Supplementary Data for

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics

Daniele Fazzi, Mario Barbatti, Walter Thiel

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (Germany) fazzi@kofo.mpg.de; barbatti@kofo.mpg.de; thiel@kofo.mog.de

Table of Contents

<i>S1.</i>	Kohn-Sham orbitals (MOs) involved in the main electronic transitions for 1T, 2T, 3T, and 4T2
<i>S2.</i>	Thiophene ring (1T): optimized ground- and excited-state geometries4
<i>S3.</i>	Thiophene ring (1T): relaxed potential energy profiles along S_1 surface7
<i>S4.</i>	TDDFT vs TDA nonadiabatic excited state dynamics (@B97XD)10
<i>S5.</i>	TDDFT absorption cross section of bithiophene11
S6. 6-311 for lov	TDDFT absorption cross section of 3T and 4T: comparison between \mathbbmath\mathbbmath\mathbbmath 2897XD/6-31G^*$ and $$+G^*$. Comparison between $$\omega$B97XD and $$B3LYP/6-31G^*$ on the vertical transition energies v and high energy dipole allowed excited states12$
<i>S7.</i>	Oligothiophenes (nT, n = 2,3,4): optimized ground- and excited-state geometries
<i>S8.</i>	Optimized S_1 potential energy profile for 2T: C-S elongation, ring puckering variation18
<i>S9.</i>	Optimized S_1 potential energy profile: comparison between 2T, 3T and 4T20
S10. excitat	Example of one TDDFT nonadiabatic excited-state dynamics trajectory from high energy tion of 2T
<i>S11.</i>	TDPBEO/ SVP nonadiabatic excited-state dynamics for 2T: high- vs low-energy excitations22
S12. excitat	Example of one TDDFT nonadiabatic excited-state dynamics trajectory from high energy tion of 3T

S1. Kohn-Sham orbitals (MOs) involved in the main electronic transitions for *1*T, *2*T, *3*T, and *4*T.

Figure S1.1 1T - DFT (∞ B97XD/6-31G^{*}) orbitals involved in S₀ \rightarrow S₁ and S₀ \rightarrow S₂ transitions.

Figure S1.2 2T - DFT (ω B97XD/6-31G^{*}) orbitals involved in low-energy band ($S_0 \rightarrow S_1$) and high-energy band ($S_0 \rightarrow S_3$) transitions.

Figure S1.3 *3*T - DFT (ω B97XD/6-31G^{*}) orbitals involved in low-energy band ($S_0 \rightarrow S_1$) and high-energy band ($S_0 \rightarrow S_6$) transitions.

Low energy band $S_0 \rightarrow S_1$		
	НОМО	LUMO
High energy band $S_0 \rightarrow S_6$		
	НОМО-1	LUMO

Figure S1.4 4T - DFT (ω B97XD/6-31G^{*}) orbitals involved in low-energy band ($S_0 \rightarrow S_1$) and high-energy band ($S_0 \rightarrow S_{10}$) transitions.

Low energy band $S_0 \rightarrow S_1$		
	НОМО	LUMO
High energy band $S_0 \rightarrow S_{10}$		
	HOMO-6	LUMO

S2. Thiophene ring (1T): optimized ground- and excited-state geometries.

The optimized Cartesian coordinates for thiophene in the ground electronic state S_0 and the first excited state S_1 are reported in this section.

TDDFT vs. TDA methods are considered, using ω B97XD and B3LYP functionals, with the 6-31G* and 6-311+G* basis sets.

In some cases, although restrictive optimization criteria were used, it was not possible to optimize the stable equilibrium armchair structure of 1T in S₁, resulting instead in a ring-opened structure.

The optimized TDDFT and TDA structures are comparable to those obtained in previous studies [see Salzmann S. et al., *Phys. Chem. Chem. Phys.*, **2008**, *10*, 380 and Stenrup M., *Chem. Phys.*, **2012**, *397*, 18].

XYZ format in Angstrom.

