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Studies of fixation dynamics in Markov processes predominantly focus on the mean time to absorp-
tion. This may be inadequate if the distribution is broad and skewed. We compute the distribution
of fixation times in one-step birth-death processes with two absorbing states. These are expressed in
terms of the spectrum of the process, and we provide different representations as forward-only pro-
cesses in eigenspace. These allow efficient sampling of fixation time distributions. As an application
we study evolutionary game dynamics, where invading mutants can reach fixation or go extinct. We
also highlight the median fixation time as a possible analog of mixing times in systems with small
mutation rates and no absorbing states, whereas the mean fixation time has no such interpretation.
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Introduction. If a group of mutants is introduced into
a population of wild-type individuals, how long does
it take for the population to reach a homogeneous
state? This is a typical question asked in popula-
tion genetics and evolutionary biology. It can be ad-
dressed using the theory of stochastic processes and
approaches from statistical physics.

In its simplest form, evolutionary dynamics is mod-
eled as a Markov process in a population of N indi-
viduals of two types [1]. Fixation occurs when the
process arrives at one of its absorbing states. As the
time to fixation is itself a random variable, only the
computation of the distribution of fixation times pro-
vides a complete answer to our opening question. The
majority of existing studies avoid this mathematical
challenge and instead focus on calculating only the
mean fixation time [2–4]. While the first moment can
provide a good indication of the outcome in some cir-
cumstances, this approach can be insufficient when
the distribution of fixation times is broad [5, 6].

Although the master equation describing the birth-
death dynamics is linear, calculating fixation time
distributions is more intricate than one may initially
think. Nested expressions for all moments of fixation
times are known [6–8] and from these the distribu-
tion can in principle be constructed recursively up to
arbitrary precision. However, this approach does not
provide a simple closed-form solution or a means of
efficiently sampling from the arrival time distribution.

An alternative approach is to diagonalize the linear
operator of the master equation and to carry out the
analysis in eigenspace. This leads to a theorem at-
tributed to Karlin and McGregor [9, 10] which states
that arrival times can be written as finite sums of
independent, exponentially distributed random vari-
ables with parameters given by the eigenvalues of the
master equation. This theorem has been discussed in

numerous sources in the probability theory literature
[10–18]. The discussion of these matters is usually
very terse, and not easily accessible to physicists or
researchers in adjacent disciplines. Researchers in the
theoretical biosciences are only recently beginning to
use these ideas for the purpose of model reduction
[19, 20]. Existing results are limited to specific ini-
tial conditions and types of birth-death chains, and
a clear understanding of the analysis in eigenspace is
lacking.

We consider one-step birth-death processes with two
absorbing states and a general initial condition, de-
scribing the invasion (or extinction) of a number of
mutants in a wild-type population. The purpose
of our work is to provide a systematic and explicit
closed-form solution for fixation time distributions,
and a physical interpretation of different representa-
tions in eigenspace [13, 16, 17]. By generalizing the
Karlin-McGregor result, we show that these differ-
ent representations can be traced back to one com-
mon origin. To generate samples from the fixation
time distribution it is sufficient to simulate forward-
only processes in eigenspace. This provides effective
model-reduction schemes.

We use our results to relate fixation processes to
the equilibration dynamics of evolutionary systems
with mutation (and hence with no absorbing states).
These equilibration processes are often characterized
by the so-called mixing time, the time it takes the
system to come within a set distance of its stationary
distribution [21, 22]. We thus discuss an appropri-
ate analog of the fixation time in the limit of small
mutation rates.

Model definition and main idea. We study a one-step
birth-death process with states i = 0, 1, . . . , N and
characterized by the birth and death rates bi, di (i =
1, . . . , N − 1), as illustrated in Fig. 1. This describes
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FIG. 1. One-step birth-death process in a population of
N individuals. The variable i denotes the number of in-
vading mutants. The states i = 0 (extinction) and i = N
(fixation) are absorbing. Birth rates are labeled bi and
death rates di.

a population of constant size N with i individuals of
the mutant type and N − i of the resident wild type
[1]. The states i = 0 and i = N are absorbing in the
absence of mutation, and so the dynamics will end at
one of these two states eventually. Our objective is
to calculate the distribution of arrival times at these
absorbing states for a general starting point i0.

The outcome of our analysis (detailed below) are the
reduced forward-only processes in eigenspace illus-
trated in Fig. 2, which have the same arrival time
distribution as the original birth-death process. The
forward jump rates are determined by the eigenvalues
λα of the original birth-death process. The schematic
in Fig. 2(a) shows multiple forward-only ‘channels’,
where dashed arrows indicate that some steps are to
be skipped. Fig. 2(b) shows a single forward-only
channel. Long arrows indicate direct jumps to the fi-
nal eigenstate. In both cases, the number of possible
paths is determined by the initial condition and the
final state (i = 0 or i = N) of the original birth-death
process.

Arrival time samples of the original process are gen-
erated from Fig. 2(a) in the following way: One of the
channels is chosen with probability determined by the
birth-death rates, the initial condition and the final
state of the original real-space process. After a chan-
nel has been selected, the clock is started and the
forward-only process of the channel is traversed. The
clock is stopped when the final state in the schematic
is reached (‘absorption’).

Arrival time samples are generated from Fig. 2(b)
by traversing the forward-only chain. The quanti-
ties 1 − Fα are the probabilities to reach absorption
directly from the intermediate eigenstate α. These
probabilities are again determined by the birth-death
rates, the initial condition and the final state of the
original process. Explicit formulae can be found in
the Supplementary Material [23].

