
author’s	
 email:	
 Wolfgang.Treutterer@ipp.mpg.de	

Transforming the ASDEX Upgrade Discharge Control System to a
General-Purpose Plasma Control Platform

Wolfgang Treutterera, Richard Coleb, Alexander Grätera,
Klaus Lüddeckeb, Gregor Neua, Christopher Rapsona, Gerhard Rauppa, Dieter Zaschea,

Thomas Zehetbauera and the ASDEX Upgrade Teama

a Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

b Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany

The ASDEX Upgrade Discharge Control System DCS is a modern and mature product, originally designed to
regulate and supervise ASDEX Upgrade Tokamak plasma operation. In its core DCS is based on a generic,
versatile real-time software framework with a plugin architecture that allows to easily combine, modify and extend
control function modules in order to tailor the system to required features and let it continuously evolve with the
progress of an experimental fusion device. Due to these properties other fusion experiments like the WEST project
have expressed interest in adopting DCS.

For this purpose, essential parts of DCS must be unpinned from the ASDEX Upgrade environment by exposure
or introduction of generalised interfaces. Re-organisation of DCS modules allows distinguishing between intrinsic
framework core functions and device-specific applications. In particular, DCS must be prepared for deployment in
different system environments with their own realisations for user interface, pulse schedule preparation, parameter
server, time and event distribution, diagnostic and actuator systems, network communication and data archiving.

The article explains the principles of the revised DCS structure, derives the necessary interface definitions and
describes major steps to achieve the separation between general-purpose framework and fusion device specific
components.

Keywords: control system framework, general-purpose platform, customization, interfaces, re-structuring

1. Introduction

The present experimental devices for thermonuclear
fusion research are unique facilities. They differ in
geometry, actuator instrumentation, as well as structure
material like wall and divertor coatings. Thus, each of
them is particularly suited to explore dedicated domains
in the huge parameter space of plasma physics, like
plasma shaping and MHD effects, heat load and
distribution, or particle transport effects, which cannot
be studied in a single device.

Originally, these devices have been equipped with
their own control systems tailored to their respective
research objectives and configurations. On the other
hand, the core tasks of these control systems resemble
each other. Control quantities have to be measured or
reconstructed from sensor inputs. Subsequently, a
number of single or multivariable feedback controllers,
often with PI(D), state-space or relay characteristics, is
applied to make these variables track pre-defined
reference waveforms. Likewise, quantities are monitored
against alarm thresholds, and trespassing them triggers
protective or mitigating actions of the control system.

These similarities and the costly effort for
maintenance and upgrade are meanwhile driving
development towards more general control frameworks
that can be customized to a multitude of experimental
environments. The most prominent example is PCS,
which is used in US, Chinese and South Korean fusion

laboratories [1]. In Europe, the MARTe framework,
originally developed for subsystems of the large JET
tokamak [2] has been deployed at several smaller
devices.

The key principles permitting a more general
application of control frameworks are adherence to
common standards, use of abstraction layers for
hardware and software components, as well as modular
and configurable component design:

• Adoption of common standards helps to limit the
amount of proprietary hard- and software
development in favor of readily available and
proven products.

• Hardware, especially for data acquisition, actuator
control or real-time data exchange is often a site-
specific preference. The same applies also for the
operating system in use. Such custom components
can be integrated in control frameworks with the
help of abstraction layers. These introduce generic
framework interfaces, as well as specialized
component adapters and thus facilitate portability.

• Modularity allows composing individual control
system features with more general pre-fabricated
building blocks. Configurable modules offer the
highest degree of flexibility. While the algorithm is
static part of the framework or a library, the
module’s behavior can be tuned with custom
parameter or even functionality settings.

	

Recently, the control system framework of the
ASDEX Upgrade (AUG) experiment, DCS [3], was
adopted as a base control system of the WEST project
[4] and moved from a dedicated implementation to a
general-purpose platform. From its beginning DCS had
been built on the above-mentioned principles for
portable design. But a distinction between a generally
usable core and site-specific functionality had not been
necessary before. Therefore, the separation was a non-
trivial effort. In this paper we describe the necessary
steps to accomplish this goal. Section 2 summarizes the
relevant aspects of the previous DCS implementation.
Section 3 identifies the areas, where the design was not
sufficient for a general-purpose platform. Measures
taken to solve the portability issues and the resulting new
structure are finally outlined in Section 4.

