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Scattering of diffracting beams of electron cyclotron waves by random den-
sity fluctuations in inhomogeneous plasmas
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Abstract. The physics and first results of the new WKBeam code for electron cyclotron beams in tokamak
plasmas are presented. This code is developed on the basis of a kinetic radiative transfer model which is general
enough to account for the effects of diffraction and density fluctuations on the beam. Our preliminary numerical
results show a significant broadening of the power deposition profile in ITER due to scattering from random
density fluctuations at the plasma edge, while such scattering effects are found to be negligible in medium-size
tokamaks like ASDEX upgrade.

1 Introduction

This contribution addresses the physics basis (section 2)
and reports preliminary results (section 3) of a new code,
WKBeam [1], for electron cyclotron beams in weakly tur-
bulent plasmas.

The quantitative description of the effects of turbulent
fluctuations on high-frequency wave beams in tokamaks
is not a new problem, and yet it has recently received re-
newed attention. That was triggered by the work of Tsiro-
nis et al. [2] where such effects were found important
for ITER on the basis of a simplified but clear physics
model. Successive works reported more detailed calcula-
tions based upon the application of existing quasi-optical
and ray tracing codes [3–5], and on ad-hoc methods [6, 7].

Contributing to this effort, the WKBeam code relies
on the well established framework of kinetic models of
radiative transfer [8–10] and particularly on the wave ki-
netic formalism of McDonald [9]. The result is a flexible
code which accounts for absorption, diffraction and can
compute the statistically averaged effect of electron den-
sity fluctuations in realistic (experimental or numerical)
tokamak equilibria.

2 The steady-state wave kinetic equation
for wave beams

First the theoretical framework for the WKBeam code is
outlined with emphasis on physics and basic underlying
approximations, while a complete mathematical derivation
will be presented elsewhere.

2.1 The wave equation

Electron cyclotron beams of angular frequency ω are
fully described by the equation for the wave electric field
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E(ω, x), that is,

∇ ×
(
∇ × E(ω, x)

)
− κ2ε̂E(ω, x) = 0, (1)

where the spatial coordinates x = (x1, . . . , xd), d = 3, are
normalized to the scale L of the medium inhomogeneity,
and κ = k0L, with k0 = ω/c being the wave vector in free
space. Here, the response of the medium is accounted for
by the linear operator ε̂, relating the electric displacement
ε̂E(ω, x) to the wave electric field E(ω, x). For hot plas-
mas, such relationship is generally non-local, that is,

ε̂E(ω, x) =

∫
K(ω, x, x′)E(ω, x′)dx′. (2)

A better characterization of this operator can be obtained
by means of a mathematical transformation σw referred to
as (semiclassical) Weyl symbol map [8]. The definition of
the Weyl symbol resembles a symmetrized Fourier trans-
form of the kernel of the operator, namely,

σw(ε̂)(ω, x,N) =

∫
e−iκN·sK

(
x + s

2 , x −
s
2
)
ds. (3)

The result is a function of both position x and refractive
index vector N. The combined position-refractive-index
space (x,N) is the geometrical optics phase space, hence
the Weyl symbol map is often regarded as a phase space
representation of the operator [8]. As an example, one can
consider the case of a cold magnetized plasma for which
the operator ε̂ reduces to the multiplication by the cold
plasma dielectric tensor εcold(ω, x), so that the kernel is

Kcold(x, x′) = εcold(ω, x)δ(x − x′),

where δ is the Dirac measure which implies that, in the
cold limit, the electromagnetic response of a plasma is lo-
cal. Correspondingly, the Weyl symbol of the operator is
readily computed with the result that

σw(ε̂)(ω, x,N) = εcold(ω, x),
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which shows that, in this case, the Weyl symbol is one and
the same with the cold plasma dielectric tensor. Analo-
gously, for a hot (i.e., including temperature effects) uni-
form plasma, the Weyl symbol coincides with the usual
dielectric tensor.

For a generic non-uniform hot plasma, a common ap-
proximation (the adiabatic approximation) is invoked: The
Weyl symbol

σw(ε̂)(ω, x,N) = ε(ω, x,N),

is identified with the dielectric tensor of a hot uniform
plasma εhot(ω,N) with plasma parameters (magnetic field,
electron density, and electron temperature) evaluated at
their local value at the position x.