Analysis. To derive these results it is convenient to fo-
cus on the interior states i = 1, . . . , N−1 in the birth-
death process in Fig. 1. The probability to be in state
i at time t, pi(t), satisfies the equation ṗ = A ·p with
formal solution p(t) = exp(At) · p(0). The matrix A
describes the transient states and has elements ai,i =
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FIG. 2. Different representations of the arrival process
in terms of forward-only processes in eigenspace. The
λα are (absolute) eigenvalues of the process in Fig. 1,
each arrow represents an exponential process with the
rate indicated. Panel (a) shows a set of alternative re-
action channels. In each run one channel is chosen with
appropriate probability. Transitions indicated by dashed
arrows are skipped (zero time). Panel (b) shows a single
forward-only chain, in which the final state can be reached
directly from some of the intermediate states. Both rep-
resentations are equivalent and generate samples from the
arrival time distribution of the process in Fig. 1. The case
shown here is for arrival at N , starting from i0 = 3 in the
original space.

−(bi+di), ai,i+1 = di+1 and ai,i−1 = bi−1. The initial
condition is pi(0) = δi,i0 (1 ≤ i0 ≤ N − 1). Probabil-
ity continuously flows into the two absorbing states.
Hence all eigenvalues of A are negative, and so we fo-
cus on −A and its eigenvalues. The matrix exponen-
tial can be evaluated by Laplace transformation, and
subsequent back transformation allows one to calcu-
late Ṗ0|i0(t) = d1p1(t) and ṖN |i0(t) = bN−1pN−1(t).
Up to normalisation these are the conditional arrival
time distributions at states 0 and N respectively. For
the remainder of the paper we focus only on absorp-
tion at state N . Analogous expressions for absorption
at 0 can be found in the Supplementary Material [23].
We find the following expression for the probability
flux (per unit time) into state N [23]

ṖN |i0(t) =
Bi0ψi0

Λ
EN−1 ∗Ri0−1, (1)

where Bi0 =
∏N−1
i=i0

bi, Λ = det(−A) and ψi0 is the
determinant of the (i0 − 1) × (i0 − 1) top-left sub-
matrix of −A (denoted as −A(i0−1)). We have intro-
duced E` = E(λ1) ∗ · · · ∗ E(λ`), where the E(λα) are
exponential distributions with the eigenvalues of −A,
λα > 0, as parameters. The symbol ‘∗’ represents a
convolution. The object R` is of the form

R` =
(
δ + y−1

1 δ′
)
∗ · · · ∗

(
δ + y−1

` δ′
)
, (2)
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where yα > 0 are the eigenvalues of the sub-matrix
−A(i0−1). In these expressions δ is the usual Dirac
distribution, and δ′ is its derivative [23]. We can iden-
tify the prefactor Bi0ψi0/Λ = φN |i0 as the probability
that the original system gets absorbed in state N (as
opposed to 0).

The effective dynamics shown in Fig. 2 are obtained
by evaluating the convolutions in Eq. (1). To illus-
trate this it is useful to first consider the convolution
of the exponential distribution E(λ) with an object of
the form δ + y−1δ′ (y > 0),

E(λ)∗
(
δ + y−1δ′

)
=

[
λ

y
δ(t) +

(
1− λ

y

)
E(λ)(t)

]
. (3)

Assuming λ/y < 1 (which will be the case throughout
our analysis) this describes a convex combination of
a point-mass at zero and an exponential distribution.
For samples, set t = 0 with probability λ/y, otherwise
draw t from E(λ).

To arrive at the dynamics depicted in Fig. 2(a), each
of the i0 − 1 terms of the form δ + y−1

α δ′ in Eq. (1)
is paired up with a separate exponential. This cre-
ates a total of 2i0−1 possible forward-only channels
with up to i0−1 exponential steps skipped, as shown
in Fig. 2(a). To arrive at the dynamics shown in
Fig. 2(b), the i0 − 1 objects of the form δ + y−1

α δ′

are successively convoluted with the full chain EN−1

from the right. This leads to i0 channels, in which
0, 1, . . . , i0 − 1 exponential steps are skipped. This
can be illustrated as a single forward-only channel,
with appropriate rates of jumping from intermediate
eigenstates to absorption.

The representation shown in Fig. 2(a) corresponds
to the picture obtained for a restricted set of pro-
cesses by probabilistic methods in [13]. On the other
hand, Fig. 2(b) reflects the findings of [16] and [17],
derived from the construction of ‘intertwining pro-
cesses’. Our analysis shows that these different de-
compositions originate from one common structure,
Eq. (1). The explicit schemes in Fig. 2 provide a
computational method to generate samples from the
arrival time distribution efficiently, for example by
carrying out simulations of these forward processes
using the Gillespie algorithm [24]. It is important to
keep in mind that the eigenstates shown in Figs. 2(a)
and (b) cannot be mapped one-to-one to the states
in Fig. 1. The equivalence of the real and eigenspace
representations only holds on the level of arrival time
statistics.

Evolutionary games. As an application of this theory
we now consider examples of evolutionary dynamics
with frequency-dependent selection [1, 25, 26]. Such
models are used to describe the interaction of invad-
ing mutants (A) and resident wild-type individuals
(B). These scenarios can be formulated as evolution-
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FIG. 3. The conditional fixation time distributions at
i = N for different games. Main panel: Lines show re-
sults from the theory, symbols are from simulations (106

runs per game). The mean fixation time (arrows) is not a
good description of the distribution. Inset: Open mark-
ers/dashed lines show computer time needed to obtain
arrival time distributions from simulations, full mark-
ers/solid lines are for the semi-analytical approach and
indicate the polynomial scaling. Direct simulations can
only approximate the exact arrival time distribution to a
given accuracy (see [23] for details). (N = 100, i0 = 10,
β = 0.1. Coexistence game: R = P = 1.0, S = T = 1.5;
Coordination game: R=P = 1.5, S=T = 1.0; Prisoners’
dilemma: R=−S=0.5, T =1.0, P =0.0).