2. Original DCS structure
DCS is a holistic control system designed to control

and coordinate a complex fusion device. The most
important concept of DCS is the separation of user
modules, which define control purpose and control
algorithms, from common services. User modules, in
DCS called Application Processes (AP), such as plasma
reconstructors, feedback controllers and plant monitors,
rather belong to the custom domain. Figure 1 shows that
they rest upon a set of infrastructure libraries for
common definitions, utilities, resources and configurable
function blocks. The framework services on the left of
Figure 1 complement these libraries. APs use and access
common resources like time, protection system, memory
storage or networks only via abstract framework
interfaces. On the contrary, data-acquisition with site-
specific hardware is managed by Application Processes
directly and thus separated from the framework.

3. Required upgrades
These design decisions implement the previously

mentioned key principles for generally applicable control
frameworks. They already permitted to connect DCS to
other external frameworks like MARTe [5] and design
tools like Simulink [3]. An analysis of the necessary

interfaces between the DCS framework and a different
control environment like the WEST project, however,
revealed, that these measures were not sufficient.
Adaptation is not limited to just the user-defined APs but
must be also extended to framework services. Many of
these services needed to be linked to existing external
systems in the environment of the control framework.

• In both AUG and WEST a timing system built on
dedicated hardware is responsible for distribution of
an experiment-wide common time information. The
framework as a timing system client needs matched
adaptors to the respective timing system or,
alternatively, to the built-in high-resolution CPU
time.

• The sophisticated Parameter Server [6] for the
configuration of APs, is an integral component of
the AUG DCS framework. Other framework users,
however, operate their own parameter service, to
which the ported framework must connect, instead.
Similar situations exist for message logging and
real-time signal data archiving.

• Finally, due to differences in the experimental setup
and in the working schemes, the workflows for pre-
and post-discharge operations and, hence, the DCS
state machine needs adjustment possibilities to the
respective operation practice.

In addition, some older parts of the DCS framework
required modernization to become mature enough for a
broader distribution. The distributed object management
middleware CORBA [7] had to be replaced by a more
modern tool. Due to historical reasons, the real-time
network communication layer was different for
Application Processes and for real-time diagnostics. For
instance, only real-time diagnostics could be attached to
Ethernet networks. To exploit the full power of the
distributed structure of DCS this artificial separation had
to be removed.

In summary, the basic DCS concepts remained
untouched, but the framework boundary and its
interfaces had to be re-interpreted to enable adaptation to
novel operation environmental conditions.

