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Abstract

With the aim of solving in a four dimensional phase space a multi-scale Vlasov-
Poisson system, we propose in a Particle-In-Cell framework a robust time-stepping
method that works uniformly when the small parameter vanishes. As an exponential
integrator, the scheme is able to use large time steps with respect to the typical size of
the solution's fast oscillations. In addition, we show numerically that the method has
accurate long time behaviour and that it is asymptotic preserving with respect to the
limiting Guiding Center system.

1 Introduction

In this paper we introduce a numerical scheme in order to simulate e�ciently in time when
the parameter ε vanishes the following four dimensional Vlasov equation

∂tf
ε + v · ∇xf

ε +

(
Ξε +

1

ε
v⊥
)
· ∇vf

ε = 0, (1.1)

f ε (x,v, t = 0) = f0 (x,v) , (1.2)

where x = (x1, x2) stands for the position variable, v = (v1, v2) for the velocity variable,
v⊥ for (v2,−v1), f ε ≡ f ε(x,v, t) is the distribution function, f0 is given, and Ξε ≡ Ξε(x, t)
corresponds to the electric �eld. Weak-∗ and two-scale limits when ε goes to zero of this
equation can be rigorously obtained following the methods introduced in [2] and [13]. We no-
tice that equations (1.1)-(1.2) can be obtained from the six dimensional drift-kinetic regime
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by taking a constant magnetic �eld in the x3-direction and an electric �eld evolving in the
orthogonal plane to the magnetic �eld.

The main application will be the case when the electric �eld Ξε is obtained by solving
the Poisson equation. In this case we will rather denote by Eε the electric �eld and thus,
we will have to solve the following nonlinear system of equations:

∂tf
ε + v · ∇xf

ε +

(
Eε +

1

ε
v⊥
)
· ∇vf

ε = 0, (1.3)

Eε (x, t) = −∇xφ
ε, −∆xφ

ε =

∫
R2

f εdv − ni, (1.4)

f ε (x,v, t = 0) = f0 (x,v) , (1.5)

where φε is the electric potential and ni is the background ion density. The system (1.3)-(1.4)
is a �rst step towards a six dimensional model which can be used for the study of plasma
under the in�uence of a strong magnetic �eld. The unknown f ε(x,v, t) represents the
distribution of electrons in phase space at time t and thus, the system (1.3)-(1.4) describes
the particle dynamics under the additional e�ect of the self-consistent electric �eld. The
di�culty is that the large magnetic �eld, expressed by the v⊥/ε term, introduces a new
time scale, the rotation of particles around the magnetic �eld line, which is very small with
respect to that of the electric �eld evolution. We are thus faced with a multi-scale problem
whose numerical solution by standard methods requires heavy computational e�orts.

We will also test our scheme when an external electric �eld in (1.1) is given by

Ξε (x, t) =

(
2x1 + x2

x1 + 2x2

)
, (1.6)

which is the gradient of the potential ϕ(x1, x2) = x2
1 + x1x2 + x2

2. The reason for this
particular case is twofold. First, we are able to write down the analytic solution to system
(1.1)-(1.2) which thus leads to the capabilities of a real error computation and of testing
our algorithm's main (second step) approximation alone. Second, we can write analytically
the slow manifold (see Section 5), an important issue when testing the scheme for any
initial condition (see Section 2 in [4]). Indeed, it is interesting to see how the errors of
the numerical scheme change when a di�erent initial condition is used. Thus, if for some
particles the scheme performs much better than for others, the corresponding errors might
lead, when applying the method in the Vlasov-Poisson case, to di�erent errors in the electric
�eld computation and thus, to an ampli�cation of the disparate errors.

In this work we perform the numerical solution of the Vlasov equation (1.1) by parti-
cle methods (see [1]), which consist in approximating the distribution function by a �nite
number of macroparticles. The trajectories of these particles are computed from the char-
acteristic curves

dXε

dt
= Vε, Xε (0) = x0, (1.7)

dVε

dt
=

1

ε
(Vε)⊥ + Ξε (Xε, t) , Vε (0) = v0, (1.8)

of the Vlasov equation, whereas the electric �eld is computed, when coupling with Poisson
equation as in (1.3)-(1.4), on a mesh in the physical space. The contribution of this paper
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is to propose a numerical scheme in time for solving these characteristic curves when the
parameter ε vanishes.

Before describing our strategy, we need to place it towards some existing approaches
classically known to solve multi-scale problems. When the electric �eld Ξε is zero, the
physical trajectory associated with (1.7)-(1.8) is a circle of center c0 = x0 + εv⊥0 and of
radius ε |v0|, and the time period of the trajectory is 2πε. Otherwise, the dynamical system
(1.7)-(1.8) can be viewed as a perturbation of the system obtained when the electric �eld
is zero. Hence, in the general case of an electric �eld depending on position and time, the
evolution of a given particle's position is a combination of two disparate in time motions (a
sti� problem): a slow evolution of what was the center of the circle in the case where Ξε is
zero, usually called the Guiding Center, and a fast rotation of period about 2πε with a small
radius around it (see Fig. 1). We refer to Lee [18] and Dubin et al. [7] for comprehensive
physical viewpoint reviews about such questions. Consequently, if one wants to do accurate
simulation of the problem (1.3)-(1.5) using classical numerical schemes, one needs small time
steps, in particular smaller than 2πε.

Another way is to use not sti� models instead of (1.3)-(1.5), which can be simulated using
larger time steps. Nevertheless, in this case, such reduced models (as the Guiding Center
model, see [2], [14]) need to incorporate information about the self-consistent electric �eld
acting on particles position and the additional e�ect generated by particles oscillations. One
usual way to do this is to use techniques based on Asymptotic Analysis and Homogenization
Methods leading to a limit equation in which the mutual in�uence of the particles can be
expressed in terms of their apparent motion, and afterwards to simulate this limit equation.
We refer to Frénod, Sonnendrücker [13, 14], Frénod, Raviart, Sonnendrücker [11], and Golse,
Saint-Raymond [15] for a theoretical point of view on these questions, and Frénod, Salvarani,
Sonnendrücker [12] for numerical applications of such techniques.

Yet another approach is to combine both disparate scales into one and single model, e.g.
a micro-macro approach (see [5] and the references therein). Such a model may be used when
the small parameter of the equation is not everywere and/or always small. Thus, a scheme
for a micro-macro model can switch from one regime to another without any treatement of
the transition between the di�erent regimes.

In this paper, we propose an alternative to such methods allowing to make direct simu-
lations of systems (1.1)-(1.2) and (1.3)-(1.5) with large time steps with respect to 2πε. In
addition, our scheme inherently incorporates information about the real small oscillations
in the solution and thus, one can recover this information at a macroscopic time. This can
not be reproduced by a reduced model or can be partially done by homogenization. Unlike
a micro-macro method, the scheme in this paper does not ask to identify the limit model
and neither to reformulate the starting equation into a more complicated one.

Concluding, the algorithm we propose has a computational cost in time rather close to
that of a reduced model but the accuracy close to that of a high-order standard scheme for
computing a reference solution.

Now, we start to summarize the basis of the method and the results of this paper.
The sti�ness of equations (1.7)-(1.8) comes from the velocity equation and therefore we are
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interested in solving in R2 for several small values of ε the following type of ODE

u′ (t) =
1

ε
Mu (t) + F (t, u (t)) , u (0) = u0, (1.9)

where M is a matrix giving a π/2-rotation in R2 and where F represents a nonlinear term
playing the role of the electric �eld. As already mentioned, standard numerical schemes
require very small time step to capture the sti� behaviour. Following [9], in this paper, we
propose a method which is based on an exponential integrator in velocity. An exponential
integrator (see [16]) consists in solving exactly the linear (sti�) part by using the variation-
of-constants formula

u (t) = e
t
ε
Mu0 +

∫ t

0
e
t−τ
ε
MF (τ, u (τ)) dτ. (1.10)

Once the sti� part is exactly solved, we proceed with the numerical treatement of the integral
term in (1.10) as explained in [9]: we solve the ODEs over one fast period using an explicit
high-order solver and then, thanks to (1.10), we compute an approximation of the solution
over a large whole number of periods. Then, we introduce the following Guiding Center
decomposition

let Cε be such that Xε (t) = Cε (t)− ε (Vε (t))⊥ (1.11)

and we show the main algorithm's approximation to be equivalent to a linear approximation
of Cε's trajectory, an interesting issue when studying the particles' long time behaviour.

