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Abstract
Magnetotactic bacteria swimandorient in the direction of amagneticfield thanks to themagnetosome
chain, a cellular ‘compass needle’ that consists of a string of vesicle-enclosedmagnetic nanoparticles
aligned on a cytoskeletal filament. Herewe investigate themechanical properties of such a chain, in
particular the bending stiffness.We determine the contribution ofmagnetic interactions to the
bending stiffness and the persistence length of the chain. This contribution is comparable to, but
typically smaller than the contribution of the semiflexible filament. For a chain ofmagnetic
nanoparticles without a semiflexible filament, the linear configuration is typicallymetastable and the
lowest energy structures are closed chains (flux closure rings) without a netmagneticmoment that are
thus not functional as a cellular compass. Our calculations show that the presence of the cytoskeletal
filament stabilizes the chain against ring closure, either thermodynamically or kinetically, depending
on the stiffness of thefilament, confirming that such stabilization is one of the roles of this structure in
these bacterial cells.

1. Introduction

The interior of living cells is highly structured, withmembrane-bounded compartments providing functionally
specialized chemical conditions and a cytoskeleton providing bothmechanical stability and spatial organization
[1]. For a long time, such spatial organization has been thought to be a hallmark of eukaryotic cells, but over the
last two decades, it has become clear that structural complexity is not unique to eukaryotes, but rather that
cytoskeletal structures aswell asmembrane-enclosed compartments also exists in bacterial cells [2, 3].

One particularly intriguing structure is themagnetosome chain ofmagnetotactic bacteria, a linear
arrangement ofmagnetic nanoparticles that are enclosed in vesicles (magnetosomes) and aligned along a
cytoskeletal structure, themagnetosome filament [4, 5]. Themagnetic nanoparticles consist ofmagnetite
(Fe3O4) or, in some species, greigite (Fe3S4) and have sizes in the range inwhich they are permanentmagnets
with a singlemagnetic domain [4]. Thefilament is built from an actin-related protein calledMamKand the
attachment of themagnetosomes involves linker proteins such asMamJ [6, 7]. The processes of
biomineralization and of chain assembly appear to be tightly controlled and depend on a large number of
different proteins [8, 9].

Thanks to the linear arrangement of themagnetosomes, the cells have a sufficiently largemagneticmoment
to be able to alignwith themagnetic field of the Earth, thus effectively using themagnetosome chain as a
microscopic compass needle. Due to the alignment with the Earthfield, the bacteria typically swim along the
field lines, which is believed to facilitate the search for the preferred habitat, the oxic–anoxic transition zone in
layered aquatic environments, due to the vertical component of themagnetic field of the Earth [4, 10, 11]. For
themagnetosome chain to function as a compass needle, the linear arrangement of themagnetic nanoparticles is
crucial as it provides a sufficientmagneticmoment. Linear assemblies ofmagnetic nanoparticles have also
received considerable interest in otherfields including colloidal fluids [12, 13], nanomechanics [14],materials
chemistry [15], andmicro-swimmers [16]. A general problemwith these systems is that chain-like assemblies of
magnetic nanoparticles is limited and that chains often collapse into clusters and closed-ring structures [17]. In
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magnetotactic bacteria, the filament is believed to providemechanical support for such linear arrangement [7],
but other roles have been proposed as well, such as a dynamic role in assembling and positioning the
magnetosome chain during de novo chain formation and during cell division [18, 19]. Recent experiments also
suggested that the connectionswith themagnetosome filament provides stability against intracellular torques
due tomoderately highmagnetic fields [20]. In particular, the stability provided appears to exceed the stabilizing
effect of themagnetic interactions between themagnetosomes.