Upon inverting the Fourier transform in equation (3)
one can write the kernel K in term of the Weyl symbol,
and equation (2) becomes

ε̂E(ω, x) =
( κ
2π

)d
∫

eiκ(x−x′)·Nε(ω, x+x′
2 ,N)

× E(ω, x′)dNdx′, (4)

which is known as the Weyl quantization of the tensor
ε(ω, x,N) and one writes ε̂ = Opw(ε), meaning that the
operator ε̂ is obtained from the tensor ε via (4).

For electron cyclotron beams, it is usually believed that
the cold plasma approximation is acceptable for the de-
scription of the propagation, i.e., for the Hermitian part of
the dielectric tensor, while temperature effects must be re-
tained in the calculation of power absorption, i.e., in the
anti-Hermitian part of the dielectric tensor. Therefore, it is
common practice to simplify the dielectric tensor further,

ε = εh
cold +

i
κ
εa

hot, (5)

where the cold plasma tensor is used for the Hermitian part
(superscript h), and the full hot plasma tensor is retained
in the anti-Hermitian part (superscript a) only. The latter
is scaled by the inverse of the large beam frequency, i.e.,
we consider weakly dissipative media.

For electron cyclotron waves in tokamak plasmas, k0
is usually large (e.g., k0 = 35cm−1 in ITER with ω =

2π×170GHz). If the scale L is estimated from equilibrium
plasma profiles, i.e., turbulent fluctuations are neglected,
then κ � 1.

Under such conditions, approximate solutions of equa-
tion (1) with (4) can be conveniently obtained by means of
the standard high-frequency (semiclassical) asymptotics,
such as the geometrical optics or WKB method (as in ray
tracing codes), the paraxial WKB method (as in TOR-
BEAM [11]), and the complex eikonal method (as in
GRAY [12]). Alternatively, one can describe the propa-
gation, diffraction and absorption of wave beams in terms
of a steady-state version of the wave kinetic equation [8].

The validity of the semiclassical approximation is con-
trolled by the small parameter 1/κ. In presence of turbu-
lence, however, short scale variation of the plasma profiles
can occur and the inhomogeneity scale length L, estimated

from fluctuating profiles, can be significantly reduced, thus
spoiling the semiclassical approximation.

Nonetheless, if one is interested in statistically aver-
aged effects, it was proven by McDonald [9] that semiclas-
sical methods can still be applied by adapting an argument
of Karal and Keller [13] to the wave kinetic equation.

According to such an approach, the background equi-
librium is separated from the fluctuations and the scale L
is always computed from the background so that κ has its
usual large value.

2.2 Statistical description of turbulence

In turbulent plasmas, the electron density, temperature and
magnetic field are fluctuating quantities. In this work, we
study the effect of density fluctuations only, since that is
usually considered the most detrimental for tokamak ap-
plications [2]. Temperature fluctuations cannot contribute
to the lowest order equations as they can affect only the
anti-Hermitian part of the dielectric tensor (5), which is
already a first order correction. Magnetic field pertur-
bations are usually weak, although Balakin and Gospod-
chikov [4] claimed that, in principle, they could have an
effect by changing the group velocity even without signif-
icant change of the wave vector.

A first observation is that, strictly speaking, a turbu-
lent plasma is not a stationary medium and the use of the
frequency-domain equation (1) may appear inappropriate.

With reference to heating and current drive scenarios,
however, the beam is maintained in the plasma for a time
interval much longer than the correlation time of the tur-
bulence, and we are interested in the time-average effect
of fluctuations on the beam. We assume (and do not dis-
cuss this assumption in details) that such time average can
be replaced by an ensemble average over stochastic per-
turbations of plasma parameters, particularly the electron
density, in equation (1).

Mathematically, the total electron density is modeled
as the sum of the nominal equilibrium profile ne(x) plus a
stochastic perturbation

δne(x) =
1
√
κ
µ(x), (6)

where µ is a random field sampled from a probability mea-
sure. Here, the strength of the perturbation is assumed to
be of order 1/

√
κ; this apparently artificial assumption is

common in radiative transfer modeling [10], but can be
justified on the basis of mathematical arguments only (the
frequency of the beam, κ, and the strength of the fluctu-
ations, δne, are physically independent parameters). We
also assume that the average effect of the fluctuations does
not change the equilibrium, namely,

E
(
µ(x)

)
= 0, (7)

where E is the expectation value operator (average) of the
random field. A possible non-zero average could be dealt
with by redefining the equilibrium.
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Correspondingly, the perturbation of the Hermitian
part of the dielectric tensor (5) takes the form

δε(ω, x) =
(
εh

cold − I)
δne

ne
, (8)

where I is the identity tensor. This form of the perturbation
stems from the fact that the cold dielectric tensor is linear
in the density. The perturbation of the hot anti-Hermitian
part of (5) is ignored for simplicity, because, in view of
(6), it amounts to an O(κ−3/2) correction to the wave equa-
tion and that does not affect the lowest relevant orders in
the semiclassical limit κ → +∞. Hence, the dominant
perturbation of the dielectric tensor is independent of N,
and this simplifies greatly the analysis [9]. Equation (7)
implies E(δε) = 0.