Afterwards, we start applications with the linear case of Ξε given by (1.6). We thus cal-
culate the analytic solution to (1.1)-(1.2)-(1.6), we check whether the scheme gives accurate
solutions on, close to, and far from the slow manifold (as in [4]), and eventually, we obtain
the same order of error for these three numerical solutions, in both short time and long time
simulations. Recalling that the fast oscillation is of order ε, let us remark that from now
on, by short time we mean of order 1 and by long time, of order 1/ε.

Finally, our numerical results underline that the scheme is robust when using various
large time steps compared to the fast oscillations and that it works uniformly when the
parameter ε goes to zero. In addition, in the Vlasov-Poisson case, within long time simu-
lations, we show that the method is asymptotic preserving, meaning that it is accurate in
time in the limit ε → 0, capturing the Guiding Center model in this limit (there is a huge
literature about asymptotic preserving schemes, we cite only the classical paper [17]).

The paper is organized as follows. In Section 2 we brie�y recall the main steps of
the Particle-In-Cell (PIC) method for solving the Vlasov-Poisson system in which we are
interested. Then, Section 3 is devoted to the construction of the exponential integrator,
named the ETD-PIC algorithm, for advancing in time the particles' position and velocity.
In Section 4 we write the algorithm in terms of the Guiding Center position. Eventually,
in Section 5, we implement our method in the cases presented above and we validate it in
both, short and long times, simulations.

2 A Particle-In-Cell method

The numerical scheme that we describe in the next section is proposed in the framework of a
Particle-In-Cell method. A PIC method consists �rst in approximating the initial condition
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Figure 1: Illustration of formula (1.11) in the case when ε = 0.01 and the electric �eld is
given by (1.6). The initial positions and velocities are

(
x3

0,v
3
0

)
(left) and

(
x2

0,v
2
0

)
(right)

introduced in (5.10). The evolution of the Guiding Center is in green and that of the position
in red. The �nal time is t = 4.

f0 in (1.2) by the following Dirac mass sum

f
Np
0 (x,v) =

Np∑
k=1

ωkδ (x− xk,0) δ (v − vk,0) , (2.1)

where {(xk,0,vk,0)}Npk=1 is a beam of Np macroparticles distributed in the four dimensional
phase space according to the density function f0. Afterwards, one approximates the solution
of (1.1)-(1.2), by

f εNp (x,v, t) =

Np∑
k=1

ωkδ (x−Xε
k (t)) δ (v −Vε

k (t)) , (2.2)

where (Xε
k (t) ,Vε

k (t)) is the position in phase space of macroparticle k moving along a
characteristic curve of equation

dXε
k

dt
= Vε

k, (2.3)

dVε
k

dt
=

1

ε
(Vε

k)
⊥ + Ξε (Xε

k, t) , (2.4)

Xε
k (0) = xk,0, Vε

k (0) = vk,0. (2.5)

Therefore, the problem consists in �nding the positions and velocities
(
Xε
k,n+1,V

ε
k,n+1

)
at

time tn+1 from their values at time tn, by solving (2.3)-(2.4) with the initial condition(
Xε
k,n,V

ε
k,n

)
.

When the problem (2.3)-(2.4) is coupled to the Poisson equation, the electric �eld term
in (2.4) is numerically computed in a macroparticle position at time t as follows:

1. Construct a spatial grid (the Poisson grid).
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2. Compute on this grid

ρS (x, t) =

Np∑
k=1

ωkS (x−Xε
k (t)) , (2.6)

where S is a �rst order two dimensional spline.

3. Solve the Poisson equation −∆xφ (x, t) = ρS (x, t) − ni on this grid and deduce the
grid electric �eld.

4. Interpolate the grid electric �eld with the same �rst order spline yielding the density
ρS in order to obtain the electric �eld at the macroparticle position.

Eventually, an important question in the PIC method is the numerical integration of the
dynamical system (2.3)-(2.4). Here is the contribution of this paper, to propose an accurate
numerical scheme when using large time steps compared to the fast oscillation. We thus
introduce in the next section a method based on exponential time di�erencing, following the
ideas in [9].

3 The exponential integrator in velocity for the Particle-In-

Cell method

We �rst detail the exponential time di�erencing (ETD) method for solving the sti� velocity
equation (2.4). Then, we describe the exponential integrator that we have implemented for
solving (2.3)-(2.4) in the framework of the PIC algorithm.

3.1 The exponential integrator in velocity

One way to solve e�ciently sti� ODEs is to use an exponential time di�erencing approach
(see [4, 9, 16] and the references therein). Such a method is recognized to be accurate while
avoiding simulation with small time steps. In order to write down the scheme in our case
we follow the steps in [4]. Let M be the matrix de�ned by

M =

(
0 1
−1 0

)
, (3.1)

and let

eτM =

(
cos (τ) sin (τ)
− sin (τ) cos (τ)

)
(3.2)

be the exponential of M. Multiplying (1.8) by e−
τ
ε
M , we obtain

d

dτ

(
e−

τ
ε
MVε

)
= e−

τ
ε
M

(
−1

ε
MVε

)
+ e−

τ
ε
M dVε

dτ
(3.3)

= e−
τ
ε
MΞε (Xε, τ) . (3.4)
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Integrating this equality between s and t (where s < t) yields

Vε (t) = e
t−s
ε
MVε (s) + e

t−s
ε
M

∫ t

s
e
s−τ
ε
MΞε (Xε (τ) , τ) dτ. (3.5)

Concerning the position equation, an integration between s and t of (1.7) yields

Xε (t) = Xε (s) +

∫ t

s
Vε (τ) dτ. (3.6)

Equation (3.5) has the merit to solve exactly the sti� part in the velocity equation and thus,
we are left with the numerical treatment of the integral term.

3.2 The ETD-PIC method with large time steps

In this section we establish the time-stepping scheme following Section 4.2 in [9]. We write
(3.5)-(3.6) with s = tn and t = tn+1 = tn + ∆t in order to specify how the solution
is computed at time tn+1 from its known value at time tn. We are thus faced with the
numerical computation of two integrals from tn to tn+1.
Since we want to build a scheme with a time step ∆t much larger than the fast oscillation,
we �rst need to �nd the unique positive integer N and the unique real r ∈ [0, 2πε) such that

∆t = N · (2πε) + r. (3.7)

The derivation of the scheme, Algorithm 3.6, is based on the following approximations.

Approximation 3.1. We have∫ tn+N ·(2πε)

tn

e
tn−τ
ε

MΞε (Xε (τ) , τ) dτ ' N · Iε1, (3.8)

where Iε1 is de�ned by

Iε1 =

∫ tn+2πε

tn

e
tn−τ
ε

MΞε (Xε (τ) , τ) dτ. (3.9)

Approximation 3.2. We have∫ tn+N ·(2πε)

tn

Vε (τ) dτ ' N ·J ε
1, (3.10)

where J ε
1 is de�ned by

J ε
1 =

∫ tn+2πε

tn

Vε (τ) dτ. (3.11)

Remark 3.3. Approximations 3.1 and 3.2 are valid if we make the assumptions that the
velocity and the electric �eld evaluated at the particle position are quasi-periodic in time
(with a period close to 2πε) and that this period does not change signi�cantly with time.
We will see in Section 4 that the assumption of quasi-periodicity and small variations in the
period of the particle electric �eld only is enough to validate Approximations 3.1 and 3.2.
Indeed, we will see that under Approximation 3.1, the Approximation 3.2 is equivalent to
another one, the approximation in (4.6), involving the integral of the electric �eld evaluated
at the particle position.
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Remark 3.4. In Section 3.3 we will give the order of the errors in Approximations 3.1 and
3.2 in some particular cases for the electric �eld Ξε.