In this study, we address a related problem, namely the bending stiffness ofmagnetosome chains. In electron
microscopy images,magnetosome chains are typically rather straight.We specifically askwhether the bending
stiffness ismostly due to the cytoskeletal structure or to themagnetic interactions, asmagnetic particles are
known to form linear structures [17, 21]without a stabilizing filament and (short) chains have been seen in cells
lacking theMamKprotein [22, 23]. To that end, we consider amodel of (permanent)magnetic dipoles fixed on
a semiflexiblefilament.We calculate themagnetic contribution to the bending rigidity and the persistence
length and compare it with the contribution due to the filament. Previous studies have considered systems of this
type either as chains of discrete particles [17, 21, 24] or as continuousmagnetic rods [14, 25]. Herewe follow the
first route. For such systems, it is also known thatmagnetic particles form closed ring structures, so called flux-
closure rings [26–28], thuswe consider whether an actin-like semiflexible filament can stabilize a linear chain of
magnetosomes against ring formation either thermodynamically or kinetically.

2. Amodel for the elasticity ofmagnetosome chains

To investigate theflexibility of amagnetosome chain, we describe it as a chain of permanentmagnetic dipoles
fixed along a semiflexiblefilament (figure 1). Thismagnetic and elastic energy is given by the dipole–dipole
interactions between themagnetic dipoles and the bending elasticity of the filament,

= +E E E . (1)magn fil
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where μ π= × −4 100
7 NA−2 is the vacuumpermeability, the mi are the dipolemoments ofmagnetic dipoles

and the rij are the distance vectors between them,with = ∣ ∣r rij ij . In the following, wewill assume that all dipoles
have equal absolute value, ∣ ∣ = mmi .Wewill also take the distance between nearest-neighbor dipoles as
constant, =+r li i, 1 , due to either the stiffness of the filament or due to steric constraints such as touching
magnetosomes (figure 1(b)).Wewant to emphasize thatmaturemagnetosomes are in the single-domain
regime, i.e. they have permanentmagnetic dipoles with rather largemagnetization due to the absence of
magnetic domains [29]. As a consequence, ourmodel is considerably simpler thanmodels for chains of
superparamagnetic particles [30, 31], where themagnetization and thus themagnetic interactions depend on
the externalfield experienced by the particle.

The elastic properties of the filament are described by a bending energywhich is a quadratic function of the
local curvature [32],

Figure 1. (a) Sketch of themagnetosome chain inmagnetotactic bacterium:magnetic nanoparticles (blue circles) are attached to a
cytoskeletal filament (green line), enveloped inmembrane (red dashed lines). (b)Geometric parameters ofmagnetosome particles
with radius r andmagneticmoment m.
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Here s is a coordinate along the contour of the filament, st( ) is the unit vector along the tangent of the filament,
and κfil is the bending rigidity. Lfil is thefilament length, whichwe take to be equal to =L Nlfil .

3.Magnetic contribution to the elasticity

In this section, we consider themagnetic part of the energy function given by equation (2) separately, i.e. we omit
the elastic contribution due to the filament and determine the sole contribution of themagnetic interactions to
the elasticity of the chain.

3.1. Straight chain
We start by briefly considering the limiting case of a linear chain ofmagnetic dipoles. In the equilibrium state of
such a chain, the dipoles orient parallel to each other and to the chain axis, thus themagnetic interaction energy
is
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In the last expression, we have introduced a characteristic energy scale ϵ = μ
π

m

l4

20
2

3
, which represents the

dipole–dipole interaction of neighboring dipoles in the chain. Nearest-neighbor interactions alone (given by the
first term fo the sum,with n=1) lead to ϵ= − −E N N(1 1 )lin . Due to the rapid decay (∼ −r 3) of themagnetic
interactions, these nearest-neighbor interactions dominate the total energy. Indeed, for long chains ( → ∞N ),
the sum can be evaluated in terms of Riemann’s zeta function as ζ∑ = ≃=

∞ −n (3) 1.2n 1
3 , thus onefinds that the

full energy is only 20% larger than the nearest-neighbor contributions alone.We note that the parameter ϵ is
related to the dipolar coupling parameter λ defined in earlier work [17] via λ ϵ= k T2 B with the thermal energy
kBT, provided that the distance l is theminimal distance (i.e. when themagnetic particles or their non-magnetic
coating touch each other).