Physically, this framework can be interpreted as fol-
lows. Let us imagine we know exactly the electric field
E(t, ω, x) of a beam in the presence of time-dependent den-
sity fluctuations δne(t, x). In order to compute the time-
average, we can extract a sample E j(ω, x) = E(t j, ω, x)
for each observation time t = t j and compute the average
of the sampled time slices. When the typical time scale
of turbulent structures is much larger than the propaga-
tion time of the beam (given by the size of the domain di-
vided by the group velocity), we can assume that the den-
sity fluctuations are frozen to the value δne(t j, x) (this is
known as frozen turbulence approximation) and the elec-
tric field E j(ω, x) is well approximated by a solution of
the frequency domain equation (1) perturbed by δne(t j, x).
If we can exclude any correlation between the turbulence
screen-shots at different time, i.e., if ∆t = t j+1 − t j � τcorr
with τcorr the correlation time of the turbulence, each
δne(t j, x) can be regarded as an independent realization of
the random field (6) and E j(ω, x) can be regarded as the
corresponding sample of solutions of equation (1) with the
stochastic perturbation (8). Then averaging over such time
slices t j should be equivalent to the ensemble average over
many independent realizations of the random field µ. This
heuristic argument also suggests that the scattering of a
beam from a coherent structure might not be correctly de-
scribed in this statistical framework as different time slices
would not be statistically independent. A better and more
detailed physics analysis of the statistical approach has
been given by Peysson and co-workers [5].

Since, in turbulent plasmas, the wave equation (1) ex-
hibits a stochastic perturbation, the solution E(ω, x) itself
is a random field and we consider the two point correlation
matrix,

C(ω, x, x′) = E
(
E(ω, x)E∗(ω, x′)

)
, (9)

where EE∗ on the left-hand side is a direct product (dyad),
so that C is a tensor. If E is locally squared integrable, the
trace of C is proportional to the averaged energy carried
by the wave electric field, namely,∫

Ω

E
(
|E(ω, x)|2

)
dx =

∫
Ω

TrC(ω, x, x)dx,

where Ω is an arbitrary spatial domain and TrC is the trace
of the matrix C. On the lines of the approach of McDonald

[9], which in turn, is adapted from Karal and Keller [13],
we shall obtain an equation for C by means of a careful
average combined with the standard Born approximation.
The validity of the Born approximation is therefore crucial
for the application of this framework.

2.3 Wigner matrix and Wigner function

Actually, rather than in the correlation function C(ω, x, x′)
itself, we are interested in its phase space representation.
This can be readily obtained by the application of the Weyl
symbol map, cf. equation (3) with K replaced by C,

W(ω, x,N) = σw(Ĉ)(ω, x,N) (10)

=

∫
e−iκN·sE

(
E(ω, x + s

2 )E∗(ω, x − s
2 )

)
ds,

where the two-point correlation function C(ω, x, x′) is re-
garded as the kernel of the integral operator Ĉ called cor-
relation operator [8].

The Weyl symbol W(ω, x,N) of the correlation oper-
ator is referred to as the (averaged) Wigner matrix of the
field E(ω, x) and it is the central quantity in our study.

The Wigner matrix and the correlation matrix, being
related by a Fourier transform, encode the same informa-
tion; thus, the Wigner matrix can be used to compute phys-
ical observables that depend quadratically on the field.
E.g., the energy carried by the electric field in a domain
Ω is proportional to∫

Ω

TrC(ω, x, x)dx =
( κ
2π

)d
∫

Ω×Rd
TrW(ω, x,N)dxdN.

Let us introduce the notation

〈a〉Ω,W =
( κ
2π

)d 1
|Ω|

∫
Ω×Rd

Tr(aW)(ω, x,N)dxdN,

where |Ω| is the volume of the domain Ω and a(ω, x,N) is
a generic matrix-valued function over the phase space.