Lemma 3.5. Under Approximations 3.1 and 3.2 we obtain(
Xε (tn +N · (2πε))
Vε (tn +N · (2πε))

)
'
(

Xε
n

Vε
n

)
+N ·

(
Xε (tn + 2πε)−Xε

n

Vε (tn + 2πε)−Vε
n

)
. (3.12)

Proof. Applying formulas (3.5) and (3.6) with s = tn and t = tn + 2πε we obtain(
Xε (tn + 2πε)
Vε (tn + 2πε)

)
=

(
Xε
n

Vε
n

)
+

(
J ε

1

Iε1

)
. (3.13)

Applying again formulas (3.5) and (3.6) with s = tn and t = tn +N · (2πε) yields(
Xε (tn +N · (2πε))
Vε (tn +N · (2πε))

)
=

(
Xε
n

Vε
n

)
+

∫ tn+N ·(2πε)

tn

(
Vε (τ)

e
tn−τ
ε

MΞε (Xε (τ) , τ)

)
dτ. (3.14)

Injecting (3.10) and (3.8) in (3.14), we obtain(
Xε (tn +N · (2πε))
Vε (tn +N · (2πε))

)
'
(

Xε
n

Vε
n

)
+N ·

(
J ε

1

Iε1

)
. (3.15)

Injecting (3.13) in (3.15) we obtain (3.12). This ends the proof of Lemma 3.5.

Using Lemma 3.5, we deduce the following algorithm to compute
(
Xε
n+1,V

ε
n+1

)
from

(Xε
n,V

ε
n):

Algorithm 3.6. Assume that (Xε
n,V

ε
n) the solution of (1.7)-(1.8) at time tn is given.

1. Compute (Xε (tn + 2πε) ,Vε (tn + 2πε)) by using a �ne Runge-Kutta solver with initial
condition (Xε

n,V
ε
n) .

2. Compute (Xε (tn +N · (2πε)) ,Vε (tn +N · (2πε))) thanks to formula (3.12), i.e., by
setting(

Xε (tn +N · (2πε))
Vε (tn +N · (2πε))

)
=

(
Xε
n

Vε
n

)
+N ·

(
Xε (tn + 2πε)−Xε

n

Vε (tn + 2πε)−Vε
n

)
. (3.16)

3. Compute (Xε,Vε) at time tn+1 by using a �ne Runge-Kutta solver with initial condi-
tion (Xε,Vε) at time tn +N · (2πε), obtained at the previous step.

3.3 Special cases verifying the assumptions of the algorithm

In this section we discuss examples allowing to compute the order of the exact errors in the
Approximations 3.1 and 3.2. These special cases are concerned with particular choices for
the electric �eld for which we can compute the di�erence between the two integral terms in
(3.8) or (3.10). In general, the electric �eld depends on time and space. For our examples,
we �rst consider an electric �eld depending only on time and then, we consider the case of
an electric �eld depending only on position.

8



Concerning the �rst example, it is clear that a time dependent only and 2πε periodic
electric �eld leads to exact approximations in (3.8) and (4.6) and consequently (see Remark
3.3) in approximations (3.8) and (3.10).

The second special case is when the electric �eld is given by (1.6) for which an analytic
expression of the characteristics can be computed (see Section 5.1.1). Therefore, by using
formulas (3.5) and (3.6), we can compute exactly the four integral terms involved in (3.8)
and (3.10). We thus obtain, without numerical approximation, the errors made in Approx-
imations 3.1 and 3.2. These errors are illustrated in Figure 2, for a �xed initial time tn = 0
and several values of ε and of the integer N . The integers N , summarized in Table 1, corre-
spond, through formula (3.7), to the time steps used in our simulations when comparing the
ETD-PIC method with the analytical solution. As initial condition for the computation of
the characteristics involved in Approximations 3.1 and 3.2 we use (x3

0,v
3
0) = (1, 1, 1, 1). We

chose this setting because it is one of the initial conditions for which the error is the most
signi�cative (see Section 5.1).

∆t = 1E-1 ∆t = 2E-1 ∆t = 3E-1 ∆t = 5E-1 ∆t = 8E-1 ∆t = 1

ε=1.E-2 1 3 4 7 12 15

ε=1.E-3 15 31 47 79 127 159

ε=1.E-4 159 318 477 795 1 273 1 591

ε=1.E-5 1 591 3 183 4 774 7 957 12 732 15 915

ε=1.E-6 15 915 31 830 47 746 79 577 127 323 159 154

ε=1.E-7 159 154 318 309 477 464 795 774 1 273 239 1 591 549

ε=1.E-8 1 591 549 3 183 098 4 774 648 7 957 747 12 732 395 15 915 494

Table 1: Values of the integer N used for the simulations of Figure 2.

Figure 2: The Euclidean errors made in Approximations 3.1 (left) and 3.2 (right) with
tn = 0, for the electric �eld given by (1.6), for several values of ε.

Now, we give some comments about the results in Figure 2. We �rst notice that the
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values of the errors for ε = 0.01 and ∆t = 0.1 are clearly zero, since N is in this case
1. Second, we remark that for each �xed ε, despite the fact that the integer N increases
signi�cantly when the time step varies from 0.1 to 1, the errors have the same order of
magnitude and thus, we conclude that Approximations 3.1 and 3.2 are robust with respect
to N . Then, it is natural to obtain a smaller error in the approximation of the integrals with
smaller integer N . In addition, we notice that the errors decrease uniformly with respect to
ε. Finally, for a �xed ∆t, the errors in the approximations decrease with decreasing ε even
if N is signi�cantly increasing. This behaviour may be justi�ed as follows: the smaller ε is,
the smaller the macroscopic change in position is, and thus, the better the approximations
are.

In the simulation results of the paper we will see that the errors in Algorithm 3.6 inherit
the behaviour in Fig. 2 with respect to the values of ε and of ∆t.

4 Link with the Guiding Center Decomposition

We have seen in Introduction that the time evolution of a particle's position following (1.7)-
(1.8) can be split into two parts: the slow motion of the Guiding Center Cε (see formula
(1.11)) and a fast oscillation about it. In this section, we mainly see that this decomposition
can be used to show that the quasi-periodicity of the electric �eld only evaluated at the
particle position is su�cient to justify the second step of Algorithm 3.6.

With this attempt, we �rst recall the formula giving the Guiding Center position

Cε (t) = Xε (t) + ε (Vε (t))⊥ . (4.1)

Then, it is an easy fact to see that the rule in (3.16) is equivalent to(
Cε (tn +N · (2πε))
Vε (tn +N · (2πε))

)
=

(
Cε
n

Vε
n

)
+N ·

(
Cε (tn + 2πε)−Cε

n

Vε (tn + 2πε)−Vε
n

)
. (4.2)

In the following, we see that the rule for the Guiding Center in (4.2) may be obtained
directly from the evolution of Cε under an approximation similar to that in (3.8). To this
end, we derive in time equation (4.1) and making use of equations (1.7)-(1.8) leads to

dCε

dt
(t) = εMΞε (Xε (t) , t) , (4.3)

where MΞε is
(
Ξε
)⊥

= (Ξε
2,−Ξε

1). Thus, we see that the Guiding Center experiences a
slow motion in time. Then, we integrate this equation between s and t (where s < t)

Cε (t) = Cε (s) + εM

∫ t

s
Ξε (Xε (τ) , τ) dτ, (4.4)

and using this equality with s = tn and t = tn +N · (2πε) yields

Cε (tn +N · (2πε)) = Cε
n + εM

∫ tn+N ·(2πε)

tn

Ξε (Xε (τ) , τ) dτ. (4.5)
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Therefore, as done in Section 3.2, under the assumption∫ tn+N ·(2πε)

tn

Ξε (Xε (τ) , τ) dτ ' N ·
∫ tn+2πε

tn

Ξε (Xε (τ) , τ) dτ (4.6)

we deduce from (4.5) that

Cε (tn +N · (2πε)) ' Cε
n +N · (Cε (tn + 2πε)−Cε

n) . (4.7)

In conclusion, assuming only that the time period of the electric �eld does not change
signi�cantly in time leads the approximation (3.12) to be valid. Indeed, this assumption
allows us to use the approximations in (4.6) and in (3.8). Then, following the lines of the
proof of Lemma 3.5, we obtain that (4.7) is satis�ed and thus, that approximation (3.12) is
valid.