Next, we give an estimate of the characteristic energy ϵ. Formagnetite nanoparticles, the saturation
magnetization (per volume) is ×0.48 106 Jm−3 T−1 [4]. For a particle of radius r=25nm, a typical value for
magnetosomes in thewell studiedMagnetospirilla species [33], themagneticmoment is thus = × −m 3.14 10 17

JT−1. The distance between neighboringmagnetosomes can be estimated as = + ≃l r d2 60 nm,where ≃d 10
nm is a gap distance between themagnetic particles accounting for the surroundingmembranes. The
characteristic energy ϵ is then estimated as ϵ ≃ × −9.14 10 19 J = k T221 B . This implies that the energy of a chain

of 20magnetosomes is ≃ − × −2.0 10 17 J or − k T4900 B .

3.2. Bent chain
Next, we consider a bent chain and determine its bending rigidity and the corresponding persistence length. To
that end, we consider a chain of dipoles on a (planar) circle with radiusR. Thus two neighboring dipoles span a

sector of the circle characterized by the bending angle φ = 2 arcsin( )l

R2
.

In addition to the assumption of equalmagneticmoments, we now also assume that all dipoles have the
same orientationwith respect to the distance vector connecting them to their neighbor and characterize their
orientation by the angle θ (figure 2). Since themagnetostatic interactions are short-ranged and dominated by the
nearest-neighbor interactions, this assumption can be expected to be quite accurate except for the dipoles at the
two ends of the chain.Minimization of the interaction energywith respect to θ leads to a tangential orientation
of themagneticmoments, θ φ= − 2.

Themagnetic bending energy and thus the persistence lengths are obtained from aTaylor expansion of the
energy in powers of l R, i.e., for small curvature, which is described in the appendix. This calculation is similar to
the calculation of the electrostatic persistence length of a polyelectrolyte [34]. If only nearest-neighbor
interactions are included, the Taylor expansion leads to
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Here thefirst term is the linear chain energy and the second term represents the contribution frombendingwith
amagnetic bending rigidity of
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The same calculation can be donewhen including allmagnetic interactions, see the appendix. In this case, we
obtain themagnetic bending rigidity as
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As the sum in this expression is the same as in the expression for the energy of a linear chain, the bending energy
is also dominated by the nearest-neighbor interactions, with all other interactions contributing about 20% to the
bending energy.We notice that our expression for the bending rigidity differs slightly, ≃14%, from a result
reported in a recent study [35]. The two results show the same scaling behavior (κ ϵ∼ lmagn , but different
numerical prefactors, ζ ≃(3) 4 0.30 and ζ + ≃( (3) 1 6) 4 0.34). In that study, the bending rigidity was
derived from the energy difference between a straight chain and a closed ring.Wewill therefore come back to
that discrepancy in the next section, wherewe discuss the closed-ring configuration.

Using a relation frompolymer theory for semiflexible polymers [36], the bending rigidity can be converted
into a persistence length,

∑ℓ
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This parameter characterizes the length scale overwhich such a chain is straight under the influence of thermal
fluctuations. Thus for the chain ofmagnetosomes considered above, we obtain a bending rigidity of × −1.5 10 20

J μmor k T3.7 B μm.The correspondingmagnetic persistence length at room temperature is 3.7 μm,which is
comparable to the cell size (and longer than the typical chain length). Thus even due to themagnetic interactions
alone,magnetosome chains inmagnetotatic bacteria can be expected to be essentially straight.We note however
that several studies have shown that the alignment ofmagnetotactic bacteria in external fields is subject to non-
thermalfluctuations described by a substantially higher effective temperature [37, 38], likely induced by the
motility of the cells. If bending of themagnetosome chain is subject to similar fluctuations, the thermal
persistence lengthmay overestimate the length overwhichmagnetosome chains are straight in cells.

