 8.52 7.35 1.16 (15.82 %) 0.31 (4.17 %)

S2 111

right
lstep 78.26 77.61 0.65 (0.83 %) 0.46 (0.59 %)

fc 14.79 15.03 -0.24 (-1.60 %) 0.29 (1.94 %)

left
lstep 77.77 77.58 0.19 (0.25 %) 0.74 (0.95 %)

fc 16.96 17.44 -0.48 (-2.73 %) 0.24 (1.35 %)

S3 100

right
lstep 65.29 67.83 -2.54 (-3.75 %) 1.79 (2.74 %)

fc 18.48 17.90 0.58 (3.22 %) 0.56 (3.04 %)

left
lstep 67.88 67.72 0.15 (0.23 %) 0.98 (1.45 %)

fc 8.11 8.72 -0.61 (-7.00 %) 0.25 (2.92 %)

S4 65

right
lstep 72.72 73.64 -0.92 (-1.25 %) 0.65 (0.89 %)

fc 9.79 9.54 0.25 (2.67 %) 0.34 (3.50 %)

left
lstep 72.99 73.31 -0.32 (-0.43 %) 0.55 (0.75 %)

fc 9.12 9.34 -0.21 (-2.30 %) 0.27 (2.89 %)

S5 54

right
lstep 77.05 76.87 0.18 (0.23 %) 1.14 (1.48 %)

fc 13.16 13.66 -0.50 (-3.68 %) 0.28 (2.10 %)

left
lstep 78.43 76.78 1.65 (2.14 %) 3.19 (4.15 %)

fc 14.44 15.10 -0.67 (-4.40 %) 0.17 (1.14 %)
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Figure 6.7.: The upper graph shows the estimated and measured position in the walking direction, the

lower graph shows the estimated and measured position in vertical direction.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

5 10 15 20 25 30
0

0.05

0.1

0.15

Fo
ot

C
le

ar
an

ce
[m

]

Steps

Steps

S
te

p
le

ng
th

[m
]

Reference step length lREF
step (black bars) and estimated step length l INS

step (grey bars)

Reference foot clearance f cREF (black bars) and estimated foot clearance f cINS (grey bars)

Figure 6.8.: Example of movement parameter estimation for the full inertial sensor with integration con-
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estimated step length and the lower graph shows the estimated foot clearance.
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In Table 6.3 the mean value of the movement parameters measured with the reference system and the

mean value of the estimated movement parameters are summarised for five patients. Furthermore, the

mean errorEINS
f c of the foot clearance estimate as well as the standard deviation σINS

f c of the error are

listed. This table shows the results for the full inertial sensor whereas the bias in the acceleration mea-

surement was estimated via integrations constraints. In Figure 6.7 an example of the estimated position

trajectory is shown and in Figure 6.8 the estimated foot clearance and step length are illustrated as bar

plots for the subject S4.

The comparison with the reference system shows that the steplength can be estimated with a high

accuracy when using the artificial bias in the calculation. For all subjects the mean errorEINS
sl was less

than 4%. The mean errors of the foot clearanceEINS
f c were generally larger than that of the step length.

Table 6.4.: The mean error in step lengthEnobias
sl and foot clearanceEnobias

f c and the standard deviation

of the error for the full inertial sensor without the artificial bias calculation with respect to

the reference system. The error is given in centimetre and inpercentage of the total step

length/foot clearance measured with the reference system.

Subjects Step Sides Move Par. Mean V. [cm] Mean V. Ref. [cm] Mean Error [cm] Std. Error [cm]

S1 50

right
lstep 55.11 54.70 0.40 (0.74 %) 0.68 (1.24 %)

fc 13.50 13.55 -0.05 (-0.40 %) 0.18 (1.34 %)

left
lstep 55.12 54.43 0.69 (1.27 %) 2.56 (4.70 %)

fc 8.17 7.35 0.81 (11.07 %) 0.40 (5.48 %)

S2 111

right
lstep 80.43 77.61 2.81 (3.62 %) 1.48 (1.84 %)

fc 11.84 15.03 -3.19 (-21.20 %) 0.56 (4.73 %)

left
lstep 78.98 77.58 1.40 (1.81 %) 2.14 (2.76 %)

fc 16.01 17.44 -1.43 (-8.18 %) 0.63 (3.59 %)

S3 100

right
lstep 70.74 67.83 2.90 (4.28 %) 1.18 (1.67 %)

fc 14.78 17.90 -3.12 (-17.43 %) 0.27 (1.84 %)

left
lstep 65.47 67.72 -2.26 (-3.33 %) 3.47 (5.13 %)

fc 7.84 8.72 -0.88 (-10.09 %) 0.25 (2.91 %)

S4 65

right
lstep 76.48 73.64 2.84 (3.85 %) 3.26 (4.26 %)

fc 7.99 9.54 -1.54 (-16.18 %) 0.53 (6.58 %)

left
lstep 68.33 73.31 -4.98 (-6.79 %) 1.80 (2.46 %)

fc 9.22 9.34 -0.11 (-1.21 %) 0.22 (2.36 %)

S5 54

right
lstep 73.44 76.87 -3.42 (-4.45 %) 3.48 (4.74 %)

fc 10.62 13.66 -3.04 (-22.26 %) 0.39 (3.69 %)

left
lstep 77.24 76.78 0.46 (0.60 %) 2.33 (3.03 %)

fc 14.14 15.10 -0.97 (-6.41 %) 0.27 (1.79 %)

In Table 6.4 the results from the calculation of the step length and foot clearance without the artificial
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bias estimate are summarised. The mean value of movement parameters measured with the reference

system and estimated from the inertial sensor are listed. Furthermore, for all patients the mean error of

the foot clearanceEnobias
f c and the step lengthEnobias

sl are summarised together with the standard deviation

of the errorsσnobias
sl andσnobias

f c .

Considering the accuracy of the estimated movement parameters omitting the start and stop constraints,

the accuracy deteriorate. The intersubject variation of the mean error varies more when the artificial bias

calculation is included.

Table 6.5.: The mean error in step lengthEred
sl and foot clearanceEred

f c and the standard deviation of

the error for the reduced sensor with respect to the reference system. The error is given in

centimetre and in percentage of the total step length/foot clearance respectively measured

with the reference system.

Subjects Step Sides Move Par. Mean V. [cm] Mean V. Ref. [cm] Mean Error [cm] Std. Error [cm]

S1 50

right
lstep 52.10 54.73 -2.63 (-4.80 %) 0.90 (1.72 %)

fc 15.86 13.55 2.31 (17.04 %) 0.29 (1.85 %)

left
lstep 50.65 54.52 -3.87 (-7.09 %) 0.82 (1.51 %)

fc 7.90 7.37 0.53 (7.15 %) 0.31 (4.24 %)

S2 111

right
lstep 74.55 77.61 -3.07 (-3.95 %) 1.10 (1.48 %)

fc 14.69 15.03 -0.34 (-2.27 %) 0.40 (2.73 %)

left
lstep 73.76 77.58 -3.82 (-4.92 %) 1.08 (1.40 %)

fc 16.74 17.44 -0.70 (-4.04 %) 0.47 (2.71 %)

S3 100

right
lstep 59.59 67.82 -8.23 (-12.13 %) 1.50 (2.52 %)

fc 16.21 17.89 -1.69 (-9.43 %) 0.52 (3.23 %)

left
lstep 59.55 67.72 -8.17 (-12.06 %) 1.37 (2.03 %)

fc 8.35 8.75 -0.40 (-4.59 %) 0.21 (2.39 %)

S4 65

right
lstep 67.22 73.69 -6.46 (-8.77 %) 2.46 (3.67 %)

fc 8.95 9.54 -0.59 (-6.20 %) 0.90 (10.09 %)

left
lstep 66.73 73.34 -6.61 (-9.01 %) 1.42 (1.93 %)

fc 9.00 9.35 -0.34 (-3.67 %) 0.22 (2.33 %)

S5 54

right
lstep 65.55 76.78 -11.23 (-14.63 %) 2.61 (3.98 %)

fc 12.94 13.66 -0.72 (-5.24 %) 0.51 (3.92 %)

left
lstep 66.97 76.67 -9.69 (-12.64 %) 3.63 (4.73 %)

fc 12.71 15.08 -2.38 (-15.76 %) 0.61 (4.06 %)

Furthermore, in Table 6.5 the mean error of the estimated step lengthEred
sl and foot clearanceEred

f c as

well as the corresponding standard deviationsσred
sl andσred

f c of the error are summarised for the reduced

sensor. In the calculation, the movement constraints were taken into account.

The data summarised in the Tables 6.3, 6.4 and 6.5 were obtained from a series of consecutive strides.
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The recording started when the patients stood still on the treadmill. After the recording was started, the

treadmill was accelerated up to a constant speed. As the transformation of the reference measurement was

done under the assumption of a constant treadmill speed, themovement parameters were not correctly

measured during the acceleration period. As a consequence,the data from the 3 first steps were excluded

from the calculation of the mean error and standard deviation of the error.

Table 6.6.: The mean error and its standard deviation of the foot clearance and step length calculated for

all patients.
l INS
step lnobias

step lred
step f INS

c f nobias
c f red

c

Mean error 0.02 [cm] -0.34 [cm] 5.80 [cm] 0.02 [cm] 1.59 [cm] 0.50 [cm]

St. deviation 2.10 [%] 4.81 [%] 4.55 [%] 6.23 [%] 10.22 [%] 8.81 [%]

In Table 6.6 for all steps over all subjects and steps the meanerror and its standard deviation are sum-

marised for all three methods and movement parameters. The estimate based on full inertial sensor is

performing at best when taking movement constraints into account. There is basically no bias in the

estimate of the movement parameters.