When Ω = Ωx is chosen to be a small neighborhood of
a point x the latter result can be used to compute the spatial
and ensemble average of the electric field energy density,

E(ω, x) =
〈1〉Ωx,W

16π
. (11)

The power deposited in a volume Ω can be obtained in the
same form; the Poynting theorem for equation (1), namely,

∇ · F(ω, x) = −E∗(ω, x)ε̂a
hotE(ω, x),

shows that the average power deposited in a volume Ω is
proportional to

E
( ∫

Ω

E∗(ω, x)ε̂a
hotE(ω, x)dx

)
=

( κ
2π

)d
∫

Ω×Rd
Tr(εa

hotW)dxdN.

Here, F = κ−1Im
[
E∗ × (∇ × E)

]
is the normalized Poynt-

ing flux for harmonic fields and equation (5) has been ac-
counted for. By selecting a volume shell Ω = Ωρ around
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Figure 1. Spatial domain Ωρ used to compute the power depo-
sition profile (12) in tokamak geometry for the case of an ITER
equilibrium. The domain is centered around a flux surface (red)
and bounded by two nearby flux surfaces (blue) defining a shell
of thickness ∆ρ in normalized poloidal flux.

a flux surface of given normalized poloidal flux ρ, cf. fig-
ure 1, the ensemble-averaged power deposition profile can
be reconstructed from the Wigner matrix according to

∆P
∆ρ

(ρ) =
ωL3

4π∆ρ
〈2εa

hot/κ〉Ωρ,W , (12)

where the numerical factor is obtained upon restoring
the physical dimensions and εa

hot/κ is the full (i.e., non
rescaled) anti-Hermitian part of the dielectric tensor, cf.
equation (5).

In addition to the possibility of computing relevant
physical observables, the Wigner matrix has its own phys-
ical interpretation. In order to make that clear, let us con-
sider, in one spatial dimension, a scalar field of the form

u(ω, x) = e−x2/22 cos(κN0x), (13)

which consists of two counter-propagating Gaussian pack-
ets with refractive index vectors N = N0 and N = −N0,
respectively. The corresponding scalar Wigner function
w(ω, x,N) can be computed analytically from equation
(10) and it is shown in figure 2. In the spatial variable
x, w(ω, x,N) follows the Gaussian envelope of the squared
field u2 ∼ e−x2

, while in the wave-vector variable N one
can clearly distinguish the two spectral contributions of
±N0 as well as the interference patter at N = N0 + (−N0) =

0. Away from the interference region where it can at-
tain negative values, the Wigner function w behaves as an
energy density in phase space, hence, it is called quasi-
density.

As κ → +∞, the oscillations in the interference region
increase in frequency but maintain the same amplitude,
therefore the high-frequency limit of the Wigner func-
tion we are interested in does not exist in strong sense.

Figure 2. Contours of the Wigner function w(ω, x,N) in the two-
dimensional (x,N) phase space for the case of two interfering
Gaussian wave packets (13), with N0 = 0.5 and κ = 10.

Nonetheless, regarding w as a measure means that it makes
sense only when integrated over a phase space volume
as used in equations (11) and (12), thus, we do not ac-
tually need the strong limit. In addition, the stationary
phase lemma ensures that the interference pattern will not
contribute to the integral of w, so that the high-frequency
(semiclassical) limit exists in this weak sense and gives a
positive definite energy density over the phase space. Such
an energy density is the physical quantity computed by the
WKBeam code.

2.4 The approach of Karal and Keller and the Born
approximation

The wave equation (1) along with (4), (5), and (8) can be
written in the compact form[

D̂ − δε
]
E(ω, x) = 0,

where D̂ = Opw(D),

Di j(ω, x,N) = N2δi j − NiN j − εi j(ω, x,N) (14)

is the standard plasma dispersion tensor, and δε is the
stochastic perturbation defined in (8).

The Born approximation, as it is used here, consists in
treating δε as a perturbation (consistently with the order-
ing (6)). Therefore, the wave electric field is written as a
formal asymptotic series

E(ω, x) ∼
+∞∑
n=0

En(ω, x), (15)

and the sequence En is determined by the hierarchy D̂E0(ω, x) = 0,

D̂En(ω, x) = δε(ω, x)En−1(ω, x), n ≥ 1.