Themagnetic energy scale ϵ is strongly dependent on the particle size, at least for particles in the single-
domain size range (15–120 nm formagnetite [39]), where themagnetization is directly proportional to the
volume and thus ϵ ∼ +r r d(2 )6 3. As a consequence, themagnetic persistence length also increases strongly
with particle size, as plotted in figure 3.We have plotted two cases in this figure: the circles are formagnetite
particles that touch each other without gaps (d=0), i.e. the distance between nearest neighbors is =l r2 . For the
squares, we have taken the gap size d=10 nmas constant to account for the presence of themagnetosome
membrane around themagnetic particles. For example, a doubling of the particle size, compared to the case

Figure 2.Bentmagnetosome chain: (a) sketch of the geometry: the chain is bent onto a circle with radiusR and a corresponding
bending angleφ. Themagneticmoments are oriented in an angle θwith respect to the line connecting neighboringmagnetosomes.
(b) In the equilibrium configuration, θ φ= − 2, i.e., themagneticmoments align tangentially on the bending circle.
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considered above, leads to an increase of themagnetic persistence length to 65 μm. Particles of such size are
found in somemagnetotactic bacteria including in extraordinarily large cell ofMagnetobacterium bavaricum
(cell size∼10 μmand particles size 110–140 nm) [40]. On the other end of the size spectrum, for small
magnetosomeswith radius 15–20 nm, persistence length is about 1 μm,which is comparable with the chain
length.

3.3. Closed-ring configuration
Figure 4 shows the full expression for energy as well as the harmonic approximation given by equation (21), as a
function of chain curvature. Good agreement is seen for small curvatures, but for large l R, the energy decreases
again. In fact, the linear chain is not the configuration corresponding to the global energyminimum. The global
energyminimum is found for a closed-ring configuration (also know asflux closure ring [41]), which has the
maximal curvature possible. Assuming that the distance between neighboringmagnetic dipoles is defined by
steric constraints on themagnetosomes that the dipoles represent, the distance between the first and last particle
(i.e.the dipoles with i=1 and i=N) in the ring configurationwill be l, i.e. the same as the distance of nearest
neighbors in the interior of the chain. Thus, the closed ring is a configurationwith themaximal bending angle
φ π= N2 , see figure 5 (larger angles would result in overlap of thefirst and last particle), and its equilibrium
energy is given by

Figure 3.Persistence length as a function of particle size: values are calculated for amagnetosome chain of 20 sphericalmagnetite
particles atminimal distances (ℓ = +r d2 ) with or without an enclosingmembrane. Squares are for the case with amembrane of
thickness 5 nm ( =d 10 nm), circles for the casewithout amembrane (d=0).

Figure 4.Magnetic energy of a chain as a function of the bending curvature given by the inverse of the ratio of the distance between
nearest neighbors and the curvature radius (ℓ R) or equivalently, the curvature angleφ (normalized to the angle for the closed ring
configuration). The larger circle at the highest curvature shown indicates the closed ring configuration. The dashed line indicates the
harmonic approximation, the arrowsmarks the barrier between the linear and close-ring configuration. The results shown here are
for a chain of 20 particles.
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That the closed ring is energetically favorable can be seen by the following estimate: the closed ring is
stabilized by the additional nearest neighbor interaction between the first and last particle, which can be
estimated as ϵ, but needs to overcome the bending energy, ϵ ϵπ∼ × ∼N Nl R N(8 ) ( ) (2 )2 2 . Thus, for
sufficiently largeN the interaction between the dipoles with i=1 and i=N overcompensates the effect of
bending. This crude estimate indicates that the closed ring is theminimal energy configuration for chains offive
ormore particles, while a comparison of the exact energies for the linear chain and the closed ring (plotted in
figure 5) shows that this is true for chains with four ormore particles, as has already been shown in several earlier
studies [17, 42–45].We also note that the closed ring configurationwith tangential orientation of the
magnetization has been demonstrated experimentally using electron holography for cobalt nanoparticles [46].
For largeN, the energy difference between straight chain and closed ring is small, as it decay as

∑π ϵ− ≈ − −
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These considerations show that the relative stability of the straight chain and closed ring configuration
depends not only on bending, but also on the additional interaction energies due to bringing the ends of the
chain together. In afinite straight chain, the outermost particles contribute less to the total interaction energy
than the particles in the chain interior, because of the smaller number of nearest neighbors, next-nearest
neighbors etc. In the recent paper byVella et al [35], the bending rigidity was calculated by identifying the
bending energy with the energy difference between a closed ring ofN particles and a straight chain of the same
length, embeddedwithin an infinitely long chain (and thuswithout finite size corrections to the energy). The
rationale for this approach is that embedding has the same effect on the energy as ring closure and that in this
way the contributions due to bending and due to ring closure can be separated. This approach is exact for the
dominant nearest-neighbor interactions, and a good approximation for the full set of interactions. As
mentioned, it leads to the same scaling behavior of the bending rigidity, but a slightly higher numerical prefactor.
We note that, as the energy difference between ring and embedded chain reflects only bending and not ring
closure, it cannot be used to determine the relative stability of these structures.