As seen from the previous results, the calculation of the step length with the reduced sensor model yields

biased estimates. To investigate the correlation between the measured reference movement parameter and

the estimated movement parameters, a regression analysis was performed where the coherence between

the mean value of the reference system and the one calculatedfrom the inertial sensor system was found

for all three methods. The linear relationship can be expressed as:

lREF
step = a · l INS

step (6.45)

In Table 6.7 the linear factora, the coefficient of correlationr and the root mean square error are sum-

marised. In the left graph of Figure 6.9 the calculated mean step lengthl INS
step is plotted against the

measured mean reference step lengthlREF
step. In the right graph the mean foot clearancef INS

c is plotted

against the mean reference foot clearancef REF
c . Furthermore, the same plots for foot clearance and step

length calculated without the artificial bias and with the reduced sensor are given in the Figures 6.10 and

6.11.

Table 6.7.: Summary of the linear regression analysis for the movement parameters.

l INS
step lnobias

step lred
step f INS

c f nobias
c f red

c

a 1.00 1.00 1.10 0.99 1.12 1.03

r 0.99 0.95 0.94 0.97 0.94 0.94

RMSE 1.00 [cm] 2.62 [cm] 2.85 [cm] 0.86 [cm] 1.26 [cm] 1.18 [cm]
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Figure 6.9.: Regression analysis for the full inertial sensor taking movement constraints into account.

The left graph shows the correspondence between the reference step lengthlREF
step and the cal-

culated step length calculationl INS
step. The right graph shows the correspondence between the

reference foot clearancef REF
c and the calculated foot clearancef INS

c . The black markings

indicate left side and the grey markings indicate right side.
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Figure 6.10.: Regression analysis for the full inertial sensor not taking movement constraints into ac-

count. The left graph shows the correspondence between the reference step lengthlREF
step and

the calculated step length calculationlnobias
step . The right graph shows the correspondence

between the reference foot clearancef REF
c and the calculated foot clearancef nobias

c . The

black markings indicate left side and the grey markings indicate right side.
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Figure 6.11.: Regression analysis for the reduced inertialsensor taking movement constraints into ac-

count. The left graph shows the correspondence between the reference step lengthlREF
step and

the calculated step length calculationlred
step. The right graph shows the correspondence be-

tween the reference foot clearancef REF
c and the calculated foot clearancef red

c . The black

markings indicate left side and the grey markings indicate right side.

6.7. Discussion and Conclusions

The feasibility of using an inertial sensor to calculate step length and foot clearance was demonstrated

for five subjects with different gait pathologies. All subjects participated in the FES -assisted gait training

described in the next chapter. In the calculation of the footposition, there are several sources of errors. It

was demonstrated that the use of initial and end conditions of the movement could considerably improve

the accuracy of the movement parameter estimates.

The sources of error in the movement parameter calculation are many. An error in the orientation esti-

mation will of course lead to an error in the acceleration by its transformation into the global coordinate

system. Furthermore, the foot is in reality never completely at rest during the foot flat phase as the foot

is always continuing rolling forward. In addition, as the weight is shifted from one side to the other the

shoes are slightly deformed. In Figure 6.5 it can be observedthat the inertial sensor is moving as much

as 0.5 cm in the vertical direction during the foot flat phase.Due to this movement, the exact moment for

the start of integration is impossible to find and the reference movement parameter would also be more

sensitive to the start point of integration. As a consequence of this the position estimate in the vertical

direction is associated with more error than the position estimate in the horizontal direction.

The correlation analyses showed that the mean value of the movement parameter for the reduced model

was lower than the reference value. This can be explained by the fact that the movement is not entirely
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in the sagittal plane. Usually the foot is also rotated around the vertical axis. This implies that the

acceleration in the sagittal plane in reality is larger thanmeasured with the reduced inertial sensor.

It was shown that a full inertial sensor is superior to a reduced sensor. Furthermore, the known movement

constraints can be employed to estimate biases in the acceleration measurement. Taking these biases

into account during the double integration of the acceleration significantly improves the accuracy of the

position estimate of the inertial sensor.

In conclusion, the current study indicates that foot movements and gait phases can be reconstructed

from an inertial sensor with an accuracy good enough to be used as feedback sensor in FES-aided gait

rehabilitation system as well as in an analysis tool.
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7. FES-Assisted Gait Training by means of

Inertial Sensors

7.1. Summary

Aim: The first aim was to develop an experimental laboratory system for FES-assisted gait training

based on the gait phases detection algorithm described in Chapter 5. The second goal was to investigate

methods for automatic feedback control of certain muscle groups in FES-assisted gait training. More-

over, an aim was to verify the feedback control methods in simulation as well as experimentally.

Methods: A test bed for FES-assisted gait training was developed. Thesystem consists of an inertial

sensor system, a standard laptop and an 8 channel stimulatorunit. The gait phase detection system de-

scribed in Chapter 5 was implemented and runs on-line on a laptop using the Linux operating system.

The detection of gait phases forms a basis for the stimulation pattern generator i.e. the synchronisation

of the stimulation with the gait cycle. Through a M/S interface, a simple adjustment of

the stimulation parameters can be performed. In addition, acontrol strategy for automatic tuning of the

stimulation intensity on a stride to stride basis was developed. The feedback control strategy depends

upon derived information from the inertial sensor i.e. the maximum sagittal angle before heel strike or

the maximum height during the swing phase (foot clearance).A mathematical model was developed

in order to validate the proposed controller structure in simulations. The proposed FES-assisted gait

training system based on inertial sensors was tested on 12 hemiplegic subjects and the feedback control

strategy was validated with one patient.

Results: The stimulation scheme worked robustly for all the possiblevariation of stimulation channels

and stimulation patterns tested on the 12 patients. For two patients who were walking at a low speed, the

heel off event were detected too early as a result of fidgety foot during the foot flat phase. This was the

only critical problem that occurred. For all the patients the maximum number of stimulation channels

used were two. Furthermore, in simulation it was shown that the stimulation of tibialis anterior could

influence the maximum sagittal angle of the foot before hitting the floor. The maximum angle was con-

trolled by adjusting the stimulation intensity on a step to step basis. In simulations it was also shown

that the stimulation of the hamstrings could influence the maximum foot height during the swing phase
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such that it could be controlled on a stride to stride basis. In experiments with one hemiplegic subject,

the feasibility of controlling the maximum sagittal angle was demonstrated.

Conclusions: The proposed scheme has also the potential to be applied in a non-clinical setting for

patients permanently using foot drop stimulators. It can beconcluded that the inertial sensor can be

successfully applied as single sensor in an FES-assisted gait training system.

Contribution: The author developed the methods and implemented the experimental software. Fur-

thermore, the author planned and ran the experiments. Partsof this work are published in [58] and in

[59].

7.2. Motivation

Upper motor neurone lesion (UMNL) can result from stroke, spinal cord injury, multiple sclerosis, cere-

bral palsy or head injury. Each patient suffering from stroke has his/her own unique mixture of deficits.

Typically, the muscles responsible for extention of the leg, the calf and quadriceps are spastic and the

muscles responsible for flexion, the anterior tibialis and hamstrings are weak and in some cases inactive.

An important feature of UMNL is that the peripheral nerves are still intact, making it possible to activate

the muscles through the use of functional electrical stimulation. For patients with gait deficits FES can

be applied to support and enhance the gait.

Liberson et al. [43] was the first, who used electrical stimulation to elicit the withdrawal reflex during

the swing phase of the gait in order to initiate the gait and toprevent foot drop. Since then many systems

have been commercialised. Most of these systems are using foot switches attached to the heel and/or to

the metatarsal head to trigger the stimulation when no forceis applied on the sensors. In this chapter

we will investigate the possible use of an inertial sensor for control in FES-assisted gait rehabilitation of

stroke patients.

In the previous two chapters it was shown how an inertial sensor was applied to obtain gait phases as

well as temporal and spatial parameters of the gait. The motivation for obtaining these values is for

one reason to directly apply them in the rehabilitation of stroke patients by FES-assisted gait. The gait

phases can directly be used to synchronise the stimulation with the walking cadence. More interesting

is the exploitation of the additional information the inertial sensor delivers compared to other sensors

such as the trajectory of the foot during the swing phase and the from it derived values as foot clearance,

step length and maximum sagittal angle during the swing phase. The ultimate goal would be an FES-

assisted gait training system which automatically finds theoptimal stimulation sequence and for which

the stimulation intensity is adapted in such a way that the patients are walking as if they were healthy. On

the way there, small steps have to be taken to investigate thefeasibility of such system. It was shown in

the last chapter, that the gait detection system could successfully applied to detect gait phases for different
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patients without the need to tune parameters. Veltink et al.[96] introduced the idea to control the gait

on the basis of movement parameters on the level of walking cycle, e.g. the desired dorsiflexion angle

before foot landing and foot clearance during mid-swing. The authors proposed a strategy for controlling

the sagittal foot orientation just before landing, and proved the concept in simulation. For each new step,

stimulation intensity parameters were determined in advance from the measured movement parameters

using an inverse model of the relationship between stimulation and movement parameters. In this chapter

a similar principle is applied, and a control strategy for the control of the maximum sagittal angle of the

foot and the foot clearance is proposed.

In Section 7.3 the laboratory setup is presented and in Section 7.4 the pattern generator is explained. Fur-

thermore, in Section 7.5 an initial clinical study using theFES-assisted gait training system is described.

