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Thiswork presents a novel approach formodelling laminarmyelin patterns in the human cortex in brainMR im-
ages on the basis of known cytoarchitecture. For the first time, it is possible to estimate intracortical contrast vis-
ible in quantitative ultra-high resolution MR images in specific primary and secondary cytoarchitectonic areas.
The presented technique reveals different area-specific signatures which may help to study the spatial distribu-
tion of cortical T1 values and the distribution of cortical myelin in general. It may lead to a new discussion on the
concordance of cyto- and myeloarchitectonic boundaries, given the absence of such concordance atlases. The
modelled myelin patterns are quantitatively compared with data from human ultra-high resolution in-vivo 7 T
brain MR images (9 subjects). In the validation, the results are compared to one post-mortem brain sample
and its ex-vivo MRI and histological data. Details of the analysis pipeline are provided. In the context of the in-
creasing interest in advanced methods in brain segmentation and cortical architectural studies, the presented
model helps to bridge the gap between themicroanatomy revealed by classical histology and themacroanatomy
visible in MRI.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The human brain is a highly convoluted organ with many folds and
fissures. Neural activity and functional processing occur in deep grey
matter and in the 2–5 mm thick cortex. The cortex has the topology
of a 2-dimensional sheet and consists, in the isocortex, of six
cytoarchitectonic layers. Cortical layer structure has been investigated
for more than a century (Baillarger, 1840; Brodmann, 1909). During
the 20th century, cortical cartographers distinguished cortical areas
mainly based on cytoarchitectonic criteria, i.e. the size, shape, and
density of the cells as well as their arrangement and organisation.

In order to provide precise mapping of structure and function onto
the brain surface, two major neuroanatomical disciplines evolved: his-
tological studies of cytoarchitecture and myeloarchitecture. Brodmann
(1909) pioneered cytoarchitectural studies of the cortex. He focussed
on the spatial distributions of cell bodies and produced the first qualita-
tive descriptions and quantitative layer-specific measures in different
sics, Max Planck Institute for
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cortical areas. Later, von Economo and Koskinas (1925) published a
full set of tables for 52 cortical and subcortical areas, including absolute
and relative values for different measures per layer. These include layer
thickness, cell density, and cell size. More recently, a 3-dimensional
(3D) digital probabilistic cytoarchitectural atlas based on stained and
registered histological sections of ten post-mortem brains was intro-
duced by Eickhoff et al. (2005a). Neuroscientists commonly regard
such cytoarchitectonically-derived probabilistic Brodmann area maps
as useful guides to cortical localisation.

Related work using classical histology

In contrast with cytoarchitecture, myeloarchitecture has been large-
ly neglected during the past hundred years. This discipline examines the
arrangement of tangentially and radially oriented myelinated fibres in
preparations stained for myelin sheaths. Research in this field is incom-
plete, inconclusive, or even contradictory. Quantitative methods were
not available to the pioneers in this field, Cécile and Oskar Vogt (Vogt
and Vogt, 1919a,b; Vogt, 1923). The Vogts characterised most of their
findings using highly subjective terms as “thin to thick”, “poorly to
highly dense” or “less to fully present”, which do not lend themselves
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. A) The relationship in cortical microarchitecture between cytoarchitecture and
myeloarchitecture. On the right side, the two (darker) bands of Baillarger (Baillarger,
1840), i.e. two heavilymyelinated transverse layers, are visible. The outer band usually co-
incideswith cytoarchitectonic layer IV (Lamina granularis interna) and the inner bandwith
cytoarchitectonic layer V (Lamina pyramidalis interna) (Vogt, 1910). B) The four different
types of myeloarchitecture remodelled from (Hopf, 1967; Vogt, 1910): a) astriate,
b) bistriate, c) unitostriate, and d) unistriate. Lower cortical layers are highlighted in
light red. The dashed boxes depict the bands of Baillarger.
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to reproducible assessments. Little has been done since then to develop
more objectivemeasures and criteria. Adolf Hopf andValentin Braitenberg
were the first to report quantitative cortical profiles associated with
myelin. A cortical profile describes a traverse running from the inner to
the outer cortical boundary along which intensity values can be sampled
(Hopf, 1968, 1969, 1970; Braitenberg, 1962). Their work is based on the
photometric reproduction of sections stained for myelin. However,
Braitenberg studied the fibre density in cortical areas, whereas
Hopf focused on the myelinisation in the cortex which describes
the development of the myelin sheath around a nerve fibre. Fibre
density and myelin are certainly interlinked, but Hopf was
convinced that the content or concentration of myelin in the cortex
does not only depend on the fibre density, but also on the fibre
calibre. Only recently, Nieuwenhuys et al. (2014) published a unique
myeloarchitectonic mapping incorporating information from the
Vogt–Vogt School. The mapping is a non-digital 2D projection onto
a standard reference brain. To date, a widely accepted comprehen-
sive myeloarchitectural reference atlas comparable to the digital
probabilistic cytoarchitectural atlas presented by Eickhoff et al.
(2005a) does not exist. Even today, little is known about the concor-
dance between cortical cytoarchitectonic and myeloarchitectonic
boundaries. Hence, the question arises whether the construction of
a myeloarchitectonic atlas is now feasible, and whether this can be
achieved by a quantitative generalisation of the Vogts' concepts.

The Vogts focussed on classifying patterns of fibres radial to the
underlyingwhitematter, and on subtle cortical layer-dependent details,
which led to a confusing proliferation of categories and subcategories.
By contrast, Hopf followed Elliot Smith (1907) in noting that different
patterns of myeloarchitecture were well discriminated by variations in
the myelination of deeper cortical layers. Hopf especially focussed
on the so-called bands of Baillarger (Baillarger, 1840), two heavily
myelinated transverse layers, the outer band usually coinciding with
cytoarchitectonic layer IV (Lamina granularis interna), and the inner
band with cytoarchitectonic layer V (Lamina pyramidalis interna)
(Hopf, 1967; Vogt, 1910) (see Fig. 1A). In analysing the appearance of
the bands of Baillarger, Hopf utilised the Vogts' most practical criterion:
comparing local features of the Baillarger stripes of one cortical area
globally to other areas. In the mid-20th century, Hopf first used these
criteria to systematically parcellate the cortical surface and generate a
myeloarchitectonic map (Hopf, 1955, 1956; Hopf and Vitzthum, 1957).

Vogt (1910) categorised myeloarchitectonic areas into four main
types: bistriate, unistriate, unitostriate, and astriate, depending on
whether two horizontal myelin-rich bands are visible, only one band,
or no striation at all. In Fig. 1B, we depict a semidiagrammatic represen-
tation of the myeloarchitectonic types of the cortex (reproduced from
Hopf (1968, 1969)). The unistriate and unitostriate types both describe
one band being visible. The unistriate type (Latin: unus) covers only one
band while the unitostriate type (Latin from “unite”) describes the
fusion of multiple layers to a single visible one. The bistriate type has
two visible bands. In contrast, the astriate type is so heavily myelinated
that no individual bands are discernible. Hopf continued studying the
bands of Baillarger and their position in cortical depth, their thickness,
and their intensity of myelination. He found that differences between
locally neighbouring areas may be much larger than those of areas far
apart. This leads to a local categorisation into three minor types: an
inner, an outer, and an equally dense myelinated type, depending on
whether one of the bands, inner or outer, is more highly myelinated
or whether both are equally myelinated. Extremes of these types can
be found in well-studied primary cortical areas. The line of Gennari or
Vicq d'Azyr (Gennari, 1782; Vicq d'Azyr, 1786) in the primary visual
cortex (Brodmann area 17) is of unistriate type with an outer band of
Baillarger being more pronounced.

It is apparent from classical histology that cytoarchitecture and
myeloarchitecture are two aspects of the same anatomical reality,
both reflecting cortical microarchitecture (Nieuwenhuys, 2013). Thus,
it is reasonable to assume that there is a relationship between these
twomicrostructural domains. Hellwig (1993) demonstrated in 14 corti-
cal areas that a priori information derived from cytoarchitecture can be
used to estimate relative cortical myelin density.

Recent developments in mapping myeloarchitecture using MRI

Since the pioneering study by Clark et al. (1992), researchers using
MRI have found that image contrast in the cortex is mainly based on
myelin (Walters et al., 2003, 2007; Eickhoff et al., 2005b). Intracortical
contrast has been shown in group-average T1 maps, T2* maps, and in
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ratios between T1-weighted and T2-weighted images (Tardif et al.,
2013; Geyer et al., 2011; Cohen-Adad et al., 2012; Deistung et al.,
2013; Glasser and Van Essen, 2011; Sereno et al., 2012). Most of these
contrasts is driven by myelin content, especially in quantitative T1
maps. Geyer et al. (2011) demonstrated that 7 T MRI can reveal local
cortical differences in quantitative T1 images and, thus, can precisely de-
pict some cortical boundaries. By using intracortical contrast in surface
registration techniques, Tardif et al. (2013) demonstrated in a group-
average T1 map at a unique high resolution and for multiple cortical
depths that T1 maps actually reflect the cortical myeloarchitecture.
Cortical profiles, e.g. traverses running perpendicularly through the
depth of the cortex and sampling the image intensities, have allowed
parcellations of primary areas in humans (Bridge and Clare, 2006;
Dick et al., 2012; Dinse et al., 2013a; Annese et al., 2004; Schleicher
et al., 2005) and primates (Bock et al., 2009).