ary games [1]. We focus on a 2×2 normal form game,

A B
A R S
B T P

πA(i) = i−1
N−1R+ N−i

N−1S,

πB(i) = i
N−1T + N−i−1

N−1 P,
(4)

where πA(i) and πB(i) are the expected payoffs in
a population of i individuals of type A and N − i
individuals of type B. For this example we as-
sume a pairwise comparison process, leading to birth
and death rates given by bi = g[+∆π(i)]i(N − i)/N
and di = g[−∆π(i)]i(N − i)/N , respectively, where
∆π(i) = πA(i) − πB(i) and g(z) = (1 + βz) /2. The
parameter β>0 is the so-called intensity of selection
[1, 27, 28]. The parameters R,S, T, P specify the in-
teraction, and we consider three possible scenarios:
coexistence (T >R and S >P , stable heterogeneous
population), coordination (R > T and P > S, un-
stable heterogeneous population) and the prisoners’
dilemma (T > R > P > S, single homogeneous sta-
ble population) [1]. As shown in Fig. 3, arrival time
distributions can be broad and skewed, such that
the mean fixation time contains only limited infor-
mation. Fig. 3 also demonstrates the computational
benefits of our formalism, which produces closed-form
expressions for the distribution of arrival times [23].
Evaluating these requires O

(
N3
)

operations as the

spectra of −A and −A(i0−1) are needed. Generat-
ing arrival time distributions from simulation of the
original birth-death process instead can take expo-
nentially long. For the coordination game and the
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prisoners’ dilemma, fixation at N is rare and the bot-
tleneck of direct simulations is the limited sampling.
For coexistence games, fixation times are exponen-
tially long in N . This impedes accurate simulations.
Direct numerical integration of the master equation
would suffer from the same problem.

Equilibration processes in systems with mutation. We
now consider birth-death processes without absorbing
states by adding mutation occurring at a rate u� 1,
such that b0 = O (u) and dN = O (u) [23]. All other
transition rates depicted in Fig. 1 are O

(
u0
)

and are
only affected at sub-leading order by u. The time
scale of the dynamics is characterized by the so-called
‘mixing time’, tmix. This is the time taken for the
probability distribution, P(t), to come within a spec-
ified distance of the stationary distribution Pst, i.e.
tmix is the first time at which d[P(tmix),Pst] = ε. The
distance between distributions P and Q commonly
used in this context is d(P,Q) =

∑N
i=0 |Pi − Qi|/2

with ε = 1/2 [21, 22]. Using our results we can deter-
mine if and when there is a correspondence between
the mixing time and the fixation time.

For very small mutation rates (0 < uN � 1) the sta-
tionary distribution is of the form P st

i ≈ (1−σ)δi,0 +
σδi,N [23]. In the strict absence of mutation (u = 0)
the system reaches fixation, so its terminal distri-
bution, Φ, is of the form Φi|i0 = (1 − φN |i0)δi,0 +
φN |i0δi,N . It is clear that these two distributions are
different; Pst in systems with u > 0 is independent of
the initial condition. Thus there is no obvious con-
nection between fixation times and mixing times in
the limit u→ 0.

However, equilibration in many systems with rare
mutations is a two-step process; the system first
reaches a quasi-stationary distribution that is depen-
dent on the initial condition, before ‘leaking’ on a
longer time scale into the final stationary state [22].
Our analysis suggests that this quasi-stationary dis-
tribution of systems with 0 < uN � 1 is close to the
terminal distribution Φ of the system with u = 0,
and that both systems initially evolve along similar
trajectories [23]. The most appropriate analog of fix-
ation times in systems with small mutation rates is
thus the time to quasi-stationarity, not the time to
stationarity (mixing time).

In the absence of mutation, d[P(t),Φ] = Pr(tfix > t)
is the probability not to have reached fixation by time
t [23]. The condition d[P(tfix),Φ] = 1/2 therefore
translates into the time at which half of the samples
have reached fixation, i.e. to the median fixation time
[29]. In some cases P(t) initially satisfies d[P(t),Φ] =
d[P(t),Pst]. Then there is a correspondence between
the median fixation time and the mixing time [23].
This is illustrated in Fig. 4 where we consider the
example of a coordination game [22].

Conclusion. In summary, we have constructed
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FIG. 4. Correspondence of mixing time and median fix-
ation time for small mutation rates. Panel (a) shows the
unconditional fixation time distribution for the coordina-
tion game (u = 0). Panel (b) depicts the mixing time
for u > 0 and ε = 1/2 (from numerical integration of the
master equation [22]). We use b0 = dN = Nu/2, parame-
ters are as in Fig. 3.

eigenspace representations that capture the full
arrival-time statistics of one-step birth-death pro-
cesses. The mapping into eigenspace has a clear in-
terpretation as forward-only exponential processes.
Sampling of the original arrival-time distributions re-
duces to simulating these forward-only processes, or
equivalently evaluating a finite sum of exponential
random variables, turning our results into an effec-
tive tool for model reduction. The compact struc-
ture of the forward-only processes allows us to de-
rive exact, closed-form expressions for the arrival-
time distributions of the original process in terms
of its spectrum. As we have demonstrated, the nu-
merical evaluation of these expressions is an efficient
polynomial-time method to obtain full arrival time
statistics. We have also established a link between
equilibration times in systems with small mutation
rates and the median fixation time in absence of mu-
tation. Our work advances the understanding of the
mathematical structure underpinning the dynamics
of fixation. We have placed existing representations
for simpler cases into a wider and more coherent con-
text [13, 16, 17]. Nevertheless there are fundamental
open questions. Claims of probabilistic interpreta-
tions of Karlin and McGregor’s theorem have been
made [14, 15], but in our view this picture is still in-
complete. We would argue that a full probabilistic
interpretation of the representations in eigenspace is
only reached when each time step of the forward-only
process can be constructed directly and uniquely from
realizations of the original process alone. Whether or
not this is possible is unclear.