In Section 7.6 a strategy for automatic tuning of the stimulation intensity is proposed. A mathematical

model for the free-swinging leg is developed in Section 7.7 and the control concept is demonstrated in

simulations in Section 7.8. In Section 7.9 the feasibility of the control concept is experimentally verified

on one stroke patient. Finally, a summary is given in Section7.10.

7.3. Experimental Set-up

A prototype FES-assisted gait training system for treadmill walking has been developed. An inertial

sensor system is used as sensory input, namely the RehaWatchsystem consisting of two miniature Iner-

tial Measurement Units (IMU) and a Digital Signal Processing (DSP) unit which is described closer in

Chapter 3. The main computing unit of the laboratory setup isa standard laptop with the Linux operating

system. The signals from the inertial sensor system are readinto the laptop through an USB interface

with a frequency of 500 Hz. The stimulator RehaStim is connected through an USB-interface and is con-

trolled by a special protocol called ScienceMode (see Chapter 3 for a detailed explanation). A galvanic

isolation is provided by the stimulator. The stimulator is activated through the external Multi Channel

List Mode. This means that the main stimulation frequency iscontrolled by the PC software. The main

frequency of the PC program is 60 Hz, whereas the output stimulation frequency can be chosen to be 20

Hz, 30 Hz or 60 Hz depending if pulse is sent every sampling instance, every second or every third. An

illustration of the system is given in Figure 7.1.

For straightforward testing of new stimulation strategiesa M/S user interface was developed

where new stimulation patterns can be easily realised. The algorithms described in the following sections

have been implemented in C++.
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Figure 7.1.: The muscles and nerves stimulated in FES-assisted gait training: (a) peroneal nerve, (b)
quadriceps, (c) hamstrings, (d) gluteus maximus and (e) tibialis anterior.

7.4. Stimulation Pattern Generator

An overview of the laboratory data processing software is depicted in Figure 7.2. The gait phase detection

runs with the same frequency as the data are read in (typically 500 Hz). All the calculated data such as

the orientation and the gait phases for each time instant arebuffered. As soon as one complete step is

detected i.e. at the full contact event, the algorithm described in Chapter 6 for obtaining the movement

parameters is performed. In addition, temporal parameterslike the durations of the different phases are

determined. The mean value of the durations are calculated over the last three steps.

The main pattern generator is running at a frequency of 60 Hz.This frequency is generated by the real

time clock of the PC. The temporal and spatial information aswell as the current gait phase from the

gait phase detector are re-sampled to 60 Hz and used as inputsto the pattern generator. The stimulation

pattern, e.g. start and stop times for the stimulation, is related to one of the gait events and to the

cadence. As a finer division of the stimulation timing is advantageous, the stance and swing phases have

been divided into four parts and the pre-swing phase is divided into two parts. By this division, the gait

cycle is divided into 11 parts. Since the cadence was online estimated, the start and stop times of the

stimulation could be set to one of these division. The pulse width is ramped up during three pulses to a

decided pulse width value and likewise ramped down in three pulses after the stop time is reached. The

decided stimulation intensity i.e. the pulse width can either be manually controlled via a potentiometer1

1http://www.griffintechnology.com/products/powermate/
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or as later explained in Section 7.6 by a step to step discrete-time controller.
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Figure 7.2.: Overview of the gait pattern generator.

In Figure 7.3 a typical complex stimulation pattern is shown. The peroneal nerve stimulation is trig-

gered by the detection of pre-swing and lasts until the loading response. Hamstrings stimulation is also

triggered by the detection of pre-swing phase but is turned off earlier as the peroneal nerve stimulation.

Furthermore, quadriceps can either be stimulated in the swing phase in order to improve the knee exten-

tion or in the stance phase to improve the stability. The gluteus maximus can in some cases be stimulated

during the stance phase in order to stabilise the hip.

Another possible stimulation configuration is the stimulation of the peroneal nerve in combination with

the tibialis anterior whereas the latter is stimulated up tothe end of the swing phases. Peroneal nerve

stimulation takes place at a frequency of 60 Hz while musclesare stimulated at 30 Hz.

7.5. Clinical validation of Inertial Sensor Triggered FES-As sisted Gait

The purpose of the experimental clinical pilot study described in this chapter was to measure the instant

performance and benefits of FES-assisted gait by means of inertial sensors. Although the performance of

the GDP-IS has been extensively validated and analysed in the previous chapter, the application of GDP-

IS in FES-assisted gait training is here to be validated. Theclinical validation with patients took place at

the St. Mauritius Therapieklinik in Meerbush, Germany. Twelve patients with unique pathological gait

were recruited to participate in this study. Out of the 12 subjects, 11 were sub-acute stroke patients and
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Figure 7.3.: A typical stimulation pattern for FES-assisted gait training. Stimulation periods are indicated
by grey areas.

one had Parkinson’s disease. The inclusion criteria were that the subjects were able to walk independently

on a treadmill with or without parachute harness. The purpose of the FES was to influence the gait

pattern instantly in order to improve the quality of the gait. Most of the patients were attending gait

training sessions every day in the rehabilitation clinic. Before attending the FES-assisted gait training,

the subjects were informed of the purpose of the study and gave their informed consent to participate.

The patients were all walking on the treadmill with parachute harness for safety reasons, and the gait

was evaluated by physiotherapists who chose appropriate channels for stimulation. In Table 7.1 the

gait deficits and the stimulated muscles are summarised. Thestimulation sites were determined via

stimulation before the therapy. While the patient was sitting on a chair or standing in an upright position,

the electrode positions were found by trial and error until the best possible response to the stimulation

was found.
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Table 7.1.: Stimulation channels and the ranges in which themuscles were stimulated. The phases cor-

respond to the definition in Figure 7.3.

Subject S1 S2 S3 S4 S5 S6

Channel 1 Hamstrings Quadriceps Peroneal nerve Gastrocnemius Tibalis ant. Quadriceps

Range 2 - 312 4 - 11
2 11

4 - 31
4 11

2 - 3 11
2 - 31

2 1 - 2

Channel 2 Tib. ant. Quad.

Range 212 - 1 31
2 - 11

2

Subject S7 S8 S9 S10 S11 S12

Channel 1 Gluteus max. Tibialis ant. Quadriceps Gastrocnemius Tibialis ant. Tibialis ant.

Range 3.12 - 11
2 21

2 -4 3 - 4 11
2 - 31

2 2 - 1 2 - 33
4

Channel 2 Quadriceps Tibialis ant.

Range 312 - 11
2 2 - 33

4

Table 7.2.: Walking speed of the patients.

Subject S1 S2 S3 S4 S5 S6

1.25 [km/h] 0.96 [km/h] 1.26 [km/h] 2.36 [km/h] 0.97 [km/h] 1.40 [km/h]

Subject S7 S8 S9 S10 S11 S12

1.18 [km/h] 1.49 [km/h] 0.88 [km/h] 1.63 [km/h] 1.28 [km/h] 1.41 [km/h]

7.5.1. Comments on the Usability of the FES-Assisted Gait Tr aining.

In general the prototype FES-assisted gait training systemwas working good i.e. the stimulation timing

worked as desired. The mounting on and off of the sensor system to the patients took maximum three

minutes for a trained person which can be considered as very fast compared to foot insole measurement

systems. The only problem regarding the sensor mounting wasexperienced with patients who walked

with the foot pointing outwards such that the inertial sensor was touching the ground and falling of

the bracket. Moreover, a few problems with the gait phase detection system occurred with two stroke

patients who were walking slowly (subjects S5 and S9 (cf. Table 7.2)). During the foot flat phase the feet

were unsettled such that the transition to pre-swing sometimes caused a too early onset of the stimulation

(typically for peroneal nerve and tibialis anterior stimulation).
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Figure 7.4.: Knee- and hip-joint angle trajectories for Subject S1. In the two upper graphs the mean value

of the knee trajectories from 10 consecutive strides recorded with the LUKOtronic motion

analysis system are shown (solid line). The grey area indicates the 95 % confidence interval.

On the left side the values are shown for trajectories when noFES is applied whereas on the

right side the mean value and standard deviation are shown when FES is applied. The two

lower graphs show the mean value and standard deviation fromhip trajectories for the same

strides as for the knee angle.

Generally speaking, positive effects on the gait pattern due to the electrical stimulation were foremost ob-

served when the stimulation was applied in the swing phase. Atypical example of such is the stimulation

of the peroneal nerve or the muscle tibialis anterior in the swing phase to prevent the drop foot. When

stimulation was applied in the stance phase, like stimulation of gluteus maximus in order to improve the

stability of the patients, no direct effect of the stimulation could usually be observed from the temporal

and spatial parameters calculated from the inertial sensorsystem. This does not mean that the FES had

no impact, but an instant change could not be measured. A reason may be that the patients were always

walking on the treadmill with the same constant speed with and without FES. If the patients had walked

on a normal floor rather than on a treadmill, an instant improvement would be expected in form of an
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Figure 7.5.: Sagittal angle of foot for Subject S1. In the left graph the mean value (solid line) and the 95
% confidence interval (grey area) of the sagittal angle from 10 consecutive steps are plotted
when no stimulation is applied. In the right graph the mean value (solid line) and the 95 %
confidence interval (grey area) of the sagittal angle from 10consecutive steps are plotted for
trajectories when stimulation was applied to the hamstringmuscle group.

increase in speed. For patient S2 an exception from this rulewas found as temporal variables changed

when stimulation was applied. This is explained in detail later in this chapter.

