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Abstract

In a world of known risks, rational theories provide the norms for successful behavior. In a world where not all risks are
known and where optimization is not feasible, ‘nonrational’ tools such as heuristics are needed. In comparison to optimi-
zation models, heuristics are robust and can lead to more accurate predictions, while saving time and effort. The study of
heuristics addresses the descriptive question of what heuristics an individual or institution has in their ‘adaptive toolbox,’ as
well as the normative question of their ecological rationality, i.e., which heuristics in which situations are most accurate and
effective.

Nonrational theories are not theories of irrationality. Rather,
they dispense with unrealistic assumptions such as omni-
science and optimization in the so-called rational theories.
Most important, nonrational theories apply to ‘decision-
making under uncertainty,’ where not all alternatives, conse-
quences, and probabilities are known or knowable (e.g., whom
tomarry? what job to take? where to invest?). Rational theories,
in contrast, are tailored to situations where all risks are known,
as in lotteries and roulette (‘decision-making under risk’), and
where the optimal choice can be calculated. The majority of
important problems lie between the two poles of risk and
uncertainty, which indicate the necessity of considering both
approaches.

Nonrational theories have been denoted by various terms,
includingmodels of bounded rationality, procedural rationality, fast-
and-frugal heuristics, and satisficing. Although there is as yet no
consensus on the definition of nonrational, these theories typi-
cally differ from rational theories on several dimensions, dis-
cussed below. The term decision-making is used broadly here to
include both conscious and unconscious preference, inference,
classification, and judgment.

As mentioned, the label nonrational should not be confused
with irrational behavior: It signifies a type of process, not a type
of outcome. In other words, the fact that nonrational theories
postulate agents with emotions, limited knowledge, and little
time – rather than omniscient ‘rational’ beings – need not
imply that such agents fare badly in the real, uncertain world.
We will focus on the theory of heuristics, which is probably the
best developed among nonrational theories that do not rely on
optimization (Gigerenzer et al., 2011).

Historical Background

A fewhistorical remarks on rational theories help to set the stage.
In the mid-seventeenth century, the calculus of probability
replaced the ideals of certain knowledge and demonstrative
proof (as in mathematics and religion) with a more modest
vision of reasonableness. What may be called the first rational
theory of decision-making, themaximization of expected value,
emerged at this time. According to the theory, an option’s

expected value is the sum of the product of the probability and
the value of each of its consequences; a rational decision-maker
chooses the option with the highest expected value.

The notion of defining an option’s reasonableness in
terms of its expected value soon ran into problems because
its prescriptions conflicted in some situations (e.g., the
St Petersburg problem) with educated intuition. Daniel Ber-
noulli therefore proposed replacing the concept of expected
value with that of expected utility. For instance, the utility of
a monetary gain (say, of $1000) can be defined as a logarithmic
function of its dollar value and the agent’s current wealth,
assuming that the utility of an additional dollar diminishes as
the value of the gain and current wealth increase.

The fact that rational decision-making can be defined in
more than one way – for example, as maximization of expected
value or expected utility – has been interpreted both as the
weakness and strength of the program. This ambiguity was one
of the reasons why, by 1840, most mathematicians had given
up attempting to define a calculus of reasonableness (Daston,
1988). With a few exceptions, rational theories of decision-
making largely disappeared until their revival in the 1950s and
1960s. Only then did the major types of rational theories, the
maximization of subjective expected utility and Bayesianism,
become influential in the social and behavioral sciences. At
about the same time, some psychologists and economists –

most notably Nobel laureates Herbert Simon and Reinhard
Selten – criticized the assumptions about the human decision-
maker in modern rational theories as empirically unfounded
and psychologically unrealistic, calling for alternative theories.