The lowest order term E0 is a deterministic field corre-
sponding to the solution in absence of fluctuations, while
En are random fields due to the presence of the stochastic
perturbation δε.
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It is enough to solve the equations for the fluctuating
field corrections En, n ≥ 1, to the lowest order in the semi-
classical limit κ → +∞. With this aim, it is possible to use
symbol calculus and construct an operator Q̂ such that

D̂Q̂ = I +
1
κ

R̂,

that is, Q̂ is an approximate inverse of D̂. Such op-
erator Q̂ is constructed analytically from the Hermitian
part of the plasma dispersion tensor (14). This is al-
most as good as an exact inverse: If κ is large enough,
(I + κ−1R̂)−1 exists and can be constructed by the Neu-
mann series

∑
n(−1/κ)nR̂n. Then, the exact recursion rela-

tion En = Q̂(1+κ−1R̂)−1δεEn−1 allows us to express En for
n ≥ 1 in terms of E0. In particular, we have

E1 = Q̂δεE0 + O(κ−3/2),

E2 = Q̂δεQ̂δεE0 + O(κ−2),
(16)

where the ordering (6) has been accounted for; one also
notices that En = O(κ−n/2) and E(E1) = 0.

Here semiclassical calculus is applied to the operator
D̂ which is determined by the plasma background and does
not include the fluctuations. The short-wave-length limit
therefore applies.

The two-point correlation matrix amounts to

C = E0E∗0 + E(E1E∗1) + E(E0E∗2) + E(E2E∗0) + O(κ−3/2),

and upon accounting for (16) and multiplying on the left
by D̂, we obtain the equation for the correlation operator
in the form

D̂Ĉ = E(δεĈδε)Q̂∗ + E
(
δεQ̂δε)Ĉ + O(κ−3/2). (17)

When mapped into the phase space by the application of
the Weyl symbol map σw, this equation for the correlation
operator yields a corresponding equation for the Wigner
matrix, namely,

DW −
i

2κ
{D,W} + O(κ−2) = S(Γ,W) + O(κ−3/2), (18)

where the Poisson brackets { f , g} = ∂N f ·∂xg−∂x f ·∂Ng of
scalars f and g are extended to matrices component-wise,
namely, {A, B}i j =

∑
k{Aik, Bk j}, and S(Γ,W) is an integral

operator acting on the Wigner matrix W and depending on

Γ(ω, x,N) =

∫
e−iκN·sE

(
δne(x + s

2 )δne(x − s
2 )

)
ds, (19)

which is the Wigner function of the density correlation.
Particularly, turbulence enters equation (18) through Γ,

which is a statistical property and, as such, is expected
to exhibit spatial variations on the same scale as equilib-
rium profiles. Hence, formal semiclassical calculus (high-
frequency limit) applies to (18).

2.5 The wave kinetic equation for coherent beams

The formal asymptotic analysis of equation (18) in the
semiclassical limit κ → +∞ shows that

W(ω, x,N) =
∑
α=O,X

wα(ω, x,N)eα(ω, x,N)e∗α(ω, x,N)

+ O(κ−1),

where wα are the two scalar Wigner functions for the ordi-
nary mode (α = O) and the extra-ordinary mode (α = X),
and eα(ω, x,N) is the corresponding polarization unit vec-
tor in the cold plasma approximation. Hence, to the lowest
relevant order in the semiclassical limit, the Wigner matrix
W is diagonal on the same basis as the Hermitian part of
the plasma dispersion tensor (14) and its eigenvalues are
the Wigner functions of the two modes supported by the
plasma [8].

For the Wigner functions wα, α = O, X, one finds the
constrained phase space transport equation

{
Hα, wα

}
= −2γαwα +

∑
β=O,X

S αβ(Γ, wα, wβ),

Hαwα = 0,
(20)

which is the steady-state form of the wave kinetic equa-
tion. Here, for each mode α, Hα = e∗αDheα is the geomet-
rical optics Hamiltonian, which depends only on the Her-
mitian part Dh of the plasma dispersion tensor (14) and
describes wave propagation, γα = e∗αε

a
hoteα is the absorp-

tion coefficient, which dissipates the electric field energy
density, and S αβ is the scattering operator, which depends
on the Wigner function (19) of the density correlation and
describes the average energy exchange with the mode β
due to the effects of turbulence. In addition, accounting
for the spectral width of the beam, the wave kinetic equa-
tion properly describes diffraction effects [14], in spite of
being based upon the same Hamiltonian structure as the
standard ray tracing.