4. Including thefilament

Nowwe include the elasticity of the filament and consider the fullmodel with the energy given by equation (1).
For themagnetosome chain on a circle with radiusR, we canwrite thefilament bending energy as

κ=E Nl R(2 )fil fil
2 . The total bending rigidity is obtained as the sumof themagnetic and elastic contributions,

κ κ κ= + . (11)magn fil

Figure 5. Linear and closed ring configurations of a chain ofmagnetic nanoparticles interacting onlymagnetically (nofilament): (a)
sketch of the closed ring geometry. (b)Magnetic energy for the linear and the closed-ring configurations as functions of the number of
particles. The closed ring configuration has lower energy for chainswith four andmore particles.
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Likewise the persistence length of themagnetosome chain is also obtained by summing the two contributions,
ℓ ℓ ℓ= +p p, magn p,fil, and is thus essentially determined by the larger contribution. Above, we have estimated the
magnetic persistence length for a typicalmagnetosome chain to be in the range of a fewmicrons, with a strong
dependence on particle sizes. The persistence length of aMamKfilament is not known, but sinceMamK is a
homolog of actin, we can compare this valuewith the persistence length of actin filaments, which has been
measured to be 15–17 μm[47–49]. If we take this value as an estimate for the persistence lengths of theMamK
filament, we can conclude that both contributions to the bending rigidity are of the same order ofmagnitude,
but the filament contribution is the dominant onewith κ κ ≃fil magn 3–5.However, this estimate is subject to
some uncertainty, as themagnetosome filamentmay be a bundle ofMamK filaments rather than a single
filament and the details of its structure are unknown. Filament bundles can have even higher bending rigidities
and persistence lengths; for example up to 100-fold larger bending rigidities have been reported for actin
bundles, depending on the number offilaments in a bundle and the type of crosslinker [50]. Likewise, due to the
strong dependence of themagnetic contribution part on size, themagnetic bending rigidity could be dominant
in species with large particles.

Asmentioned before, for chains withmore than fourmagnetic particles the closed-ring configuration is
more stable than a straight chain. Ring closure, however, does not confer any energetic advantage to the filament,
only the cost due to bending, so the presence of the filament can be expected to stabilize the linear chain against
ring closure.We thus askwhether the bending rigidity of an actin-likefilament is sufficient to stabilize a linear
magnetosome chain either thermodynamically, bymaking the linear configuration the global energyminimum,
or kinetically, by increasing the energy barrier between the linear and the ring configuration. Figure 6(a) shows
the total energy of themagnetosome chain as a function of curvature for different values of κfil. One can see that
both the energy of the closed ring and the height increase as the bending rigidity of the filament is increased. The
dashed green line shows the case, where κfil is chosen such that the energy of the straight chain and of the closed

ring are the same. This critical value κfil
* is given by

Figure 6.Bending of amagnetosome chain: (a)magnetic and elastic bending energy as a function of the curvature ℓ R for different
values of the filament bending stiffness κfil. The uppermost curve is for the critical value of κfil, for which the linear and the closed-ring
configuration have the same energy. (b) State diagram indicating the lowest-energy configuration as a funciton of the ratio of the
elastic andmagnetic bending rigidities, κ κfil magn, and the number ofmagnetic particles. (c)Height of the energy barrier separating
the linear-chain and closed-ring configuration as a function of the ratio of the bending rigidities. The vertical purple line indicates the
critical bending rigidity, κfil

* , abovewhich the linear chain is themost stable configuration.