©EORFNª
'&6�6HUYLFHV

©VHUYLFHª
2SHUDWLRQ�6WDWH�

0DFKLQH

3DUDPHWHU
'DWDEDVH
3/&�6HWWLQJV

3XOVH�6FKHGXOH
(GLWRU

©VHUYLFHª
$8*�3DUDPHWHU�

6HUYHU

3DUDPHWHU
'DWDEDVH
3/&�6HWWLQJV

3XOVH�6FKHGXOH
(GLWRU

©VHUYLFHª
/RJ�0HVVDJH�
&ROOHFWRU

©VHUYLFHª
6DPSOH�5HFRUG�

$UFKLYHU

©EORFNª
'&6�

,QIUDVWUXFWXUH
©VHUYLFHª

8VHU�,QWHUIDFH

©EORFNª
'&6�3URFHVVHV

©OLEUDU\ª
%ORFN�/LEUDULHV

�� $ULWKPHWLF�2SV
��)LOWHUV
�� 7KUHVKROGV�0RQLWRUV
�� /LPLWHUV
��)HHGEDFN�&RQWUROOHUV

©$GP�3URFHVVª
&RQWURO�&\FOH�
3DFHPDNHU

©$GP�3URFHVVª
5HIHUHQFH�
*HQHUDWRU

©$GP�3URFHVVª
6HJPHQW�
6FKHGXOHU ©$SS�3URFHVVª

)HHGEDFN�
&RQWUROOHUV

©$SS�3URFHVVª
3ODVPD�DQG�3ODQW�

0RQLWRUV

©$SS�3URFHVVª
3ODVPD�

5HFRQVWUXFWRUV

6HQVRU
,QSXWV
$FWXDWRU
2XWSXWV

©$SS�3URFHVVª
,�2�3URFHVVHV

6HQVRU
,QSXWV
$FWXDWRU
2XWSXWV

©VHUYLFHª
'LDJQRVWLF�
0DQDJHU

©VHUYLFHª
5HDO�7LPH�6LJQDO�

5RXWHU

©$GP�3URFHVVª
1HWZRUN�
*DWHZD\V

6WDWH�
0DFKLQH�
&RQILJ�

'HSOR\�
PHQW�
&RQILJ�

3URFHVV�
&RQILJ�

©VHUYLFHª
3URFHVV�
([HFXWRUV

6LJQDO�
6DPSOH�
5HFRUGV

/RJ�
0HVVDJH�
5HFRUGV

©OLEUDU\ª
)UDPHZRUN�8WLOLWLHV

�� 6\VWHP�ZLGH�'HILQLWLRQV
�� 26�$EVWUDFWLRQ��/D\HU
�� /RJ�DQG�$ODUP�/D\HU
�� &RPPXQLFDWLRQ�/D\HU
�� &RQILJXUDWLRQ�/D\HU

$8*�7LPLQJ
6\VWHP

$8*�3URWHFWLRQ
6\VWHP

©OLEUDU\ª
5HVRXUFH�$FFHVV

�� 7LPLQJ�6\VWHP
�� 3URWHFWLRQ�6\VWHP
a� 1HWZRUN�7HFKQRORJLHV

$8*�7LPLQJ
6\VWHP

$8*�3URWHFWLRQ
6\VWHP

3UHYLRXV�'&6�,QVWDOODWLRQ©ILOHª

©ILOHª

©ILOHª

©ILOHª

©ILOHª

©ILOHª

Fig. 1: Block Definition Diagram of the original DCS Structure

	

4. Revised DCS structure
4.1 Restructuring

The most substantial change was necessary in the
code structure of DCS. The distributable general-purpose
platform comprises only the core framework. All
ASDEX Upgrade specific parts had to be separated. For
this purpose, an additional system boundary for the core
had to be defined. Subsequently, interdependencies
between components on both sides of the boundary were
re-assessed. Due to the modular design it was in most
cases sufficient to expose and streamline already existing
interfaces. Some functions like access to time
information, however, required definition of device-
independent abstract interfaces and custom plug-ins.

Figure 2 illustrates the new structure using the
example of the ASDEX Upgrade installation. The outer
box with white background shows the custom domain,
while the core framework, accentuated with a grey
background, contains the framework infrastructure
libraries with augmented interfaces to plug-in custom
components and external systems. Basic services are
included, as well. Apart from Process Executor services
running the real-time processes, they comprise the
Operation State Machine, the Real-Time Signal Router,
the Sample Record Archiver and the central Log
Message Collector. Some useful real-time processes,
responsible for administrative and coordination tasks like
control cycle pace-making, reference generation,
segment scheduling and network transport are also
delivered with the core framework, but could be replaced
by site-specific custom modules, if desired.

On the client side, the core framework needs to be
complemented with application processes implementing
the custom control task, with configuration data, but also
with modules for dedicated hard- and software support,

in particular, client time distribution system, protection
system and peripheral I/O devices. On grounds of the
before-mentioned integration of the framework in
existing environments, services with external linkage are
not shipped with the framework and need to be supplied
by the customer. The Parameter Server with its strong
relations to ASDEX Upgrade’s pulse schedule editor and
plant PLCs, Diagnostic Manager service, as well as the
ASDEX Upgrade shotfile archiving scripts represent this
sort of site-specific utilities, which are currently too
closely linked to local installations to become part of the
core framework and therefore reside in the site-specific
AugDcs.

4.2 External Interfaces

Along with framework component restructuring, the
framework interfaces have been subject to overhaul. In
the end, three interface types are used for customization
and extension. The first, already existing, type is based
on the object-oriented methods of inheritance and
polymorphic function overriding and is used for
application processes and custom function blocks which
a user derives from base classes defined in the core
framework and customizes with his implementation of
virtual functions. Here, the C++ base class declaration
simultaneously serves as interface definition.

Components created using this classical method,
however, need to be compiled and linked together with
the framework. The new plug-in feature adds a
registration and loading formalism and allows to
dynamically load custom binary code implementing a
framework interface and call its functions.