On one hand, the derivation of (20) follows from the
direct application of McDonald theory [9]. On the other
hand, one should notice a few differences that are peculiar
to the present steady-state form. First, the presence of the
constraint Hαwα = 0, which expresses the fact that there
is no wave energy density, i.e., wα = 0, outside the disper-
sion surface Hα = 0. As a consequence, wα is a singular
distribution: wα ∝ δ(Hα). Moreover, the Hamiltonian Hα

is the eigenvalue of the Hermitian part of the dispersion
tensor (14), with the frequency ω of the beam being a pa-
rameter, and the transported quantity is the Wigner func-
tion which is related directly to the electric field energy
density. This should be compared with the standard time-
dependent form of the kinetic equation, where the disper-
sion relation is solved for the frequency, which plays the
role of the Hamiltonian, and the wave action density is the
transported quantity. Correspondingly the absorption co-
efficient γα as defined here accounts for the dissipation of
the electric field energy density rather than of the wave
action density.

For the solution of the kinetic equation (20) is cru-
cial to have the proper boundary conditions: One should
be careful to retain the finite spectral width of the beam
in the boundary data, as that contributes essentially to
the diffraction of the beam. The consistent procedure to
build boundary data for (20) is inferred from the defini-
tion of the Wigner function: At the launcher we assume
that the wave electric field is given in the form of a Gaus-
sian beam with prescribed beam parameters; the Wigner
function of the initial Gaussian field is computed analyt-
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ically yielding the boundary datum wα|Σ(ω, y,Ny) on the
plane Σ of the launching mirror, which is parametrized
by two-dimensional coordinates y = (y1, y2), with Ny =

(Ny,1,Ny,2) being the corresponding components of the re-
fractive index vector. Hence, wα|Σ is defined in a four-
dimensional hyperplane in the phase space, and, together
with the local dispersion relation, gives the boundary data.

2.6 The scattering operator

The derivation outlined above gives the scattering operator

S αβ(Γ, wα, wβ) =

∫
Rd

[
σαβ(ω, x,N,N′)wβ(ω, x,N′)

− σβα(ω, x,N′,N)wα(ω, x,N)
]
dN′, (21)

which expresses the (normalized) rate-of-change of the en-
ergy wα(ω, x,N)dxdN contained in an infinitesimal phase
space volume centered on (x,N) as a result of cumulative
energy gain via scattering N′ → N, from any N′, (first
term on the right-hand side) and cumulative energy loss
via scattering N → N′, to any N′, (second term on the
right-hand side). It is worth noting that the obtained scat-
tering process involve solely the refractive index vector,
i.e., the process is local in space. The differential scatter-
ing amplitude σαβ is found to be

σαβ(ω, x,N,N′)

= 2π
∣∣∣e∗α(ω, x,N)

(
εh

cold(ω, x) − I
)
eβ(ω, x,N′)

∣∣∣2
× δ

(
Hα(x,N)

)
κΓ(ωx,N − N′)/n2

e(x), (22)

where κΓ = O(1) for κ → +∞ in view of (6). Apart from
the factor weighting the scattering amplitude with the ef-
fect of polarization, we notice that a scattering process
N′ → N is possible only if the target N satisfies the dis-
persion relation (cf. the factor δ(Hα)) and the spectrum of
turbulence does not vanish at ∆N = N − N′ (cf. the fac-
tor Γ(ω, x,N − N′)). The latter condition means that the
scattering process is a momentum conserving wave-wave
interaction, namely,

N = N′ + ∆N, (23)

where the variation of momentum ∆N is carried by the
turbulent fluctuations that act as a momentum reservoir.
(Here we think of the refractive index vector as the mo-
mentum in the sense of geometrical optics.) The projec-
tion of this identity onto the direction parallel to the mag-
netic field gives

N‖ = N′‖ + ∆N‖ ≈ N′‖,

as in tokamak plasmas the spectrum of the turbulence is
such that ∆N‖ ≈ 0 since turbulent structures are elongated
along the magnetic field lines. Thus, the parallel refractive
index does not change much in the scattering process.

In addition, both N′ and N have to satisfy the disper-
sion relation of the corresponding mode, which in a mag-
netized plasma has the form

N⊥ = n⊥,α(ω, x,N‖), (24)

Figure 3. Energy distribution of the beam in the angle φN for the
case of the full scattering operator (green curve labeled “trans-
port”) and its diffusion limit (red curve labeled “diffusion”); for
reference the evolution without scattering is also shown (blue
curve). For parameters in the range of ASDEX upgrade, the dif-
fusion limit overestimates scattering effects (a), while it is a good
approximation for large devices like ITER (b).

where N⊥ = |(I − bb)N | is the refractive index perpendicu-
lar to the local magnetic field unit vector b, and N‖ = b · N
is the parallel component.