As observed from Table 7.1 only one channel and at most two channels were applied in order to improve

the walking pattern although eight channels were availablealltogether. The reason for not choosing more

channels had different reasons. For the patients having a drop foot syndrome,only one channel was

chosen. The two patients presented more closely later in this section both had one specific gait deficit

related to one muscle (patient S1) or the walking pattern could simply be improved by stimulating one

muscle group (patient S2). In a clinical setting where stroke patients are receiving FES to improve the

walking pattern, the time is limited. For each channel whichis added, time is needed to find appropriate

stimulation sites as well as appropriate start and stop times for the stimulation.

From the 12 patients taking part in the FES-assisted gait training, two patients are more closely presented

here. In addition to the measurement with the inertial sensor system, knee and hip joint angles were

captured by use of the LUKOtronic AS 202 motion analysis system and foot pressure was collected with

the Parotec insole measurement system.

Case study subject S1:

Subject S1 was suffering from stroke and was affected on the right side. He could not walk without

walking aid or holding on to something. The main problem for the patient was the inability to control

the shank at the end of the swing phase. The knee was already inthe middle of the swing phase fully

extended and was uncontrolled hitting the ground when reaching the initial contact event. The patient

was walking with his normal walking speed. In order to improve the gait pattern the hamstring muscle

group was stimulated. The onset for the stimulation was at heel-off and offset was set to 50 % of the
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swing phase. The subject was participating daily in treadmill training and the session reported here took

place instead of regular treadmill training without FES. Markers were fixed at pelvic, hip, knee ankle

and at the inertial sensor to measure the position at these points with the LUKOtronic AS 202 motion

analysis system.

A comparison of the hip and knee joint trajectories with and without FES is presented in Figure 7.4.

The figure shows the mean value and the 95 % confidence intervalfor hip and ankle trajectories for 10

sequential steps. The upper graphs show the knee angle whereas the lower graphs show the hip angle

for the same strides. To the left are the trajectories shown when no FES is applied while the plots to the

right have been recorded as FES was applied. From angle recordings the excessive motion of the shank

can again be seen as oscillation in the knee joint. During thewalking, the knee joint was extended with a

high velocity without any damping. After reaching the full extention the shank bounced back leading to

unwanted knee flexion at the end of the swing phase. By applying stimulation to the hamstring muscle

group the movement of the shank is damped and the oscillations at the knee joint are almost completely

vanished.
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Figure 7.6.: Maximum sagittal angle and foot clearance for Subject S1. The upper graph shows the
maximum sagittal foot angles on the affected side (black line) and on the non-affected side
(grey line) measured with the inertial sensors. The middle graph shows the foot clearance
on the affected side (black line) and on the non-affected side (grey line). The lower graph
shows the applied pulse width.

In Figure 7.5 the sagittal angle of the foot with respect to the ground estimated from the inertial sensor

is plotted. In the left graph the sagittal angle of the foot isplotted for the case when no stimulation was

applied, whereas in the right hand graph the stimulation to the hamstring muscle group was applied. In

Figure 7.6 the maximum foot angle for both the affected side as well as for the non-affected side are
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shown. It can be observed that the maximum angle was reduced when the stimulation intensity was

increased. In addition, on the non-affected side the stimulation has the effect that the maximum sagittal

foot angle was reduced. At first glance these figures might indicate that the stimulation degrades the

walking pattern as the maximum sagittal angle was reduced. The maximum sagittal angle of the foot

was achieved in the moment when the knee was hyperextended. As the stimulation prevented this hyper-

extension, the maximum foot angle was also reduced. The footangle at heel strike with and without

stimulation was small and more or less identical. This couldhave been improved by stimulating the

tibialis anterior. From the figure it can also be observed that the foot clearance was not affected by

the hamstring stimulation. Temporal parameters like the symmetry of the gait were not affected by

stimulation. There were no significant difference of the symmetry indexes calculated with stimulation

and without stimulation.

Case study subject S2:

Subject S2 was suffering from stroke and was affected on the right side. He could not walk independently

without using a walking aid or holding on to something. He could however walk independently using

parachute harness on the treadmill. The main problem for thepatient occurred in the stance phase as the

quadriceps was to weak to bear the body weight. This resultedin knee flexion during the stance phase

making it hard for the patient to initiate the next step. In order to improve the gait pattern the quadriceps

muscle group was stimulated. The stimulation was switched on by the heel strike event and was turned

off as soon as the foot flat phase was finished by the heel off event. The subject was participating in daily

treadmill training and the session reported here took placeinstead of regular treadmill training without

FES. The positions of pelvic, hip, knee ankle and inertial sensor were recorded with the LUKOtronic

AS 202 motion analysis system in one session and with the Parotec foot insole measurementsystem in

another session.
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Figure 7.7.: Knee- and hip-joint angle trajectories for Subject S2. In the upper two graphs the mean

value (solid line) and the 95 % confidence interval of the kneeangle for 10 consecutive

strides recorded with the LUKOtronic motion analysis system are shown for subject S2. On

the left side the mean value (solid line) and the 95 % confidence interval (grey area) are

shown when no FES is applied. On the right side the values are shown for strides when FES

is applied. The two lower graphs show the mean value (solid line) of the hip trajectories for

the same strides as for the knee angle.

In Figure 7.7 the comparison of angle trajectories with and without FES is shown for subject S2. In the

figure the mean value of angle trajectories and the 95 % confidence interval are shown for steps without

stimulation and with stimulation applied to the quadricepsmuscle group. When the subject is walking

on the treadmill and no stimulation is applied it can be observed that the knee joint is flexed during the

stance phase. When applying stimulation the improvement isapparent. The knee angle is fully extended

during the stance which can be seen from the small confidence interval in upper right graph compared

with the upper left graph. The same trend can also be observedon the hip trajectories as the confidence

interval becomes smaller indicating that the step to step variation decreases.
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Figure 7.8.: Foot pressure measurements for patient S2. Thegraphs show the mean pressure underneath

the foot (thick solid line) and the 95 % confidence interval for ten consecutive strides. To

the left measurement is shown when no stimulation is appliedwhereas in the right graph

stimulation is applied.

Table 7.3.: Temporal information of the gait for subject S2.The table shows the mean values when no
FES is applied in the first row and the mean values when FES is applied in the second row.

Percentage stance [%] Stride duration [sec.]S Istance S Iswing

no FES 0.60 2.14 -4.47 9.17
with FES 0.64 2.30 -1.95 3.70

In Figure 7.8 the results from the measurement with the Parotec foot insole measurement system are

presented. In the figure the average pressure for the pressure sensors underneat the foot is plotted. To the

left the pressure is plotted when no stimulation was appliedwhereas for the right plot the stimulation was

applied to the quadriceps muscle group. From the figure it canbe observed that when applying FES the

characteristic of the mean pressure becomes more similar toa pattern of a healthy person. A typical peak

in the loading response phase as well as in the terminal stance can be seen, whereas without stimulation

only one peak in the middle of the stance phase is seen.

Furthermore, it can also be observed that the duration of thestance phase increased when stimulation was

applied which indicates that the patient with stimulation trusted his weak side and got a more symmetric

gait. In Table 7.3 the mean temporal variables are summarised for subject S2. In the table the percentage

of stance, the stride duration and the symmetry indexesS IstanceandS Iswing are summarised. The values

in the table confirm the observation from the pressure measurement. The duration of the stance phase

and also the total duration of the strides increased when stimulation was applied. The increased duration

of the stance phase does also influence the symmetry indexes which both are improved due to the stim-

ulation. It must be noted that the step to step variation of the values are quite large but the mean values

indicate a positive trend.
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7.6. Feedback Control of Movement Parameters in FES-Assisted Gait

7.6.1. Motivation

Surface and implantable systems have been developed with some algorithms featuring control which have

been tested in laboratory environments for small patient groups. However, the most drop foot systems to

date are open loop. These systems require active participation from the user for adjustment of stimulation

parameters during initial set-up and in daily use. Furthermore, all previous feedback controlled drop foot

orthoses have been using extensive sensory inputs such as goniometers for measuring knee, hip and ankle

joints. Application of goniometers is unrealistic outsidea laboratory environment as a time consuming

procedure for mounting and calibrating the sensors are required before taking the sensors into use. The

inertial sensors offer an alternative to other sensors used in drop foot systems and in the application of

FES-assisted gait training as inertial sensors are easily mountable and can, as already shown in previous

chapter, be used to synchronise the stimulation with the gait cycle. In this section we propose a strategy

for feedback control for use in drop foot stimulators and in FES-assisted gait training based on inertial

sensors which allow an assessment of certain gait and movement parameters.

7.6.2. Control Concept

As already shown in Chapter 6, inertial sensors deliver after a completed step estimated movement pa-

rameters such as maximum height of the foot during the swing phase, length of the step and the maximum

sagittal angle between the foot and the ground during swing phase. The idea is that each of these move-

ment parameters can be influenced by stimulation of one muscle group. The stimulation timing of the

muscles is still synchronised to the gait phases as already described and the stimulation intensity profile

i.e. the pulse width is kept constant during one stride. After a completed step, movement parameters

are evaluated and the pulse width is changed for the next stepin order to achieve a target value of the

movement parameter. This can be done automatically by letting a controller do the task of choosing a

new stimulation intensity. Since the update of the stimulation intensity is applied on a step to step basis

which of nature is discrete. Such a discrete controller is designed in the next section.

In Figure 7.9 two pairs of a movement parameter and a stimulation channel are illustrated for which

the feedback control is closer examined. The first movement parameter evaluated is the foot clearance,

which can be influenced by stimulation of the hamstring muscle group. The stimulation is triggered by

the heel off event and continues until the middle of the swing phases. Thenext movement parameter

evaluated here is the maximum sagittal angle during the swing phases. The stimulation of the tibialis

anterior can influence this movement parameter.
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Figure 7.9.: Freely swinging leg with electrical stimulation.