Finally, the Guiding Center gives information about the qualitative behavior of the long
time position's evolution. Indeed, being almost free of fast oscillations, the evolution of Cε

easily brings out the curvature of the macroscopic motion of the particle position (see Figs.
1 and 3). In the case of equations (1.1), (1.2), (1.6), this macroscopic evolution is periodic
and the large period can be explicitly computed, being about 2π/(

√
3ε) (see Section 5.1.1).

Figure 3: The linear case in Section 5.1 with ε = 0.01 and the initial condition (1, 1, 1, 1):
the position's evolution in time until t = 360; the entire trajectory (left) and a zoom at the
beginning of the dynamics (right); In green the result of the ETD scheme using a time step
∆t = 30ε and in red the analytic solution given in formulas (5.1)

5 Validation of the numerical method

We now validate our algorithm in the test cases presented in Introduction. First, in all the
following sections, our numerical experiments show that the scheme performs very well in
robustness and accuracy when using very large time steps with respect to the small scale of
oscillations. Then, in sections 5.1, 5.3, and 5.4, within short and long time simulations, we
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show that the scheme works uniformly when the small parameter vanishes. More precisely,
Section 5.1 is concerned with an analytic case that allows us to compute the real errors of
the method and, in addition, to validate it when starting simulations with several types
of initial conditions. In Section 5.3 we solve the Vlasov-Poisson system (1.3)-(1.5) and
compare our method against a solution estimated with a very small time step, a reference
solution. In addition, we show that, as expected, when ε decreases the algorithm gives a
better approximation of the reference solution than the numerical solution to the short time
Guiding Center model. At the end, in Section 5.4, we do long time numerical experiments
and show that the scheme is asymptotic preserving by comparisons with the limit Guiding
Center model introduced in Section 5.2.

5.1 A linear case

In this section we consider the Vlasov equation (1.1)-(1.2) provided with the external electric
�eld Ξε given by (1.6). In order to test our algorithm it will be interesting to localize the
initial conditions for which the fast oscillations disappear. This domain is usually called
the slow manifold (see [4] and the references therein). In Section 5.1.1 we give an analytic
expression of the solution, which allows us to compute the slow manifold. We refer to
Appendix A for details about both the computations and the choice of the external electric
�eld (1.6). Then, in Section 5.1.2 we compare the outcome of the ETD-PIC method to the
solution, starting with several initial conditions.

5.1.1 Analytic solution

Let ε be such that 0 < ε <

√
1−

√
3

2 ' 0.366. Then, the solution of (1.6),(1.7), (1.8) is
given by:

Xε
1 (t; x0,v0) =Kε

1

(
cos (aεt)−

aε
ε

sin (aεt)
)

+Kε
2

(
sin (aεt) +

aε
ε

cos (aεt)
)

+Kε
3

(
cos (bεt)−

bε
ε

sin (bεt)

)
+Kε

4

(
sin (bεt) +

bε
ε

cos (bεt)

)
,

Xε
2 (t; x0,v0) =−Kε

1uε cos (aεt)−Kε
2uε sin (aεt)−Kε

3vε cos (bεt)−Kε
4vε sin (bεt) ,

V ε
1 (t; x0,v0) =−Kε

1aε

(aε
ε

cos (aεt) + sin (aεt)
)

+Kε
2aε

(
cos (aεt)−

aε
ε

sin (aεt)
)

−Kε
3bε

(
bε
ε

cos (bεt) + sin (bεt)

)
+Kε

4bε

(
cos (bεt)−

bε
ε

sin (bεt)

)
,

V ε
2 (t; x0,v0) =Kε

1aεuε sin (aεt)−Kε
2aεuε cos (aεt) +Kε

3bεvε sin (bεt)−Kε
4bεvε cos (bεt) ,

(5.1)

where

aε =

√
1− 4ε2 −

√
1− 8ε2 + 4ε4

2ε2
, (5.2)

bε =

√
1− 4ε2 +

√
1− 8ε2 + 4ε4

2ε2
, (5.3)
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uε = 2 + a2
ε,

vε = 2 + b2ε,

wε = 1 +
a2
ε

ε2
,

xε = a2
ε − b2ε,

(5.4)

and
Kε

1

Kε
2

Kε
3

Kε
4

 =


ε2vε

(2−ε2)xε
− 1

uε
+ ε2vεwε

(2−ε2)xεuε
− εvε

(2−ε2)xε
0

ε
aε

+ ε3

(2−ε2)aε
− 2εuε

xεaε(2−ε2) − εvε

uεaεxε

(
1 + ε2wε

2−ε2

)
ε2vε

(2−ε2)aεxε
− 1

aεxε

− ε2uε

(2−ε2)xε
− ε2wε

(2−ε2)xε

εuε

(2−ε2)xε
0

2εuε

(2−ε2)bεxε

ε
bεxε

+ ε3wε

(2−ε2)bεxε
− ε2uε

(2−ε2)bεxε

1
bεxε




x0,1
x0,2
v0,1
v0,2

 .

(5.5)

We can thus observe that, in addition to the fast oscillations of period 2π
bε
∼ 2πε, the

solution of (1.7)-(1.8) contains slow oscillations of period 2π
aε
∼ 2π√

3ε
. More precisely, we

notice that the solution belongs to F = F × F × F × F , where

F = vect {cos (aεt) , sin (aεt) , cos (bεt) , sin (bεt)} . (5.6)

Following [3], we de�ne the slow manifold as follows :

De�nition 5.1. The slow manifold corresponds to the initial conditions for which the solu-
tions belong to G, where G ⊂ F is de�ned by G = G × G × G × G, with

G = vect {cos (aεt) , sin (aεt)} . (5.7)

Remark 5.2. In [3], the author gives the following "de�nition" of the slow manifold: "The
slow manifold is that particular solution which varies only on the slow time scale; the general
solution to the ODE contains fast oscillations also." As aε ∼

√
3ε and bε ∼ 1/ε, De�nition

5.1 is consistent with this one.

Following De�nition 5.1, the slow manifold corresponds to the intersection between the
hyperplanes

{(x0,v0) such that Kε
3(x0,v0) = 0} and {(x0,v0) such that Kε

4(x0,v0) = 0}.

Since the two hyperplanes are di�erent, the intersection is of dimension two. Straightforward
computations yield that


1
− uε
wε
0

− 2εuε
2−ε2 + εuε

wε
+ ε3uε

2−ε2

 ,


1
0
ε

− 2εuε
2−ε2 + ε3uε

2−ε2


 (5.8)

form a basis of this vector space. Subsequently, we denote by D2 this space.
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5.1.2 Short and long time numerical simulations

In this section we test the ETD-PIC method against the solution previously obtained. We
consider two di�erent types of initial condition f0. The �rst one is with one macroparticle,
alternatively located on, close to, and far from the slow manifold. In the second case, we
consider a beam of macroparticles and we compute the maximum in time of the mean of
the Euclidean errors.

Considering one particle alternatively on, close to, and far from the slow manifold means
that we take initial conditions

f i0 (x,v) = δ
(
x− xi0

)
δ
(
v − vi0

)
, (5.9)

where i = 1, 2, 3, and
(
x1

0,v
1
0

)
is on the slow manifold,

(
x2

0,v
2
0

)
is close to the slow manifold,

and
(
x3

0,v
3
0

)
is far from the slow manifold. For the numerical simulations we take

(
x1

0,v
1
0

)
=

(
1, 0, ε,− 2εuε

2− ε2
+

ε3uε
2− ε2

)
,

(
x2

0,v
2
0

)
=

(
1,− uε

wε
, ε
wε
uε
,− 2εuε

2− ε2
+ ε

wε
uε

+
ε3uε

2− ε2

)
,(

x3
0,v

3
0

)
= (1, 1, 1, 1) .

(5.10)

Starting from the analytic formulas derived in the previous section, we have plotted in Fig. 1
the physical trajectories of the particles of which initial positions and velocities are

(
x2

0,v
2
0

)
and

(
x3

0,v
3
0

)
, until �nal time 4. Using general formulas for the distances to the slow manifold

D2 from these particles, we obtain the speci�c values in Table 2.