Using cytoarchitectonic parcellations based on an observer-
independent method (Eickhoff et al., 2005a) and surface registration,
Fischl et al. (2008) were able to successfully provide probabilistic
maps of cortical areas. Suchmaps are consistentwithmyeloarchitecture
only in primary areas. Recently, generative models have become more
popular for cortical parcellation and have been applied to functional or
connectivity-based MRI data 9Lashkari et al., 2010; Sabuncu et al.,
2009; Ryali et al., 2012).

New MRI mapping techniques allow one to image the brain at sub-
millimetre resolution. With myelin being able to capture inter-areal
differences, new approaches evolved that combine tonotopic fMRI
and myeloarchitectonic T1 mapping to localise primary visual areas
(Sereno et al., 2012) and primary auditory areas (Lutti et al., 2014;
Dick et al., 2012) in individual healthy adults.

Here, we present a generative approach which, based on known
cytoarchitectural features, allows us to estimate cortical myelin
patterns. The estimations aremade in terms of in-vivo T1 values (inmil-
liseconds) as these have been shown to be associated with myelin con-
tent. The models thus represent the pattern of the in-vivo quantitative
T1 map that MRI should yield for a given area-specific cytoarchitecture.
The modelled cortical patterns reveal different area-specific signatures
and may be used for cortical parcellation based on purely intracortical
features rather than probabilistic maps or cortical folding patterns. The
method may also help to analyse the spatial distribution of cortical T1
values. When cortical profiles are accurately defined (Waehnert et al.,
2013b), intracortical features can be reliably observed in ultra-high
resolution structural MRI data.

The model presented in this work was introduced in a recent
conference paper by Dinse et al. (2013b). Here, we describe an im-
proved implementation of the approach in detail. The capabilities of
our cytoarchitectonically-driven myelin-based approach are demon-
strated in the left primary motor (M1)/somatosensory (S1) region
encompassing Brodmann areas 4, 3, 1, and 2. The model was applied
and quantitatively compared to in-vivo images of nine subjects in
order to show how much the signatures differ between areas.
Validation was based on ex-vivo MR images and histological sections
of one formalin-fixed post-mortem human brain. Additional validation
experiments were conducted to study two important aspects of our
approach:

1. How well can the area-specific models be distinguished when
resolution increases or decreases?

2. How significant are the mean and the shape of a cortical profile
compared to our approach?

Taken as awhole, this leads to the questionwhether themodel can be
used as a valid tool for myelin-based parcellation of the cortex. The
method presented in this paper can be applied to other cortical areas.
The approach may also provide new perspectives, both in imaging
and in modelling the relationship between cytoarchitecture and
myeloarchitecture, thus bringing about a better understanding of the
functional and the structural organisation of the cortex in living humans.
Material and methods

The work presented here adapts Hellwig (1993)'s method and pro-
vides the first known application to in-vivo brain MR data. Therefore,
in-vivo quantitative T1 maps at ultra-high resolution of nine subjects
were obtained with a 7 T (Tesla) MR scanner. Also, one post-mortem
brain sample was used to obtain similar MR data as well as histological
material.

Prerequisites: cortical profiles and layer estimation

At the core of the presentedmodelling approach are cortical profiles,
i.e. traverses running from one cortical boundary surface to the other
and along which image values can be sampled at different cortical
depths. These profiles carry a rich information content (Bridge et al.,
2005; Dinse et al., 2013a; Walters et al., 2007). With the in-vivo ultra-
high resolution now used at 7 T, finer details of myelination, especially
area-specific profile shapes, are revealed. To construct anatomically
meaningful cortical profiles, we computationally divided the cortical
sheet into multiple surfaces using a novel volume-preserving layering
approach by Waehnert et al. (2013b). The estimated lamination paral-
lels the cortical layers observed in myeloarchitecture (Bok, 1929). In
locations of gyral crowns the outer layers are compressed while the
inner layers are stretched out. In locations of sulcal fundi the opposite
occurs. The layering model is based on volumetric segments that form
a truncated cone and span the cortex from one boundary surface to
the other representing the local cortical thickness. The areas of the top
and bottom surfaces of a segment are proportional to the local curvature
at the white matter (WM)/grey matter (GM) and GM/cerebrospinal
fluid (CSF) boundary surfaces. The layering model transforms a desired
volume fraction of the segment's volume into a distance fraction of the
segment's cortical thickness. This transformation implicitly yields corti-
cal depth estimates for each computed surface.

This section outlines the image acquisition and preprocessing of
in-vivo data (Section 2.2.1) and post-mortem data (Section 2.2.2), i.e.
ex-vivo MRI and histological data. The implemented methods are ex-
plained in detail by implementing and adapting the work of Hellwig
(1993) (Section 2.3.1) followed by a description on how to transform
the biological metrics into MRI metrics (Section 2.3.2). Finally, we de-
fined a probabilistic metric to compute the similarity between area-
specific models and single in-vivo cortical profiles within the entire
cortex.

Data acquisition and preprocessing

In the following section, we will use the term layer to refer to ana-
tomical layers originating from cyto- and myeloarchitectural studies.
The term surfaces is reserved for computed layers i) representing the
boundary surfaces between WM/GM and GM/CSF and ii) modelling
the anatomical layering within the cortex.

In-vivo MRI
We scanned nine healthy human subjects (25.6 ± 3.0 years, five

female subjects) with a MP2RAGE sequence (Marques et al., 2010)
and a TR-FOCI pulse for inversion (Hurley et al., 2010) on a 7 Tesla
(7 T) whole-body MR scanner (MAGNETOM 7 T, Siemens, Germany)
using a 24 channel phased array coil (Nova Medical Inc., Wilmington,
MA, USA). We obtained in-vivo whole-brain quantitative T1 maps at
0.7 mm isotropic resolution (TI1 / TI2 = 900 = 2750 ms, TR = 5 s,
TE = 2:45 ms, α1 / α2 = 5° / 3°, GRAPPA = 2, scan time = 11 min)
and T1 maps of each hemisphere separately at 0.5 mm isotropic resolu-
tion (same parameters, no GRAPPA, scan time = 30 min). The three
maps were co-registered into a standard anatomical (Montreal Neuro-
logical Institute, MNI) reference space at 0.4 mm isotropic resolution
and fused to generate a 0.4 mm whole-brain map from the two hemi-
spheric 0.5 mm maps. In order to preserve cortical geometry, a rigid
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registrationwasused optimized using a cost function of normalisedmu-
tual information. Fig. 2A depicts in anterior–posterior orientation an in-
flated in-vivo quantitative T1 map (registered to 0.4 mm isotropic MNI
space, 55% cortical depth) of a single subjects left hemisphere. Low T1
values (ms) (blue) are associated with higher myelination. The white
A

B

D

C

Fig. 2.Overview of material used in this work. A) Inflated 0.5mm T1 at 55% cortical depth. TheM
values is visible across the surface but also within M1 (encircled) which is related to the locatio
vivo T1 mapMRI slice ((A), upper right). BA 4 shows lower T1 values than BA 3b. Striation (arro
ume-preserving layering approach (Waehnert et al., 2013b). In locations of gyral crowns (white
In locations of sulcal fundi (pink arrowhead), the behaviour of the surfaces changes to the oppos
curve covers our ROIs. C) Left: The image depicts the ex-vivo T1mapMRI slice indicated as red cu
Right: The layering depicts the cortical depth values. The behaviour of the laminae is the same
images illustrate themyelin stain and enlargements of it in locations of the green lines. The yell
parison, Hopf's illustrations Hopf (1967) presented in Fig. 1B are included.
curve drawn on the inflated surface indicates the location of the MRI
slice pictured to the right.

Cortical extraction was performed using the CRUISE algorithm Han
et al., 2004 as integrated in the CBS Tools (Bazin et al., 2013). The sur-
faces between GM andWMand between GMand CSFwere represented
1/S1 region, known to bemore highlymyelinated, shows lower T1 values. Variability in T1
n of the motor hand knob. The white doublebow curve outlines the ROIs shown in the in-
ws) is visible. The image below depicts cortical depth values calculated using a novel vol-
arrowhead), the outer surfaces are compressedwhile the inner surfaces are stretched out.
ite. B) The picture shows the brain sample used to derive ex-vivo data. The red doublebow
rve in (B). BA 4 shows lower T1 values than BA3b. Striation is visible in BA1 and2 (arrow).
as in (A) but much more visible due to the higher resolution of the ex-vivo MRI. D) The

ow line follows theWM boundary. Red boxes depict the Baillarger banding. As direct com-
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in Cartesian space using a level-set framework (Sethian, 1999). The sur-
faces were used to estimate a set of N = 20 level-set surfaces based on
the abovementioned volume-preserving approach. Fig. 2A, lower right,
depicts the cortical depth estimates. Using the layered level-set surface
representations, traverses were constructed that run from one cortical
boundary surface to the other. Along these traverses, T1 values of the
MR image datawere sampled to derivemyelin-related profiles. For con-
sistency, we will refer to these empirically-derived profiles as in-vivo
profiles.

Ex-vivo MRI and histology
The ex-vivo data were used for verification only and were not used

in the modelling of the area-specific MR patterns.
An ex-vivo brain sample of the left primarymotor and somatosenso-

ry region, i.e. M1/S1 region, was analysed. Fig. 2B shows the brain sam-
ple used. The red curve outlines the region of interest. A formalin-fixed
block of human post-mortem brain (age: 92 years, post-mortem time:
22 h) containing the pre- and post-central gyri was obtained from an
autopsy with informed consent from the patient's relatives. No neuro-
logical or psychiatric pathologies were recorded for this brain.

