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When the mean is not enough: Calculating fixation time distributions in birth-death processes
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Studies of fixation dynamics in Markov processes predominantly focus on the mean time to absorption. This
may be inadequate if the distribution is broad and skewed. We compute the distribution of fixation times in
one-step birth-death processes with two absorbing states. These are expressed in terms of the spectrum of the
process, and we provide different representations as forward-only processes in eigenspace. These allow efficient
sampling of fixation time distributions. As an application we study evolutionary game dynamics, where invading
mutants can reach fixation or go extinct. We also highlight the median fixation time as a possible analog of
mixing times in systems with small mutation rates and no absorbing states, whereas the mean fixation time has

no such interpretation.
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I. INTRODUCTION

If a group of mutants is introduced into a population of
wild-type individuals, how long does it take for the population
to reach a homogeneous state? This is a typical question
asked in population genetics and evolutionary biology. It can
be addressed using the theory of stochastic processes and
approaches from statistical physics.

In its simplest form, evolutionary dynamics is modeled as
a Markov process in a population of N individuals of two
types [1]. Fixation occurs when the process arrives at one of
its absorbing states. As the time to fixation is itself a random
variable, only the computation of the distribution of fixation
times provides a complete answer to our opening question. The
majority of existing studies avoid this mathematical challenge
and instead focus on calculating only the mean fixation time
[2-4]. While the first moment can provide a good indication
of the outcome in some circumstances, this approach can be
insufficient when the distribution of fixation times is broad
[5,6]. As we show in this paper, such scenarios arise in
examples from evolutionary game theory.

Although the master equation describing the birth-death
dynamics is linear, calculating fixation time distributions is
more intricate than one may initially think. Nested expressions
for all moments of fixation times are known [6-8] and
from these the distribution can in principle be constructed
recursively up to arbitrary precision. However, this approach
does not provide a simple closed-form solution or a means of
efficiently sampling from the arrival time distribution.

An alternative approach is to diagonalize the linear operator
of the master equation and to carry out the analysis in
eigenspace. This leads to a theorem attributed to Karlin and
McGregor [9,10], which states that arrival times can be written
as the sum of independent, exponentially distributed random
variables parametrized by the eigenvalues of the master
equation. Alternatively stated, the arrival time distribution is
given by the convolution of the exponential distributions from
which the independent random numbers are sampled, i.e., itis a
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phase-type distribution [11]. This theorem has been discussed
in numerous sources in the probability theory literature
[10,12-19]. The discussion of these matters is usually very
terse, and not easily accessible to physicists or researchers in
adjacent disciplines. Researchers in the theoretical biosciences
are only recently beginning to use these ideas for the purpose
of model reduction [20,21]. Existing results are limited to
specific initial conditions and types of birth-death chains, and
a clear understanding of the analysis in eigenspace is lacking.

We consider one-step birth-death processes with two
absorbing states and a general initial condition. This model
describes the invasion (or extinction) of a number of mutants in
awild-type population. Itis a generalization of existing studies,
which focus on a single absorbing boundary and a specific
initial condition [9]. The purpose of our work is to provide
a systematic and explicit closed-form solution for fixation
time distributions, and a physical interpretation of different
representations in eigenspace [14,17,18]. By generalizing
the Karlin-McGregor result to account for arbitrary initial
conditions and multiple absorbing states, we show that these
different representations can be traced back to one common
origin. To generate samples from the fixation time distri-
bution it is sufficient to simulate forward-only processes in
eigenspace. This provides effective model-reduction schemes.

We use our results to relate fixation processes to the
equilibration dynamics of evolutionary systems with mutation
(and hence with no absorbing states). These equilibration
processes are often characterized by the so-called mixing time,
the time it takes the system to come within a set distance of its
stationary distribution [22,23]. We thus discuss an appropriate
analog of the fixation time in the limit of small mutation rates,
and outline the limitations of this relation.