ωB97XD/6-31G* - S₀

S	0.00000	1.192685	0.000000
С	1.237296	-0.008625	0.00000
С	0.713548	-1.267517	0.00000
С	-0.713772	-1.267466	0.00000
С	-1.236952	-0.008600	0.00000
Н	2.279067	0.280785	0.00000
Н	1.319826	-2.165766	0.00000
Н	-1.320853	-2.165283	0.00000
Н	-2.278765	0.280547	0.00000

E = -552.928380054 Hartree

TDDFT ωB97XD/6-31G* - S₁ (armchair geometry)

С	-0.003160	-0.080043	0.046637
S	0.000190	-0.575724	1.734078
С	1.676060	-0.074362	1.781714
С	2.282901	-0.136636	0.469469
С	1.325843	-0.123497	-0.512876
Н	2.044657	0.571080	2.579911
Н	3.353192	-0.065432	0.311528
Н	1.513645	-0.035475	-1.577322
Н	-0.813773	0.520089	-0.366815

E = -552.735242913 Hartree

TDA ω B97XD/6-31G* - S₁ (ring opening geometry)

С	1.058538	1.265630	-0.000224
S	-1.404739	0.412033	0.000071
С	-0.558725	-1.018303	-0.000116
С	0.841880	-1.099368	-0.000077
С	1.660067	0.064300	0.000179
Н	-1.118778	-1.952404	0.000102
Н	1.300984	-2.085049	-0.000365
Н	2.746330	-0.071919	0.000804
Н	1.536732	2.243290	-0.000249

E = -552.765264108 Hartree

ωB97XD/6-311+G* - S₀

S0.0000001.191427C1.234594-0.008565C0.712543-1.266564	
C 1.234594 -0.008565 C 0.712543 -1.266564	0.00000
C 0.712543 -1.266564	0.00000
	0.00000
C -0.712767 -1.266494	0.00000
C -1.234249 -0.008526	0.00000
Н 2.274966 0.282277	0.00000
Н 1.319380 -2.163317	0.00000
н -1.320377 -2.162846	0.00000
Н -2.274694 0.281953	0.00000

E = -552.986322335 Hartree

TDDFT ωB97XD/6-311+G* - S₁ (armchair geometry)

0.002107	-0.068471	0.049461
-0.004211	-0.563188	1.729245
1.671182	-0.056345	1.772576
2.279750	-0.122186	0.465923
1.327908	-0.128960	-0.516667
2.056272	0.533929	2.602181
3.349177	-0.047231	0.310746
1.516448	-0.060462	-1.581158
-0.819078	0.512913	-0.365981
	0.002107 -0.004211 1.671182 2.279750 1.327908 2.056272 3.349177 1.516448 -0.819078	0.002107 -0.068471 -0.004211 -0.563188 1.671182 -0.056345 2.279750 -0.122186 1.327908 -0.128960 2.056272 0.533929 3.349177 -0.047231 1.516448 -0.060462 -0.819078 0.512913

E = -552.798466682 Hartree

TDA ωB97XD/6-311+G* - S₁ (ring opening geometry)

1.075382	1.261915	0.000313
-1.401931	0.418546	-0.000162
-0.567124	-1.012997	0.000223
0.831359	-1.103113	0.000202
1.655901	0.052939	-0.000566
-1.134991	-1.941228	0.000290
1.283655	-2.090878	0.000924
2.741034	-0.088611	-0.001430
1.568094	2.231527	0.001775
	1.075382 -1.401931 -0.567124 0.831359 1.655901 -1.134991 1.283655 2.741034 1.568094	1.075382 1.261915 -1.401931 0.418546 -0.567124 -1.012997 0.831359 -1.103113 1.655901 0.052939 -1.134991 -1.941228 1.283655 -2.090878 2.741034 -0.088611 1.568094 2.231527

E = -552.824567546 Hartree

B3LYP /6-31G* - S₀

S	0.00000	1.199370	0.00000
С	1.243725	-0.011263	0.000000
С	0.714556	-1.272695	0.00000
С	-0.714753	-1.272558	0.00000
С	-1.243363	-0.011223	0.00000
H	2.285143	0.280907	0.00000
Н	1.319592	-2.172991	0.00000
Н	-1.320933	-2.172226	0.00000
Н	-2.284788	0.280823	0.000000