The block was scanned in Fomblin (Solvay Solexis, Bollate, Italy)
with a home-built dual-loop circularly polarised radio frequency (RF)
coil. The MP2RAGE sequence was used to obtain a quantitative T1 map
of the M1/S1 region (0.25 mm isotropic resolution, TE = 2:94 ms,
TR = 3000 ms, TI1 = 325 ms, TI2 = 900 ms, α1 / α2 = 8°/8°, 66 aver-
ages, actual scan time = 11 h 43 min).

In Fig. 2C we show the MRI slice at the red curve outlined in
Fig. 2B. Estimation of the WM/GM and GM/CSF surfaces in the ex-
vivo MR image was based on a manual segmentation of the data
into WM and GM compartments. The surfaces were used to estimate
a set of N = 20 level-set surfaces based on the above mentioned
volume-preserving approach. The right picture in Fig. 2C illustrates
the cortical depth estimates. Traverses were constructed and along
these the post-mortem MR image T1 values were sampled to gener-
ate myelin-related profiles. For consistency, we will refer to these
post-mortem-derived profiles as ex-vivo profiles.

The same brain sample, containing Brodmann areas 4, 3, 1, and 2,
was used for histological analysis. The blockwas cut with a freezingmi-
crotome (SM2000R, LEICABiosystems,Wetzlar, Germany). Consecutive
sections were stained for myelin and cells and examined under an Axio
Imager M1 light microscope (Zeiss, Jena, Germany) with a 5× objective
at 2.58 μm in-plane resolution. In this work, only themyelin stainswere
considered. The cell stains were used for a general comparison of the
underlying tissue structure. The sections (thickness: 30 μm) were im-
munostained for myelin sheaths (rabbit monoclonal antibody against
myelin oligodendrocyte glycoprotein (MOG) diluted to 1:2000, avidin-
biotin-peroxidase complex (ABC) method, chromogen: 3.3′-diamino-
benzidine (DAB) tetrahydrochloride and ammonium nickel(II) sulfate).
The floating sections were pre-treated in sodium borohydride (NaBH4)
for 30 min at room temperature in order to enhance the antigen acces-
sibility (Jäger et al., 2013).

Every other section of the same block was immunostained for cell
bodies (mouse monoclonal antibody against neuronal marker protein
HuC/HuD diluted to 1:400, ABC method, chromogen: DAB tetrahydro-
chloride and ammonium nickel(II) sulfate). The floating sections were
pre-treated in Tris buffer (pH 8.0) for 20 min at 90 °C.

Consecutive sections alternate between cell and myelin stain. A
complete 3D reconstruction of myelinated fibres in the cortex was
therefore impossible. However, given 3D data, the volume-preserving
method is able to provide cortical depth estimates. Therefore, one histo-
logical section was stacked six times to recover a 180 μm thick 3D data
block. The section used is shown in Fig. 2D, lower left. The yellow line
indicates the WM boundary. The zoomed-in pictures were taken from
locations highlighted in green on the original stained section. As com-
parison, Vogt (1910) originally drawn illustrations remodelled by
Hopf (1967)were included. The stacked dataweremanually segmented
into WM and GM compartments and the volume-preserving approach
was applied to estimate the intracortical surfaces. Due to the 2D nature
of the histological sections and the implicitly given cortical depth esti-
mates, the intensity values were averaged at different cortical depths
to provide a myelin profile. For consistency, we will refer to such
histologically-derived profiles as histology profiles.

Methods

In order to estimate laminar myelin density patterns as observed in
quantitative T1maps,we established amodel of corticalmyeloarchitecture
from known cytoarchitecture in a two-step approach. In the first step, we
implemented and adapted Hellwig (1993)'s method. Quantitative
properties of cytoarchitecture relevant in each cortical area found
by von Economo and Koskinas (1925) were transformed into pat-
terns representing myelin density. In a second step, we normalised
the profiles into MRI space (T1 values given in milliseconds) respect-
ing the currently used MR resolution and MR imaging limitations
such as partial voluming. Fig. 3 depicts the conceptual design of the
presented approach including intermediate results. Finally, we
build a probabilistic function based on a Gaussian metric that mea-
sures the similarity between area-specific models and in-vivo pro-
files obtained with ultra-high resolution brain MRI.

Generating cortical area-specific profiles
Hellwig's approach is based on two main assumptions:

1. Large neurons contribute more to intracortical myelin content than
small ones.

2. The average distribution of horizontal axon collaterals of neurons can
be quantified according to data provided by Paldino and Harth
(1977).

Detailed information and a discussion of the assumptions can be
found in Section 4.1.

We followedHellwig's approach by first obtaining the relative thick-
ness, mean neuronal cell density cdensity, and mean cell size csize for each
cortical layer from the tabulations of von EconomoandKoskinas (1925).
The measures were given for locations in sulcal walls and gyral crowns.
In case a Brodmann areawasmainly located in a sulcal wall, we used the
measures given for this location and, conversely, the measures for a
gyral crown for areas mainly located on the crest of the gyrus. In von
Economo and Koskinas (1925), the neuronal cell size csize is defined as
the ratio of cellheight/cellwidth of the cell body, which includes the nucleus.
Note that the Nissl stain used by von Economo and Koskinas (1925) la-
bels only cell bodies, not neurites. According to Hellwig (1993),
myeloarchitecture can be estimated from cytoarchitecture by assuming
that the quantity of myelin depends on the cell size, following a sigmoi-
dal function s which describes the contribution of cells to the layer-
specific myelin concentration. We modelled this relation as:

s csizeð Þ ¼ 1
1þ exp −r csize−lð Þð Þ ð1Þ

inwhich l describes the location ofmaximumcellular contribution and r
the rate of change (Fig. 3b).

An estimate of the initial cell content (Fig. 3c) for each layer clayerwas
obtained as:

clayer ¼ csize cdensity s csizeð Þ: ð2Þ

The laminar pattern of myelinated fibres in the cortex is considered
to originate mainly from axonal collaterals of neuronal cells. To include
laminar projections in the area-specific profile shapes and to transform
the profile from cytoarchitectonic properties into information
representing themyelin content, the initial cell content of clayerwas con-
volved with a function a describing the number of axonal collaterals



Fig. 3. Schematic overviewof the processing pipeline. The top row illustrates thework byHellwig (1993). Quantitativemeasures of cellular configuration are used to establish an initial cell
content which is convolved with a model of the distribution of axonal collaterals. The second row transforms the modelled myelin-related profiles into modelled MR profiles of the T1
intracortical contrast observable in brain MRI. In addition, the modelled (Fig. 3g) and modelled MR profiles (Fig. 3k) for each ROI are shown below.

Table 1
Estimates ê, used in the normalisation step (Eqs. (4) and (5)), and estimated T1 standard

deviations σmodMR , used in the profile similarity computation (Eq. (12)), are shown.

ê σmodMR

Estimates BA 4 BA 3b BA 1 BA 2 BA 4 BA 3b BA 1 BA 2

WM 0.45 0.01 0.75 0.3 40 55 60 45
CSF 0.60 −0.1 0.90 0.35 140 185 160 135
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distributed around a cell body remodelled from Paldino and Harth
(1977) (see Fig. 3d):

mBA xð Þ ¼ clayer � a
� �

xð Þdx: ð3Þ

The convolution is defined in the range of relative cortical depth
d∈ [0, 1]. The profilesmBA give a qualitative indicator of myelin concen-
tration in the cortex (Fig. 3e) (see Section 4.1 for discussion) and are
comparable to myelin-stained sections and the myeloarchitecture de-
scribed by Vogt and Vogt (1919a,b). In Section 4.1 we discuss in detail
why the profiles are only qualitative.

Normalising area-specific profiles into the MR Imaging space
To allow for an application to quantitativeMRI data, the area-specific

models had to undergo two transformation steps.

Step 1 In step one we normalised the area-specific profiles into the MR
intensity range of a quantitative T1map (values inmilliseconds).
This transformation step facilitates one to apply themodel to in-
dividual subjects as well as to group data. This first transforma-
tion step has to respect further variability, i.e. partial volume
effects in the cortex, originating from the rather coarse resolu-
tion of in-vivo MRI. The resulting profile is in MR intensity
range, but still at the resolution of cell size given in the tabula-
tions by von Economo and Koskinas (1925) (0.001mm=1 μm).
The MR intensity range of the cortex is defined by the mean T1
value and standard deviation of the boundary surfaces. We cal-
culated these parameters directly from the WM/GM and the
GM/CSF boundary surfaces, individually for each subject. How-
ever, the intensity range of T1 values in individual areas varies
and is, thus, defined as IBA = [IBAwm, IBAcsf] for each individual
Brodmann area. Please see Section 4.1 for a detailed discussion
of causes of variability. The area-specific range was calculated
by using the cortex' mean T1 value μ and the cortex' T1 standard
deviationσ computed at theWM/GMboundary and the GM/CSF
boundary (Fig. 3f) as follows:

Iwm
BA ¼ μwm−êwm;BAσwm;BA ð4Þ

and

Ics fBA ¼ μcs f−êcs f ;BAσ cs f ;BA: ð5Þ

êwm and êcsf represent the estimators of the determined area-
specific variation at the two boundaries. ê was estimated from
prior investigations on lower resolution T1 maps (0.7 mm
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isotropic) (Dinse et al., 2013a) in which the behaviour of the
profiles in terms of mean and standard deviation has already
been observed. Table 1 outlines the estimates.
Finally, the profiles inmBA (Eq. (3)) were normalised into the T1
MR intensity range of grey matter:

Tmod
1BA xð Þ ¼ Iwm

BA þ
Ics fBA −Iwm

BA

� �
mBA xð Þ−min mBA dð Þð Þð

max mBA dð Þð Þ−min mBA dð Þð Þ ð6Þ

inwhichmin() andmax() define theminimumandmaximumof
mBA along relative cortical depth d∈ [0, 1] (Fig. 3g). At this point,
the modelled T1 profiles are continuous, but resemble the cell
size resolution (0.001 mm) used in the atlas of von Economo
and Koskinas (1925). For consistency, we refer to the modelled
profiles Tmod

1BA in MR intensity range as modelled profiles.
Step 2 In the second stepwe transformed themodelled profiles into the

currently used MR resolution.We build a filter function that can
be understood as a translator between the model and different
scales of MR resolution.
Tomatch the limitedMR resolution, the profiles inTmod

1BA (Eq. (6))
were convolved with a windowed cardinal sine function that
represents the MRI signal point-spread function (Fig. 3h). To
take into account partial volume effects, the modelled profiles
Tmod
1BA were extended into white and grey matter. T1 values

representing WM and CSF in MR images were taken from
Rooney et al. (2007) and were assigned to the profile's end
points corresponding toWM and CSF. The filter function intends
to represent the current in-vivoMR image resolution. To account
for the limiting effects of the MR resolution, we considered the
relative overlap (in percent) between filter function and cortical
thickness tBA (in absolute value) in each Brodmann area (BA).
We defined the width of the filter function as:

width ¼ resMRin−vivo

tBA
tm: ð7Þ

resMRin − vivo is the MR resolution of the in-vivo brain data
(0.5 mm isotropic), and tm is the maximum cortical thickness
(in percent). We adapted the width of the filter function for
each area-specificmodel as the cortical thickness varies in differ-
ent Brodmann areas. Values of absolute cortical thickness tBA
were taken from the tabulations of von Economo and Koskinas
(1925). A width factor α was numerically determined to hold
the following relation:

sinc xð Þ ¼ sinc α widthð Þ ¼ 0:5 ð8Þ

where α defines the Full-Width-Half-Maximum (FWHM=0.5)
according to the cortical thickness in individual Brodmannareas.
In the filter function, we used the absolute value of a truncated
cardinal sine function centred in the sampling window. The
final filter function for resolution adaptation had the following
form:

filter xð Þ ¼ sinc α x− tm=2ð Þð Þðj jH xð Þ: ð9Þ

H(x) describes a Hamming window that was used to decrease
the Gibbs phenomenon. We defined H(x) as:

H xð Þ ¼ 0:54−0:46 cos 2πxð Þ=tmÞð Þðð : ð10Þ
Finally, the modelled profiles Tmod

1BA were convolved with this
filter function:

TmodMR
1BA xð Þ ¼ Tmod

1BA � filter
� �

xð Þdx ð11Þ
The convolution is defined in the range of relative cortical depth
d ∈ [0, 1]. TmodMR

1BA is now a defined function of myelin-related T1
values represented inMR space andMR resolution and has been
modelled from known cytoarchitecture in individual Brodmann
areas (BA) (see Fig. 3k). For consistency throughout the paper,
we refer to the MR-resolved profiles as modelled MR profiles.

Measuring the similarity between area-specific models and in-vivo
data

To facilitate comparisons between the area-specific models
and empirical data, we defined a metric that estimates the similarity
P(T1in − vivo ∈ BA) of an in-vivo profile T1in − vivo to belong to a certain
Brodmann area (BA). For this purpose, the expected variance σmodMR

BA

of the modelled MR profiles in their corresponding location was
estimated empirically from Dinse et al. (2013a). σmodMR

BA
determines

the range of uncertainty (in milliseconds) by linearly interpolating
empirical estimates of deviations in individual areas (see Table 1).
Under the assumption that T1 values, independently of their cortical
depth, are normally distributed, we defined the probabilistic
similarity P(T1in − vivo ∈ BA) as a weighted Gaussian process with a
prefactor δ = 1/2 as:

P Tin−vivo
1 ∈BA

� �
≈exp −δ

Z 1

0

Tin−vivo
1 xð Þ−TmodMR

1BA xð Þ
� �2

σmodMR
BA

xð Þ2 dx

0
B@

1
CA: ð12Þ

Here, P compares how similar a single in-vivo profile T1in − vivo of the

cortex is to the modelled MR profile TmodMR
1BA in individual subjects. Sim-

ilarity values range between 0 and 1, indicating low and high similarity.

Model validation in motor and somatosensory region

In order to validate thismodelling approach usingMRI, regions of in-
terest (ROIs) in the left brain hemisphere were defined that correspond
to primary and secondary areas of themotor and somatosensory region
known as M1/S1 region. They specifically comprised Brodmann area
(BA) 4, located in the posterior wall of the pre-central gyrus, Brodmann
area 3b, located in the anterior wall of the post-central gyrus, Brodmann
area 1, covering the gyral crown of the post-central gyrus, and
Brodmann area 2, located in the posterior wall of the post-central
gyrus. The location of these areas with respect to sulcal and gyral land-
marks is consistent across subjects. All areas are located in a relatively
small region of the brain, which allows a joint in-vivo and post-
mortem study with ultra-high resolution 7 T MR brain imaging. The
areas are anatomically contiguous or close neighbours, and they all
have strong myelination levels. As a group, they stand out from
neighbouring areas of the frontal and parietal lobe. However, themicro-
structural differences between these areas are subtle, thus accurately
separating them is challenging for observer-independent parcellation
schemes. It has been shown by Geyer et al. (1999) that there are chang-
es in cytoarchitecture within Brodmann area 3, thus forming areas 3a in
the sulcal fundus and 3b in the anterior wall of the post-central gyrus.
Strictly speaking, BA 3a and 3b are not areas defined by Korbinian
Brodmann, but were later introduced by Vogt and Vogt. We will
continue using the Brodmann nomenclature as the tabulations of von
Economo and Koskinas (1925) and the descriptions of Vogt and Vogt
refer back to it.

Although the Vogts' division based on myeloarchitectonics is com-
plex, Vogt (1910) suggested four main types of myeloarchitecture in
the human cortex which are constant across brains. The chosen ROIs
specifically exemplify each of these basic types. Brodmann area 3a, lo-
cated at the fundus of the central sulcus between areas 4 and 3b, was
not included in this analysis. Its myeloarchitecture has not been inten-
sively studied and is thus not assignable to one of the four main types.
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For all data sets acquired, ROIs were manually labelled in the left
hemisphere within the abovementioned Brodmann areas. The labelling
process was guided by accepted macro-anatomical landmarks (Grefkes
et al., 2001; Geyer et al., 1999). All labels in in-vivo, ex-vivo, and histol-
ogy data were used to derivemean profiles in each ROI and in each data
modality. Themeanprofileswere compared to the area-specificmodels.
Additionally, the manual labels on the 0.5 mm isotropic T1 maps were
used to validate the area-specific models on in-vivo data.
Research questions and experiments

The validation addresses the following major research questions:

Q1 How well do individual empirical profiles derived from in-vivo
data, i.e. in-vivo profiles, fit the respective modelled MR profiles
(Eq. (11))?

Q2 Can the area-specific models identify myeloarchitectonic signa-
tures in different functional cortical areas in living subjects?

Q3 How well do the area-specific modelled profiles (Eq. (6)) fit
traditionally derived profiles, i.e. ex-vivo MRI and histology
profiles?

Q4 Which resolution is required to distinguish between cortical
areas accurately and confidently using intracortical features
measured with quantitative ultra-high resolution brain MRI?

Q5 How helpful are measures such as themean value and the shape
of an individual in-vivo profile separately for the identification of
specific human cortical areas?

The questionswere answeredusing the here outlined corresponding
experiments.

In Experiment 1, we compared the area-specific models quantita-
tively to in-vivo data. ROIs in the left hemispheric 0.5 mm T1 map
were defined and manually labelled. The samples covered between 1
and 2.5 cm2 of the surface area in each ROI. Similarities P (Eq. (12))
were analysed by calculating a distribution of the similarity values in
each ROI subject-wise. Similarity values P are expected to be high
(approaching 1) in plausible locations, i.e. where in-vivo profiles belong
to a certain Brodmann area,whereas in other regions the similarities are
expected to be lower (approaching 0). Thus, the distribution of
similarities P in a given ROI may vary with the model used. To provide
comparable measures, we approximated the given distribution with a
probability density function of a beta distribution with shape parame-
ters α and β. Subject-wise, mode and standard deviation were estimat-
ed in each ROI. The mode defines the value at which the approximated
beta distribution takes its maximum value, i.e. the value that is most
likely to be represented by the similarities in each ROI. Computing the
mode of a beta distribution requires that the parameters α and β are
greater 1. If the approximation yielded values of (α, β) b 1, the distribu-
tion of similarity values was skewed too much to either 0 or 1 such that
the calculated beta distribution became asymptotic. In these extreme
cases, themode of the distribution (respectively the standard deviation)
cannot be computed andwe therefore assigned 0 to themode and stan-
dard deviation. This validation was performed on a single-subject as
well as a group-average basis.