The second form, files or file streams in standardized
XML formats, is used to exchange structured non-real-
time data between the framework and its environment.
Application processes, for example, use generic

©EORFNª
'&6�6HUYLFHV

©VHUYLFHª
2SHUDWLRQ�6WDWH�

0DFKLQH

3DUDPHWHU
'DWDEDVH
3/&�6HWWLQJV

3XOVH�6FKHGXOH
(GLWRU

©VHUYLFHª
$8*�3DUDPHWHU�

6HUYHU

3DUDPHWHU
'DWDEDVH
3/&�6HWWLQJV

3XOVH�6FKHGXOH
(GLWRU

©VHUYLFHª
/RJ�0HVVDJH�
&ROOHFWRU

©VHUYLFHª
6DPSOH�5HFRUG�

$UFKLYHU

©EORFNª
'&6�

,QIUDVWUXFWXUH
©VHUYLFHª

8VHU�,QWHUIDFH

©EORFNª
'&6�3URFHVVHV

©OLEUDU\ª
%ORFN�/LEUDULHV

�� $ULWKPHWLF�2SV
��)LOWHUV
�� 7KUHVKROGV�0RQLWRUV
�� /LPLWHUV
��)HHGEDFN�&RQWUROOHUV

©$GP�3URFHVVª
&RQWURO�&\FOH�
3DFHPDNHU

©$GP�3URFHVVª
5HIHUHQFH�
*HQHUDWRU

©$GP�3URFHVVª
6HJPHQW�
6FKHGXOHU ©$SS�3URFHVVª

)HHGEDFN�
&RQWUROOHUV

©$SS�3URFHVVª
3ODVPD�DQG�3ODQW�

0RQLWRUV

©$SS�3URFHVVª
3ODVPD�

5HFRQVWUXFWRUV

6HQVRU
,QSXWV
$FWXDWRU
2XWSXWV

©$SS�3URFHVVª
,�2�3URFHVVHV

6HQVRU
,QSXWV
$FWXDWRU
2XWSXWV

©VHUYLFHª
'LDJQRVWLF�
0DQDJHU

6HQVRU
,QSXWV

©$SS�3URFHVVª
UW�'LDJQRVWLF�
3URFHVVHV

6HQVRU
,QSXWV

©VHUYLFHª
5HDO�7LPH�6LJQDO�

5RXWHU

&XVWRP�'&6�,QVWDOODWLRQ

©LQWHUIDFHª
7LPLQJ�6\VWHP�

,QWHUIDFH

©LQWHUIDFHª
3URWHFWLRQ�

6\VWHP�,QWHUIDFH
©3OXJLQª

+LJK�5HVROXWLRQ�
7LPLQJ�3OXJLQ

©3OXJLQª
$8*�7LPLQJ�

3OXJLQ

©3OXJLQª
123�3URWHFWLRQ�

3OXJLQ

©3OXJLQª
$8*�3URWHFWLRQ�

3OXJLQ

©$GP�3URFHVVª
1HWZRUN�
*DWHZD\V

&RUH�'&6�)UDPHZRUN

6WDWH�
0DFKLQH�
&RQILJ�

'HSOR\�
PHQW�
&RQILJ�

3URFHVV�
&RQILJ�

©VHUYLFHª
3URFHVV�
([HFXWRUV

6LJQDO�
6DPSOH�
5HFRUGV

/RJ�
0HVVDJH�
5HFRUGV

©OLEUDU\ª
)UDPHZRUN�8WLOLWLHV

�� 6\VWHP�ZLGH�'HILQLWLRQV
�� 26�$EVWUDFWLRQ��/D\HU
�� /RJ�DQG�$ODUP�/D\HU
�� &RPPXQLFDWLRQ�/D\HU
�� &RQILJXUDWLRQ�/D\HU

©OLEUDU\ª
5HVRXUFH�$FFHVV

�� 7LPLQJ�6\VWHP
�� 3URWHFWLRQ�6\VWHP
a� 1HWZRUN�7HFKQRORJLHV

©ILOHª

©ILOHª

©ILOHª

©ILOHª

©ILOHª

©ILOHª

Fig. 2: Block Definition Diagram of the revised DCS structure (ASDEX Upgrade Installation)

	

framework methods to read and parse setup data from
one or more configuration files and subsequently
parameterize or even create process components. In the
ASDEX Upgrade case, the Parameter Server provides
these files on demand, collecting and pre-processing the
contents from various sources. A simpler setup without
the need for pre-processing would just use static files.
This interface existed already before restructuring but
was internal. Now it has been exposed to permit
operation without the AUG Parameter Server.
Conversely, for each real-time signal the core
framework’s Sample Record Archiver generates an
archive file with all recorded samples in a pulse. Site-
specific tools, which may even be simple scripts, can
then be employed to convert this information to a custom
format and store it in a local database.