E = -553.002627818 Hartree

TDDFT B3LYP /6-31G* - S₁ (ring opening geometry)

S	-1 431586	0 433905	0 000038
0	1.151500	0.155505	0.000000
С	-0.585668	-1.007279	-0.000068
С	0.820535	-1.110448	0.000063
С	1.679205	0.028453	0.000038
Н	-1.154209	-1.937097	-0.000414
Н	1.256213	-2.107829	0.000051
Н	2.760140	-0.156804	0.000059
Н	1.700394	2.203556	-0.000332

E = -552.885802460 Hartree

TDA B3LYP /6-31G* - S1 (ring opening geometry)

S	-1.448346	-0.329361	0.00000
С	0.343348	1.649940	0.00000
С	1.434123	0.862699	0.00000
С	1.269170	-0.556964	0.00000
С	0.00000	-1.166811	0.00000
Н	0.323474	2.740188	0.00000
Н	2.459062	1.253098	0.00000
Н	2.146509	-1.200785	0.00000
Н	-0.035358	-2.255914	0.00000

E = -552.855540747 Hartree

B3LYP /6-311+G* - S₀

~	0 00000	1 100140	0 00000
S	0.00000	-1.198149	0.000000
С	-1.240965	0.011197	0.00000
С	-0.713581	1.271811	0.00000
С	0.713769	1.271658	0.00000
С	1.240614	0.011169	0.00000
Н	-2.280450	-0.281982	0.00000
Н	-1.319011	2.169934	0.00000
Н	1.320298	2.169195	0.00000
Н	2.280143	-0.281770	0.00000

E = -553.065521820 Hartree

TDDFT B3LYP /6-311+G* - S₁ (ring opening geometry)

S	-1.445483	-0.332507	0.00000
С	0.345198	1.654400	0.00000
С	1.428986	0.862404	0.000000
С	1.266526	-0.555565	0.00000
С	0.00000	-1.166099	0.000000
Н	0.326412	2.742918	0.000000
Н	2.451154	1.256656	0.00000
Н	2.143662	-1.197010	0.00000
Н	-0.037759	-2.253284	0.00000

E = -552.919678032 Hartree

S3. Thiophene ring (1T): relaxed potential energy profiles along S₁ surface.

TDDFT relaxed potential energy profiles in S₁ along the C-S bond elongation coordinate were computed.

Starting from the flat ring structure (equilibrium in the ground state), at the TDDFT(ω B97XD)/6-31G* level, we first obtained a ring puckered geometry (stable structure in S₁), and consequently a decrease of the S₁ energy with an increase of S₀ until reaching the S₁/S₀ crossing with a ring opening structure.

Figure S3.1: TDDFT ωB97XD/6-31G* potential energy profile along the C-S stretching coordinate for 1T.

In the case of TDDFT(ω B97XD)/6-311+G^{*}, a crossing between S₂ and S₁ occurs as soon as we elongate the C-S bond. Similarly to TDDFT(ω B97XD)/6-31G^{*}, a stabilization of S₂ and an energy increase of S₀ occurs until the crossing (ring opening structure).

Figure S3.2: TDDFT \oplus B97XD/6-311+G* potential energy profile along the C-S stretching coordinate for *1*T.

We also tried to run a relaxed scan in S_1 along the puckering coordinate (δ), thus increasing the C-C-C-S dihedral angle. Already at the first step, the relaxed structure is the ring opening geometry, featuring a very low energy with respect to the closed one. From this geometry, the scan proceeded with a further stabilization of S_1 and destabilization of S_0 .

As an example, we report the TDDFT($(0B97XD)/6-311+G^*$ result below.

Figure S3.3: TDDFT ωB97XD/6-311+G* potential energy profile along the puckering coordinate for 1T.

S4. TDDFT vs. TDA nonadiabatic excited state dynamics (ωB97XD).

In this section, we summarize the results from TDDFT and TDA nonadiabatic excited-state dynamics of 1T at the ω B97XD/6-311+G* level.