7.6.3. Control Design

Let us assume a discrete-time control system where the sampling instants are the heel strike events of the

stimulated leg. The control signals are the amplitudes (intensity) of predefined stimulation profiles and

outputs are the movement parameters influenced by the stimulation. At the samplingk the stimulation

intensity for the next step must be determined based on the measured value of the movement parameter

from the previous step. Note that there is a time delay of one step between stimulation intensity update

and the effect on the movement parameter. Under the assumption of independent pairs of stimulation

channels and movement parameters the problems simplifies from a MIMO control problem to a set of

SISO control problems. The relationship between the applied unsaturated stimulation profile amplitude

u(k) of one stimulation channel and the movement parametery(k) can be assumed to be a linear time-

discrete pulse transfer function

y(k) = bq−1u(k) + d(k) (7.1)

whereq−1 is the backward operator (q−1u(k) = u(k − 1)). The plant gainb is dependent upon the

electrode placement, the timing of the stimulation and possibly also the speed of the patient.d(k) is an

output disturbance comprising all external disturbances as well as voluntarily muscle movements.

Based on the the simple plant model (Eq. 7.1), a pole placement controller may be designed [3]. In

Figure 7.10 the block structure of the closed-loop system with movement parameter controller is shown.
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v(k) u(k) y(k)r(k)

1− R(q−1)

−S(q−1)

T(q−1)

d(k)

bq−1

Figure 7.10.: Block structure of the closed-loop system.

The controller is given through

u(k) = sat
(

T(q−1)r(k) − S(q−1)y(k) + (1− R(q−1))u(k)
)

(7.2)

wherer(k) is the desired movement parameter (reference). Here,R(q−1) andS(q−1) are fixed polynomials

with the following structure:

R(q−1) = 1+ r1q−1 + ... + rnrq−nr (7.3)

S(q−1) = s0 + s1q−1 + ... + snsq−ns. (7.4)

The prefilterT(q−1) is also a polynomial. The controller contains an internal model of the control signal

saturation:

u(k) = sat(v(k)) =



























u v(k) < u

v(k) u ≤ v(k) ≤ u

u v(k) > u

(7.5)

The lower boundu represents the lower pulse width required to produce a measurable influence on the

movement parameter. The upper boundu is either technically caused by the stimulator device or it is

the maximum pulse width the patient can tolerate due to pain.To compensate for constant disturbances

and model errors integral action in the controller is required. This is done by choosing the polynominal

R(q−1) as follows:

R(q−1) = (1− q−1)R(q−1). (7.6)

(7.7)
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With this control design, the closed-loop system becomes

y(k) = Hr (q
−1)r(k) + Hd(q−1)d(k) =

bq−1T(q−1)

Acl(q−1)
r(k) +

(1− q−1)R(q−1)

Acl(q−1)
d(k) (7.8)

where the closed-loop characteristic polynomialAcl(q−1) is given as

Acl = (1− q−1)R̄(q−1) + S(q−1)bq−1 (7.9)

The polynomialsR(q−1) andS(q−1) are determined by the pole-placement method in which a desired

closed-loop characteristic polynomial is specified by thisequation

Acl(q
−1) = Ao(q−1)Ac(q

−1) (7.10)

whereAo(q−1) andAc(q−1) are polynomials of first order. The reason for splitting theclosed-loop polyno-

mial into two parts is to give the controller different properties for reference tracking and for disturbance

rejection. A second order closed-loop polynomial was chosen in order to obtain a proper controller of

minimal order. By solving the Diophantine Equation (7.9) the following solution is given

R(q−1) = 1 (7.11)

S(q−1) =
acl1 + 1

b
+

acl2

b
q−1 (7.12)

The second step of the controller design is to choose the polynomial T(q−1). The aim is to obtain a

transfer function

Hr (q
−1) =

bq−1T(q−1)

Ac(q−1)Ao(q−1)
≡

q−1Ac(1)

Ac(q−1)
(7.13)

from the reference to the movement parameter which is of firstorder and has unit gain. This is done

by cancelling the observer polynomialAo(q−1) in the transfer function This is done by choosing the

following pre-filterT(q−1)

T(q−1) =
Ac(1)Ao(q−1)

b
. (7.14)

The tuning of the controller is specified by the closed-loop poles, i.e. the roots ofAo(q−1) andAc(q−1)

which can be specified through the time constants of equivalent continuous time systems of 1st order:

Ao(q−1) = 1− exp(−1/no)q−1 (7.15)

Ac(q
−1) = 1− exp(−1/nc)q

−1. (7.16)

Hereno andnc are the time constants given in strides. Table 7.4 shows the rules for how the closed-loop

system can be tuned. The gainb was in this work found through an identification procedure. As the gain

remain fairly constant during the experiments, the parameter b was identified offline before the control

experiments. Naturally, the parameterb could also be identified on-line in an adaptive control scheme.

The controller does comprise an anti-reset windup through the internal input saturation model.
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Table 7.4.: Controller tuning.
Rise time Reference tracking Disturbance rejection Noise sensitivity
n0 ↑ - worse better
n0 ↓ - better worse
nc ↑ slower worse better
nc ↓ faster better worse

7.7. Simplified Model of a Free Swinging Leg

In this section a mathematical model of the free swinging legis developed in order to verify the proposed

control concept in simulations.

The swinging leg is considered as a planar triple pendulum with the hip joint as a fixed hanging point.

The pendulum consists of three segments: thigh, shank and foot. Furthermore, it is assumed that the

mass of each segment is concentrated in a point mass at its centre of mass. The centre of mass, the

moment of inertia about the centre of mass and the length of each segment are assumed to be constant

during the movement of the leg. All joints are assumed to be hinge joints. Ground reaction forces do not

occur since only the swing phase is considered.

7.7.1. Equation of Motion

The equation of motion can be derived from Lagrangian formulation, which is based on energy relations.

The Lagrange’s equations in the 2nd form for a system ofn generalised coordinatesqi is defined by

d
dt

(

∂L
∂q̇i

)

−
∂L
∂qi
= Qi i = 1..n (7.17)

whereQi are externally applied moments e.g. caused by muscle force or passive joint properties, andL is

the Lagrangian function which is the difference between the total kinetic energyT and the total potential

energyU of the system

L = T − U. (7.18)

The simplified model of the swinging leg has three generalised coordinates (n = 3). These are the hip

joint angleq1 = ϕH, the knee joint angleq2 = ϕK and the ankle joint angleq3 = ϕA which are defined in

Figure 7.11. The total potential energy of the system is the sum of the potential energy of all segments:

U = mTghT (ϕH) +mSghS(ϕK , ϕH) +mAghA(ϕK , ϕH, ϕA). (7.19)

The first term represents the potential energy of the thigh, the second term represents the potential energy

of the shank and the third term represents the potential energy of the foot. In the equationg is the

gravitational constant, and the following masses and heights are defined:
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Figure 7.11.: Model of a freely swinging leg.

mT - mass of thigh

mS - mass of shank

mA - mass of foot

hT - height of the centre of mass of thigh

hS - height of the centre of mass of shank

hA - height of the centre of mass of foot

The heights (hT ,hS,hA) of the centres of masses are functions of the knee, hip and ankle joint angles and

are derived in the the following way:

hT (ϕH) =l leg − lT H cos(ϕH) (7.20)

hS(ϕH , ϕS) =l leg − lT cos(ϕH) − lS Kcos(ϕH + ϕK) (7.21)

hA(ϕH , ϕS, ϕA) =l leg − lT cos(ϕH) − lS cos(ϕH + ϕK) − lFA sin(ϕH + ϕK − ϕA) (7.22)

The lengths which are used are defined as:
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l leg - length of the whole leg

lT H - length from the centre of mass of thigh to the hip joint

lT - length of thigh

lS K - length from the centre of mass of shank to the knee joint

lS - length of shank

lFA - length from the centre of mass of foot to the ankle joint

The total kinetic energy of the system is the sum of the kinetic energies of all segments

T =
1
2

(I1 +mT l2T H)ϕ̇2
H +

1
2

I2(ϕ̇H + ϕ̇K)2 +

1
2

(v2x,S + v
2
y,S)mS +

1
2

I3(ϕ̇H + ϕ̇K − ϕ̇A)2 +
1
2

(v2x,A + v
2
y,A)mA (7.23)

where the first term is the kinetic energy of the thigh, the second term represents the rotational energy of

the shank about its centre of mass. The translational energyof the shank is given in the third term. The

fourth and fifth term represent the rotational and translational energy of the foot segment respectively.

The termsvx,A andvy,A describe the translational velocity of the foot segment in horizontal and vertical

direction. The following moments of inertia and velocitiesare used:

I1 - moment of inertia about the centre of mass of thigh

I2 - moment of inertia about the centre of mass of shank

I3 - moment of inertia about the centre of mass of foot

vx,S - horizontal velocity of the centre of mass of shank

vy,S - vertical velocity of the centre of mass of shank

vx,A - horizontal velocity of the centre of mass of foot

vy,A - vertical velocity of the centre of mass of foot

By applying the Lagrangian formulation, the general equation of motion for three degrees of freedom

can be described as follows:
[

M (q)
]

q̈ = C(q, q̇) +G(q) +Q(q, q̇) (7.24)

with

q = [ϕH ϕK ϕA]T - vector of angles

M (q) - 3x3 inertia matrix

C(q, q̇) - 3x1 vector of Coriolis and centrifugal terms

G(q) - 3x1 vector of gravitational terms

Q(q, q̇) - 3x1 vector of external applied moments

The components of the matrices and vectors in the model are given in Appendix A.

