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The ASDEX Upgrade Discharge Control System DCS is a modern and mature product, originally designed to 
regulate and supervise ASDEX Upgrade Tokamak plasma operation. In its core DCS is based on a generic, 
versatile real-time software framework with a plugin architecture that allows to easily combine, modify and extend 
control function modules in order to tailor the system to required features and let it continuously evolve with the 
progress of an experimental fusion device. Due to these properties other fusion experiments like the WEST project 
have expressed interest in adopting DCS. 

For this purpose, essential parts of DCS must be unpinned from the ASDEX Upgrade environment by exposure 
or introduction of generalised interfaces. Re-organisation of DCS modules allows distinguishing between intrinsic 
framework core functions and device-specific applications. In particular, DCS must be prepared for deployment in 
different system environments with their own realisations for user interface, pulse schedule preparation, parameter 
server, time and event distribution, diagnostic and actuator systems, network communication and data archiving. 

The article explains the principles of the revised DCS structure, derives the necessary interface definitions and 
describes major steps to achieve the separation between general-purpose framework and fusion device specific 
components. 
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1. Introduction 

The present experimental devices for thermonuclear 
fusion research are unique facilities. They differ in 
geometry, actuator instrumentation, as well as structure 
material like wall and divertor coatings. Thus, each of 
them is particularly suited to explore dedicated domains 
in the huge parameter space of plasma physics, like 
plasma shaping and MHD effects, heat load and 
distribution, or particle transport effects, which cannot 
be studied in a single device. 

Originally, these devices have been equipped with 
their own control systems tailored to their respective 
research objectives and configurations. On the other 
hand, the core tasks of these control systems resemble 
each other. Control quantities have to be measured or 
reconstructed from sensor inputs. Subsequently, a 
number of single or multivariable feedback controllers, 
often with PI(D), state-space or relay characteristics, is 
applied to make these variables track pre-defined 
reference waveforms. Likewise, quantities are monitored 
against alarm thresholds, and trespassing them triggers 
protective or mitigating actions of the control system. 

These similarities and the costly effort for 
maintenance and upgrade are meanwhile driving 
development towards more general control frameworks 
that can be customized to a multitude of experimental 
environments. The most prominent example is PCS, 
which is used in US, Chinese and South Korean fusion 

laboratories [1]. In Europe, the MARTe framework, 
originally developed for subsystems of the large JET 
tokamak [2] has been deployed at several smaller 
devices.  

The key principles permitting a more general 
application of control frameworks are adherence to 
common standards, use of abstraction layers for 
hardware and software components, as well as modular 
and configurable component design: 

• Adoption of common standards helps to limit the 
amount of proprietary hard- and software 
development in favor of readily available and 
proven products. 

• Hardware, especially for data acquisition, actuator 
control or real-time data exchange is often a site-
specific preference. The same applies also for the 
operating system in use. Such custom components 
can be integrated in control frameworks with the 
help of abstraction layers. These introduce generic 
framework interfaces, as well as specialized 
component adapters and thus facilitate portability. 

• Modularity allows composing individual control 
system features with more general pre-fabricated 
building blocks. Configurable modules offer the 
highest degree of flexibility. While the algorithm is 
static part of the framework or a library, the 
module’s behavior can be tuned with custom 
parameter or even functionality settings. 



	
  

Recently, the control system framework of the 
ASDEX Upgrade (AUG) experiment, DCS [3], was 
adopted as a base control system of the WEST project 
[4] and moved from a dedicated implementation to a 
general-purpose platform. From its beginning DCS had 
been built on the above-mentioned principles for 
portable design. But a distinction between a generally 
usable core and site-specific functionality had not been 
necessary before. Therefore, the separation was a non-
trivial effort. In this paper we describe the necessary 
steps to accomplish this goal. Section 2 summarizes the 
relevant aspects of the previous DCS implementation. 
Section 3 identifies the areas, where the design was not 
sufficient for a general-purpose platform. Measures 
taken to solve the portability issues and the resulting new 
structure are finally outlined in Section 4. 