Optimizing versus Nonoptimizing Theories

Rational theories rest on the ideal of optimization. Optimiza-
tion entails the calculation of the maximum (or minimum) of
some variable across a number of alternatives or values.
Nonrational theories, by contrast, apply in the situations where
optimization is not feasible. In many real-world situations, no
optimizing strategy is known. Even in a game such as chess,
whose few rules are stable and well-defined, the optimal
strategy (which in fact exists) cannot be computed by a human
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or a machine. And even when an optimizing strategy can be
calculated, it may demand unrealistic amounts of knowledge
about alternatives and consequences, particularly when the
problem is novel and time is scarce. Acquiring the requisite
knowledge can conflict with goals such as making a decision
quickly; in situations of immediate danger, attempting to
optimize can actually be deadly. In social and political situa-
tions, making a decision at all can take priority over searching
for the best option. Most important, for decisions made under
uncertainty (i.e., most of our decisions), strategies that do not
attempt to optimize (heuristics) can outperform strategies that
do. In other words, the concept of an optimizing strategy needs
to be distinguished from the concept of an optimal outcome. In
an uncertain world, there is no guarantee that ‘optimization’
will result in a good or optimal outcome. An example is the
problem of allocating money to N funds. While Markowitz’s
Nobel prize-winning mean–variance portfolio is optimal under
the assumptions made, in the real world of investment a simple
heuristic, 1/N (“allocate your money equally to N assets”), can
lead to better performance (DeMiguel et al., 2009).

Normative versus Descriptive Theories

Nonrational theories are descriptive, whereas rational theories
are normative – this common distinction is only partly true.
Indeed, theories of heuristics are concerned with psychological
realism, that is, the capacities and limitations of actual humans,
whereas rational theories have little concern for descriptive
validity and tend to assume omniscience. But theories of
heuristics are normative as well. For instance, in situations
where an optimization strategy is nonexistent, unknown, or
dangerous because it would impede decision-making, a simple
heuristic – such as imitating the behavior of others – can be the
better strategy.

Rational theories typically donot assume that agents actually
perform optimization or have the knowledge needed to do so.
Their purpose is not to describe the reasoning process, but to
answer a normative question: What would be the best strategy
for an omniscient being to adopt? In economics, psychology,
and animal behavior, however, the answer to this question is
sometimes used to predict actual behavior. In this way,
a rational theory can be descriptive of behavioral outcomes, yet
be mute about underlying processes. For instance, optimal
foraging theory assumes that animals select and shift between
food patches as if they had perfect knowledge about the distri-
bution of food, competitors, and other relevant information,
without claiming that real animals have this knowledge or
perform optimizing computations. Instead, it is assumed that
animal behavior has evolved to be close to optimal in specific
environments. The question of what proximal mechanisms
produce this behavior is a different one. Thesemechanismsmay
be simple heuristics such as 1/N and social imitation; that is, the
topic of theories of nonrational decision-making.

Ecological Rationality versus Internal Consistency

A classical criterion for rational choice is internal consistency
or coherence. Numerous rules of consistency have been

formulated: for instance, transitivity and additivity of proba-
bilities. Beginning with in the work of Jean Piaget and Bärbel
Inhelder, these rules, which are the building blocks of rational
theories, have been used to investigate the development of
human thinking. Theories of heuristics, in contrast, place less
weight on internal consistency; some heuristics, for instance,
can violate transitivity. Instead, their emphasis is on perfor-
mance in the external world, both physical and social.
Measures of external performance include the accuracy, speed,
frugality, transparency, and accountability of decision-making.
Note that internal consistency does not guarantee that any of
these external criteria are met. For instance, although the
statement ‘there is a 0.01 probability that cigarette smoking
causes lung cancer and a 0.99 probability that it does not’ is
internally consistent in that the probabilities add up to 1,
according to relevant research, it is not accurate.

The study of the ecological rationality of heuristics, or
strategies in general, is a framework to study performance in the
external world: A heuristic is ecologically rational to the degree
that it is adapted to the structure of the environment. Heuristics
are ‘domain-specific’ rather than ‘domain-general’; that is, they
work in a class of environments in which they are ecologically
rational. Heuristics provide not a universal rational calculus
but a set of domain-specific mechanisms similar to the parts of
a Swiss army knife, and have been referred to collectively as the
‘adaptive toolbox’ (Gigerenzer and Selten, 2001). Thus, the
important research question is to specify, for a given heuristic,
the structures of environments in which it is faster or more
accurate than other strategies in achieving a goal.