ε = 0.01 ε = 0.005 ε = 0.001 ε = 0.0005 ε = 0.0001

i = 1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

i = 2 0.01999800 0.00999975 0.00199999 0.00099984 0.00018878

i = 3 1.41477865 1.41435495 1.41421923 1.41421509 1.41422155

Table 2: Euclidean distances between the slow manifold and the points
(
xi0,v

i
0

)
i∈{1,2,3} in

(5.10), for several values of ε.

Denoting by (Xε (t) ,Vε (t)) the result of the ETD-PIC method and by (Xε
sol

(t) ,Vε
sol

(t))
the solution, we compute the global Euclidean errors at �nal time 10,

en = max
k∈{0,...,n}

‖(Xε,Vε) (tk)− (Xε
sol,V

ε
sol) (tk)‖2 , (5.11)

where n ∈ N corresponds to the ratio between the �nal time of simulation and the time step
∆t, for several values of ε and of ∆t (see Fig. 4). In Fig. 5 we have plotted the error when
starting with the close to the slow manifold particle introduced in (5.10). Similar error
curves have been obtained for the particles on and far from the slow manifold in (5.10).
Finally, in Fig. 6, we represent the global Euclidean errors at a large �nal time, for the three
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types of particles.

Second, preparing the test case in Section 5.3, we consider the following initial condition

f0 (x,v) =
1

8π2v2
th

(1 + η cos (kx1x1 + kx2x2))χ (x) exp

(
−v

2
1 + v2

2

2v2
th

)
, (5.12)

where kx1 = 0, kx2 = 0.5, vth = 1, η = 0.1, and

χ (x) = χ[0,1] (x1)χ[0,4π] (x2) (5.13)

where for any set A in R, χA(x) = 1 if x ∈ A and 0 otherwise. We generate this distribution
function using 104 particles in R4. Thus, in Fig. 5 (at right), we compute the maximum of
the mean of the Euclidean errors

Men = max
k∈{0,...,n}

 1

Np

Np∑
j=1

∥∥(Xε
j ,V

ε
j

)
(tk)−

(
Xε
j,sol,V

ε
j,sol

)
(tk)

∥∥
2

 , (5.14)

at �nal time 10, for several values of ε and of ∆t.

5.1.3 Comments about the numerical results

In the simulations done in Section 5.1.2, we have implemented the Algorithm 3.6 as follows:
we use 2π/bε instead of 2πε in equation (3.7) and the same concerning the �rst two steps
of the algorithm. Then, within the �rst and the third steps, no high-order scheme was used
for solving the ODEs but the exact solution given by formulas (5.1). Thus, we can establish
that the numerical error of our algorithm mainly consists of two parts: the error made in
the �rst step, by replacing the real fast period of oscillation by 2π/bε, denoted by EP and
the error made in the second step when following the macroscopic time evolution, denoted
by EM .

In a �rst test, when keeping ε �xed, we calculate the errors when starting simulation with
di�erent particles (see Fig. 4 for short �nal time and Fig. 6 for long �nal time). When we
take as initial condition f1

0 , the fast oscillations disappear and thus, EP is zero. If we take as
initial condition f2

0 or f3
0 , we expect the error to be bigger for a particle o� the slow manifold;

this point of view is in accordance with our numerical results. Thus, we can observe that
the smaller the distance to the slow manifold is, the smaller the corresponding error is. The
reason is that, the closer to the slow manifold a particle is, the smaller the amplitude of
its oscillation is, and thus, the smaller the propagation of the error EP through EM is (see
[8] for similar comments for a simpler Vlasov model). Then, in long time simulations, the
errors are obviously signi�cant, due to our simple linear approximation of the macroscopic
time evolution. However, we note that for all values of ε, the three errors have the same
order in magnitude (see the paragraph containing equation (1.6)). Finally, we point out
that using very precise periods in the �rst step of the algorithm may be an important issue
in order to reduce the error EP that will propagate at macroscopic time when applying the
second step (this idea was already stressed in [9]). Nevertheless, in this test case, we have
�rst calculated the particles periods with the RK4 solver, as described in [9], and obtained
that the di�erence between these values and 2π/bε are very small, of order ε3. In addition,

15



we have done simulations by using the computed periods instead of 2π/bε and the results
are very similar to those obtained with the period 2π/bε.

In a second test, for a �xed particle, we calculate errors (see Fig. 5) when using several
values of ε. For the three types of particles considered above, we have obtained smaller errors
with smaller ε, the reason being the following: the smaller ε is, the smaller the macroscopic
position's displacement is, and thus the better the scheme performs.

Eventually, the simulations (see Fig. 5 at right) show that the scheme works uniformly
when ε vanishes when using also the beam of particles de�ned in (5.12).

5.2 Short and long time Vlasov-Poisson equations

In the following sections we will test the ETD-PIC method within the Vlasov-Poisson frame-
work, for short and long times simulations. To this end we recap now a few useful facts
about the long time Vlasov-Poisson equation and its related limit model: the Guiding Center
model.

5.2.1 Long time Vlasov-Poisson equations

Let f ε be the solution of (1.3)-(1.5). In order to see what happens for large �nal times, we
introduce the function gε de�ned by :

gε(x,v, t) = f ε(x,v,
t

ε
). (5.15)

Then, the function gε satisfy the following system of equations:

∂tg
ε +

v

ε
· ∇xg

ε +
1

ε

(
Eε(x,

t

ε
) +

1

ε
v⊥
)
· ∇vg

ε = 0, (5.16)

Eε (x, t) = −∇xφ
ε(x, t), −∆xφ

ε(x,
t

ε
) =

∫
R2

gε(x,v, t)dv − ni, (5.17)

gε (x,v, t = 0) = f0 (x,v) . (5.18)

Setting

Eε(x, t) = Eε(x,
t

ε
), (5.19)

ψε(x, t) = φε(x,
t

ε
), (5.20)

we obtain the following dimensionless Vlasov-Poisson system :

∂tg
ε +

v

ε
· ∇xg

ε +
1

ε

(
Eε(x, t) +

1

ε
v⊥
)
· ∇vg

ε = 0, (5.21)

Eε (x, t) = −∇xψ
ε(x, t), −∆xψ

ε(x, t) =

∫
R2

gε(x,v, t)dv − ni, (5.22)

gε (x,v, t = 0) = f0 (x,v) . (5.23)

In the sequel, equations (5.21)-(5.23) will be called the long time Vlasov-Poisson equations,
while equations (1.3)-(1.5) will be refered to as the short time Vlasov-Poisson model.
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5.2.2 The Guiding Center model

It is well known (see [2], [14]) that, under some hypotheses for f0, the particle density
associated to the dynamical system (5.21)-(5.23) weak-∗ converges when ε goes to zero
towards the unique solution to the Guiding Center equation :

∂tfGC + E⊥ · ∇xfGC = 0, (5.24)

E (x, t) = −∇xφ(x, t), −∆xφ(x, t) = fGC − ni, (5.25)

fGC (x, t = 0) =

∫
R2

f0 (x,v) dv. (5.26)

In order to test the long (1/ε-order) time accuracy of the ETD-PIC scheme we compute

ρεg (x, t) =

∫
R2

gε (x,v, t) dv (5.27)

and we compare the result with fGC . Let us precise that the well-known model (5.24)-(5.26)
may be also called, in our terminology, the long time Guiding Center equations.

Now, in order to compare the accuracy of the Guiding Center model with that of the
ETD-PIC scheme at times of order 1 we also introduce the function ρεGC de�ned by

ρεGC(x, t) = fGC(x, εt). (5.28)

Setting

Eε (x, t) = E (x, εt) , (5.29)

σε (x, t) = φ (x, εt) , (5.30)

we notice that ρεGC satis�es

∂tρ
ε
GC + ε(Eε)⊥ · ∇xρ

ε
GC = 0, (5.31)

Eε (x, t) = −∇xσ
ε(x, t), −∆xσ

ε(x, t) = ρεGC − ni, (5.32)

ρεGC (x, t = 0) =

∫
R2

f0 (x,v) dv. (5.33)

Subsequently, equations (5.31)-(5.33) will be called the short time Guiding Center equations.