2. Original DCS structure 
DCS is a holistic control system designed to control 

and coordinate a complex fusion device. The most 
important concept of DCS is the separation of user 
modules, which define control purpose and control 
algorithms, from common services. User modules, in 
DCS called Application Processes (AP), such as plasma 
reconstructors, feedback controllers and plant monitors, 
rather belong to the custom domain. Figure 1 shows that 
they rest upon a set of infrastructure libraries for 
common definitions, utilities, resources and configurable 
function blocks. The framework services on the left of 
Figure 1 complement these libraries. APs use and access 
common resources like time, protection system, memory 
storage or networks only via abstract framework 
interfaces. On the contrary, data-acquisition with site-
specific hardware is managed by Application Processes 
directly and thus separated from the framework. 

3. Required upgrades 
These design decisions implement the previously 

mentioned key principles for generally applicable control 
frameworks. They already permitted to connect DCS to 
other external frameworks like MARTe [5] and design 
tools like Simulink [3]. An analysis of the necessary 

interfaces between the DCS framework and a different 
control environment like the WEST project, however, 
revealed, that these measures were not sufficient. 
Adaptation is not limited to just the user-defined APs but 
must be also extended to framework services. Many of 
these services needed to be linked to existing external 
systems in the environment of the control framework. 

• In both AUG and WEST a timing system built on 
dedicated hardware is responsible for distribution of 
an experiment-wide common time information. The 
framework as a timing system client needs matched 
adaptors to the respective timing system or, 
alternatively, to the built-in high-resolution CPU 
time.  

• The sophisticated Parameter Server [6] for the 
configuration of APs, is an integral component of 
the AUG DCS framework. Other framework users, 
however, operate their own parameter service, to 
which the ported framework must connect, instead. 
Similar situations exist for message logging and 
real-time signal data archiving.  

• Finally, due to differences in the experimental setup 
and in the working schemes, the workflows for pre- 
and post-discharge operations and, hence, the DCS 
state machine needs adjustment possibilities to the 
respective operation practice. 

In addition, some older parts of the DCS framework 
required modernization to become mature enough for a 
broader distribution. The distributed object management 
middleware CORBA [7] had to be replaced by a more 
modern tool. Due to historical reasons, the real-time 
network communication layer was different for 
Application Processes and for real-time diagnostics. For 
instance, only real-time diagnostics could be attached to 
Ethernet networks. To exploit the full power of the 
distributed structure of DCS this artificial separation had 
to be removed. 

In summary, the basic DCS concepts remained 
untouched, but the framework boundary and its 
interfaces had to be re-interpreted to enable adaptation to 
novel operation environmental conditions. 
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Fig. 1: Block Definition Diagram of the original DCS Structure 



	
  

4. Revised DCS structure 
4.1 Restructuring 

The most substantial change was necessary in the 
code structure of DCS. The distributable general-purpose 
platform comprises only the core framework. All 
ASDEX Upgrade specific parts had to be separated. For 
this purpose, an additional system boundary for the core 
had to be defined. Subsequently, interdependencies 
between components on both sides of the boundary were 
re-assessed. Due to the modular design it was in most 
cases sufficient to expose and streamline already existing 
interfaces. Some functions like access to time 
information, however, required definition of device-
independent abstract interfaces and custom plug-ins. 

Figure 2 illustrates the new structure using the 
example of the ASDEX Upgrade installation. The outer 
box with white background shows the custom domain, 
while the core framework, accentuated with a grey 
background, contains the framework infrastructure 
libraries with augmented interfaces to plug-in custom 
components and external systems. Basic services are 
included, as well. Apart from Process Executor services 
running the real-time processes, they comprise the 
Operation State Machine, the Real-Time Signal Router, 
the Sample Record Archiver and the central Log 
Message Collector. Some useful real-time processes, 
responsible for administrative and coordination tasks like 
control cycle pace-making, reference generation, 
segment scheduling and network transport are also 
delivered with the core framework, but could be replaced 
by site-specific custom modules, if desired. 