7

New J. Phys. 17 (2015) 043007 BKiani et al



∑ ∑κ ϵ
π

π
π

π= − + − −

=

−

=

−
l

N

N n N

n N
n N

n N

n4 sin ( )

sin ( )

2

1

sin ( )
(3 cos(2 )) 2

1
. (12)

n

N

n

N

fil
*

2

3

1

1

3
1

1

3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

For a chain of 20magnetosomes, this condition ismet for κ κ ≃ 4.68fil
* magn . Calculating this critical value of

κfil for different numbers of particles allows us to determine amorphological diagram as a function of the ratio of
bending rigidities κ κfil magn and the particle number. This diagram (figure 6(b)) exhibits two regimes, one in

which the ring configuration is the globallymost stable one and another where the straight chain is themost
stable configuration.Not surprisingly, an increasing κfil extends the linear chain region.

Assuming a bending rigidity of thefilament similar to a single actin filamentwill bring the system close to the
transition, but typically the closed ringwill still be themost stable configuration (for κ κ ≃ 4fil magn and

≃N 20.) Thus, a bending rigidity only slightly higher than actin’s (about 1.6-fold) or a small bundle of a few
actin-likefilament would stabilize the straight chain thermodynamically, i.e.making it the globally stable
configuration.However, even lower values of the filament stiffness than for a single actinfilamentmay have an
important impact in the cell, as they are sufficient to destabilize small rings.Within the spatial confinement of
the cell, small rings and clusters containing small ringsmay be the dominant competing assemblies as the
confinementmakes large rings are rather unlikely.

In addition, a ratio of the bending rigidities of κ κ ≃ 4fil magn leads to an increase in the barrier height of

almost an order ofmagnitude (figure 6(a)), so that even lowerfilament bending rigidities should be sufficient to
stabilize the linear configuration kinetically. In the cell, additional stabilization is provided by the confinement
due to the cell’smembrane, whichwill prevent large ring structures.

To summarize these considerations, figure 7 shows three possible structures of themagnetosome filament, a
singlefilament spanning thewhole cell, a bundle offilaments individually spanning thewhole cell, and a bundle
of shorter filaments. In the first case, thefilament stabilizes the linear chain kinetically by increasing the barrier
to ring closure, butmost likely, the closed ring is still the configurationwith the globally lowest energy. In the
second case, the linear chain corresponds to the global energyminimum, and the third case remains somewhat
unclear. As thermodynamic stabilization requires afilament stiffness only 1.6-fold larger than actin’s, such a
bundlemay be strong enough if the bundle consists of at least twofilaments along its full length. On the other
hand, such a structuremay be locally less stiff and thus be prone to bending at specific points.

Figure 7. Schematic picture for possible structures ofmagnetosome filaments: (a) a single long filament extending fromone cell pole
to the other, (b) a bundle of longfilaments, (c) a long bundle consisting of shorterfilaments.
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5. Concluding remarks

In this study, we have addressed the bending stiffness ofmagnetosome chains, which results from twomain
contributions, amagnetic one due to themagnetic interactions betweenmagnetosomes that favor straight chain
orientation, and an elastic contribution due to the bending stiffness of the actin-like cytoskeletalfilament to
which themagnetosomes are attached.Our analysis shows that while both contributions are relevant, the
bending stiffness of the filament can usually be expected to be the dominant part, with an about four-fold longer
persistence length than due tomagnetic interactions alone.However, even themagnetic interactions alone can
be expected to result in a straight chain, as the persistence length exceeds the chain length. This conclusion
should however be takenwith the caveat that it relies on the assumption of thermal fluctuations of the
magnetosome chain, while at least for the alignment of the bacteria in external fields there is some evidence for
non-thermalfluctuations, as the alignment could be described by an elevated effective temperature [37, 38].