P.A. gratefully acknowledges support from the EP-
SRC.
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Supplemental Material for
“When the mean is not enough: Calculating fixation time distributions in

birth-death processes”
Peter Ashcroft, Arne Traulsen, and Tobias Galla

MATHEMATICAL BACKGROUND MATERIAL

Dirac distribution and its derivative

The Dirac-delta distribution has support {0}. It can be written in its Fourier representation is δ(t) =∫∞
−∞ dω eiωt. The distributional derivative, δ′, can be conveniently be defined by its Fourier transform as

well [S1]. It has the form

δ′(t) =

∫ ∞
−∞

(iω)eiωt dω. (S1)

When this is convoluted with a test function, f(t), with infinite support one obtains∫ ∞
−∞

δ′(t− τ)f(τ) dτ = f ′(t). (S2)

If a test function, g(t), has finite support, say t ≥ 0, then one finds (after integration by parts)∫ ∞
0

δ′(t− τ)g(τ) dτ = g′(t) + g(0)δ(t). (S3)

Laplace transform of an exponential distribution

We frequently use the Laplace transform of an exponential distribution in our subsequent derivation. This is
a standard result, but it is useful to include it here. We consider and exponential distribution with parameter
λ > 0, such that E(λ) = λe−λt (t ≥ 0). The Laplace transform is obtained as follows

L
[
E(λ)(t)

]
=

∫ ∞
0−

λe−λte−st dt

= λ

∫ ∞
0−

e−(s+λ)t dt. (S4)

This integral is only convergent in the region Re(s) > −λ. Within this region we have

L
[
E(λ)(t)

]
=

λ

s+ λ
. (S5)

Laplace transform of an object δ(t) + z−1δ′(t)

We now show that the Laplace transform of δ(t) + z−1δ′(t) is 1 + z−1s. The object δ′(t) is the derivative of
the Dirac-delta distribution δ(t) (defined above) and z > 0 is a constant. We have

L
[
δ(t) + z−1δ′(t)

]
=

∫ ∞
0−

[δ(t) + z−1δ′(t)]e−st dt

=

∫ ∞
0−

e−stδ(t) dt+ z−1
[
e−stδ(t)

]∞
0− + z−1s

∫ ∞
0−

e−stδ(t) dt

= 1 + z−1s. (S6)

This expression has no singularities, and thus the region of convergence in terms of s is the entire complex
plane. Note that we explicitly define the lower integration limit as 0− to include the delta function in the
integral, and we have used limt→0− δ(t) = 0.
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Convolution of an exponential distribution with an object δ(t) + z−1δ′(t)

The convolution of an exponential distribution E(λ) with an object of the form δ + z−1δ′ (for constant z), as
shown in Eq. (3) in the main paper, gives

E(λ) ∗
(
δ + z−1δ′

)
=

∫ ∞
0

λe−λτ
[
δ(t− τ) + z−1δ′(t− τ)

]
dτ

= λ

∫ ∞
0

e−λτδ(t− τ) dτ + λz−1
[
e−λτδ(t− τ)

]∞
0
− λ2z−1

∫ ∞
0

e−λτδ(t− τ) dτ

= λeλt + λz−1δ(t)− λ2z−1eλt

=
λ

z
δ(t) +

(
1− λ

z

)
E(λ)(t). (S7)

CALCULATION OF ABSORPTION TIME DISTRIBUTIONS VIA LAPLACE TRANSFORMS

Laplace representation

As mentioned in the main text it is convenient to focus on the states i = 1, . . . , N − 1 of the birth-death
process shown in Fig. 1 of the main paper. The dynamics of these states is given by p = A · p, where A is an
(N−1)×(N−1) matrix, and where pi(t) is the probability that the system is in state i at time t. We note that
this is not a probability-conserving master equation, as probability mass continuously leaks into the absorbing
states. We will use the notation pi (lower case) when we discuss the restricted system (with

∑N−1
i=1 pi(t) ≤ 1),

and we will write Pi(t) (upper case) when we discuss the full system, i = 0, . . . , N . For the latter one always

has
∑N
i=0 Pi(t) = 1 at all times.

The formal solution of the equation p = A · p, restricted to sites i = 1, . . . , N − 1, reads

p(t) = exp(At) · p(0). (S8)

We can take the Laplace transform and write the matrix exponential in the resolvent form

p̂(s) = (s1I− A)−1 · p(0). (S9)

We have here written p̂(s) for the Laplace transform L[p(t)]. We consider initial conditions of the form
pi(0) = δi,i0 (1 ≤ i0 ≤ N − 1). Our strategy is to compute p1(t) and pN−1(t), and from these the rates
d1p1(t) and bN−1pN−1(t), with which probability arrives in the absorbing states, can be obtained. Thus we
are interested in

p̂1|i0(s) =
[
(s1I− A)−1

]
1,i0

, and (S10)

p̂N−1|i0(s) =
[
(s1I− A)−1

]
N−1,i0

. (S11)

The (i, j)-th element of the inverse of an invertible matrix B is given by [B−1]ij = Cj,i/ detB, where Cj,i is
the (j, i)-th co-factor of B. Thus we can write

p̂1|i0(s) =
[
(s1I− A)−1

]
1,i0

=
1

det(s1I− A)
Ci0,1, (S12)

and likewise for the (N − 1, i0)-th element.
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Calculation of co-factors

The co-factor Ci0,1 is found from dropping column 1 and row i0 from s1I− A and evaluating

Ci0,1 = (−1)i0+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d2 0
s+ b2 + d2 −d3 0

−b2 s+ b3 + d3 −d4 0
. . .

. . .
. . .

. . .

0 −bi0−2 s+ bi0−1 + di0−1 −di0 0
0 0 −bi0 s+ bi0+1 + di0+1 −di0+2 0

. . .
. . .

. . .
. . .

. . .

0 0 −bN−2 s+ bN−1 + dN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(S13)

Using Laplace’s formula, this can be written as

Ci0,1 = (−1)i0+1

(
i0∏
i=2

−di
)∣∣∣∣∣∣∣∣∣∣

s+ bi0+1 + di0+1 −di0+2 0
−bi0+1 s+ bi0+2 + di0+2 −di0+3 0

. . .
. . .