124



Chapter 7. FES-Assisted Gait Training by means of Inertial Sensors

7.7.2. Passive Moments

The total momentQ(q, q̇) at the joints is the sum of active, passive elastic and passive viscous moments.

The passive elastic moment is modelled as a double exponential function of the joint angles, whereas the

passive viscous joint moment is modelled as a linear dampingfunction. These moments are caused by

passive properties of muscles, bones, ligaments etc. and they are assigned to the joint. The viscous joint

moment is defined by

M vis(q̇) = −Bq̇, B =



























bH 0 0

0 bK 0

0 0 bA



























(7.25)

whereB is the positive definite damping matrix. These passive elastic joint moments can be expressed

by double exponential functions as described by Riener and Fuhr [69].

Mela = [Mela,H Mela,K Mela,A]T (7.26)

with

Mela,H = exp(2.108+ 0.9167ϕK + 1.117ϕH) − exp(−2.178− 4.011ϕK − 7.729ϕH) − 15.24 (7.27)

Mela,K = exp(1.037+ 0.2292ϕA + 2.830ϕK + 1.432ϕH)−

exp(−1.156− 0.1146ϕA − 1.455ϕK − 0.1719ϕH) + exp(2.500+ 14.32ϕK) + 1.0 (7.28)

Mela,A = exp(2.0111− 4.7727ϕA − 0.0090ϕK) − exp(−9.925+ 12.2155ϕA) − 2.97. (7.29)

7.7.3. Muscle Models

Nine muscles and muscle groups have been taken into account in the model (cf. Figure 7.11). The mus-

cle models used in this paper are based on the models presented by Riener and Fuhr [69]. The muscle

models are far too complex for use in control design, but theycapture important physiological effects and

are suitable to evaluate new control strategies in simulations before carrying out real experiments with

subjects. The muscle models can be divided into activation and contraction dynamics. Each muscle or

muscle group possesses its own activation and contraction dynamics. Activation dynamics are computed

considering the effect of spatial and temporal summation by a nonlinear recruitment curve, a nonlinear

activation frequency relationship, and a linear second order calcium dynamics with time delay. Con-

traction dynamics describe the active moment developed by asingle muscle or muscle group, and are

calculated from its nonlinear moment arm and the muscle force, which is a function of maximum iso-

metric muscle force, muscle activation, force-length and force-velocity relation. The muscles described

in the model are listed in Figure 7.11.
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7.7.4. Reflex Model

The electrical stimulation of the mono-articular hip flexors via surface electrodes is hardly realisable as

the hip flexor muscles are located deeply within the body. However, the flexion withdrawal reflex can

be elicited in order to initiate a step by FES. The withdrawalreflex is causing a flexion in the hip and

knee joints as well as an ankle dorsiflexion. The stimulationfrequency has to be higher than for surface

muscle stimulation and frequencies in the range 50 to 60 Hz are normally used.

Here a new approach of modelling the flexion withdrawal reflexis proposed. Parts of the muscle models

from [69] can be used for describing the physiological behaviour of the flexion withdrawal reflex in an

adequate way. A number of assumptions regarding the physiological behaviour of the flexion withdrawal

reflex and the stimulation conditions are applied:

• Stimulation of the common peroneal nerve results in the contraction of the hip flexors and rectus

femoris which causes a hip flexion, and in a contraction of thehamstrings (caput longum), biceps

femoris (caput breve) and gastrocnemicus which is causing aknee flexion.

• Contraction dynamics, calcium dynamics and muscle fatigueare equal to normal muscle stimula-

tion.

• The time delay of reflex activation is higher than the one of direct muscle activation because the

afferent neural signal is transmitted first to the spinal cord and then the motor signal is transmitted

from the spinal cord to the muscles which is a longer distancethan at direct muscle activation.

• The activation caused by reflex stimulation is different for each muscle. Therefore, the reflex

activation of each muscle is weighted by a constant.

• Mono-articular muscles like biceps femoris (short head) and hip flexors have larger weighting

constants than biarticular muscles.

• Reflex activation reduces the activation potential of direct muscle stimulation via surface elec-

trodes.

The activation dynamics are extended by a pulse width-reflexactivation relation, an additional time delay,

a constantc and a term specifying the superposition of reflex activationand direct muscle stimulation.

The relationship of the reflex activationare f lex to the applied pulse widthpw can be expressed by an

exponential function (cf. Figure 7.12), as in [78]:

are f lex = 1− exp(−0.0125pw). (7.30)

The time delay is taken from [94] and [70]. Both references define a time delay of 200ms between

stimulation input and reflex activation. Taking the activation dynamics into consideration a slightly
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smaller time delay of 175ms has been chosen. A constantc, ranging between 0 and 1 is introduced

weighting the reflex activation of each muscle. The constants which are implemented in the model

are a rough estimate based on trial and error. For muscles which can be simultaneously activated by

peroneal nerve stimulation and direct stimulation the reflex activation and the direct activation have to

be superposed in an adequate way. The superposition of direct muscle stimulation activationamuscleand

reflex activationare f lex to the total activationa is represented by the following equation:

a = amuscle(1− are f lex) + are f lex. (7.31)

This equation is a simple approximation to a nonlinear and complicated relation. Direct surface muscle

stimulation via surface electrodes activates motor neurons which are located near the surface. Peroneal

nerve stimulation activates motor neurons in the whole muscle. Equation (7.31) assumes that direct

stimulation and reflex stimulation activate partially the same motor units. For instance, a reflex activation

are f lex of 0.5 superposed to a surface muscle activationamuscleof 0.5 will result in a total activation of

0.75. Furthermore, a total activation higher than 1 is not possible. This is an improvement in comparison

with other existing models.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Pulse width [µs]

a r
e

fl
e

x

Reflex activation

Figure 7.12.: Pulse width dependency of reflex activation.

7.8. Feedback Controlled FES-Assisted Gait - Simulation Stud y

7.8.1. Stimulation Pattern

The model described in the previous section was used to verify the proposed control scheme. As there

are no contact forces described in the model, it is only validin the swing phase of the gait. Consequently,

the simulation is repeatedly started after a finished swing phase, with the same initial states. Before

validation of the control scheme, appropriate stimulationintervals for the four different channels were
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Table 7.5.: Stimulation pattern used in the simulation.
Start[s] Stop [s] Pulse width [µs] Frequency[Hz]

Peroneal Nerve 0 0.5 400 60
Quadriceps 0.3 0.6 270 20
Hamstrings 0 0.3 variable 20
Tibialis anterior 0.7 1.0 variable 20

found, which provide a natural gait movement. During the simulation, the parameters current amplitude,

pulse width, frequency and range of stimulation were kept constant, while the pulse width profile of the

channel influencing the movement parameter i.e. hamstringsor tibialis anterior have been modulated in

the amplitude by the controller.

Movement parameters used within this section are the foot clearance and the maximal angle of the foot

in the sagittal plane. The foot clearancef c in the model is computed as the distance between the foot

and an imaginary ground. This is defined as a perfect circle with the hip joint as origin with radius equal

to the complete length of the extended legl leg. The foot clearance is then

f c = l leg −
√

l2T + l2S − 2lT lS cos(ϕK − π). (7.32)

Note that the hip angleϕH does not influence the foot clearance as the imaginary groundis used. Fur-

thermore, the maximum sagittal angle between the foot and the ground can from the model be found by

this equation

ϕmax
f oot = max(−(ϕH + ϕK + ϕA)). (7.33)

Equation (7.33) assumes that the ground is flat.

In the simulation, the quadriceps, the hamstring, the tibialis anterior and the peroneal nerve were stimu-

lated. Quadriceps comprises the vastii and rectus femoris muscles. In Table 7.5 the stimulation timing,

the pulse width and frequency of the respective channels aresummarised. The pulse width for tibialis

anterior and quadriceps were as below described variable.

7.8.2. Test Procedure

Simulations were performed to investigate the performanceof the feedback controller. For both the

foot clearance and the maximum sagittal angle of the foot thecontrol scheme was tested. As shown in

Chapter 6 the foot clearance estimate based on inertial sensor is associated with a certain noise. To make

the simulations more realistic, the estimated movement parameters were superposed by white noise with

a standard deviation of 5% of the mean value to simulate the measurements with the inertial sensor.

Separately, for both the hamstring as stimulation channel and foot clearance as movement parameter and

the tibialis anterior as stimulation channel and maximum sagittal angle before heel strike as movement

parameter the following tests were performed for finding thecontrol parameters and to validate the
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controller:

• Open loop test:The stimulation intensity of one target muscle was changed between two stimu-

lation levels in a predefined manner, while the parameters for the other stimulation channels were

kept constant.

• Parameter identification: After the open loop test was performed, the plant gainb was found

for stimulation channel/movement parameter relation. After the plant gainb was determined, the

controller was tuned using the rules defined in Table 7.4. Furthermore, the range in which the

movement parameters were lying was found in order to define appropriate reference values for the

closed-loop tests.

• SISO Closed-loop test:During this test only one controller was active and the reference was

changing between two values lying in the range found in the open loop test. The reference move-

ment parameter was kept constant for 20 steps and then changed to the other value. Stimulation

parameters of the other stimulation channels were kept constant.

Two additional test have been performed in which both movement parameter controllers were active:

• MIMO test 1:The reference value for the foot clearance was constant. Thereference value for the

maximum sagittal angle was a square wave signal.

• MIMO test 2:The reference value for the maximum sagittal angle was a square wave signal. The

reference value for the foot clearance was a square wave signal.

7.8.3. Results

In Figure 7.13 the results from theopen loop testsare shown. In the left graph theopen loop testfor the

foot clearance is depicted. The hamstrings stimulation waschanged after 30 step from 200µs to 300µs.