On the client side, the core framework needs to be 
complemented with application processes implementing 
the custom control task, with configuration data, but also 
with modules for dedicated hard- and software support, 

in particular, client time distribution system, protection 
system and peripheral I/O devices. On grounds of the 
before-mentioned integration of the framework in 
existing environments, services with external linkage are 
not shipped with the framework and need to be supplied 
by the customer. The Parameter Server with its strong 
relations to ASDEX Upgrade’s pulse schedule editor and 
plant PLCs, Diagnostic Manager service, as well as the 
ASDEX Upgrade shotfile archiving scripts represent this 
sort of site-specific utilities, which are currently too 
closely linked to local installations to become part of the 
core framework and therefore reside in the site-specific 
AugDcs. 

4.2 External Interfaces 

Along with framework component restructuring, the 
framework interfaces have been subject to overhaul. In 
the end, three interface types are used for customization 
and extension. The first, already existing, type is based 
on the object-oriented methods of inheritance and 
polymorphic function overriding and is used for 
application processes and custom function blocks which 
a user derives from base classes defined in the core 
framework and customizes with his implementation of 
virtual functions. Here, the C++ base class declaration 
simultaneously serves as interface definition.  

Components created using this classical method, 
however, need to be compiled and linked together with 
the framework. The new plug-in feature adds a 
registration and loading formalism and allows to 
dynamically load custom binary code implementing a 
framework interface and call its functions. 

The second form, files or file streams in standardized 
XML formats, is used to exchange structured non-real-
time data between the framework and its environment. 
Application processes, for example, use generic 
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Fig. 2: Block Definition Diagram of the revised DCS structure (ASDEX Upgrade Installation) 



	
  

framework methods to read and parse setup data from 
one or more configuration files and subsequently 
parameterize or even create process components. In the 
ASDEX Upgrade case, the Parameter Server provides 
these files on demand, collecting and pre-processing the 
contents from various sources. A simpler setup without 
the need for pre-processing would just use static files. 
This interface existed already before restructuring but 
was internal. Now it has been exposed to permit 
operation without the AUG Parameter Server. 
Conversely, for each real-time signal the core 
framework’s Sample Record Archiver generates an 
archive file with all recorded samples in a pulse. Site-
specific tools, which may even be simple scripts, can 
then be employed to convert this information to a custom 
format and store it in a local database. 

Finally, Google Protocol Buffers [8] have been 
adopted as a successor of CORBA based remote 
procedure calls. Being designed to efficiently convey 
data structures between processing units in the form of 
serialized streams, DCS applies them for internal 
interaction between framework components as well as 
for communication with external services. Similar to the 
xml format mentioned above, protocol buffer message 
types define the interface for data exchange. A typical 
use case for this interface in a custom environment 
would be a graphical user front-end that, communicating 
with the Operation State Machine, visualizes the 
framework operation state and conversely translates user 
commands from mouse-clicks to DCS workflow 
commands. A number of core framework services, such 
as Log Message Collector and Sample Record Archiver 
use Protocol Buffers for input and XML files for output. 
Connecting directly to the protocol buffer interfaces 
users can opt for even higher customization replacing 
these core framework services with their own utilities. 

4.3 Build and installation utilities 

Core, as well as custom framework components are 
organized in projects, each producing a build artifact 
which can be a binary executable, a static or dynamic 
library or just a set of header files. As before, artifacts 
need to be installed to a dedicated location, the 
“Release” folder, after compilation and linking to 
become visible for dependent projects. This two-step 
mechanism keeps changes to headers and binaries 
private during the coding and validation process and thus 
facilitates concurrent development of projects. The 
revised build and installation system improves this 
method by introducing a package management for the 
installed artifacts. Moreover, project dependency records 
have been added to the build specifications and enable 
automatic setup of a hierarchical build and installation 
chain. The build process follows unified, framework-
wide rules and accounts also for build platform 
peculiarities. Only settings like artifact names, code 
locations and dependencies are defined by the projects. 
Thus, the redesign considerably simplifies the build 
process definition and reduces the effort to create and 
maintain projects attached to the framework. 

 

Conclusions 
Segregating site-specific components from a core 

framework transformed the original ASDEX Upgrade 
discharge control system into a general-purpose platform 
for plasma control with extensive customization 
facilities. In combination with well-defined and 
consolidated interfaces the revised DCS framework has 
versatile features for adaption to other fusion devices. 

The restructured DCS has been deployed at ASDEX 
Upgrade and WEST. ASDEX Upgrade will operate the 
new system in the forthcoming experimental campaign. 
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