Experiment 2 addresses the question of how well the models per-
form in one and the same ROI.We therefore computed for each location
in the human cortex the similarity values across the area-specific
models and marked the area-specific model with the highest value at
that location.

In Experiment 3, we qualitatively compared ex-vivo and histology
profiles tomodelled and in-vivo profiles in order to analyse the relation-
ship and likely similar trends in profile shapes. All profiles were trans-
formed into a normalised space with arbitrary units to match the
different contrasts and resolutions of the different data origins. The
objective of this validation is to study the apparent laminar myelination
change in each Brodmann area, given the different scales of resolution.

The analysis of Experiment 4 was performed among the different
area-specific modelled profiles (Eq. (6)). The profiles were transformed
into different scales of resolution using the filter function in Eq. (9). In
order to change the resolution at each scale, resMR, i.e. the parameter
defining the resolution, was changed in 50 μmsteps starting at a resolu-
tion of 1 μm and then increasing up to 1 mm. Waehnert et al. (2013a)
used profiles originating from T1 maps of different resolutions. They
found that the standard deviation decreases at higher resolution. Here,
the standard deviation was simulated to be smaller at a higher resolu-
tion and to be slightly larger at a lower resolution. A theoretical similar-
ity Pt was calculated between the different resampled area-specific
models at each scale of resolution. For application to in-vivo data, the
modelled MR profiles were downsampled. Here, the modelled profiles
were used at their original cell size resolution to reduce sampling arte-
facts when observing changes in profile shape.

Experiment 5 dealswith amore general question considering the in-
formation content of in-vivo cortical profiles. To show to what extent
both a profile's mean and its shapematter, we performed additional ex-
periments using these two measures separately in Eq. (12). In the
mean-experiment, the mean T1 value of the modelled MR profile was
compared to the mean T1 value of an individual in-vivo profile. The
mean T1 value itself was simply computed as the average across the
profile's cortical depth. In the shape-experiment, the mean distance be-
tween the profiles was calculated through cortical depth. To allow com-
parisons of shape only, we demeaned the modelled MR profile in
advance by shifting it to the mean T1 value of the empirical profile.

Software

All data were processed using the CBS Tools software package inte-
grated into the MIPAV and JIST framework (Bazin et al., 2013; Lucas
et al., 2010). The CBS Tools are freely available for download from the
Max Planck Institute for Human Cognitive and Brain Sciences website:
http://www.cbs.mpg.de/institute/software/cbs-hrt/index.html and from
NITRC: http://www.nitrc.org/projects/cbs-tools/.

Results

T1 fMaps and cortical in-vivo profiles

Glasser and Van Essen (2011) have already presented lower resolu-
tion (1 mm) maps describing mean cortical myelin content. Bridge and
Clare (2006) andWalters et al. (2003, 2007) earlier showedmicrostruc-
tural detail in individual cortical profiles. As the spatial resolution of the
T1 maps improves, finer details of myeloarchitecture are revealed.
Cortical profiles derived from 0.5 mm T1 maps clearly carry more infor-
mation than the mean of a profile alone.

The T1 maps used in this study are able to capture finer details of
myeloarchitecture than maps describing mean cortical myelin content
presented by Glasser and Van Essen (2011). The T1 maps used provide
contrast differences between primary/secondary areas (lower T1
values) and other less heavily myelinated areas (higher T1 values).
Frontal and parietal regions clearly differ in contrast. The difference in
myelination between the motor region M1 and the somatosensory
region S1 is visible in Fig. 2A and in the mean experiment shown in
Fig. 7 (second column). With the isotropic ultra-high resolution of
0.5 mm, the in-vivo data reveal medio-lateral variation of T1 values in
the primary motor area M1. Within M1, a location with even darker
T1 values (encircled in white in Fig. 2A) can be detected that corre-
sponds to the motor hand knob known to be the most strongly myelin-
ated part of the primary motor region. These observations agree with
historic maps representing cytoarchitectural distributions (Brodmann,
1909;von Economo and Koskinas, 1925) as well as myeloarchitecture

http://www.cbs.mpg.de/institute/software/cbs-hrt/index.html
http://www.nitrc.org/projects/cbs-tools/
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(Vogt and Vogt, 1919a,b; Hopf, 1955, 1956; Hopf and Vitzthum, 1957;
Smith, 1907).

The (T1) values of profiles in Brodmann area 4 are very low
(indicating higher myelination) for each individual imaging modali-
ty (see Fig. 6). Area 4 has myelinated tangential fibres in upper cor-
tical layers (Vogt and Vogt, 1919a,b). These additionally cause a
higher degree of myelination in the upper cortical layers of area 4
than in the corresponding layers of area 3b. The described
myelination translates into expectations for the T1 profile values.
Low T1 values (in ms) are found in deeper cortical layers of both
areas 4 and 3b as shown in the in-vivo average profiles of areas 4
and 3b, presented in Fig. 4 (first column). The T1 values for upper cor-
tical layers of areas 4 and 3b, however, differ. The cortical profiles de-
rived from our T1 maps clearly display this difference. The T1 values
in the upper layers of area 4 are much lower than the corresponding
T1 values in area 3b.
Fig. 4. Application of the presentedmodel to a single subject is shown. Left column: Area-specifi
solid) andmodelledMRprofiles (red, solid) in one individual subject. Lower T1 values represent
standard deviations. The area-specific MR models correspond well with the mean in-vivo profi
surface. Right column: Enlargements of the considered ROIs. The zoomed-in pictures show h
Brodmann area. When the model and the location of an area do not correspond, the results sh
Comparing models to in-vivo brain data (Exp. 1, 2)

Fig. 4 illustrates the results corresponding to Experiment 1 from a
single subject. The strongly alternating profile shape of the modelled
profiles (Fig. 4, left column,magenta, dashed) represents the underlying
laminar myeloarchitectonic patterns at cell size resolution. Higher
myelination is associated with lower T1 values. The transparent bands
of the in-vivo profiles andmodelled MR profiles represent the standard
deviation. The dips visible in the profiles correspond to highermyelinat-
ed intracortical structures. The area-specific MRmodels (shown in red)
correspond well to in-vivo profiles. When the resolution is decreased,
the area-specific modelled MR profiles reveal less of their characteristic
structure as compared with themodelled profiles. Given a certain reso-
lution, both the in-vivo and modelled MR profiles are different across
the areas. The loss of structural features in the area-specific models
with decreasing resolution is depicted in Fig. 6B.
c modelled profiles (magenta, dashed) are compared against mean in-vivo profiles (blue,
highermyelin concentration. The transparent bands represent themodelled andmeasured
les. Middle column: Maps of a single subject's similarity values are shown on the cortical
igher intra-ROI similarities when there is a match between a model and the respective
ow smaller similarities and/or inconsistent patterns.



Table 2
A summary of the quantitative comparisons between area-specificMRmodels and in-vivo
profiles. The mode and standard deviations (given in brackets) were computed from the
estimated beta distribution of the underlying similarity values in each ROI. The diagonal
boxes (blue) describe a given model at its corresponding location. Anatomically
neighbouring areas are highlighted in yellow.

Group average Single subject
BAs

4
0.75 0.619
(0.207) (0.219)

3b
0.333 0.718 0.05 0.611
(0.262) (0.193) (0.199) (0.192)

M
od

el
le

d 
pr

of
ile

s

1
0.777 0.0 0.941 0.937 0.5 0.0 0.84 0.678
(0.181) (0.0) (0.210) (0.214) (0.244) (0.0) (0.162) (0.164)

2
0.0 0.687 0.45 0.379
(0.0) (0.299) (0.223) (0.203)

4 3b 1 2 4 3b 1 2
0.0 0.0 0.0 0.0 0.521 0.636
(0.0) (0.0) (0.0) (0.0) (0.217) (0.217)

0.0 0.750 0.461 0.434
(0.0) (0.198) (0.211) (0.180)

0.0 0.0 0.0 0.0
(0.0) (0.0) (0.0) (0.0)
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In Fig. 4, second column, the similarities P are mapped onto the
cortical surface for each model indicating high similarity (coded bright
yellow) or low similarity (coded bluish to black). In general, the area-
specific MR models show higher similarities in primary cortical areas,
but not in areas located at the frontal lobe. Some areas are highlighted
in the parietal lobe and the occipital pole. These structures are more
strongly myelinated than the prefrontal brain, but not as strongly mye-
linated as primary areas, which confirms previous research (Vogt and
Vogt, 1919a,b; Hopf, 1955, 1956; Hopf and Vitzthum, 1957).

The right column in Fig. 4 shows zoomed-in results, focussing on the
defined ROIs, of the same subject. Themodel of Brodmann area 4 shows
clear results. Higher similarities (shown in yellow) are consistently dis-
tributed in location BA 4, whereas the similarities get smaller and the
distribution pattern gets more patchy in other areas. The results are
similar for the model of Brodmann area 3b. Neighbouring locations
such as areas 4 and 1 show lower similarity values. The model of
Brodmann area 1 shows lower similarity values in location of area 3b
and area 2. The model of Brodmann area 1 has high similarity values
in location of area 4. The model of Brodmann area 2 does not stand
out well. The discrimination between the four areas may be rather
poor. In general, the similarities are higher in plausible locations
(model and areamatch)while they are smaller in directly neighbouring
areas. The individual models reveal smaller similarities and/or inconsis-
tent patterns (small different clusters) when the location of the
Brodmann area and the area-specific model do not match.