Remark 5.3. It is interesting to notice that the trajectories followed by the macroparticles
of the PIC method used to solve system (5.31)-(5.33) are the ones given by equation (4.3),
but with Xε replaced by Cε. We learn from Littlejohn [19, 20] and Frénod, Lutz [10] that it is
indeed possible to do that, since Xε and Cε remain close on the long term. We refer also to
Frénod, Sonnendrücker [13] and Golse, Saint-Raymond [15], where a kinetic equation version
of this approximation is studied, even when the self-induced electric �eld is considered.
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5.3 Short time Vlasov-Poisson test case

In the present section we check the accuracy of our numerical scheme for the nonlinear
Vlasov-Poisson system at times of order 1, recalling that the period of the fast motion is of
order ε. Thus, we consider equation (1.3)-(1.5) with the typical for the Landau damping
case initial condition ([22]) given by

f0 (x,v) =
1

2πv2
th

(
1 + η cos (k1x1 + k2x2)

)
exp

(
−v

2
1 + v2

2

2v2
th

)
, (5.34)

where vth = 1, η = 0.1, k1 = 0.5, k2 = 0, and

Ωx = [0;T1]× [0;T2] , (5.35)

with T1 = 2π/k1 and T2 = 1. Next, in Section 5.3.1, we give the parameters used for the
implementation of the reference solution and of our algorithm, the ETD-PIC method. The
simulations concerning the reference solution and the �rst and third step of Algorithm 3.6
are done by following the four steps described in Section 2. In Section 5.3.1, we comment
the numerical results of the comparisons ETD-PIC method versus a reference solution.
Eventually, in Section 5.3.2, our numerical results show that, when ε vanishes, the solution
of the ETD-PIC scheme is closer to the Vlasov-Poisson reference solution than the solution
of the short time Guiding Center model, as expected.

5.3.1 Numerical issues

We implement the initial condition above with Np = 2 ·105 macroparticles. The weights are

ωk =
T1T2

Np
, k ∈ {1, . . . , Np},

so that the numerical initial condition have the total mass of that in (5.34):∫
Ωx×R2

f0 (x,v) dxdv =

∫
Ωx×R2

f
Np
0 (x,v) dxdv = T1T2. (5.36)

We solve numerically (1.3)-(1.5) by using classical periodic boundary conditions on the
physical domain ([22]). In this way, we take ni = 1 in (1.4) ensuring that∫

Ωx

(
ρS (x, t)− ni

)
dx = 0, (5.37)

and thus, that the Poisson equation in (1.4) has solution. Then, the Poisson equation is
solved by means of a Fast Fourier Transform method using 128 cells in the x1-direction and
16 cells in the x2-direction. As for the particles' advection in time, when computing the
reference solution or within the �rst and the third step of Algorithm 3.6, we use the explicit
fourth order Runge-Kutta scheme with ∆t = 2πε/100.

For several small ε, in Fig. 7 we plot the global error in densities, at �nal time t = 4.
More precisely, after each time step we compute the grid densities corresponding to the
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reference solution and to the ETD-PIC scheme, by using cubic splines. The local error is
thus the L2-norm

||g||L2 =

(
1

T1T2

∫
Ωx

|g(x)|2dx
)1/2

of the di�erence between these densities; its computation was done by the trapezoidal rule.
We have done tests for several values of the time step going from 0.1 to 1. Thus, the smaller
time step is su�ciently big so that N , the whole number of rapid periods enclosed in a time
step, be bigger than 1. More precisely, following equation (3.7), N varies from 1 to 1591
when the values of ε and of the time step are those in Fig. 7.

These results show that the ETD-PIC scheme works uniformly when ε vanishes. In
addition, as already pointed out in the linear case in the previous section, the smaller ε is,
the smaller the displacement of a particle's position is. Therefore, the smaller is the error
due to the second step of Algorithm 3.6, and thus, the better the scheme performs.

5.3.2 Comparison with the short time Guiding Center model

In this Section we compare the numerical result of the ETD-PIC scheme for solving the
Vlasov-Poisson system (1.3)-(1.5) to that of a standard PIC scheme for the short time
Guiding Center model (5.31)-(5.33). The particles used for the short time Guiding Center
model are pushed in time with the fourth order Runge-Kutta scheme. We have plotted the
global error in densities (see Section 5.3.1) at time t = 4 for a �xed time step ∆t = 1 and
for several values of ε going from 10−4 to 10−2. The results are summarized in Fig. 8.
Smaller time steps have given similar error curves. As expected, the results obtained with
ETD-PIC scheme are more accurate as those obtained with the short time Guiding Center
model: the errors of our algorithm for ∆t = 1 in Fig. 7 are much smaller that the errors
of the Guiding Center in Fig. 8. Indeed, the ETD-PIC scheme has the capability to solve
directly (1.3)-(1.5) contrary to the short time Guiding Center system which is only a limit
model representing the collective dynamics of the Guiding Centers.

5.4 Long time Vlasov-Poisson test case

Now, we study the behavior of the time-stepping scheme for long time simulation, more
precisely for times of order 1/ε when the fast periodic motion is considered of order ε. The
outcome of a simulation of this type was already illustrated in Fig. 3 in the linear case
presented above. In this section we do not compare the results obtained with the ETD-PIC
scheme to a reference solution since it would require very large CPU time. We will thus do
numerical comparisons with respect to a macroscopic free of oscillations model, which can
be simulated with bigger time steps. Therefore, we are led to take into account the long
time Guiding Center model (5.24)-(5.26) which is a good approximation when ε vanishes of
the long time Vlasov-Poisson system (5.16)-(5.18).

5.4.1 Numerical results

Now, we compare the numerical result of the ETD-PIC scheme for solving the ε-dependent
system (5.21)-(5.23) to that of a standard scheme for the Guiding Center model (5.24)-
(5.26). Notice that we need to replace 2πε by 2πε2 in Algorithm 3.6, since this is the order
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of the oscillations period in the Vlasov equation in (5.21). Therefore, the large �nal times
appearing in this section (e.g. Fig. 9) are of order 1. For the numerical simulations of these
equations we follow the steps of the classical PIC method described in Section 2. We choose
the following initial condition (the Kelvin-Helmholtz instability test case, see [21], [6], [22])

f0(x,v) =
1

2πT1T2
exp

(
−v

2
1 + v2

2

2

)(
sin(x2) + η cos(k1x1)

)
, (5.38)

de�ned in Ωx×R2, where Ωx = [0;T1]×[0;T2], T1 = 4π, T2 = 2π, η = 0.05, and k1 = 2π/T1.
We take Np = 105 macroparticles. Moreover we take 32 cells in the x1-direction and 32 cells
in the x2-direction for the construction of the physical mesh. In order that the Poisson
equation with periodic boundary conditions be solvable, we take ni = 0 in equations (5.22)
and (5.25), since the integral over Ωx×R2 in (x,v) of the initial condition in (5.38) is 0. As
in the previous section, we solve the Poisson equation by an usual Fast Fourier Transform.
The time step used for the fourth order Runge-Kutta scheme for pushing particles within
the �rst and the third step of Algorithm 3.6 is 2πε2/100. Then, the particles used for the
Guiding Center model are pushed in time with the fourth order Runge-Kutta scheme. We
have done tests with several time steps and several values of ε going from 10−4 to 10−2.

In Fig. 9 we observe the time evolution of the particles, �rst, by using the Guiding
Center model and second, the ETD-PIC method for the long time Vlasov-Poisson model
with ε = 0.005. The time step is ∆t = 0.01. More precisely, we represent in the physical
space the contours of the particle densities. These smooth densities in Fig. 9 are computed
by depositing 8 · 105 macroparticles on a mesh with 128× 64 cells by using cubic splines.

In Fig. 10 we represent the �global error� in densities (see Section 5.3.1) at t = 5. Now,
the �local error� is the di�erence between the discretization of the solution to the long time
Vlasov-Poisson system, computed with the ETD-PIC strategy, and the discretization of the
solution to the Guiding Center equation. Eventually, we show in Tables 3 and 4 how big
is the time step of the ETD-PIC method with respect to the fastest periodic motion (see
formula (3.7) with ε2 instead of ε for the calculation of these numbers).