. . .

0 −bN−3 s+ bN−2 + dN−2 −dN−1

0 −bN−2 s+ bN−1 + dN−1

∣∣∣∣∣∣∣∣∣∣
=

(
i0∏
i=2

di

)
det
(
s1I− A(N−i0−1)

)
=

i0∏
i=2

di

N−i0−1∏
α=1

(s+ xα). (S14)

The matrix A(N−i0−1) consists of the rows and columns i0 + 1, . . . , N − 1 of the matrix A, i.e. it is the
bottom right (N − i0 − 1) × (N − i0 − 1) sub-matrix of A. The matrix −A(N−i0−1) has eigenvalues xα > 0

(α = 1, . . . , N − i0 − 1) and determinant det
(
−A(N−i0−1)

)
= χi0 =

∏N−i0−1
α=1 xα.

For the (i0, N − 1)-th cofactor we have

Ci0,N−1 = (−1)i0+N−1

(
N−2∏
i=i0

−bi
)∣∣∣∣∣∣∣∣∣∣

s+ b1 + d1 −d2 0
−b1 s+ b2 + d2 −d3 0

. . .
. . .

. . .

0 −bi0−3 s+ bi0−2 + di0−2 −di0−1

0 −bi0−2 s+ bi0−1 + di0−1

∣∣∣∣∣∣∣∣∣∣
=

(
N−2∏
i=i0

bi

)
det
(
s1I− A(i0−1)

)

=

N−2∏
i=i0

bi

i0−1∏
α=1

(s+ yα). (S15)

The matrix A(i0−1) consists of rows and columns 1, . . . , i0 − 1 of the matrix A, i.e. it is the top-left (i0 − 1)×
(i0 − 1) sub-matrix of A. The matrix −A(i0−1) has eigenvalues yα > 0 (α = 1, . . . , i0 − 1) and determinant

det
(
−A(i0−1)

)
= ψi0 =

∏i0−1
α=1 yα.

Arrival time distributions

Putting things together we have

p̂1|i0(s) =

i0∏
i=2

di

N−i0−1∏
α=1

(s+ xα)

N−1∏
β=1

1

s+ λβ
,

p̂N−1|i0(s) =

N−2∏
i=i0

bi

i0−1∏
α=1

(s+ yα)

N−1∏
β=1

1

s+ λβ
. (S16)
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Here we have used det(s1I − A) =
∏N−1
β=1 (s+ λβ), where λβ > 0 are the eigenvalues of −A. Using ̂̇P 0(s) =

d1p̂1(s) and ̂̇PN (s) = bN−1p̂N−1(s), we obtain the Laplace transforms of the absorption time distributions at
sites i = 0 and i = N , respectively. They are given by

̂̇P 0|i0(s) =

i0∏
i=1

di

N−i0−1∏
α=1

(s+ xα)

N−1∏
β=1

1

s+ λβ
,

̂̇PN |i0(s) =

N−1∏
i=i0

bi

i0−1∏
α=1

(s+ yα)

N−1∏
β=1

1

s+ λβ
. (S17)

Time representation of solutions

Combining Eqs. (S5), (S6) and (S17), we can write

̂̇P 0|i0(s) =

i0∏
i=1

di

N−i0−1∏
α=1

L
[
xαδ(t) + δ′(t)

]N−1∏
β=1

L
[
E(λβ)(t)

]
λβ

,

̂̇PN |i0(s) =

N−1∏
i=i0

bi

i0−1∏
α=1

L
[
yαδ(t) + δ′(t)

]N−1∏
β=1

L
[
E(λβ)(t)

]
λβ

. (S18)

Using the fact that L−1
[
f̂(s) · ĝ(s)

]
= f ∗ g, we can perform the inverse Laplace transform of the expressions

in Eq. (S18). We find

Ṗ0|i0(t) =


i0∏
i=1

di
N−i0−1∏
α=1

xα

N−1∏
β=1

λβ

 E(λ1) ∗ · · · ∗ E(λN−1) ∗
(
δ + x−1

1 δ′
)
∗ · · · ∗

(
δ + x−1

N−i0−1δ
′) ,

ṖN |i0(t) =


N−1∏
i=i0

bi
i0−1∏
α=1

yα

N−1∏
β=1

λβ

 E(λ1) ∗ · · · ∗ E(λN−1) ∗
(
δ + y−1

1 δ′
)
∗ · · · ∗

(
δ + y−1

i0−1δ
′) . (S19)

This is the expression shown in Eq. (1) in the main paper. We identify the prefactors in square brackets as
the fixation probabilities φ0|i0 and φN |i0 , respectively.

Symmetry of the fixation time distributions

By choosing the initial conditions i0 = N − 1 and i0 = 1, the expressions in Eq. (S19) can be reduced to

Ṗ0|N−1(t) =

[
N−1∏
i=1

di
λi

]
E(λ1) ∗ · · · ∗ E(λN−1) = φ0|N−1EN−1,

ṖN |1(t) =

[
N−1∏
i=1

bi
λi

]
E(λ1) ∗ · · · ∗ E(λN−1) = φN |1EN−1, (S20)

where E` = E(λ1) ∗ · · · ∗ E(λ`). From this we conclude

Ṗ0|N−1(t)

φ0|N−1
=
ṖN |1(t)

φN |1
, (S21)

that is the conditional arrival time distribution at state i = 0 given i0 = N − 1 is equal to the conditional
arrival time distribution at state i = N given i0 = 1. This symmetry has been known for the mean fixation
time [S2, S3], and it was recently shown that the correspondence holds for the full distribution [S4]. Our
approach offers an alternative way to obtain this intriguing result.
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COMPUTING EIGENSPACE REPRESENTATIONS

As the convolution operator is commutative, we can order the convolutions in Eq. (S19) in any way. The
exponential distributions and the objects of the form δ+z−1δ′ in Eq. (S19) can hence be combined in multiple
ways.