In Panel a), the fraction of trajectories *vs.* time are reported. The S₁ decay time constant computed at TDDFT is $\tau_1 = 85$ fs, and the S₀ occupation time constant is $\tau_0 = 103$ fs. For TDA we obtained $\tau_1 = 115$ fs and $\tau_0 = 135$ fs. In panels b) and c), we report the C-S bond lengths *vs.* time and the ring puckering angle *vs.* time. As discussed in the paper for the 6-31G* case, an initial ultrafast huge elongation of the C-S bond occurs within 70 fs concomitantly with a decrease of the S₁ population (ca. 50 %).

a) S S. **S**₂ **S**₃ 0.8 0.0 0ccupation 7.0 0.2 0 150 time / fs 2.6 b) 2.4 2.2 2 (A) B(CS) 1.8 1.6 1.4 1.2 [∟]0 50 150 time / fs 200 250 100 300 c) 20 TDDFT 10 δ [deg] o -10 -20 L 250 300 50 100 150 time / fs 200

TDDFT vs TDA ωB97XD/6-311+G*

Figure S4.1: TDDFT and TDA ωB97XD/6-311+G* nonadiabatic excited-state dynamics. Panel a) fraction of trajectories *vs.* time. Panel b) C-S bond lengths *vs.* time. Panel c) Puckering coordinate *vs.* time. Red line TDDFT results, blue dotted line TDA.

S5. TDDFT absorption cross section of bithiophene.

Figure S6.1: TDDFT PBE0 (red), ω B97XD (blue), and CAM-B3LYP (grey) 6-311+G* absorption cross section (Å²/molecule) computed with the nuclear ensemble method for *2*T.

S6. TDDFT absorption cross section of *3*T and *4*T (comparison between ω B97XD/6-31G* and 6-311+G*). Comparison between ω B97XD and B3LYP/6-31G* on the vertical transition energies for low and high energy dipole allowed excited states.

Figure S6.1: TDDFT \oplus B97XD 6-31G* (red) and 6-311+G* (blue) absorption cross section (Å²/molecule) computed with the nuclear ensemble method for *3*T.

Figure S6.2: TDDFT \oplus B97XD 6-31G* (red) and 6-311+G* (blue) absorption cross section (Å²/molecule) computed with the nuclear ensemble method for *4*T.

Table S6.3 Comparison between ω B97XD and B3LYP/6-31G* for S₁ (bright state) and S_n (high energy excited state responsible of the second absorption band).

	<i>ω</i> B97XD	B3LYP
	E /eV (Oscillator Strength)	E /eV (Oscillator Strength)
S ₁	3.62 (1.1978)	2.92 (1.2021)
Sn	5.67 (0.1494)	5.09 (0.0731)

S7. Oligothiophenes (*n*T, n = 2,3,4): optimized ground- and excited-state geometries.

For the case of 2T, ω B97XD with 6-31G* and 6-311+G* were considered. Structures with CAM-B3LYP and PBE0 using 6-311+G* are also reported.

XYZ format in Ångstrom.

<u>2T</u>

ωB97XD/6-31G* - S₀

S	1.825111	1.167383	-0.302608
С	3.189419	0.139029	-0.071577
С	2.814205	-1.125487	0.271425
С	1.400839	-1.272213	0.365886
С	0.719167	-0.115706	0.090453
С	-0.719170	0.115703	0.090394
S	-1.825102	-1.167339	-0.302860
С	-3.189433	-0.139169	-0.071152
С	-2.814211	1.125471	0.271383
С	-1.400835	1.272278	0.365559
Н	-4.189805	-0.527594	-0.203234
Н	-3.518831	1.926385	0.461435
Н	-0.905004	2.194116	0.648571
Н	4.189780	0.527348	-0.204050
Н	3.518820	-1.926411	0.461448
Н	0.905017	-2.193999	0.649087

E = -1104.67220627 Hartree

TDDFT ω B97XD/6-31G* - S₁

S	1.819137	1.265476	0.157248
С	3.161943	0.180360	0.157279
С	2.777340	-1.156261	0.157422
С	1.400646	-1.344468	0.157757
С	0.682411	-0.109388	0.157654
С	-0.682414	0.109367	0.157696
S	-1.819138	-1.265500	0.157671
С	-3.161945	-0.180388	0.157600
С	-2.777346	1.156234	0.157436
С	-1.400652	1.344445	0.157612
Η	-4.171127	-0.569602	0.158094
Η	-3.500008	1.964157	0.157334
Н	-0.902312	2.306792	0.156975
Н	4.171126	0.569572	0.157611
Η	3.500001	-1.964186	0.157417
Н	0.902303	-2.306814	0.157354