If we consider scattering of radiation in the same
mode, the dispersion relation fixes N⊥, and we can con-
clude that in magnetized plasmas the scattering process is
essentially a change in the orientation angle φN defined
by N = (N⊥ cos φN ,N⊥ sin φN ,N‖) in an orthogonal frame
where b is directed along the third axis.

It is instructive to compute the diffusion limit of the
scattering operator (21) for the process O → O and for
perpendicular propagation. As a model for Γ, we set
Γ ∝ δ(N‖ − N′

‖
) in the parallel direction, so that scattering

preserves N‖ exactly, and consider a normal distribution
of amplitude δn2

e,0 and spectral width 1/k0L⊥ in the per-
pendicular direction; these is equivalent to the conditions
considered by Tsironis et al. [2], and we expect to obtain
the same result. Indeed, the scattering operator for the O-
mode is approximated by a diffusion in the angle φN and
we find the effective diffusion coefficient [1],

D =

√
2π
4

ω4
p

ω4

δn2
e,0

n2
e

1
L⊥
. (25)

If L⊥ is identified with the blob size, equation (25) is the
same as the result of Tsironis et al. [2], apart from the nu-
merical factor, which depends on the details of the model,
that is, either Γ is the present statistical approach or the
shape of Gaussian blobs in reference [2]. This proves that
the scattering operator obtained by Weyl calculus captures
the expected physics in this simple case. Figure 3, how-
ever, shows that the diffusion limit is not always valid and,
thus, the full scattering operator should be employed.

The full scattering operator (21) accounts for cross-
polarization scattering as well, i.e., one can have trans-
fer of energy between different wave modes, namely,
(β,N′)→ (α,N). Again N′ and N must satisfy the disper-
sion relation (24) of the corresponding mode, while mo-
mentum conservation (23) and the triangle inequality give

|n⊥,β(ω, x,N′‖) − n⊥,α(ω, x,N‖)| ≤ |∆N |.

Since N′
‖
≈ N‖ we see that, for cross-polarization scatter-

ing to be significant, the distance between the dispersion
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Figure 4. Total scattering amplitudes for the O→ O (blue curve
labeled ΣOO) and for the O → X (green curve labeled ΣOX) pro-
cesses. The latter has been multiplied by 103 to make it visible
on the same scale. For reference the dispersion curves of the O-
and X-mode are also shown. The shadowed area represents the
average |∆N| of the turbulence. This is for an ITER equilibrium.

curves of the two modes must not exceed the average ∆N
of the turbulence. Figure 4 shows the scattering ampli-
tudes integrated in N′ for the O → O and the O → X
scattering processes in ITER, computed along a geometri-
cal optics ray (in the O-mode) and plotted as functions of
the normalized poloidal flux ρ, for the case in which the
density fluctuations are centered in a narrow layer around
the separatrix where the modes are separated. One can
see that, in this case, cross-polarization scattering is sup-
pressed since the dispersion curves are sufficiently sepa-
rated one from the other.

In the WKBeam code, cross-polarization scattering is
neglected; however, we retain the possibility to compute
the integrated scattering amplitude (as in figure 4) in order
to check the validity of this assumption.

3 Numerical results and conclusions

WKBeam is a Monte Carlo code designed to solve the
steady-state form (20) of the wave kinetic equation, ne-
glecting cross-polarization scattering and using the bound-
ary conditions described in section 2.5. The algorithm de-
veloped for WKBeam has been rigorously justified but we
shall give here a simple physics description only.

The main computation is very similar to ray tracing.
Rays are traced and random scattering events are gener-
ated along each ray according to the diagonal elements
σαα of the scattering amplitude (22). If τ is the parameter
along each ray, then the interval ∆τ between two scatter-
ing events is drawn from an exponential distribution. Each
scattering event changes the phase space position of a ray
according to (x,N′) → (x,N), where the “scattering kick”
N′ → N follows the physics outlined in section 2.6. The
result is a set of ray trajectories that sample a particular
Poisson process with the property that its probability dis-
tribution is related to wα. Physical observables of the beam
can then be evaluated by a suitable Monte Carlo estimator,
e.g., of integrals (11) for the electric field energy density
and (12) for the power deposition profile.