The quantitative comparisons between area-specificMRmodels and
in-vivo profiles are summarised in Table 2. Given a certain model, it
mostly performs best in its corresponding location (diagonal, coloured
blue) and outperforms directly neighbouring areas (coloured yellow).
This is true for individual subjects as well as the group data. When the
distribution of similarity values was skewed to 0 or 1, the approximated
beta distribution becomes asymptotic. The mode and standard devia-
tion cannot be estimated and were set to 0. The distribution of the
area-specific similarities (blue) and the estimated beta distributions
(red) are additionally shown in Fig. 8 in the Supplementary material.
Graphs are illustrated for the group-average and for the single subject
shown in Fig. 4.

Brodmannarea 2 is an exception (comparewith Fig. 4, right column).
Here, the underlying data is highly variable, which arises from imaging
artefacts as well as small segmentation errors. The T1maps show ringing
artefacts resulting frommotion of the subjects. A ringing effect is already
respected in our modelling approach, too (see Fig. 3h). The artefacts
appear in the back of the brain and encompass the post-central gyrus
but barely reach more into anterior regions, i.e. the central sulcus
(see Fig. 9 in the Supplementary material). The ringing artefacts do
thus not affect area 3b verymuch and area 4 is even less affected. The ef-
fects usually intrude the imaging data in location of the cortical surface
up to a depth of 1.5 cm. Therefore, all remaining areas of interest in the
post-central gyrus, i.e. areas 1 and 2, show these small effects. Its
influence on the final modelling result is different for the two areas, be-
cause the influence depends on the orientation and position of the area
as well as its cortical thickness. The ringing artefacts appear parallel in
the cortex of area 1 and orthogonally in the cortex of area 2. Given the
different cortical thicknesses of these locations with area 1 being thick
at the gyral crown and area 2 being relatively thin in the sulcal wall,
this ringing significantly affects the cortical segmentation result, and
leads to larger inaccuracies when calculating the cortical profiles. In
area 1, segmentation errors occur rarely, and their effects average out
when the cortical profiles are calculated. In area 2, however, the segmen-
tation of the boundary surfaces is affected by the artefact, which in turn
impairs the quality of the cortical profiles. Comparing these corrupted
profiles with an area-specific MR model leads to low similarity values,
although intracortical contrast remains visible in this area.

Blood vessels are another issue. With the new resolution, blood
vessels with a diameter of 0.5mmcan be captured. Thus, their influence
appears even stronger compared to standardly used MRI data. Segmen-
tation errors due to blood vessels occur in various regions of the cortex.
Here, the effects of segmentation errors due to blood vessels are most
prominent in area 2, where the anterior parietal (or post-central sulcal)
artery extends medially into the post-central sulcus. Branches of the
paracentral artery reach laterally into the central sulcus region. These
extensions usually follow the gyral crowns and their branches reach
into the sulcal basins. Vessels on the crown have a diameter larger
than the imaging resolution and are well discriminated with the seg-
mentation methods used. However, their branches have a diameter
close to or even smaller than the imaging resolution and are sometimes
misclassified as belonging to grey matter. All these effects influence the
performance of the model of Brodmann area 2. In the future, better
methods have to be developed to capture the vessels' characteristics
and to reduce segmentation errors.

From the aforementioned analysis, the question arises if the individ-
ual models are able to capture area-specific signatures. Fig. 5 depicts a
single-subject surface on which we mapped at each location the
model with the highest similarity value. Patterns of models 4, 3b, and
1 overlap with the corresponding locations of these areas. In location
of Brodmann area 4, the model of area 1 is slightly present and vice
versa. These two areas are very similar and hard to distinguish. The
similarity values of the model of Brodmann area 2 are smaller than
similarity values from other models. Thus, there is no obvious cluster
representing the location of Brodmann area 2.

Comparing models to post-mortem brain data (Exp. 3)

Fig. 6, first row, shows a comparison between group-average in-vivo
profiles (dark blue), ex-vivo profiles (light blue), histology profiles
(green), and a group-average of the area-specific models (red). The
comparison is shown for each ROI. All profiles were transformed into
a normalised space, with arbitrary units ranging between 0 and 1 to
match different contrasts and resolutions of the different data origins.
Lower values are again associated with higher myelin concentration.
Wehypothesise that profileswith similar resolution should have similar
profile shapes. Indeed, the modelled (red) and histology profiles
(green) are qualitatively similar. They show the same trends at the
same locations although the intensity of change is not the same. The
ex-vivo profiles (light blue) preserve some shape characteristics, but
striking features visible in themodelled and histology profiles areweak-
ly noticeable here due to limiting resolution effects. The in-vivo profiles
show less characteristic structure, but follow the general trend of the
other profiles.

Resolution experiment (Exp. 4)

Area-specific models at different scales of resolution are shown in
Fig. 6, second row. The pictures illustrate the effect of decreasing resolu-
tion on profile shape characteristics. Strong shape features, such as



Fig. 5. The images depict at each location the area-specificmodelwith the highest similarity value. Surface and zoom-in onROIs are shown for the single subject presented in Fig. 4.Models
reveal area-specific signatures. There is no obvious cluster representing the location of Brodmann area 2 as similarity values of the other models were higher.

Fig. 6.A)A comparison between area-specificmodels and group-average in-vivo, ex-vivo, and histology profiles is shown. Themyelination pattern agrees between the area-specificmodel
and histology. The dips present in the area-specific and histology profiles depict Baillarger banding. The dips visible in the histology profiles (marked with asterisk) are similar to those of
the area-specific models. The differences inmyelination are located at similar relative cortical depths for different imaging techniques in each Brodmann area. In general, themyelination
trend is preserved in ex-vivo and in-vivo profiles. B) Modelled profiles were transformed into different scales of resolution starting at 1 μm (red) and increasing up to 1 mm (blue). As
resolution is coarsened, salient features disappear quickly. Even at lower resolutions, profiles at the same scale are different across Brodmann areas. C) Theoretical performance is
shown on how similar the area-specific models are at different resolutions.

81J. Dinse et al. / NeuroImage 114 (2015) 71–87



82 J. Dinse et al. / NeuroImage 114 (2015) 71–87
turning points along the profile, vanish quickly with decreasing resolu-
tion. At 0.4–0.5 mm resolution, striking features become weaker.
However, at a given resolution the profile shapes in each area are no-
ticeably different, an observation which has already been pointed out
when comparing in-vivo and modelled MR profiles in Fig. 4. Thus, the
following question arises: which resolution is needed to distinguish be-
tween profiles originating from different cortical areas?

The bottom row of Fig. 6 depicts the theoretical similarity Pt for di-
rectly neighbouring areas 4 vs. 3b, 3b vs. 1, and 1 vs. 2 (all marked
with an *) as well as not directly neighbouring areas 4 vs. 1, 2 vs. 3b,
and 4 vs. 2. The similarity is illustrated according to decreasing resolu-
tion. The challenging task for this approach is to distinguish between
neighbouring areas. The similarity plots show that Brodmann areas 4
and 3b can be well discriminated even at lower resolution. It is easier
to distinguish Brodmann area 3b from 1 than Brodmann area 1 from
2. Brodmann areas 1 and 2 are similar at higher resolution, too. In the
case of non-neighbouring areas, Brodmann areas 2 and 3b are the
most similar, directly followed by Brodmann areas 4 and 1. Brodmann
areas 4 and 2 are the most dissimilar areas. In general, the slope of the
similarity curve is high, given high resolution (except Brodmann areas
4 vs. 3b and 4 vs. 2), and starts to become smaller after 800 μm. At our
working resolution of 0.5 mm, neighbouring Brodmann areas 4 and 3b
Fig. 7. Additional experiments depicting the comparison between the presented approach and
yields an almost binary result inwhich frontal, parietal, and temporal regions are equally similar
The performance is best when using themean and shape in a combined setup as presented in th
the case of a mismatch.
are well discernible. However, Brodmann area 2 cannot be reliably sep-
arated fromother areas. Brodmannareas 4 and 1 are hard to distinguish.
The outcome of the theoretical experiment here confirms results in Figs.
4 and 5, and Table 2.

Profile attributes: mean and shape (Exp. 5)

Finally, we investigated the information contributed separately by
the mean and the shape of an individual in-vivo profile. In Fig. 7, first
row, we schematically depict the different measures considered (from
left to right): our presented approach, the mean-experiment, and the
shape-experiment.

For comparison, the first column depicts the results of our approach
on a cortical surface (as shown in Fig. 4). The second column shows re-
sults of the mean-experiment. The third column shows results of the
shape-experiment.

In normal adult human brain, area 4 is the most highly myelinated
cortical area. Profiles found in this location have very low T1 values,
leading to very low mean values and large differences in profile shape
when compared to profiles derived from other regions in the cortex.
Therefore, using Eq. (12) with only themean T1 value of a profile results
in high similarities in locations of area 4 and low similarities in other
the mean- and the shape-experiments (middle and right column). The mean-experiment
. The shape-experiment provides even less distinction in theROIs. Differences are encircled.
is work. It leads to high similarities when location andmodelmatch and low similarities in
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locations. Therefore, the three surfaces corresponding to the model of
area 4 in Fig. 7 reveal fewer differences when comparing the effects be-
tween our approach, the mean- and the shape-experiments.

In each case, the areas are best discriminated when using our ap-
proach which not solely depends on mean T1 value but incorporates
shape differences, too.