E = -1104.52574136 Hartree

ω**B97XD/6-311+G* - S**₀

S	1.817706	1.152641	-0.350627
С	3.184113	0.141053	-0.080524
С	2.815207	-1.107723	0.316226
С	1.404309	-1.254083	0.421934
С	0.719444	-0.113873	0.101449
С	-0.719436	0.113890	0.101472
S	-1.817730	-1.152693	-0.350329

С	-3.184122	-0.141090	-0.080209
С	-2.815187	1.107766	0.316261
С	-1.404276	1.254173	0.421749
Н	-4.181212	-0.527997	-0.232501
Н	-3.523522	1.896049	0.537871
Н	-0.913339	2.163328	0.747245
Н	4.181190	0.527913	-0.233018
Н	3.523557	-1.895976	0.537892
Н	0.913398	-2.163172	0.747653

E = -1104.78571985 Hartree

TDDFT ωB97XD/6-311+G* - S₁

S	1.837036	1.231819	-0.000279
С	3.157132	0.124650	-0.000346
С	2.751457	-1.204283	-0.000012
С	1.373694	-1.367544	0.000342
С	0.678721	-0.120324	0.000100
С	-0.678721	0.120326	0.000137
S	-1.837035	-1.231819	0.000135
С	-3.157132	-0.124652	-0.000030
С	-2.751458	1.204283	0.00000
С	-1.373696	1.367545	0.000194
Н	-4.171594	-0.497713	0.000237
Н	-3.459710	2.023462	-0.000076
Н	-0.861680	2.321594	-0.000148
Н	4.171594	0.497711	-0.000252
Н	3.459708	-2.023464	0.00008
Η	0.861678	-2.321592	0.000240

E = -1104.64410689 Hartree

CAMB3LYP/6-311+G* - S₀

S	-1.823408	-1.162418	-0.313947
С	-3.184477	-0.136579	-0.071719
С	-2.809900	1.120258	0.282412
С	-1.398608	1.264553	0.376955
С	-0.718259	0.115071	0.091445
С	0.718244	-0.115086	0.091594
S	1.823462	1.162562	-0.313094
С	3.184464	0.136359	-0.072016
С	2.809852	-1.120360	0.282497
С	1.398568	-1.264518	0.377373
Н	4.182694	0.523431	-0.209474
Н	3.512826	-1.918895	0.479961
Н	0.905992	-2.182933	0.670022
Н	-4.182708	-0.523802	-0.208751
Н	-3.512907	1.918716	0.480066
Н	-0.906055	2.182992	0.669567

E = -1104.74275394 Hartree

PBE0/6-311+G* - S₀

S	1.825111	1.167383	-0.302608
С	3.189419	0.139029	-0.071577
С	2.814205	-1.125487	0.271425
С	1.400839	-1.272213	0.365886

С	0.719167	-0.115706	0.090453
С	-0.719170	0.115703	0.090394
S	-1.825102	-1.167339	-0.302860
С	-3.189433	-0.139169	-0.071152
С	-2.814211	1.125471	0.271383
С	-1.400835	1.272278	0.365559
Н	-4.189805	-0.527594	-0.203234
Н	-3.518831	1.926385	0.461435
Н	-0.905004	2.194116	0.648571
Н	4.189780	0.527349	-0.204050
Н	3.518820	-1.926411	0.461448
Н	0.905017	-2.193999	0.649087