Finally, Google Protocol Buffers [8] have been
adopted as a successor of CORBA based remote
procedure calls. Being designed to efficiently convey
data structures between processing units in the form of
serialized streams, DCS applies them for internal
interaction between framework components as well as
for communication with external services. Similar to the
xml format mentioned above, protocol buffer message
types define the interface for data exchange. A typical
use case for this interface in a custom environment
would be a graphical user front-end that, communicating
with the Operation State Machine, visualizes the
framework operation state and conversely translates user
commands from mouse-clicks to DCS workflow
commands. A number of core framework services, such
as Log Message Collector and Sample Record Archiver
use Protocol Buffers for input and XML files for output.
Connecting directly to the protocol buffer interfaces
users can opt for even higher customization replacing
these core framework services with their own utilities.

4.3 Build and installation utilities

Core, as well as custom framework components are
organized in projects, each producing a build artifact
which can be a binary executable, a static or dynamic
library or just a set of header files. As before, artifacts
need to be installed to a dedicated location, the
“Release” folder, after compilation and linking to
become visible for dependent projects. This two-step
mechanism keeps changes to headers and binaries
private during the coding and validation process and thus
facilitates concurrent development of projects. The
revised build and installation system improves this
method by introducing a package management for the
installed artifacts. Moreover, project dependency records
have been added to the build specifications and enable
automatic setup of a hierarchical build and installation
chain. The build process follows unified, framework-
wide rules and accounts also for build platform
peculiarities. Only settings like artifact names, code
locations and dependencies are defined by the projects.
Thus, the redesign considerably simplifies the build
process definition and reduces the effort to create and
maintain projects attached to the framework.

Conclusions
Segregating site-specific components from a core

framework transformed the original ASDEX Upgrade
discharge control system into a general-purpose platform
for plasma control with extensive customization
facilities. In combination with well-defined and
consolidated interfaces the revised DCS framework has
versatile features for adaption to other fusion devices.

The restructured DCS has been deployed at ASDEX
Upgrade and WEST. ASDEX Upgrade will operate the
new system in the forthcoming experimental campaign.

Acknowledgements
This work has been carried out within the framework

of the EUROfusion Consortium and has received fund-
ing from the European Union’s Horizon 2020 research
and innovation programme under grant agreement num-
ber 633053. The views and opinions expressed herein do
not necessarily reflect those of the European Com-
mission.

References

[1] D. A. Piglowski, D. A. Humphreys, M. L. Walker, J. R.
Ferron, B. G. Penaflor, R. D. Johnson, B. Sammuli, B.
Xiao, S. H. Hahn, D. M. Mastrovito, “Accumulated
experiences from implementations of the DIII-D plasma
control system worldwide,” Fusion Eng. Des., vol. 85,
no. 3–4, pp. 451–455, Jul. 2010.

[2] A. C. Neto, D. Alves, L. Boncagni, P. J. Carvalho, D. F.
Valcarcel, A. Barbalace, G. De Tommasi, H. Fernandes,
F. Sartori, E. Vitale, R. Vitelli, L. Zabeo, “A Survey of
Recent MARTe Based Systems,” IEEE Trans. Nucl. Sci.,
vol. 58, no. 4, pp. 1482–1489, Aug. 2011.

[3] W. Treutterer, R. Cole, K. Lüddecke, G. Neu, C. J.
Rapson, G. Raupp, D. Zasche, T. Zehetbauer, “ASDEX
Upgrade Discharge Control System—A real-time plasma
control framework,” Fusion Eng. Des., vol. 89, no. 3, pp.
146–154, Mar. 2014.

[4] R. Nouailletas, N. Ravenel, J. Signoret, W. Treutterrer, A.
Spring, M. Lewerentz, C. J. Rapson, H. Masand, J.
Dhongde, P. Moreau, B. Guillerminet, S. Brémond, L.
Allegretti, G. Raupp, A. Werner, F. Saint Laurent, E.
Nardon, M. Bhandarka, “From the conceptual design to
the first mock-up of the new WEST plasma control
system“, this conference.

[5] C. J. Rapson, P. Carvalho, K. Lüddecke, A. Neto, B.
Santos, W. Treutterer, A. Winter, T. Zehetbauer, “Coupling
DCS and MARTe: two real-time control frameworks in
collaboration”, submitted to Fusion Eng. Des.

[6] G. Neu, R. Cole, A. Gräter, K. Lüddecke, C. J. Rapson, G.
Raupp, W. Treutterer, D. Zasche, T. Zehetbauer, “The
ASDEX Upgrade Parameter Server”, this conference

[7] CORBA Basics,
http://www.omg.org/gettingstarted/corbafaq.htm

[8] Protocol Buffers,
https://developers.google.com/protocol-buffers