For instance, the 1/N heuristic is likely to lead to better
returns than the mean–variance portfolio when (1) uncertainty
is high (as in the real stock market), (2) sample size is small
(typically not more than 10 years of data used by banks), and
(3) N is large (because estimation error increases with N). The
study of ecological rationality fleshes out Simon’s scissors
analogy: “Human rational behavior (and the rational behavior
of all physical symbol systems) is shaped by a scissors whose
two blades are the structure of task environments and the
computational capabilities of the actor” (Simon, 1990: p. 7).
By looking at only one blade, cognition, it is impossible to
understand why and when a behavior succeeds or fails.

Structures of Environments

While some optimization theories treat decision-making as if
there were only one tool – maximization of expected utility –

the study of decision-making under uncertainty shows that
people rely on several tools, not just one. Simple heuristics can
succeed by exploiting the structure of information in an envi-
ronment. In other words, the environment itself can do part of
the work for the heuristic. Environmental structures that have
been identified to be important in determining the success of
heuristics in comparison to other strategies include:

1. Uncertainty: how well a criterion can be predicted.
2. Sample size: number of observations (relative to number of

cues).
3. Number of alternatives (N).
4. Redundancy: the correlation between cues.
5. Variability in weights: the distribution of the cue weights

(e.g., skewed or uniform).
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For instance, heuristics that rely on only one reason, such as
take-the-best (see below), tend to make more accurate predic-
tions than do strategies such as linear regression in environ-
ments with (1) moderate to high uncertainty and (2) moderate
to high redundancy. The study of ecological rationality results
in comparative statements of the kind “strategy X is more
accurate (frugal, fast) than Y in environment E,” or in quanti-
tative relations between the performances of strategy X when
the structure of an environment changes. Specific findings are
introduced in Section Classes of Heuristics.

The concept of ecological rationality should not be
confused with the biological concept of adaptation: A match
between a heuristic and an environmental structure does not
imply that the heuristic evolved because of that environment.
Nor does ecological rationality mean that the mental repre-
sentation mirrors the world: A heuristic is functional, not
a veridical copy of the world.

Robustness

A second reason why a simple heuristic can make accurate
predictions is robustness. To understand this point, it is
necessary to distinguish between data fitting (i.e., determining
the best-fitting parameter values for a model given a specific
body of data) and prediction (i.e., using these parameter values
to predict new data). For data fitting, it generally holds that the
more parameters a model has, the better the fit, whereas for
prediction there can be a point where less is more. For instance,
when recording the air temperature on all 365 days of a year,
one can fit the resulting jagged curve increasingly well by
adding more free parameters to the model. However, for pre-
dicting the daily temperature in the year thereafter, the model
that best fits the past data may be less accurate in predicting
than a simpler model with fewer parameters and a worse fit.
More generally, in noisy environments only part of the avail-
able information generalizes to the future. The art of building
a good model is to find this part and to ignore the rest. The
more noise in the environment, the more models with many
free parameters tend to overfit, that is, reflect the noise in
a specific sample. Overfitting can become a problem when
overly powerful mathematical models, such as neural networks
with numerous hidden units and multiple regression with
many predictors, are used to fit and then predict behavioral
data. Simplicity can reduce overfitting and thereby produce
robust decision strategies. A general formulation for when and
why one should simplify is the bias–variance dilemma (Geman
et al., 1992).

In much research on reasoning, a bias typically refers to
ignoring part of the information, as in the base-rate fallacy. This
can be captured by the equation:

Error ¼ biasþ ε [1]

where ε is an irreducible random error. In this view, if the bias is
eliminated, good inferences are obtained. In statistical theory,
however, there are three sources of errors:

Error ¼ bias2 þ varianceþ ε [2]

where bias refers to a systematic deviation between a model
and the true state, as in eqn [1]. To define the meaning of
variance, consider 100 people who rely on the same strategy

but have different samples of observations from the same
population. Because of sampling error, the 100 predictions
may not be the same. Across samples, variance is the expected
squared deviation around their mean, while bias is the
difference between the mean prediction and the true state of
nature.