E = -1104.26161434 Hartree

<u>3T</u>

$\omega B97XD/6-31G^* - S_0$

С	-3.218482	1.372723	0.225266
С	-4.633024	1.364867	0.065707
С	-5.126727	0.119445	-0.184325
S	-3.873227	-1.062434	-0.247794
С	-2.653899	0.130730	0.091434
С	-1.251907	-0.245052	0.192181
S	0.000018	0.897023	-0.197994
С	1.251925	-0.245071	0.192182
С	0.709759	-1.446665	0.566600
С	-0.709760	-1.446654	0.566602
Н	-1.311801	-2.297472	0.865618
Н	1.311787	-2.297493	0.865616
Н	-2.640873	2.261476	0.454181
Н	-5.253847	2.249480	0.143324
Η	-6.156413	-0.171951	-0.338803
С	2.653924	0.130691	0.091438
С	3.218522	1.372678	0.225258
С	4.633066	1.364802	0.065715
С	5.126754	0.119373	-0.184314
S	3.873238	-1.062489	-0.247780
Н	2.640922	2.261440	0.454162

E = -1656.41660701 Hartree

TDDFT ω B97XD/6-31G* - S₁

С	-3.181720	1.410468	0.071314
С	-4.586480	1.389186	0.071910
С	-5.112239	0.120551	0.137892
S	-3.884797	-1.089829	0.201432
С	-2.613875	0.129059	0.138288
С	-1.258540	-0.228146	0.157158
S	-0.000001	1.006085	0.093063
С	1.258539	-0.228146	0.157158
С	0.686646	-1.528867	0.224904
С	-0.686647	-1.528867	0.224904
Н	-1.295892	-2.424484	0.271474
Η	1.295891	-2.424484	0.271474
Н	-2.585252	2.314783	0.024402
Η	-5.203172	2.279394	0.025287
Н	-6.155219	-0.164723	0.152507
С	2.613874	0.129059	0.138287

С	3.181719	1.410468	0.071313
С	4.586479	1.389187	0.071908
С	5.112238	0.120551	0.137891
S	3.884797	-1.089829	0.201431
Н	2.585251	2.314783	0.024401
Η	5.203171	2.279395	0.025285
Н	6.155218	-0.164722	0.152505

E = -1656.29216940 Hartree

<u>4T</u>

$\omega B97XD/6-31G^* - S_0$

S	5.773844	-1.077737	0.525074
С	7.058403	0.064581	0.398356
С	6.608938	1.286283	-0.005289
С	5.203830	1.306533	-0.232621
С	4.602372	0.097341	0.003395
С	3.197360	-0.257649	-0.124717
S	1.959250	0.942826	0.097175
С	0.696780	-0.205456	-0.238336
С	1.224803	-1.449405	-0.469981
С	2.642051	-1.478793	-0.405445
Н	0.616008	-2.313069	-0.713520
Н	3.234372	-2.367208	-0.593701
Н	8.072458	-0.230351	0.630293
Н	7.255864	2.143882	-0.146642
Н	4.660032	2.177366	-0.581486
С	-0.696773	0.205451	-0.238326
С	-1.224798	1.449407	-0.469931
С	-2.642045	1.478794	-0.405378
С	-3.197352	0.257642	-0.124679
S	-1.959241	-0.942842	0.097155
С	-4.602363	-0.097349	0.003441
С	-5.203829	-1.306528	-0.232618
С	-6.608930	-1.286288	-0.005243
С	-7.058388	-0.064596	0.398442
S	-5.773824	1.077714	0.525178
Н	-0.616004	2.313078	-0.713450
Н	-3.234367	2.367216	-0.593600
Н	-4.660039	-2.177348	-0.581529
Н	-7.255859	-2.143883	-0.146609
Н	-8.072438	0.230329	0.630407

E = -2208.16104254 Hartree

TDDFT ω B97XD/6-31G* - S₁

S	-5.809648	-1.137754	0.000303
С	-7.065815	0.043553	0.000580
С	-6.568077	1.318787	0.000534
С	-5.156159	1.361688	0.000314
С	-4.569872	0.101716	0.000140
С	-3.190290	-0.233817	-0.000100
S	-1.960038	1.014653	-0.000438
С	-0.670505	-0.188618	-0.000524
С	-1.220438	-1.494370	-0.000384
С	-2.601756	-1.509959	-0.000097
Н	-0.601939	-2.384814	-0.000473

