Lateralized alpha oscillations reflect attentional selection of speech in noise
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Introduction
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Methods ’ .
- Participants: 19 young participants (20-35 years; 11 females). T T i
- Stimuli: Two streams of four spoken digits, presented dichotically to left and | e =
right ear (Fig.1a). Perceptual onsets of digits were precisely aligned. Digit pres- -0. 035 (attentlon left-attention right)/ 0.035 i findi :
entation rate: 0.67 Hz. (attention left+attention right) Main findings:
- Task: Cue on one ear (1000 Hz pure tone, 500 ms duration) indicated the to- 95 ~1.96 Z 1.96 2]5 (i) Alpha lateralization reflects spatial attention to one of two ongoing

be-attended ear. After acoustic stimulation, participants had to report four
digits from the to-be-attended ear on a visually presented array (Fig.1a).

Figure 2. (a) Absolute power averaged across 204 MEG gradiometer sensors. (b) Alpha power (8-12 speech streams (Fig.2).

. , Hz) lateralization in sensor space and in source space for cue, anticipation, and stimulation period. In High ipsilateral alpha power reflects suppression of stimuli from the unat-
+ Data recordlng: 306_Char.me| MEG (Ve.CtorweW; Elekta Ne“romag O.y)' source space, the lateralization of 19 participants was tested against zero (using one-sample t-tests). tended side. Low contralateral alpha power reflects enhancement of stimuli
Sampling rate: 1000 Hz; offline bandpass filter: 0.3-180 Hz. Data analysis with T-values were transformed to z-values and overlaid on a partially inflated brain. from the attended side
customized scripts and Fieldtrip toolbox [5]. '
- Alpha lateralization index: Contrast of alpha power at (individually a

(if) Alpha power modulations in parietal cortex, but critically also in audi-
08 Correct tory cortex regions underlie the attentional selection of one speech
Incorrect stream in a two-talker situation.

selected) gradiometer channels ipsi- and contralateral to the cued ear:
(ipsi—contra)/(ipsi+contra) [2]. Positive index = higher ipsilateral alpha.

- Modulation of lateralization: Cosine function (g(t) =A cos(2 nift + @))
fitted to the lateralization index (least-squares method, f = 0-2 Hz). Cosine am-

plitude (A) quantifies the modulation of the lateralization index over time.
- Source analysis: DICS beamformer estimated oscillatory power separately for

attention left/right trials (fourier spectra at 10 Hz + 2 Hz spectral smoothing)
using a common filter (all trials, 0-7.9 s). Alpha lateralization was computed at

10,242 source locations and morphed onto one participant’s brain (Fig. 2b). Time [s] (iii) Alpha power lateralization is not constant during selective attention

.04 Alpha power lateralization might thus indicate an attentional filter mecha-

nism that orients supramodal attention in a parietal network and regulates
sensitivity in auditory cortex regions to enhance the signal and to suppress
noise.

Alpha lateralization index
(ipsi—contra)/(ipsi+contra)
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o Gran.ger causality: A%Jt.oregre.ssive models (order 10, temporal resolutic?n: 50 b — Apha lateralization 5 but entrains to the word rate (Fig.3).
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