The code differs from a standard ray tracing with scat-
tering in the initialization of rays in the phase space. As
mentioned in section 2.5, boundary conditions should be
constructed from the Wigner function of the launched

Figure 5. Beam and power deposition profile for the shot #25485
in ASDEX upgrade. The power deposition profile, in particular,
is in good agreement with the corresponding TORBEAM calcu-
lation. The error bars in the WKBeam curve represent the vari-
ance of the Monte Carlo estimator for integral (12).

electric field and that is defined on a four-dimensional
hyperplane. The initial ray positions should sample the
Wigner function in this four-dimensional space. The num-
ber of required rays is therefore greatly larger that a stan-
dard ray tracing calculation (typically ∼ 105 rays for a con-
verged calculation of power deposition profiles in ITER).
This is the computational price we pay for a consistent de-
scription of diffraction and scattering.

A detailed verification of the code has been carried out
in absence of turbulence: The analytical solutions of all the
standard test models for propagation (free space, lens-like
medium, and linear layer medium) have been successfully
reproduced.

In tokamak geometry and without fluctuations, the
power deposition profile for an ASDEX upgrade shot has
been compared with the corresponding calculation from
the paraxial WKB code TORBEAM [11] which can ac-
count for the full tokamak geometry as well as diffraction
effects. The agreement in figure 5 suggests that both ge-
ometry and diffraction effects are properly dealt with in
WKBeam. Verification and benchmarking efforts in pres-
ence of fluctuations are in progress; this is more difficult
as analytic solutions are not easily available. A more sub-
tle theoretical issue that should be addressed is the assess-
ment of the validity conditions of the Born approximation
[15], cf. equation (15), which is a fundamental step in the
derivation of the wave kinetic equation.

Even though the verification and benchmarking of
scattering processes in WKBeam is not yet complete, first
results on the power deposition profiles show an interest-
ing physical difference between present day medium-size
tokamaks such as ASDEX upgrade and large machines,
ITER in particular.

Figure 6 shows power deposition profiles for the AS-
DEX upgrade shot #25484 obtained by WKBeam for dif-
ferent thickness of the turbulence layer at the plasma edge.
In all cases fluctuations produce long tails of the profile
without affecting the bulk: This modest effect is consistent
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Figure 6. Power deposition profile for ASDEX upgrade shot
#25485 computed by WKBeam in presence of edge density fluc-
tuations. A scan in the thickness ∆ρF in normalized poloidal flux
ρ of the turbulence layer around the separatrix is shown together
with a reference calculation without scattering effects. One can
see that the profiles are consistent with the transport regime of
figure 3a and thus are not severely affected by fluctuations. Here,
Γ is an anisotropic normal distribution in ∆N = N − N′, local-
ized in ρ around the separatrix with width ∆ρF , with maximum
such that δne/ne = 0.1, large parallel correlation length L‖, and
perpendicular correlation length L⊥ = 0.4cm.

Figure 7. Power deposition profile for ITER computed by WK-
Beam for a scan of turbulence parameters as in figure 6. For
ITER the diffusion regime of figure 3b sets in and the effects of
scattering appears much more relevant. The same model as in
figure 6 is used for Γ, and again δne/ne = 0.1, but the perpendic-
ular correlation length is L⊥ = 2cm.

with the transport regime predicted for medium size toka-
maks, cf. figure 3a, and with the empirical observation of
power deposition in present day machines.

For the case of ITER shown in figure 7, the regime is
found to be diffusive, cf. figure 3b, with much more im-
portant consequences. One should also note that in this
case the dependence on the parameters of the turbulence
model, i.e., of the Wigner function Γ in equation (19), is
much stronger: The development of an accurate and vali-

dated model for such quantity appears therefore crucial for
reliable predictions. The consequence of these results for
the ITER upper launcher have been discussed by Poli et al.
in these proceedings.

In summary, the new wave propagation code WKBeam
has been developed on the basis of a well-established theo-
retical framework which relies on the Born approximation
and semiclassical limit. The main feature of the code is
the possibility to describe, within the limits of such ap-
proximations, the average effects of density fluctuations
(including short scale fluctuations) together with diffrac-
tion effects with either experimental or numerical tokamak
equilibria. Preliminary results show that turbulence has a
modest effect for medium size devices (as expected), but
may be important and deserve in-depth consideration for
large devices such as ITER.
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