Themean-experiment presented in Fig. 7 for Brodmannareas 3b and
1 shows that using the mean T1 value of a profile alone is insufficient.
Locations across the cortex are categorised as either very similar or
very different, with no intermediate variation. Frontal, temporal, and
parietal parts appear to be equally similar when applying the models
of area 3b and area 1. A similar pattern can be observed for the shape-
experiment when using the models of Brodmann areas 3b and 1.
Here, the selected regions of interest are poorly distinguished.

In many locations across the cortex, cortical profiles reveal lower T1
values in upper cortical layers and, at the same time, higher T1 values
(less myelin) in lower cortical layers. Therefore, if we compare the
mean T1 value of these profiles, there is no noticeable difference.
Hence, profiles from different locations in the cortex appear similar
when using themean T1 value alone, although their underlying realmi-
crostructure may be different.

The shape-experiment presented in Fig. 7 shows that using the
mean distance between profile shapes is insufficient, too. The shapes
may differ due to higher or lower T1 values in upper or lower cortical
layers. The total shape difference through cortical depth may be the
same in different locations across the cortex, and, thus, the similarities
differ not much. Here, the same conclusion as in the mean-experiment
can be drawn: profiles fromdifferent locations in the cortex appear sim-
ilar when using the shape only, although the underlyingmicrostructure
may be different.

The effects are less convincing when the model of Brodmann area 2
is applied. Possible reasons for the failure of the model of Brodmann
area 2 were discussed previously in Section 3.2.

Myeloarchitecture and area-specific results

There is a close relation between the cytoarchitecture and
myeloarchitecture. The four myeloarchitectonic types present in the
cortex are depicted in Fig. 1B (reproduced from Hopf (1968, 1969)).
Here, we relate the results from the experiments to descriptions of
myeloarchitecture.

The primarymotor cortexM1 (Brodmann area 4) is reported to be of
astriate type (Hopf, 1967). The (T1) values of profiles in Brodmann area
4 are very low (indicating highermyelination) for each individual imag-
ingmodality (Fig. 6A). Theminima in the area-specific modelled profile
(red) have the same strength. The difference in amplitude between
minima and maxima is small. Histological data confirms this difference
inmyelination (see Fig. 6A). Due to small artefacts occurring close to the
pre- and post-central gyral crowns in the ex-vivoMR data, the T1 values
in area 4 are increased in the ex-vivo profile, i.e. the difference is less
apparent.

The primary somatosensory cortex S1 (Brodmann area 3b) is de-
scribed to be of bistriate type, which is supported by the profile shape
of the area-specific model of Brodmann area 3b (Fig. 6A). The outer
band seems to be stronger myelinated. The area-specific model of
Brodmann area 3b shows a deeper turning point (higher myelination)
in layer IV in which the outer band of Baillarger is located. The same
trend is visible in the histology profile of this area.

Brodmann area 1 (crown of the post-central gyrus) is considered to
be of unitostriate type (inner and outer bands of Baillarger fuse togeth-
er). Area 1 has equally dense myelinated layers. In Fig. 6A, all profiles of
Brodmann area 1 appear on average less myelinated (higher T1 values)
in lower cortical layers IV–VI compared to the graphs of Brodmann
areas 4 and 3b. The minima in the area-specific model of Brodmann
area 1 have the same depth in terms of T1 values. The difference in am-
plitude between minima and maxima is small. The histology profile
almost stagnates in the deeper cortical layers with almost no difference
between the two bands of Baillarger being visible. Thus, Hopf's defini-
tion of Brodmann area 1 being of unitostriate type with equally dense
myelinated layers is replicated here.

Brodmann area 2 (located in the posterior wall of the post-central
gyrus) is, according to Hopf (1968, 1969), of unistriate type with an
outer band of Baillarger being more pronounced. The area-specific
model (Fig. 6A) clearly indicates higher myelination in the location of
the outer band. The difference compared to the inner band is large. In
the histology profile aswell as in the ex-vivo profile there is a clearmin-
imum in location of the two Baillarger bands. However, the separation
into two bands is only visible in the histology profile. The data fit Hopf's
definition of a unistriate type with a pronounced outer band.

Discussion and conclusion

In contrast to cytoarchitecture, established computational
parcellation methods based on myeloarchitecture do not exist yet. In
this work, we established a cytoarchitectonically-driven model that is
able to provide laminar area-specific estimates of myelin visible in
quantitative T1 maps. The key contribution of this work is to lead
Hellwig (1993) conceptual approach to a practical application to MRI
data. As this work presented here is the first known in-vivo application
of Hellwig (1993) method, the model can only be seen as a starting
point for further investigations of cortical myelin distribution. The
model is validated by quantitatively analysing it on in-vivo data and
comparing it to classically-derived information from post-mortem ma-
terial. The visual patterns are different from each other and appear to
be area-specific.

Modelling aspects

In general, Hellwig (1993) model depends on many assumptions
and parameters which he derived from the work by Sanides (1962)
and Braitenberg (1962). Sanides (1962) found that “the total amount
of myelin in a given area is positively correlated to the cell body sizes
in this area” and “in regions where a cortical layer containing large
cell bodies is situated above a layer in which the neurons are smaller
or less densely packed, a horizontal stripe of myelinated fibres appears
above a layer where horizontal fibres are less evident”.

Hellwig drew a conclusion from Sanides' first finding and simplified
it to his first assumption: large neurons contribute more to intracortical
myelin content than small ones. In this work, we modelled this relation
as a sigmoid function (see Eq. (1) in Section 2.3.1).

Sanides' secondfinding has been further investigated by Braitenberg
(1962, 1974) who tried to explain these phenomena with the help of
horizontal myelinated fibres. These fibres correspond to axonal
collaterals of pyramidal cells. As observed in Golgi preparations, the
majority of these axonal collaterals branch off the descending main
axon 200–300 μm below the cell body. The pyramidal cells, most con-
spicuous in cytoarchitectonic layers III and V of Nissl preparations,
thus produce two maxima of horizontal fibres. These maxima, shifted
downwards relative to layers III and V by 200–300 μm, account for the
two stripes of Baillarger (see Fig. 1A for comparison). Braitenberg's ex-
planation was supported by several other studies (Le Gros Clark and
Sunderland, 1939; Creutzfeldt et al., 1977; Gatter et al., 1978; Fisken
et al., 1975; Colonnier and Sas, 1978). Indeed, there is a structural
mismatch between cyto- and myeloarchitectonic layers. The axonal
collaterals of larger cells (especially pyramidal cells in cytoarchitectonic
layers IIIb and V) form fibre bundles in deeper myeloarchitectonic
layers (see in Fig. 1A, compare cytoarchitectonic layer IIIb and V to
myeloarchitectonic layer 4 and 5b). Quantitative measures on the dis-
tribution of such axonal collaterals were provided by Paldino and
Harth (1977) and also found application in our work.

To compare his area-specificmodels tomyelin preparations, Hellwig
(1993) simply linearly transformed the profiles into grey values. Values
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located at the pial surface represented 0% myelin, values at the WM in-
terface corresponded to 100%myelin. This assumption is valid only for a
qualitative comparison. However, it is not in agreement with classical
works by Braitenberg (1962) and Hopf (1967, 1968, 1969, 1970). Vogt
and Vogt (1919a) and also von Economo and Koskinas (1925) pointed
out that there are variations in myelin in pial surface as well as towards
the WM boundary surface. Dinse et al. (2013a) and Tardif et al. (2013)
recently showed that themyelin distribution in different cortical depths
varies between different cortical areas when using in-vivo high-
resolution quantitative T1 maps.

In addition, partial voluming is a problem in MRI at any resolution,
but becomes particularly severe in tightly folded cortical sulci. The
processing pipeline employed (Bazin et al., 2013) handled most types
of partial voluming robustly. However, in locationswhere neighbouring
cortical folds were almost in contact, CSF image intensities have a
high spatial dependence and differ quite strongly compared to other
locations.

To correct for the myelin-related variability in individual areas as
well as the partial volume effects, we introduced the area-specific esti-
mates êwm and êcsf in Eqs. (4) and (5) (see Table 1). Partial volume
effects become more severe when adjacent tissues such as GM and
CSF differ greatly in T1 value. Profiles of the cortex have a greater vari-
ance at the GM/CSF boundary than at the WM/GM boundary. Thus,
the estimates êcsf at theGM/CSF interface have a larger spread compared
to the estimates êwm at the WM/GM interface.

The positive values of ê have two functions: on the one hand, they
decrease the T1 values to model higher myelin concentration. At the
WM/GM boundary it yields a poor discriminative power between the
tissue types. This is specifically true for areas 4 and 1. Area 3bwas de-
scribed to have the best separation between WM/GM and GM/CSF
(Vogt and Vogt, 1919a; von Economo and Koskinas, 1925). Ideally,
area 4 should have the highest estimate êwm to model strongest my-
elin concentration. FromHan et al. (2003) and Bazin et al. (2013) it is
known that the WM/GM boundary may get stuck in WM in gyral
crowns yielding T1 values similar to WM. Therefore, êwm is highest
for area 1 rather than area 4. On the other hand, positive values of ê
help to model PV artefacts at GM/CSF boundary. Larger values of
êcsf model higher myelin concentration in upper cortical layers by
decreasing the T1 values again. But a higher degree in myelination
in upper cortical layers also yields a better separation in the segmen-
tation of GM and CSF. As described above, PV artefacts are severe in
tightly folded sulci. In these structures also the separation of tissues
is hard to define during the segmentation process. In the scope of this
work, areas 4 and 3b were mostly affected. Ideally, area 4 has the
lowest T1 values in upper cortical layers. But due to its location in
the central sulcus, PV effects artificially increase the T1 values at
the GM/CSF boundary. Therefore, êcsf of area 4 is not the highest. In
locations of gyral crowns, such as in the case of area 1, PV is less
strong. The segmentation at the GM/CSF is more accurate. With less
PV artefacts being present and a myelin concentration in upper
cortical layers comparable to area 4, area 1 has the highest estimate
êcsf at the GM/CSF boundary.