More importantly, for a chain ofmagnetic particles without a stabilizing filament, the linear configuration is
not the configuration of lowest energy. Rather, such a chain can be closed to a ring configuration, as seen
experimentally [17]. Such rings have lower energy than straight chains for chains of four ormore particles, so
one can imagine them forming even despite the confinement in an elongated cell which should provide some
stabilization to the linear configuration.Of course, closure of a ring is detrimental for the function of the chain,
as the ring has no netmagneticmoment. As a result of our analysis, we think that one of the roles of thefilament
is to stabilize the linear configuration against ring closure. That such stabilization is needed is suggested by
observations of clusters ofmagnetosomes inmutants lacking theMamJ protein that links themagnetosomes to
thefilament (the situation is less clear formutants lacking the filament proteinMamK, as these cells exhibits
multiple short linear chains). For a single actin-like filament, such stabilization is likely kinetic, i.e. by the
increase of the barrier between the straight and ring configurations. For small bundles of suchfilaments, we
expect the stabilization to be thermodynamic, i.e., in these cases, the linear configuration corresponds to the
global energyminimum.Unfortunately, the finer internal structure of themagnetosome filament remains to be
resolved and it also remains a possibility that some aspects of chain stability are different in different species of
magnetotactic bacteria.

Appendix

In this appendix, we describe the calculation of themagnetic bending rigidity inmore details. To evaluate the
interaction energy, we express the angles between the dipolemoments and between dipoles and their distance in
terms ofϕ and θ,

φ

θ φ

θ φ

∠ = −

∠ = −
− −

∠ = +
− +

m m i j

m r
i j

m r
i j

( , ) ,

( , )
( 1)

2
,

( , )
( 1)

2
. (13)

i j

i ij

j ij

Likewise, the distances rij are expressed as

φ
=

−
r R

i j
2 sin

2
. (14)ij

For themoment, let us consider only nearest-neighbor interactions. In that case, the above expressions lead
to the energy

φ θ ϵ θ φ φ= − − × + +E N N( , ) (1 1 ) (3 cos(2 ) cos ). (15)nn

In the equilibrium state, the orientation of the dipoles is such that the energy isminimal, thuswe determine θ as a
function ofφ and thus of the chain curvature, byminimizing the energy. This leads to θ φ= − 2, i.e. the
magnetic dipoles orient in tangential directionwith respect to the curvature circle, the tangential orientation is
also valid formore general shapes of chains ofmagnetic dipoles as shown recently in [51]. In this case, the energy
is given by

ϵ φ= − − × +E N N(1 1 ) (3 cos ). (16)nn

In this equation,φ is a function of the curvature, l R. Next, we use the Taylor expansion for small curvature, and
express the energy as
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ϵ ϵ≈ − − + −E N
N

N
N

l

R
1

1 1

8
1

1
. (17)nn

2
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⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

Here thefirst term is the linear chain energy and the second term represents the contribution frombendingwith
amagnetic bending rigidity of

κ ϵ= −l

N4
1

1
. (18)magn

nn ⎜ ⎟⎛
⎝

⎞
⎠

The same calculation can be donewhen including allmagnetic interactions, i.e. beyond nearest neighbors. In
that case, the energy is given by

∑θ φ ϵ θ φ φ= − − + +
φ
φ

=

−

( )
E N

n N
n( , )

(1 )

4

(3 cos(2 ) cos( )). (19)
n

N

n
magn

1

1

sin( 2)

sin( 2)

3

Minimization of the energy again leads to the tangential orientation of themagnetic dipoles with θ φ= − 2 and
to the energy

∑ϵ φ= − − +
φ
φ

=

−

( )
E N

n N
n

(1 )

4

(3 cos( )). (20)
n

N

n
magn

1

1

sin( 2)

sin( 2)

3

The expansion for small curvature leads to

∑ϵ≈ − × − − + ⋯

= −

=

−

E N
l

R

n N

n

E
l

R

1
1

2 2

(1 )

1
1

2 2
, (21)

n

N
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2

1

1

3
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2
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⎝
⎜⎜

⎛
⎝⎜
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⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜
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⎠
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with the energy Elin of the linear chain given by equation (4) and themagnetic bending rigidity

∑κ ϵ ϵ ζ ϵ= − ≈ ≃
=

−
l n N

n

l
l

4

(1 )

4
(3) 0.3 . (22)

n

N

magn

1

1

3
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