Н	-3.192451	-2.419483	0.000103
Н	-8.101341	-0.267812	0.000767
Н	-7.198140	2.200627	0.000682
Н	-4.579810	2.280245	0.000282
С	0.670505	0.188618	-0.000536
С	1.220438	1.494370	-0.000439
С	2.601756	1.509959	-0.000167
С	3.190290	0.233817	-0.000141
S	1.960038	-1.014653	-0.000430
С	4.569872	-0.101716	0.000093
С	5.156159	-1.361688	0.000296
С	6.568077	-1.318787	0.000497
С	7.065815	-0.043553	0.000498
S	5.809648	1.137754	0.000201
Н	0.601939	2.384814	-0.000546
Н	3.192451	2.419483	0.000001
Н	4.579810	-2.280245	0.000300
Н	7.198140	-2.200627	0.000662
Н	8.101341	0.267812	0.000662

E = -2208.04796880 Hartree

Figure S8.1: TDDFT (ω B97XD)/6-31G* S₁ relaxed potential energy profile along the C-S stretching coordinate for 2T.

Figure S8.2: TDDFT (ω B97XD)/6-31G* S₁ relaxed potential energy profile along the puckering coordinate for 2T.

S9. Optimized S₁ potential energy profile: comparison between *2*T, *3*T and *4*T.

Figure S12.1: TDDFT (ω B97XD)/6-311+G* S₁ relaxed potential energy profiles along the C-S stretching coordinate for 2T (top – black lines), 3T (middle – blue line) and 4T (bottom – red lines).

S10. Example of one TDDFT nonadiabatic excited-state dynamics trajectory from high energy excitation of *2*T.

Figure S10.1: Time evolution of the excited-state energies for one trajectory (TD- ω B97XD/6-31G*) from 2T high-energy excitation. Snapshots of 2T molecular structure along the dynamics (t = 0, 34.5, 75 fs). Black dots give the currently occupied state during the dynamics.

S11. TDPBE0/ SVP nonadiabatic excited-state dynamics for *2*T: high- *vs.* low-energy excitations.

In this section, we report the nonadiabatic excited-state dynamics for 2T computed at the PBEO/SVP level, considering both low-energy (population of only S_1) and high-energy (population of S_3) excitation.

By exciting at low energy, 70 trajectories starting from S_1 were created. 2 trajectories reached the S_1/S_0 crossing within 75 fs, 2 within 150 fs, 2 within 225, and 64 were still in the excited states at 300 fs.

By exciting at high energy, 42 trajectories starting from S_3 were created. 13 trajectories reached the S_1/S_0 crossing within 75 fs, 11 within 150 fs, 4 within 225, and 14 were still in the excited states at 300 fs.

Figure S9.1: TDDFT (PBE0)/SVP nonadiabatic excited-state dynamics. Panel a) Evolution of the state population upon high-energy excitation *vs.* time. Panel b) Upper: C-S bond length variations upon high-energy excitation; Bottom: C-S bond length variations upon low-energy excitation. Panel c) Upper: ring puckering variations upon high-energy excitation; Bottom: ring puckering variations upon low-energy excitation. Panel d) dihedral angle variations upon high-energy (red) and low-energy (blue) excitations.

Similar conclusions, as those reported in the manuscript for ω B97XD functional, can be drawn for the case of PBE0/SVP. Upon high-energy excitation, an ultrafast internal conversion (~70 fs) occurs and the photoexcited population is transferred *via* nonadiabatic processes from S₃ to S₂ and S₁. Within 300 fs, the S₀ occupation reaches 60%.

High-energy excitation induces higher distortions and fluctuations in terms of C-S bond elongation and ring puckering. Similarly as for ω B97XT, 2T crosses a flat conformation at ~100 fs starting from S₁ and at ~160 fs starting from S₃.

S12. Example of one TDDFT nonadiabatic excited-state dynamics trajectory from high energy excitation of *3*T.

Figure S11.1: Time evolution of the excited-state energies for one trajectory (TD- ω B97XD/6-31G*) from *3*T high-energy excitation. Snapshots of *3*T molecular structure along the dynamics (t = 0, 17.5, 103 fs). Black dots give the currently occupied state during the dynamics.