Convolutions I: Pairing δ + z−1
α δ′ with individual exponential distributions

In this Section we choose to couple E(λN−α) with δ + x−1
α δ′ for the purposes of Ṗ0|i0(t), and with δ + y−1

α δ′

when we calculate ṖN |i0(t). Carrying out these convolutions in Eq. (S19), we arrive at

Ṗ0|i0(t) = φ0|i0 × E(λ1) ∗ · · · ∗ E(λi0 ) ∗[
λi0+1

xN−i0−1
δ +

(
1− λi0+1

xN−i0−1

)
E(λi0+1)

]
∗ · · · ∗

[
λN−1

x1
δ +

(
1− λN−1

x1

)
E(λN−1)

]
(S22)

and

ṖN |i0(t) = φN |i0 × E(λ1) ∗ · · · ∗ E(λN−i0 ) ∗[
λN−i0+1

yi0−1
δ +

(
1− λN−i0+1

yi0−1

)
E(λN−i0+1)

]
∗ · · · ∗

[
λN−1

y1
δ +

(
1− λN−1

y1

)
E(λN−1)

]
.

(S23)

We stress that the objects δ + x−1
α δ′ (or δ + y−1

α δ′) can be paired with any of the exponential distributions.
We chose to match these at the end of the exponential chain so that the reduced chains can be systematically
compared. This is the representation described in Fig. 2(a) of the main paper.

Convolutions II: Recursively convolving with exponential chain

If we write Eqs. (S19) in the form

Ṗ0|i0(t) = φ0|i0 × EN−1 ∗
(
δ + x−1

1 δ′
)
∗ · · · ∗

(
δ + x−1

N−i0−1δ
′)

ṖN |i0(t) = φN |i0 × EN−1 ∗
(
δ + y−1

1 δ′
)
∗ · · · ∗

(
δ + y−1

i0−1δ
′) , (S24)

where E` = E(λ1) ∗ · · · ∗ E(λ`), then we can recursively convolute the objects involving δ-functions onto the
chain of exponentials from the right. We note that

Eκ ∗
(
δ + z−1δ′

)
=

[
λκ
z
Eκ−1(t) +

(
1− λκ

z

)
Eκ(t)

]
, (S25)

which follows directly from Eq. (S7).
From this, each of the recursive convolutions introduces a new exponential chain with one step less. For
example,

Ṗ0|i0(t)

φ0|i0
= EN−1 ∗

(
δ + x−1

1 δ′
)
∗ · · · ∗

(
δ + x−1

N−i0−1δ
′)

=

[(
1− λN−1

x1

)
EN−1 +

λN−1

x1
EN−2

]
∗
(
δ + x−1

2 δ′
)
∗ · · · ∗

(
δ + x−1

N−i0−1δ
′)

=

{(
1− λN−1

x1

)(
1− λN−1

x2

)
EN−1 +

[(
1− λN−1

x1

)
λN−1

x2
+
λN−1

x1

(
1− λN−2

x2

)]
EN−2

+
λN−1

x1

λN−2

x2
EN−3

}
∗
(
δ + x−1

3 δ′
)
∗ · · · ∗

(
δ + x−1

N−i0−1δ
′) .

(S26)
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Performing all the convolutions leads to the following expressions:

Ṗ0|i0(t)

φ0|i0
=

(
N−i0−1∏
α=1

1

xα

)
N−i0∑
α=1

[
EN−α(t)

α−1∏
β=1

λN−β

×
α∑

j1=1

(xj1 − λN−j1)

α∑
j2=j1

(xj2+1 − λN−j2)

α∑
j3=j2

· · ·
α∑

jN−i0−α=
jN−i0−α−1

(
xjN−i0−α+N−i0−α−1 − λN−jN−i0−α

)]
,

ṖN |i0(t)

φN |i0
=

(
i0−1∏
α=1

1

yα

)
i0∑
α=1

[
EN−α(t)

α−1∏
β=1

λN−β

×
α∑

j1=1

(yj1 − λN−j1)

α∑
j2=j1

(yj2+1 − λN−j2)

α∑
j3=j2

· · ·
α∑

ji0−α=
ji0−α−1

(
yji0−α+i0−α−1 − λN−ji0−α

)]
.

(S27)

These expressions can be written as

Ṗ0|i0(t) = φ0|i0

N−i0∑
α=1

G
(x)
N−αEN−α(t), and

ṖN |i0(t) = φN |i0

i0∑
α=1

G
(y)
N−αEN−α(t), (S28)

where G
(x)
N−α and G

(y)
N−α are constants (independent of time). The fixation time distributions are thus linear

combinations of the distributions EN−α. We note here the equalities

N−i0∑
α=1

G
(x)
N−α = 1,

i0∑
α=1

G
(y)
N−α = 1. (S29)

We now proceed to express the above linear combination of exponential chains [Eq. (S28)] as the single chain
shown in Fig. 2(b) of the main manuscript. In the schematic shown in the figure of the main manuscript
the system can transition to two possible states if currently in eigenstate α: either α → α + 1 or α → N .
These paths have transition rate Fαλα and (1−Fα)λα, respectively. The total rate of transitioning out of α is
then λα, and the waiting time at α is an exponential distribution with parameter λα, no matter whether the
system transitions to α+ 1 or to N . The quantity Fα denotes the probability that the next state of dynamics
in eigenspace is α + 1, if the system is currently in eigenstate α. With probability 1 − Fα the next state is
eigenstate N . Evaluating the probability of a trajectory in terms of Fα, and then matching with Eq. (S28)
gives

Fα =

1−
α∑
κ=1

Gκ

1−
α−1∑
κ=1

Gκ

for α < N − 1. (S30)

We can express all transition rates in Fig. 2(b) of the main manuscript as

Tα→β =

{
Fαλα, β = α+ 1 < N,

(1− Fα)λα, α ≤ N − 1, β = N.
(S31)