The plant gain was calculated to bebham = 0.085 cm/µs. The foot clearance was in the range 8 cm for

no stimulation to 16 cm for maximum stimulation of the hamstrings.
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Figure 7.13.: Results from theopen loop tests: The upper graph to the left shows the measured foot

clearance (grey line) and the real foot clearance (solid line), whereas the lower graph to the

left shows the corresponding pulse width applied to the hamstrings. In the upper graph to

the right are the measured maximum sagittal angle (grey line) and the real maximun sagittal

angle (solid line) shown, whereas in the lower right graph isthe corresponding pulse width

applied to the tibialis anterior depicted.

In the right graph the results from theopen loop testfor the tibialis anterior stimulation and the related

maximum sagittal angle are shown. The pulse width of the tibialis anterior stimulation was changed after

30 steps from 150µs to 250µs. The gain between the pulse width of the tibialis anterior stimulation and

the maximum sagital angle was found to bebtib = 0.15 deg/µs. It was also observed that the maximum

sagittal foot angle was lying between 12 and 31 degrees.

In Figure 7.14 the results from theSISO closed-loop testfor the foot clearance regulation are shown. The

reference was between 11 cm and 14 cm. In the upper graph the reference (dotted line), the measured

(grey line) and the real foot clearance (solid line) are shown. In the lower graph the corresponding pulse

width is shown. As seen from the plot, the controller has no problem to follow the reference value. The

new reference value was achieved after 5-7 steps.

In Figure 7.15 the results from theSISO closed-loop testfor the maximum sagittal angle regulation are

shown. The reference (dotted line) was changing between 18 and 23 degrees and is shown in the upper

graph with the measured angle (grey line) as well as the real angle (solid line). The lower graph depicts

the corresponding pulse width applied to the tibialis anterior. As seen from the plot, the controller has no

problem to follow the reference value. The new reference value was achieved after 5-7 steps.
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Figure 7.14.: The results of theSISO closed-loop testfor the foot clearance. The upper graph shows the

reference foot clearance (dotted line), the real foot clearance (solid line) and the measured

foot clearance (dashed line). The lower graph shows the stimulation pulse width applied to

the hamstrings.
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Figure 7.15.: Results from theSISO closed-loop testfor the maximum sagittal angle. The upper graph

shows the reference value (dotted line), the real maximum sagittal angle (solid line) and

the measured maximum sagittal angle (grey line). The lower graph shows the stimulation

pulse width applied to the tibialis anterior.
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Figure 7.16.: Results from theMIMO test 1: In the upper left graph are the reference foot clearance

(dotted line), the measured foot clearance (grey line) and the real foot clearance (solid line)

shown. In the lower left graph is the corresponding pulse width applied to the hamstrings

depicted. In the upper right graph are the maximum sagittal angle reference (dotted line),

the measured maximum sagittal angle (grey line) and the realmaximum sagittal angle (solid

line) shown. In the lower right graph is the corresponding pulse width applied to the tibialis

anterior depicted.
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Figure 7.17.: Results from theMIMO test 2: In the upper left graph are the reference foot clearance
(dotted line), the measured foot clearance (grey line) and the real foot clearance (solid
line) shown. The corresponding pulse width applied to the hamstrings is depicted in the
lower left graph. In the upper right graph are the maximum sagittal angle (dotted line), the
measured maximum sagittal angle (grey line) and the real maximum sagittal angle (solid
line) shown. In the lower right graph is the corresponding pulse width applied to the tibialis
anterior depicted.

In Figure 7.16 the results from theMIMO test 1are shown. In the upper graph the measured foot

clearance (grey line), the real foot clearance (solid line)and the reference foot clearance (dotted line) are

shown. After 20 steps the reference maximum sagittal angle was changed from 15 degrees to 25 degrees

and the new desired value was achieved after 5-7 steps as in the previous tests. After the 40th step the

reference value of the maximum sagittal foot angle was reduced from 25 to 15 degrees again. Both steps

had no influence on the regulated foot clearance as seen from the figure.

In Figure 7.17 the results from theMIMO test 2are shown. The reference foot clearance was after

20 steps changed from 9 cm to 18 cm and the new reference value was achieved after 5-7 steps as in

the SISO closed-loop test. After the 20th step the maximum sagittal angle is falling slightly as it is

influenced by the increased hamstrings stimulation. The maximum sagittal foot angle controller reacts

to this disturbance and the reference values is after a few steps back to the reference value. After the 40th

step the reference value of the foot clearance was reduced from 18 cm to 9 cm again. After 7-8 steps

the reference value was achieved again. The maximum sagittal angle was increased as a consequence of

the reduced hamstring stimulation. The maximum sagittal angle controller reacted to the situation and

decreased the stimulation to the tibialis anterior. After 7-8 steps the reference was reachieved.
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7.9. Feedback Controlled FES-Assisted Gait - Patient Study

7.9.1. Subject

One hemiplegic stroke patient affected on the left side had a good response to the tibialis anterior stimula-

tion and was found suited to be used in the control scheme. Except for having drop foot, he had problems

to stabilise the affected leg during the stance phase. The patient was compensating this by moving the

non affected side faster through the swing phase making the gait asymmetrical. Nevertheless, the main

purpose here was to show that the maximum sagittal angle of the foot could be controlled on a step to

step basis.
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Figure 7.18.: Example trajectory of the sagittal foot angleϕ f oot.

In this section the movement parameterϕmax
f oot is used as movement parameter (see Figure 7.18). The max-

imum sagittal angle of the foot was calculated after a completed swing phase by searching the maximum

of the buffered angle during the swing phase.

7.9.2. Experimental Procedure

For the subject who had an appropriate response to stimulation of the tibialis anterior, the following

procedure was carried out to find control parameters and to validate the control scheme experimentally.
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• Open loop test:The stimulation intensity of the tibialis anterior was manually changed via the

potentiometer.

• Parameter identification: After the open loop test was performed, the static plant gain b was found

as well as the range in which the maximum sagittal angle was lying.

• Closed-loop test 1:Closed-loop test of the designed feedback controller. During this test the

reference angle was set to constant 20 degrees.

• Closed-loop test 2:During this test the square wave reference angle was changing between 18 and

23 degrees. The reference angle was kept constant for 45 seconds before it was changed to a new

value.

The current was set to 45 mA and the frequency was set to 30 Hz. For all tests the stimulation was

triggered by the heel off event and continued until 3/4 of the swing phase.

7.9.3. Results

In Figure 7.19 the result from theOpen loop testis shown. In the lower graph the applied stimulation

intensity is plotted (pulse width). In the upper graph the estimated maximum foot angleϕmax
f oot is given.

Without stimulation the achieved maximum angle was lying inthe range 13 to 15 degrees. When stimu-

lation was applied, the maximum angleϕmax
f oot measured was lying in the range 14 - 26 degrees depending

on the stimulation level. The plant gain was somewhat difficult to estimate as the response changed from

one test to another. But from the tests the constant was conservatively estimated to beb = 0.025 deg/µs.

The controller was tuned by setting the time constantsno = 2 andnc = 2.
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Figure 7.19.: Results from theOpen loop test: The upper plot shows the achieved maximum sagittal foot

angleϕmax
f oot. The corresponding pulse width is shown in the lower graph.

20 40 60 80 100 120
0

20

40

20 40 60 80 100 120
0

50

100

150

Strides

Strides

M
ax

im
um

an
gl

e
[d

eg
]

P
ul

se
w

id
th

[µ
s]

Figure 7.20.: Results from theClosed-loop test 1: In the upper graph the reference angle (dashed line)

and the measured maximum sagittal foot angle (solid line) are given. The applied pulse

width is given in the lower graph.
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Reference angle (dashed line), measured maximum sagittal foot angle (solid line)

Figure 7.21.: Results fromClosed-loop test 2: In the upper graph the reference angle of 20 deg (dashed
line) and the measured maximum sagittal foot angle (solid line) are shown. The reference
angle changes between 18 deg and 23 deg. The applied pulse width is given in the lower
graph.

In Figure 7.20 the results fromClosed-loop test 1are shown. The achieved maximum sagittal angleϕmax
f oot

is shown in the upper graph, whereas the applied stimulationintensity (pulse width) is shown in the lower

graph. As seen from the figure, the controller was able to keepthe maximum angle constant during the

whole test (ca. 4 min/120 steps). Even though the averaged maximum angle was held constant, there

was a considerable step to step variation which was either caused by variation of gait or by measurement

noise. The standard deviation of the maximum angle was calculated to be 1.5 degrees during this test.

In Figure 7.21 the results from theClosed-loop test 2are shown. In the upper graph the achieved max-

imum sagittal angleϕmax
f oot (dashed line) is shown together with the reference angle. The corresponding

pulse width is shown in the lower graph. The new reference value was normally achieved after 5 to 7

steps.

7.10. Discussion and Conclusions

The positive results from the GPD-IS triggered FES gait training indicate that an inertial sensor is a

appropriate sensor for such purpose. The general testing ofthe FES-assisted gait training showed that the

triggering based on the GPD-IS worked robustly for nearly all of the 12 hemiplegic patients participating

in the study. Only for two patients who were walking at a low speed, the heel off events were detected
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too early as a result of a fidgety foot during the foot flat phase. This was the only critical problem that

occurred.

The experiments showed that by applying electrical stimulation the joint trajectories of hip, knee, and

ankle could be changed such that the gait patterns were qualitatively improved. The same experiments

showed that the improvements caused by electrical stimulation could not be revealed from the inertial

sensors derived temporal values for subject S1. For subjectS2, an improvement in symmetry could be

seen from the temporal values derived from the inertial sensors.