As a last validation of our scheme, we follow the time evolution of the Fourier coe�cient
(1, 1) of the electric �eld, solution to the Poisson equation in (5.22). In order to be in
agreement with works [21] and [6], we rather take

f0(x,v) =
1

2πT1T2
exp

(
−v

2
1 + v2

2

2

)(
sin(x1) + η cos(k2x2)

)
(5.39)

as initial condition. In the sequel, for simplicity we denote k2 by k. More precisely, for small
η, we can use (see [22]) a linear approximation of the long time Vlasov-Poisson system and
thus we can approximate the electric �eld by an analytic solution

Eε(x, t) ' 4ηreωit sin(kx2) cos(ωrt− Φ), (5.40)

where ωr and ωi are the real and the imaginary parts of ω, the dominant complex root
of the function involved in the dispertion relation and reiΦ is the residue associated to
ω = ωr + iωi (see [22]). The approximation in (5.40) turns out to be a very good one
on some time interval, between t = 5 and t = 10. From (5.40) we can easily deduce ωi,
the slope of the line approximating the evolution in time of the electric �eld. The growth

20



rate corresponds to this slope and it can be calculated from the Fourier coe�cient (1, 1) of
the electric �eld Eε. It has been noticed in [21] that the numerical growth rate can also
be obtained through an eigenvalue equation (see the Appendix). In Figs. 11 and 13, for
a �xed ε and several values of k, we show that the evolution in time of the logarithm of
the absolute value of the real part of the (1, 1) Fourier coe�cient of ψε (obtained with the
ETD-PIC scheme) converges numerically towards the corresponding numerical growth rates
obtained through the eigenvalue equation. In Fig. 12, we can observe for a �xed k and
several values of ε that the linear phase of the time evolution of the Fourier coe�cient has
the good slope given by the eigenvalue equation.

5.4.2 Comments about the numerical results

First, we can see in Fig. 9 that for several large �nal times, the particle densities obtained
with the Guiding Center equation and with the ETD-PIC scheme for the long time Vlasov-
Poisson model with ε = 0.005 are very close. This is a �rst step of validation of our method
in the context of long time simulations.

∆t=1E-3 ∆t=3E-3 ∆t=5E-3 ∆t= 7E-3 ∆t=9E-3 ∆t=1E-2

ε = 5.E-3 6 19 31 44 57 63

ε = 2.5E-3 25 76 127 178 229 254

ε = 1.E-3 159 477 795 1 114 1 432 1 591

ε = 1.E-4 15 915 47 746 79 577 111 408 143 239 159 154

Table 3: The whole number of rapid full tours enclosed in a time step of the ETD-PIC
scheme, for several values of the time step and of ε; related to the left panel in Fig. 10

ε = 1E-3 ε = 3E-3 ε = 5E-3 ε = 7E-3 ε = 9E-3 ε = 1E-2

∆t=1.E-2 1591 176 63 32 19 15

∆t=5.E-3 795 88 31 16 9 7

Table 4: The whole number of rapid full tours enclosed in a time step of the ETD-PIC
scheme, for several values of ε and of the time step; related to the right panel in Fig. 10

Next, we discuss the results concerning the behavior of the global error. Recalling that N
is the integral number of the rapid full tours appearing in the second step of Algorithm 3.6,
we remark the following:

1. First, in Fig. 10 (left panel), we can see that for each �xed ε, the error decreases with
decreasing time step, although N is changing. Thus, the scheme works for small time
steps compared to the fast oscillation and is robust with respect to N . Second, we
observe that, the smaller ε is, the smaller the error is, despite that N is signi�cantly
increasing when ε is smaller (see Table 3). This is an expected behavior since the
Guiding Center model becomes a better approximation of the long time Vlasov-Poisson
model when ε goes to 0. Thus, the scheme works for big time steps with respect to
the fast oscillation also.
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2. In Table 4 and the right panel in Fig. 10, we detail the above comments by taking
several values of ε. First, justifying as in the item before, when the time step is
kept �xed, the error decreases with decreasing ε. Second, we notice once again the
robustness of the scheme: the errors are stable when N is widely varying from 7 to
1 591.

3. Concluding, the left panel in Fig. 10 shows that the ETD-PIC scheme is convergent
when ∆t → 0, uniformly in ε. Also, the right panel shows that the discretization
of the solution to the long time Vlasov-Poisson system converges when ε → 0 to a
discretization of the Guiding Center model, independently of ∆t. These facts underline
the asymptotic preserving behavior of our scheme.

ω
k 0.1556 0.2699 0.3657 0.4492 0.5223 0.5850 0.6361 0.6735 0.6920

1− k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 5: The numerical values of ω/k (the growth rate is ω) as a function of 1− k, obtained
by solving the eigenvalue equation (see Appendix)

6 Conclusion

In this paper, we have proposed a new numerical scheme for solving some four dimensional
Vlasov and Vlasov-Poisson systems with a strong magnetic �eld. This scheme is based on an
exponential integrator in velocity and can accurately handle large time steps with respect to
the typical size of the solution's fast oscillations. Moreover, we have shown numerically that
the method has accurate short and long times behavior and that it is asymptotic preserving
with respect to the limiting Guiding Center system.

We end with some ways to explore in the future that we consider doing. First, we need
to improve our algorithm's second step, the treatement of the macroscopic time evolution.
One idea is to use an accurate ODE solver with an adaptive time step (like Runge-Kutta-
Fehlberg) allowing to control the error of our scheme with respect to the macroscopic guiding
center trajectory. Next, our aim is to continue �rst with the case of a slowly varying magnetic
�eld. Such a situation will lead to di�erent fast periods for di�erent particles and thus to
adapt our algorithm to be able to handle di�erent periods (such a procedure was recently
successfully implemented in [8] for a two dimensional Vlasov model). Then, towards the six
dimensional case, we need to optimize the implementation of our Particle-In-Cell method
in order to produce such a numerical simulation. This step is important to be carried out
even at the present stage of the paper in order to do simulations for the short/long time
Vlasov-Poisson model when the parameter ε is much smaller than 10−4. Indeed, using a
large number of macroparticles allowing to re�ne the Poisson mesh and/or calculating the
reference solution for such models ask for high computational cost.
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A Appendix : Explicit computation of a bounded solution to

Vlasov equation

In this Appendix we will explain how we choose the coe�cients α, β, γ and η in the expression
of the linear external electric �eld

Ξε (x, t) =

(
αx1 + βx2

γx1 + ηx2

)
. (A.1)

In fact, we will choose these coe�cients in order to obtain a bounded solution of equation
(1.7)-(1.8). This will allow us to test the stability of the scheme. In addition, this choice
can also be justi�ed by the fact that the most simple way to de�ne the slow manifold, as in
de�nition 5.1, is when the solution of (1.7)-(1.8) is purely oscillatory (without exponential
decay).

Eventually, we will give details about the computations of the analytic solution obtained
by taking α = η = 2 and β = γ = 1.

Rewritting (1.7)-(1.8) as

∂

∂t

(
Xε

Vε

)
= Aε

(
Xε

Vε

)
, (A.2)

where

Aε =

[
O2 I2

A 1
εJ2

]
, (A.3)

with

J2 =

[
0 1
−1 0

]
and A =

[
α β
γ η

]
, (A.4)

a su�cient condition in order to obtain a purely oscillatory solution is that the characteristic
polynomial of Aε is in the form

PAε(X) = det (Aε −XI4)

=
(
X2 + a2

ε

) (
X2 + b2ε

)
,

(A.5)

where aε and bε are two real numbers (depending on α, β, γ, and η). Easy computations
yield

PAε(X) = det (Aε −XI4)

= X4 +

(
1

ε2
− η − α

)
X2 +

1

ε
(β − γ)X + (αη − γβ) .

(A.6)
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Thus, identifying (A.5) and (A.6) we obtain :
a2
ε + b2ε =

1

ε2
− η − α,

0 =
1

ε
(β − γ) ,

a2
εb

2
ε = αη − γβ.

(A.7)

For simplicity we set

β = γ (A.8)

and thus, system (A.7) becomes  a2
ε + b2ε =

1

ε2
− η − α,

a2
εb

2
ε = αη − β2.