Evaluation of ‘bottom-line’ arrival time distributions

The final expressions for the (un-normalized) arrival time distributions follow directly from Eq. (S28). First
we note that the convolution of ` exponential distributions has the form

E`(t) =

(∏̀
α=1

λα

)∑̀
α=1

∏̀
β=1
β 6=α

1

λβ − λα
e−λαt. (S32)



7

Substituting this expression into Eq. (S28), or equivalently Eq. (S27), we arrive at the final expressions

Ṗ0|i0(t) =

(
i0∏
`=1

d`

)
N−1∑
α=1


N−i0−1∏
γ=1

(xγ − λα)

N−1∏
β=1
β 6=α

(λβ − λα)

e−λαt

 ,

ṖN |i0(t) =

(
N−1∏
`=i0

b`

)
N−1∑
α=1


i0−1∏
γ=1

(yγ − λα)

N−1∏
β=1
β 6=α

(λβ − λα)

e−λαt

 . (S33)

Evaluating these expressions requires the calculation of the eigenvalues xα, yα, and λα.

Accuracy and efficiency of simulation-based approaches

In the inset of Fig. 3 of the main manuscript we show that computing arrival time distributions directly from
simulations is less efficient than computing them exactly using our formalism. To generate the CPU-time
curve for the simulation method we measure the distance, d, between the histogram of arrival times at state
N , ρN , against the exact distribution. This distance is defined by

d =
1

2

M∑
i=0

∣∣∣∣∣(ti+1 − ti)ρN (ti)−
∫ ti+1

ti

ṖN |i0
φN |i0

dt

∣∣∣∣∣ , (S34)

where M is the number of histogram bins. Note that this is the continuous analog of the distance measure
between distributions to be discussed in the next section. The histogram, ρN , is populated with an increasing
amount of independent realizations until the distance falls below d = 1/2. We then plot the time taken to
complete this number of simulation runs of the given process.

RELATION TO EQUILIBRATION PROCESSES

Dynamics without mutation

In the system without mutation all realizations reach fixation eventually. If the dynamics is started from state
i0 [i.e. Pi(t = 0) = δi,i0 ] the stationary state of the birth-death process, i.e. the terminal distribution, is of the
form

Φi|i0 = (1− φN |i0)δi,0 + φN |i0δi,N , (i = 0, . . . , N). (S35)

The quantity φN |i0 is the probability that the process reaches the absorbing state N . The probability of being
absorbed at 0 is 1− φN |i0 .
Let us now consider the distance of the distribution P(t) from this distribution Φ = (1−φN |i0 , 0, . . . , 0, φN |i0).
In-line with the existing literature [S5, S6] we use the distance measure

d[P,Q] =
1

2

N∑
i=0

|Pi −Qi| (S36)

for two distributions P and Q. We then have

d[P(t),Φ] =
1

2

[∣∣P0(t)− (1− φN |i0)
∣∣+

N−1∑
i=1

Pi(t) +
∣∣PN (t)− φN |i0

∣∣] . (S37)
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Probability continuously flows into the absorbing states, hence P0(t) ≤ 1 − φN |i0 and PN (t) ≤ φN |i0 [P0(t)
approaches 1 − φN |i0 from below with time, and similarly for PN (t)]. We can therefore simplify the above
expression, and we are left with

d[P(t),Φ] =
1

2

[
(1− φN |i0)− P0(t) +

N−1∑
i=1

Pi(t) + φN |i0 − PN (t)

]

=
1

2

[
1− P0(t)− PN (t) +

N−1∑
i=1

Pi(t)

]

=
1

2

[
N−1∑
i=1

Pi(t) +

N−1∑
i=1

Pi(t)

]
= 1− P0(t)− PN (t). (S38)

This means that the distance d(t) = d[P(t),Φ] is given by the probability that the system has not yet reached
fixation in either of the absorbing states by time t. This in turn means that 1 − d(t) = Pr(tfix ≤ t) is the
probability to have reached fixation by time t, i.e. it is the cumulative distribution of the unconditional fixation
time tfix. The quantity −ḋ(t) is therefore the probability density function of the unconditional fixation time.

As a side remark we note that the mean unconditional fixation time can be expressed as follows

〈tfix〉 =

∫ ∞
0

[
−ḋ(t)

]
t dt

=
[
−d(t)t

]∞
0

+

∫ ∞
0

d(t) dt

=

∫ ∞
0

d(t) dt. (S39)

Thus the mean unconditional fixation time is the area under the curve d(t).

Dynamics with mutation

Definitions

We now consider systems with mutation, which occurs with rate u � 1. This means that the states 0 and
N are no longer absorbing. More specifically we consider systems in which b0 = O (u) and dN = O (u), i.e.
escape from the states 0 and N occurs with a rate proportional to u. All remaining transition rates (bi, di,
i = 1, . . . , N −1) are O

(
u0
)
, and hence are only affected at sub-leading order by the introduction of mutation.

For u = 0, one recovers the case with absorbing states (b0 = dN = 0). Below we will compare the system with
small mutation rates with the system without mutation.

The rates used for the analysis shown in Fig. 4 of the main paper are given by (see [S6])

bi = (1− u)
i(N − i)

N
g[+∆π(i)] +

u

2

(N − i)2

N
,

di = (1− u)
i(N − i)

N
g[−∆π(i)] +

u

2

i2

N
. (S40)

Stationary state

For u > 0 there are no absorbing states and the dynamics reaches a stationary distribution, Pst, with full
support, i.e. P st

i > 0 for all i = 0, 1, . . . , N . This distribution can be expressed as follows [S7]

P st
i>0 =

 i∏
j=1

bj−1

dj

P st
0 , P st

0 =

1 +

N∑
i=1

i∏
j=1

bj−1

dj

−1

. (S41)
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In the limit of small mutation rates (0 < uN � 1), it can be seen that

P st
i

P st
0

=
b0
bi

 i∏
j=1

bj
dj

 = O (u) for i = 1, . . . , N − 1. (S42)

Together with the normalization condition (
∑N
i=0 P

st
i = 1) we can determine that P st

0 and P st
N must be O

(
u0
)
,

and the remaining probability masses are O (u). With this we can write

P st
i = (1− σ)δi,0 + σδi,N +O (u) , (S43)

for i = 0, . . . , N , where σ = O
(
u0
)
. This indicates that in the limit of small mutation the distribution is

peaked at the boundaries.