In general, myelination is higher at theWM/GM boundary than at
the GM/CSF boundary. This has already been shown using classical
histology (Hopf, 1968, 1969, 1970). Due to the Baillarger banding,
the variation of myelin concentration is higher in lower cortical
layers than in upper cortical layers. Now, a comparison between cor-
tical MRI profiles and classical histology profiles, as presented by
Hopf (1967) or Braitenberg (1962), may lead to confusion. In MRI,
the GM/CSF boundary is highly partial-volumed, i.e. the T1 values
in the cortex are distorted by much higher T1 values found in CSF,
which may give rise to the impression that the myelin concentration
changes more strongly in upper cortical layers. Rather than
expecting an almost stagnating profile shape towards the pial
surface, in-vivo and ex-vivo MR profiles show a high increase of T1
values.
Limitations considering the area-specific modelling

Possible sources of uncertainty within the models itself may be dif-
ferent cell densities or cell sizes in Brodmann areas, given that the num-
bers can only be derived from post-mortem material. The model is
based on the assumption that larger cells contribute more to themyelin
concentration, as their myelinated axonal collaterals carrymoremyelin.
This relationship is modelled using a sigmoidal function. The myelin
concentration varies not only in location of the bands of Baillarger but
at the boundary between WM/GM as well as between GM/CSF based
on incoming radial or tangential fibres in the pial surface of the cortex.
This variability needs to be further investigated in-vivo. In addition, it
is necessary to determine and define changes and variability of the cel-
lular composition depending on age, gender, brain development, or dis-
ease. Age has a tremendous effect on brain structure and function.With
increasing age, cells die and myelinated fibres change, and this process
may be accelerated in disease states (Peters, 2002). Corticalmyelination
is well known to continue into the third decade of life but gradually re-
duces with advancing age (Lintl and Braak, 1983). Age may correlate
with regionally specific decreases in myelin content, changes in iron
(Hallgren and Sourander, 1958) and water content and ultimately
with brain atrophy (Callaghan et al., 2014).

In terms of T1 values, there is an increasing interest in the neurosci-
ence community to what extent other factors, such as iron or suscepti-
bility, may influence the contrast of the T1 maps. The work of Stüber
et al. (2014) suggests that, within the cortex, the value of T1 is dominat-
ed by myelin content. Incorporating new findings may further improve
the performance of the presented approach.

The T1 maps used in this study are comparatively new. In order to
explore the modelling approach in a focused way, we kept several pa-
rameters constant across subjects, such as cortical thickness and values
of T1 for WM and CSF. These were supported by previous literature.
Withmore T1 maps acquired and analysed, it will be possible to replace
tissue values taken from Rooney et al. (2007) with reliable values de-
rived from these new T1 maps. The same applies to cortical thickness
values which can be replaced by more subject-specific mean cortical
thickness values. In addition, newer cytoarchitectural data are needed
describing average measures on cell size, cell number, and layer thick-
ness, but specifically providing variances for each of the measures.

Limitations considering in-vivo mri acquisition and data segmentation

In the group data some subjects lack overall consistency in data qual-
ity. Small motion artefacts and image artefacts may strongly affect the
results. Headmotion typically has a global effect, decreasing the similar-
ity values for eachmodel. This problem can be overcomewith adequate
methods for removingmotion artefacts, such as prospectivemotion cor-
rection (Schulz et al., 2012). In contrast, image artefacts may have local
effects and lead to better performance of a given area-specific model in
other locations, e.g. the model of Brodmann area 4 may perform better
in the location of area 1 (and vice versa) and the discrimination be-
tween area 1 and 2 may be impaired. Future analyses will include
more data to better characterise and control image artefacts, and thus
increase the performance of the approach. Advanced cortical registra-
tion techniquesmay help to increase the robustness and reproducibility
of the results (Tardif et al., 2013; Robinson et al., 2013). In addition, the
approach presented using T1 maps could be usefully combined with
other data such as probabilistic maps or gyral maps, and even task
fMRI data to further understand the relationship between structure
and function in the human brain.

Another limitation of the approach is the current in-vivo image
spatial resolution, which is constrained by the scan duration. Below a
cortical thickness of 1.5 mm, the profiles generated from the empirical
in-vivo data carry a smaller amount of information compared with the
modelled MR profiles. In locations of small segmentation errors
(oversegmentation) the empirical profiles may still carry enough
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informationwhich is skewed into the profile's cortical depth. Important
myelin-related intracortical features of the empirical profile are thus not
well alignedwith the features in the correspondingmodel affecting sin-
gle subject as well as the group average results. Brodmann area 2 is the
most inconsistent structure of the ROIs. Anatomical differences occur-
ring in the individual brains may play a certain role, too. In some sub-
jects the dura mater is almost in contact with the brain matter, other
subjects have CSF between brain matter and dura mater. In these loca-
tions, the T1 values at the CSF boundary surface have a high spatial de-
pendence leading to strong partial voluming effects. Hence, T1 values
at the CSF boundary vary depending on their location in the folded cor-
tex and between subjects. In futurework, more sophisticatedmodelling
of CSF variability is likely to be needed.

In general, the practical performance of the presented model is in
agreement with the theoretically computed performance given in
Fig. 6C. It appears that a resolution as high as 0.3 mm will be required
to reliably distinguish the cortical areas solely based on intracortical fea-
tures. At 0.3 mm the similarity values between neighbouring (4 vs. 3b,
3b vs. 1) and non-neighbouring areas (4 vs. 1, 4 vs. 2) are mostly
below 0.5, thus, areas can more likely be distinguished. The theoretical
performance calculations show that the bands of Baillarger, their loca-
tion in cortical depth, and their degree of myelination are important.
In addition, the experiments shown in Fig. 7 indicate that mean and
shape in a combined setup perform best compared to mean or shape
alone. Average cortical myelin maps effectively depict primary areas
even at lower resolution. But T1 maps at 0.5 mm isotropic resolution
and their derived profiles' mean and shape information bring further
discriminative power when distinguishing between cortical areas. Spa-
tial or geometrical priors, such as curvature, may be necessary in order
to precisely distinguish between Brodmann areas 1 and 2 and between
Brodmann areas 2 and 3b.

Limitations considering comparisons between in-vivo and ex-vivo
measurements

There are main differences between investigations based on in-vivo
measurements and post-mortem brain samples:

Resolutionplays amajor role. Thedifference in resolutionbetween the
imaging modalities used here is quite large and ranges from 0.5 mm iso-
tropic resolution in in-vivo MRI measurements and 0.25 mm isotropic
resolution in ex-vivo MRI measurements to 0.00258 mm = 2.58 μm in-
plane resolution in our histological experiment. Thus, differences in sam-
pled image values may arise from different partial volume effects.

Fixation of the ex-vivo sample may have an effect on the size of the
cortical layers due to a small shrinking of the tissue during the fixation
process (Mouritzen, 1978).

Transverse relaxation time is decreased after the fixation of a tissue
sample. Thus, the dynamic range in the data is different. Mean T1 values
of GM derived from in-vivo MR data span a dynamic range of approxi-
mately 1500 ms. In MR data of a formalin-fixed brain sample, the
mean T1 values of GM span a range of approximately 350 ms.

Age difference between the in-vivo and ex-vivo measurements is
very large. A T1 map derived from older post-mortem brainsmay reveal
slightly higher T1 values. The change of the laminar myelin pattern
across cortical depth may loose some significance in location of the
bands of Baillarger (Lintl and Braak, 1983).

Limitations in histology

One should keep in mind that comparing profiles from different im-
aging modalities is difficult since each individual modality has its own
limitations. Here, it is worth noting that the linear nature of myelinated
axons and the planar dimensionality of myelin-stained cadaver brain
sections make the problem of calculating 3D quantitative profiles
representing myelin concentration directly from histology almost insu-
perable. The method cannot determine absolute values of myelin
because even a highly standardised myelin staining process is not a
quantitative method.

Summary and conclusion

The approach presented offers a fresh perspective for imaging and
modelling the relationship between myelo- and cytoarchitecture, in the
context of the increasing interest in advancedmethods in brain segmen-
tation and cortical architectural studies. Future work includes an exten-
sion of the modelling approach towards other cortical areas which are
harder to parcellate, such as Broca's region. Theoretically, in turn, this
approach can be used to estimate general patterns of cytoarchitecture
from quantitative T1 maps in locations where the cytoarchitecture is
not well studied. Using proper cortical surface registration techniques
(Tardif et al., 2013) may be beneficial in two ways: it could be helpful
in studying group average myelin maps and lead to the construction of
a digital probabilistic atlas. Thus, spatial distributions of myelin values
in cortical grey matter can be studied. Increasing the sample size and
the age range of the study will help to adjust the modelling, in particular
considering that changes in cell and myelin morphology occur through-
out human life span (Henderson et al., 1980; Terry et al., 1987).
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