(A.9)

Then, we see that if we set η = α, if we choose α > β, and if ε is su�ciently small, we obtain
a solution of (A.9). Subsequently we choose

α = η = 2,

β = γ = 1.
(A.10)

With these parameters, system (A.9) reads a2
ε + b2ε =

1

ε2
− 4,

a2
εb

2
ε = 3.

(A.11)

Equivalently, a2
ε and b

2
ε are solutions of

P (U) = U2 −
(

1

ε2
− 4

)
U + 3 = 0. (A.12)

The discriminant of P is given by

∆P =

(
1

ε2
− 4

)2

− 12. (A.13)

Studying the function ∆P = ∆P (ε) we notice that ∆P > 0 provided that ε belongs to

Iε =

0,

√
1−
√

3

2
' 0.366

 . (A.14)

For ε ∈ Iε, we obtain the expressions of aε and bε given by formula (5.2). Thus, the solutions
of (A.2) are the elements of

SR =
{
Kε

1Re
(
eiaεtX ε

)
+Kε

2Im
(
eiaεtX ε

)
+Kε

3Re
(
eibεtYε

)
+Kε

4Im
(
eibεtYε

)
,

(Kε
1 ,K

ε
2 ,K

ε
3 ,K

ε
4) ∈ R4

}
,

(A.15)
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where X ε and Yε are such that

ker (A− iaεI4) = vect {X ε} ,
ker (A− ibεI4) = vect {Yε} .

(A.16)

We easily obtain that

X ε =


1 + iaεε
−
(
2 + a2

ε

)
iaε
(
1 + iaεε

)
−iaε

(
2 + a2

ε

)
 , and Yε =


1 + i bεε
−
(
2 + b2ε

)
ibε
(
1 + i bεε

)
−ibε

(
2 + b2ε

)
 . (A.17)

Using (A.15) and (A.17) leads to formula (5.1). Eventually, since

(Xε (t = 0,x0,v0) ,Vε (t = 0,x0,v0)) = (x0,v0)

we obtain formula (5.5) giving (Kε
1 ,K

ε
2 ,K

ε
3 ,K

ε
4) in function of the initial conditions.

B Appendix: the eigenvalue equation

The eigenvalue equation allowing to obtain the growth rates of instability related to the
Guiding-center problem (5.24)-(5.26) has been derived in [21]. We recall this derivation, in
our notations.
We consider an inhomogeneous equilibrium solution f0 = f0(x1) and the corresponding
equilibrium potential φ0 = φ0(x1), which satis�es :

∂2φ0

∂x2
1

= −f0. (B.1)

In practice, according to our choice of initial condition in (5.39), we will take f0(x1) = sin(x1)
and we will work on the torus, i.e., with periodic boundary conditions.
Then we will linearize (5.24)-(5.25) around this equilibrium solution. In other words we are
looking for a solution of the form :

fGC(t,x) ' f0(x1) + ηf1(t,x), (B.2)

φ(t,x) ' φ0(x1) + ηφ1(t,x), (B.3)

where η is a small parameter. Injecting (B.2)-(B.3) in (5.24)-(5.25) we obtain :

∂tf
1 − ∂x2φ1∂x1f

0 + ∂x1φ
0∂x2f

1 = O (η) , (B.4)

− ∂2φ1

∂x2
1

− ∂2φ1

∂x2
2

= f1. (B.5)

Neglecting the O (η) terms in (B.4) yields the following linearized problem :

∂tf
1 − ∂x2φ1∂x1f

0 + ∂x1φ
0∂x2f

1 = 0, (B.6)

− ∂2φ1

∂x2
1

− ∂2φ1

∂x2
2

= f1. (B.7)
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Now, we are looking for a couple of solution (f1, φ1) of (B.6)-(B.7) in the form :

f1 (t,x) = f̂1,l (x1) eilx2e−iωt, (B.8)

φ1 (t,x) = φ̂1,l (x1) eilx2e−iωt. (B.9)

Injecting (B.8)-(B.9) in (B.6)-(B.7) yields :

− iωf̂1,l + ilφ̂1,l∂x1f
0 + ilf̂1,l∂x1φ

0 = 0, (B.10)

−
∂2φ̂1,l

∂x2
1

+ l2φ̂1,l = f̂1,l. (B.11)

Using (B.10) we express f̂1,l in terms of φ̂1,l. Afterwards, injecting this expression in (B.11)

we get the following equation on φ̂1,l :

(c− v0)

(
∂2φ̂1,l

∂x2
1

− l2φ̂1,l

)
− ∂2v0

∂x2
1

φ̂1,l = 0, (B.12)

where

c =
ω

l
, (B.13)

v0(x1) = ∂x1φ
0(x1). (B.14)

In practice we will take :

f0(x1) = sin(x1),

φ0(x1) = sin(x1),

v0(x1) = cos(x1).

(B.15)

Constructing an uniform grid of [0, T1], where T1 is the period of f0 and φ0, we can proceed
in the numerical resolution of (B.12). We make the following discretisation:

φ̂1,l

(
xi1
)

= φli, ∂x1 φ̂1,l

(
xi1
)

=
φli+1 − φli−1

2∆x1
,

∂2φ̂1,l

∂x2
1

(
xi1
)

=
φli+1 − 2φli + φli−1

∆x2
1

(B.16)

and we obtain :(
v0

(
xi1
)
φli+1 +

(
−2v0

(
xi1
)
− l2∆x2

1v0

(
xi1
)
− ∂2v0

∂x2
1

(
xi1
)

∆x2
1

)
φli + v0

(
xi1
)
φli−1

)
=c
(
φli+1 −

(
2 + l2∆x2

2

)
φli + φli−1

)
.

(B.17)

The problem can then be written as Alφl = cBlφl. Consequently, the initial problem con-
sisting in �nding ω and φ̂1,l satisfying equation (B.12) can be rewritten under the following
eigenvalues problem : �nd a vector φl and a complex number c such that (Bl)−1Alφl = cφl.
Then the instability growth rate corresponds to the greatest imaginary part of the eigenval-
ues. Considering di�erent values of the wave number k, it is possible to plot the quantity
ω/k (where ω is the growth rate) as a function of 1− k. This is performed in Table 5.
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Figure 4: Global Euclidean errors of the ETD-PIC method at �nal time 10 for several
values of ε, obtained with three initial conditions di�erently positioned with regard to the
slow manifold D2. 29



Figure 5: Global Euclidean errors of the ETD-PIC method at time 10 for several values of
ε, obtained with an initial condition close to the slow manifold (at left) and the same for
the error de�ned in (5.14) with the initial condition f0 de�ned by (5.12) (at right)
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Figure 6: Global Euclidean errors of the ETD-PIC method at time 2π/aε ∼ 1/ε for several
values of ε, obtained with three initial conditions di�erently positioned with regard to the
slow manifold D2

31



Figure 7: Vlasov Poisson case with ε = 0.01, ε = 0.005, ε = 0.001, and ε = 0.0001. The
global error at time 4 of the ETD-PIC method with respect to a reference solution.

Figure 8: The di�erence between the density of the Vlasov-Poisson reference solution and
the solution to the Guiding Center equation as a function of ε at �nal time t = 4.
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Figure 9: Simulations of ρεg with the ETD-PIC method when ε = 0.005 (left) and of the
Guiding Center distribution function (right). From top to bottom we represent the densities'
contours at times t = 5, t = 10, t = 15, and t = 20. The time step is ∆t = 0.01 (The number
of fast periods in ∆t is N = 63).

33



Figure 10: The di�erence between the solution computed with the ETD-PIC method and
the solution to the Guiding Center equation as a function of the time step (left panel) and
of ε (right panel) at �nal time t = 5
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Figure 11: In red, the evolution in time of the logarithm of the absolute value of the (1, 1)
Fourier coe�cient of ψε. In green, the growth rate obtained through the eigenvalue equation
(see Table 5). Simulations with �xed ∆t = ε = 0.005 and several values of k between 0.3
and 0.8 in the de�nition of the initial condition in (5.39)
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Figure 12: The growth rates for �xed k = 0.7 and several values of ε from 0.5 to 0.005.

Figure 13: The growth rates for �xed ε = 0.005 and three values of k.
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