Consider the problem many companies face in predicting
which of their thousands of customers will continue to be
active, that is, make purchases in the future. To do so, the
Pareto/negative binomial distribution (NBD) model relies on
complicated math to estimate its four free parameters from
previous data. In contrast, the hiatus heuristic used by expe-
rienced managers classifies customers as active only if they
have made a purchase within the last 9 months (the hiatus). It
was shown to predict customer purchases more accurately
than the Pareto/NBD model, despite using less information
(Wübben and von Wangenheim, 2008). The bias–variance
dilemma provides an explanation for this less-is-more effect.
Because the hiatus heuristic does not need to estimate any
parameters, it has zero variance, although it probably has
a strong bias. In contrast, the Pareto/NBD model likely has
a smaller bias but, nevertheless, a larger overall error because
it additionally suffers from variance.

Variance decreases with increasing sample size, but also
with simpler strategies that have fewer free parameters (and less
flexible functional forms; Pitt et al., 2002). Thus, a cognitive
system needs to draw a balance between being biased and
flexible (variance), rather than simply trying to eliminate bias.
Heuristics can be fast, frugal, and accurate by exploiting the
structure of information in environments, by being robust, and
by striking a good balance between bias and variance. This
bias–variance dilemma helps to understand the rationality of
simple heuristics and why less can be more (Brighton and
Gigerenzer, 2008).

Classes of Heuristics

A heuristic is a strategy that ignores part of the information,
with the goal of making decisions more accurately, quickly, and
frugally (i.e., with fewer pieces of information) compared to
more complex methods. Heuristics are defined by common
building blocks from which the various heuristics are constructed
as an organizing principle. This allows the larger number of
heuristics to be reduced to a smaller number of components,
similar to how the chemical elements in the periodic table are
built from a small number of particles. Three building blocks
have been proposed:

1. Search rules specify in what direction search extends in the
search space.

2. Stopping rules specify when search is stopped.
3. Decision rules specify how the final decision is reached.

Different classes of heuristics have been specified, all of
which can be described in terms of these building blocks. Fast-
and-frugal heuristics model decision-making as a dynamic
process in which cues or reasons are sequentially searched
for – in memory or in the outside world – and inferences are
determined by simple stopping and decision rules. The chal-
lenge is to understand what the class of heuristics is, how
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a heuristic is selected, and in which environments it is
successful. The following summary is based on Gigerenzer
and Gaissmaier (2011), where further references can be
found.

Recognition-Based Decision-Making

The recognition memory literature indicates that a sense of
recognition (often called familiarity) appears more quickly than
recollection in consciousness. This core capacity is exploited by
the first class of heuristics. The goal is to make inferences about
a criterion that is not directly accessible to the decision-maker,
based on recognition retrieved from memory. Prominent
heuristics in this class are the recognition heuristic and the
fluency heuristic.

Recognition Heuristic
If one of two alternatives is recognized and the other is not, infer that
the recognized alternative has the higher value with respect to the
criterion (Goldstein and Gigerenzer, 2002). This heuristic is
ecologically rational in an environment (reference class) R to
the degree the recognition of alternatives a, b ˛ R positively
correlates with their criterion value. If the correlation between
recognition and the criterion is sufficiently large, a counterin-
tuitive result is observed: Knowing fewer alternatives can lead
to more accurate predictions than knowing more alternatives
because people who recognize both alternatives cannot use the
heuristic.

The recognition heuristic is a model that relies on recogni-
tion only and assumes that people will ignore strong, contra-
dicting cues (the so-called noncompensatory inferences). Much
research in the past decade was devoted to investigating to what
degree people actually rely on the recognition heuristic in such
a noncompensatory fashion, and what the boundary condi-
tions are. Additionally, research has identified several envi-
ronments in which, from a prescriptive perspective, the
recognition heuristic is ecologically rational and can compete
with well-established forecasting instruments. These environ-
ments include the prediction of sports results such as Wim-
bledon or soccer, election outcomes, university rankings, and
geographical properties such as the size of cities or mountains
(for a recent overview of the discussion, see Marewski et al.,
2011).