Quasi-stationary distribution

The system without mutation (u = 0) has terminal distribution Φ, as discussed above. In particular P0(t)
and PN (t), the probability masses concentrated in the absorbing states, grow with time and we have P0(t)→
1− φN |i0 and PN (t)→ φN |i0 as t→∞.
The rates of the system with small mutation differ from those of the system without mutation only by cor-
rections of O (u). At small mutation rates we expect the dynamics on a short timescale (t � u−1) to be
essentially that of the system without mutation, the effects of mutation only set in at a longer time. Of course
the boundary states are no longer absorbing, but we argue that the system initially approaches a distribution
close to Φ before reaching its stationary distribution Pst.

This can be seen mathematically as follows:

Let P(u=0)(t) = [P
(u=0)
0 (t), . . . , P

(u=0)
N (t)] be the probability distribution of the system without mutation. The

time evolution is described by the master equation

Ṗ(u=0) = MP(u=0), (S44)

where M is an (N + 1) × (N + 1) transition matrix (to be distinguished from the truncated matrix A). Let
P(u)(t) be the distribution in the system with mutation whose evolution is described by

Ṗ(u) =
(
M + uQ

)
P(u), (S45)

where the matrix Q reflects the difference between the systems with and without mutation. The elements of
both matrices M and Q are O

(
u0
)
. Now, let q(t) = P(u)(t)−P(u=0)(t), such that

q̇ = Mq + uQP(u). (S46)

We want to calculate how the separation, q, grows in time given that both systems (with and without mutation)
start from the same initial condition (i.e. q(0) = 0). For this purpose it is convenient to work in the eigenspace
of M. This matrix has two zero eigenvalues, µ0 = µ1 = 0, with eigenvectors (v0)i = δi,0 and (v1)i = δi,N .
These are the absorbing states of the system without mutation.
Decomposing q(t) =

∑
α q̃(t)αvα into eigendirections vα of M we have

˙̃qα = µαq̃α + ugα(t), (S47)

where we have written QP(u)(t) =
∑
α gα(t)vα and we note that gα(t) = O

(
u0
)
. This can be integrated to

give

q̃α(t) = ueµαt
∫ t

0

e−µατgα(τ) dτ. (S48)

On short time scales (t � u−1) q̃(t) = O (u), and hence the separation q(t) is also O (u). That is to say in
the limit u→ 0, both systems (with and without mutation) initially evolve along the same trajectory. On this
time scale both systems approach the distribution Φ.
On a longer time scale [t = O

(
u−1

)
], differences between the two systems become of O

(
u0
)
. However

these differences are concentrated on the states i = 0 and i = N . Effectively, a redistribution of probability
mass between the boundary states takes place. The distribution of the system with mutation evolves from
Φi|i0 = (1− φN |i0)δi,0 + φN |i0δi,N to P st

i = (1− σ)δi,0 + σδi,N , as shown in Fig. S1 of this Supplement.
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FIG. S1. Approach to the stationary distribution for a system with small mutation rates. Reaction rates are given

in Eq. (S40). Dots show the trajectory of [P
(u)
0 (t), P

(u)
N (t)] (found from numerical integration of the master equation

with mutation). The probability quickly approaches the fixation distribution, Φ, before slowly leaking to the stationary
state, Pst. For 0 < i0 < N , the trajectory starts at (0, 0) and leaves the shaded area at time t∗. For any point inside the
shaded area, the distance to the points (1−φN|i0 , φN|i0) and (1−σ, σ) in our metric (solid lines) are equal. Parameters

are a = d = 1.25, b = c = 0.75, β = 0.1, N = 100, i0 = 35 and u = 10−5.

Distance from stationarity and mixing times

Approximating the stationary distribution of the system with small mutation rate as P st
i = (1−σ)δi,0 +σδi,N

we have

d[P(u)(t),Pst] ≈ 1

2

[∣∣∣P (u)
0 (t)− (1− σ)

∣∣∣+

N−1∑
i=1

P
(u)
i (t) +

∣∣∣P (u)
N (t)− σ

∣∣∣] , (S49)

for the distance between the distribution P(u)(t) of the system with mutation at time t and the stationary
distribution. While P0(t) and PN (t) are monotonically increasing with time in the system without mutation,
this is not necessarily the case if there is mutation. Hence we cannot easily drop the absolute values in Eq. (S49)
as in the case without mutation.

We observe, though, that P
(u)
0 (t = 0) = 0 and P

(u)
N (t = 0) = 0 for 0 < i0 < N . Hence there is an initial phase

of the dynamics in which P
(u)
0 (t) < 1 − σ and P

(u)
N (t) < σ. Let us write t∗ for the first time at which either

P0(t∗) = 1− σ or PN (t∗) = σ (whichever happens first). Prior to this time we have

d[P(u)(t),Pst] ≈ 1

2

[
(1− σ)− P (u)

0 (t) +

N−1∑
i=1

P
(u)
i (t) + σ − P (u)

N (t)

]
= 1− P (u)

0 (t)− P (u)
N (t). (S50)

This is the same as the distance to the fixation distribution, Φ, in the system without mutation, given in
Eq. (S38). From this we can conclude that

d[P(u)(t),Pst] ≈ d[P(u)(t),Φ] for t < t∗. (S51)

This is illustrated in Fig. S1 of this Supplement, where the distributions Pst and Φ are represented as single
points in the (P0, PN ) plane.
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