The number of stimulated muscle groups was normally limited. In experiments, only one or two muscle

group were stimulated because of the elaborate procedure tofind appropriate muscles, and because of

the time consuming task to find the right stimulation pattern.

In experiments with a stroke patient, it has been shown that the maximum sagittal angle estimated from an

inertial sensor can be used as feedback signal in a closed-loop FES control scheme on a step to step basis.

Even though the experiments were performed in a clinical setting, the control scheme has a potential to

be used for drop foot patients who are using a stimulator at home. The feedback controller used is

simple to tune and no advanced modeling was needed for the control design. An obvious extension of

the controller is to make it adaptive by identifying the plant gain online.

The control scheme was successfully demonstrated with two movement parameters in simulation and

with one movement parameter in experiments. It was not possible to show that hamstrings stimulation

could influence the foot clearance in experiments with a patient due to the limited number of patients

available. In the simulation, the MIMO controller tests showed that the influence of the foot clearance

from the stimulation of tibialis anterior was minimal. In simulations it was shown that the maximum

sagittal angle was influenced by hamstrings stimulation. The same effect was also seen in experiments

with one patient. Although this was not a problem for this patient, a MIMO controller could have been

used to stabilise the maximum sagittal angle when stimulating the hamstrings.

Further investigation should in the future consider more movement parameters derived from the inertial

sensor in simulation as well as in experiments. The model developed in this work is a good basis for

further investigation of the proposed control scheme.
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Future Work

In this thesis the use of inertial sensors in FES-assisted gait training was investigated. As a first step

an algorithm for gait phase detection was developed, for which it was assumed that the one inertial

sensor unit is mounted to the foot. Several similar detection systems have been developed by other

research groups based on accelerometers and gyroscopes. Tothe authors best knowledge the system

presented in this work is the first one based on a complete inertial sensor unit (three accelerometers

and three gyroscopes). Compared to other systems the developed algorithm has the advantage that no

individual tuning of the parameters for each patient is necessary. Even though a full sensor do imply an

advantage compared to a reduced sensor (one gyroscope and two accelerometers) measuring acceleration

and angular velocity in the sagittal plane, no direct comparison was done in this thesis regarding gait

phase detection, and this should be investigated in future work.

The feasibility of using an inertial sensor to calculate accurate estimates of step length and foot clearance

was demonstrated for five subjects with different gait pathologies walking on a treadmill with partial

body weight support. It could be demonstrated that the consideration of initial and end conditions of the

movement could considerably improve the accuracy of the step length and foot clearance estimation. In

conclusion, the current study indicates that foot movements and gait phases can be reconstructed from

inertial sensor data with an accuracy good enough to be used as feedback sensor in an FES-assisted gait

rehabilitation system.

Experiments with 12 hemiplegic patients showed that FES-assisted gait training based on the gait phase

detection system described in Chapter 5 worked robustly forall patients except for two subjects who

were walking at a low speed. For these two patients, the heel off events were detected too early as

a result of a fidgety foot during the foot flat phase. When applying electrical stimulation, it could be

shown that the joint trajectories could be altered such thatthe gait patterns were qualitatively improved.

The improvements in gait can be online monitored by temporaland spatial parameters estimation as

well as indirect derived values from an inertial sensor system such as symmetry indices’s. Although

inertial sensors attached to the shoes do not directly measure joint- angle trajectories, they do represent

an alternative to optical motion analysis systems because they can easily be applied in a clinical setting

and monitor the progress of the rehabilitation. The number of stimulated muscle groups is normally
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limited. Usually only one or two muscle groups were stimulated because this was in most cases sufficient

to improve the gait pattern. In the cases where more than two channels were needed, the disability was

so severe that other rehabilitation methods like an electromechanical gait trainer should be considered.

It has been experimentally demonstrated that the maximum sagittal angle of the foot with respect to the

ground estimated from the inertial sensor can be used as feedback signal in a closed-loop FES control

scheme. The estimated movement parameter e.g. maximum sagittal angle was after a completed step

used as feedback in the controller in order to adjust the stimulation intensity for the next step. Even

though the experiments were performed in a clinical setting, the control scheme has potential to be used

for drop foot patients who are using a drop foot stimulator athome. The feedback controller used was

simple to tune and no advanced model was needed for the controller design. An obvious extention

of the controller is to make it adaptive by on-line identification of the plant gain. Further research

should consider more movement parameters derived from the inertial sensor in simulation as well as in

experiments. The biomechanical model of the freely swinging lower limb developed in this work is a

good basis for further investigations of the proposed control scheme.
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A. Model Equations

In Chapter 7 a dynamic model of the free swinging leg is described as:

[

M (q)
]

q̈ = C(q, q̇) +G(q) +Q(q, q̇) (A.1)

The components of the inertia matrix are:

M(q) =
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(A.2)

m11 =mSl2S K+mT l2T H + I1 + I2 +mSl2T +mAl2S +mAl2FA + I3 + 2mAlT lFA sin(2ϕH + ϕK − ϕA)

+ 2mAlSlFA sin(2∗ ϕH + 2 ∗ ϕK − ϕA) + 2mAlT lS cos(ϕK) + 2mSlT lS K cos(ϕK) +mAl2T (A.3)

m12 =mAl2S +mAl2FA + 2mAlSlFA sin(2ϕH + 2 ∗ ϕK − ϕA) + I2 +mSl2S K+

mAlT lFA sin(2ϕH + ϕK − ϕA) +mAlT lS cos(ϕK) +mSlT lS Kcos(ϕK) + I3 (A.4)

m13 = −mAl2FA −mAlT lFA sin(2ϕH + ϕK − ϕA) −mAlSlFA sin(2ϕH + 2ϕK − ϕA) − I3 (A.5)

m21 =m12 (A.6)

m22 =mA ∗ l2S +mAl2FA + I2 +mSl2S K+ I3 + 2mAlSlFA sin(2ϕH + 2ϕK − ϕA) (A.7)

m23 = −mAl2FA − I3 −mAlSlFA sin(2ϕH + 2ϕK − ϕA) (A.8)

m31 =m13 (A.9)

m32 =m23 (A.10)

m33 =I3 +mAl2FA (A.11)

The components of the vector of gravitational terms are:

G(q) =
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g1 = − gmT lT H sin(ϕH) −mSg(lT sin(ϕH) + lS K sin(ϕH + ϕK)) −mAg(lT sin(ϕH)

+ lS sin(ϕH + ϕK) − lFA cos(ϕH + ϕK − ϕA)) (A.13)

g2 = − gmSlS K sin(ϕH + ϕK) −mAg(lS sin(ϕH + ϕK) − lFA cos(ϕH + ϕK − ϕA)) (A.14)

g3 = − gmAlFA cos(ϕH + ϕK − ϕA) (A.15)

The components of the vector of Coriolis and centrifugal terms are:

C(q, q̇) =
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(A.16)

C11 =(2mAlT lFA cos(2ϕH + ϕK − ϕA) + 2mAlSlFA cos(2ϕH + 2ϕK − ϕA))ϕ̇H

+ (mAlT lFA cos(2ϕH + ϕK − ϕA) + 2mAlSlFA cos(2ϕH + 2ϕK − ϕA) −mAlT lS sin(ϕK)

−mSlT lS K sin(ϕK))ϕ̇K + (−mAlT lFA cos(2ϕH + ϕK − ϕA)−

mAlSlFA cos(2ϕH + 2ϕK − ϕA))ϕ̇A (A.17)

C12 =(mAlT lFA cos(2ϕH + ϕK − ϕA) + 2mAlSlFA cos(2ϕH + 2ϕK − ϕA)−

mAlT lS sin(ϕK) −mSlT lS K sin(ϕK))ϕ̇H + (mAlT lFA cos(2ϕH + ϕK − ϕA)

+ 2mAlSlFA cos(2ϕH + 2ϕK − ϕA) −mAlT lS sin(ϕK) −mSlT lS K sin(ϕK))ϕ̇K+

(−mAlT lFA cos(2ϕH + ϕK − ϕA) −mAlSlFA cos(2ϕH + 2ϕK − ϕA))ϕ̇A (A.18)

C13 = −mAlFA(lS cos(2ϕH + 2ϕK − ϕA) + lT cos(2ϕH + ϕK − ϕA))(ϕ̇H + ϕ̇K − ϕ̇A) (A.19)

C21 =(2mAlSlFA cos(2ϕH + 2ϕK − ϕA) +mAlT lFA cos(2ϕH + ϕK − ϕA)+

mAlT lS sin(ϕK) +mSlT lS K sin(ϕK))ϕ̇H + 2mAlSlFA cos(2ϕH + 2ϕK−

ϕA)ϕ̇K −mAlSlFA cos(2ϕH + 2ϕK − ϕA)ϕ̇A (A.20)

C22 =mAlSlFA cos(2ϕH + 2ϕK − ϕA)(2ϕ̇H + 2ϕ̇K − ϕ̇A) (A.21)

C23 = −mAlSlFA cos(2ϕH + 2ϕK − ϕA)(ϕ̇H + ϕ̇K − ϕ̇A) (A.22)

C31 = −mAlFA(ϕ̇H lS cos(2ϕH + 2ϕK − ϕA) + ϕ̇HlT cos(2ϕH+

ϕK − ϕA) + ϕ̇K lS cos(2ϕH + 2ϕK − ϕA)) (A.23)

C32 = −mAlSlFA cos(2ϕH + 2ϕK − ϕA)ϕ̇H −mAlSlFA cos(2ϕH + 2ϕK − ϕA)ϕ̇K (A.24)

C33 =0 (A.25)
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