Fluency Heuristic
If both alternatives are recognized but one is recognized faster, then
infer that this alternative has the higher value with respect to the
criterion (Schooler and Hertwig, 2005).

The fluency heuristic is ecologically rational if the speed of
recognition is correlated with the criterion, that is, the fluency
validity >0.5. Fluency has been shown to predict the perfor-
mance of stocks, sales figures, and wealth. The validity of
fluency is typically lower than that of recognition, but above
chance. Fluency also plays a role when alternatives are not
given (as in two-alternative choice) but need to be generated
from memory. Johnson and Raab (2003) showed, for
instance, that experienced handball players can successfully
rely on the first alternative that comes to mind when deciding
which move to make in a game (a strategy they called take-
the-first).

One-Reason Decision-Making

While the recognition and fluency heuristics base decisions on
recognition information, other heuristics rely on recall. One
class looks for only one ‘clever’ cue and bases its decision on
that cue alone, as in the hiatus heuristic (see above). A second
class involves sequential search through a number of cues but
also bases its decision on just one. Examples include lexico-
graphic rules and elimination-by-aspect (Tversky, 1972). These
heuristics were originally developed for preferences; here, the
focus is on models of inferences.

One-Clever-Cue Heuristics
What this class of heuristics has in common is that a decision is
based on one specific cue only. Many animal species appear to
rely on one cue for locating food, nest sites, or mates. For
instance, to catch a fly ball high in the air, baseball players rely
on the gaze heuristic “fixate your eye on the ball, start running, and
adjust the running speed so that the angle of gaze remains constant.”
Variants of this heuristic that rely only on the optical angle have
been observed in bats, birds, and fish when pursuing a prey or
a mate. Similarly, to choose a mate, peahens have been re-
ported to investigate only three or four of the peacocks dis-
playing in a lek and choose the one with the largest number of
eyespots (Petrie and Halliday, 1994). The ecological rationality
of one-clever-cue heuristics is not entirely clear at this point in
time, but candidates are environments where the variability of
cue weights and redundancy is moderate to high and sample
size is small (Hogarth and Karelaia, 2007).

Take-the-Best Heuristic
This heuristic is a model of how to infer which of two alter-
natives has a higher value on a criterion, based on binary cue
values retrieved from memory: Search through cues by their val-
idities, and stop search when the first cue is found that allows for
a decision. A striking discovery was that take-the-best’s predic-
tions can be more accurate than those of linear multiple
regression models (Czerlinski et al., 1999) and complex
nonlinear strategies such as an exemplar-based model (nearest-
neighbor classifier), Quinlan’s decision-tree induction algo-
rithm C4.5, and classification and regression trees (CART)
(Brighton and Gigerenzer, 2008). Research on the ecological
rationality of take-the-best suggests two structures of environ-
ments it can exploit: moderate to high cue redundancy and
moderate to high variability in cue weights (Hogarth and
Karelaia, 2007). And it is precisely these features that deter-
mine when people’s inferences can best be predicted by take-
the-best and when they cannot, indicating adaptive strategy
use (Bröder, 2012). Variants of take-the-best have been
successfully applied to model consumer choice and improve
literature search.

Fast-and-Frugal Trees
One way to model classification is in terms of trees. For
instance, for m binary cues or attributes, Bayes’ rule can be
represented as a tree with 2m leaves. In contrast, a fast-and-
frugal tree is defined as a tree with m þ 1 exits only, with
exits at each cue: Search sequentially through cues, and stop search
as soon as a cue leads to an exit (Martignon et al., 2003). When the
number of cues grows, a Bayesian tree becomes computation-
ally intractable or fraught with estimation error because one
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typically has too few data points for the thousands of ‘leaves’ of
such a gigantic tree. In contrast, a fast-and-frugal tree needs to
estimate fewer parameters and is likely more robust. Fast-and-
frugal trees are used by experts in many fields, from emergency
medicine to bail decisions.

Trade-off Heuristics

Unlike recognition-based and one-reason decisions, the third
class of heuristics weights cues or alternatives equally and thus
makes trade-offs (compensatory strategies).

Tallying
Whereas take-the-best ignores cues (but includes a simple form
of weighting cues by ordering them), tallying ignores weights
and simply counts the number of cues favoring one alternative
to others. Dawes (1979) showed that tallying was about as
accurate as multiple regression in its predictions and some-
times even better. In a more extensive test across 20 environ-
ments, Czerlinski et al. (1999) demonstrated that tallying had,
on average, a higher predictive accuracy. The challenge is to
figure out when this is the case. Einhorn and Hogarth (1975)
found that unit-weight models were more successful than
multiple regression when the ratio of alternatives to cues was
10 or smaller, the linear predictability of the criterion was small
(R2 � 0.5), and cues were highly redundant. Successful appli-
cations of variants of tallying include predicting strokes with
simple bedside rules (which actually outperformed magnetic
resonance imaging (MRI) in this regard) and avoiding
avalanches.

Mapping Model
How do people arrive at quantitative estimates based on cues?
The mapping model assumes that people tally the number of
relevant cues with an object’s positive values (von Helversen
and Rieskamp, 2008). The estimate is the median criterion
value of objects with the same number of positive cues.
People’s judgments were better captured by this model than by
a linear regression and an exemplar model when the criterion
values followed a skewed distribution, and it was successfully
applied to predict sentencing decisions.

1/N Heuristic
Another variant of the equal weighting principle is the 1/N
heuristic (also known as the equality heuristic), which is a simple
rule for the allocation of resources (time, money) to N alter-
natives. Use of this heuristic has been reported for financial
investment (see above), parental investment, and as a tool for
fair allocation of money in experimental games.

Aspiration Level Theories

Simon (e.g., 1956, 1982) proposed a heuristic known as sat-
isficing, which allows an agent to make a decision without
evaluating or even knowing all the alternatives: Set an aspiration
level, search through alternatives sequentially, and stop search as soon
as an alternative is found that satisfies the level. An aspiration level
is either a value on a goal variable (e.g., profit or market share)
or, in the case of multiple goals, a vector of goal values that is
satisfactory to the agent. For instance, agents might set a lower

limit on the price at which they would be willing to sell their
shares in a company (the aspiration level). In this satisficing
model, the agent makes no attempt to calculate an optimal
stopping point (here, the best day on which to sell). The
aspiration level need not be fixed but can be dynamically
adjusted to feedback. For instance, if the investors observe that
the share price is monotonically increasing rather than fluctu-
ating over time, they might conclude that there is some stable
trend and adjust the limit upward. Thus, aspiration level
theories model decision-making as a dynamic process in which
alternatives are encountered sequentially and aspiration levels
stop search. The challenge is to understand where aspiration
levels come from in the first place (Selten, 1998; Simon, 1982).

Summary

In a world of known risks, rational theories provide the norms
for successful behavior. In a world where not all risks are
known, statistics and logic are not sufficient – additional tools,
such as heuristics, are needed. Although heuristics are often
classified as nonrational, there is nothing irrational about
them. The study of the adaptive toolbox analyzes the
heuristics that an individual, a profession, or society relies on
to deal with an uncertain world. While this analysis is
descriptive, the study of the ecological rationality addresses
the normative questions of what heuristic to rely on in what
situation. The emerging science of heuristics shows when and
why complex problems do not need complex solutions, and
why less information can be more.

See also: Apprenticeship and School Learning: Lessons from
Germany; Control Behavior: Psychological Perspectives; Health
Self-Regulation, Motivational and Volitional Aspects of;
Personal Projects; School Achievement: Motivational
Determinants and Processes; Self-Regulation in Adulthood;
Successful Aging in Western Societies: The ‘Selection,
Optimization, and Compensation’ Model; Vocational Interests,
Values, and Preferences, Psychology of.
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