The paper is organized as follows: In Sec. II we describe
the model used and the principal idea behind the work. In
Sec. III we outline the mathematical procedure that takes us
from the model to the arrival time distributions. Details of the
calculations can be found in the Appendixes. In Sec. IV we
apply our results to specific examples of evolutionary games,
confirming both the accuracy and efficiency of our method. In
Sec. V we discuss the relationship between the fixation time
and mixing time in the limit of small mutation rates, before
drawing conclusions in Sec. VI.
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FIG. 1. (Color online) One-step birth-death process in a pop-
ulation of N individuals. The variable i denotes the number of
invading mutants. The states i = 0 (extinction) and i = N (fixation)
are absorbing. Birth rates are labeled b; and death rates d;.

II. MODEL DEFINITION AND MAIN IDEA

We study a one-step birth-death process with states i =
0,1, ...,N and characterized by the birth and death rates b;,d;
i=1,...,N —1), as illustrated in Fig. 1. This describes a
population of constant size N with i individuals of the mutant
type and N — i of the resident wild type [1]. The states i = 0
and i = N are absorbing in the absence of mutation, and so
the dynamics will end at one of these two states eventually.
Our objective is to calculate the distribution of arrival times at
these absorbing states for a general starting point i.

The outcome of our analysis (detailed below) are the
reduced forward-only processes in eigenspace illustrated in
Fig. 2, which have the same arrival time distribution as
the original birth-death process. The forward jump rates
are determined by the eigenvalues A, of the original birth-
death process. The schematic in Fig. 2(a) shows multiple
forward-only channels, where dashed arrows indicate that
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FIG. 2. (Color online) Different representations of the arrival
process in terms of forward-only processes in eigenspace. The A, are
(absolute) eigenvalues of the process in Fig. 1, each arrow represents
an exponential process with the rate indicated. (a) shows a set of
alternative reaction channels. In each run one channel is chosen with
appropriate probability. Transitions indicated by dashed arrows are
skipped (zero time). (b) shows a single forward-only chain, in which
the final state can be reached directly from some of the intermediate
states. Both representations are equivalent and generate samples from
the arrival time distribution of the process in Fig. 1. The case shown
here is for arrival at N, starting from i, = 3 in the original space.
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some steps are to be skipped. Figure 2(b) shows a single
forward-only channel. Long arrows indicate direct jumps to
the final eigenstate. In both cases, the number of possible
paths is determined by the initial condition and the final state
(i = 0ori = N) of the original birth-death process.

Arrival time samples of the original process are generated
from Fig. 2(a) in the following way: One of the channels is
chosen with probability determined by the birth-death rates,
the initial condition, and the arrival state of the original
real-space process. After a channel has been selected, the
clock is started and the forward-only process of the channel
is traversed. The clock is stopped when the final state in the
schematic is reached (absorption).

Arrival time samples are generated from Fig. 2(b) by
traversing the forward-only chain. The quantities 1 — F,, are
the probabilities to reach absorption directly from the interme-
diate eigenstate «. These probabilities are again determined
by the birth-death rates, the initial condition and the final state
of the original process and explicit formulas can be found in
Appendix C 2.

III. ANALYSIS

To derive these results it is convenient to focus on the
interior states i = 1,...,N — 1 in the birth-death process
in Fig. 1. The probability to be in state i at time #, p;(¢),
satisfies the equation p = A - p with formal solution p(z) =
exp(Ar) - p(0). The matrix A describes the transient states
and has elements a; ; = —(b; + d;), aiiy1 = diy1 and a; ;—1 =
b;_;. The initial condition is p;(0) = &;;, (1 <ip < N —1).
Probability continuously flows into the two absorbing states.
Hence all eigenvalues of A are negative, and so we focus
on —A and its eigenvalues. The matrix exponential can be
evaluated by Laplace transformation, and subsequent back
transformation allows one to calculate P0|,O(t) =d;p(t) and
PN|,O(t) = by_1pny—1(t). Mathematical details can be found
in Appendix B. Up to normalization these are the conditional
arrival time distributions at states 0 and N respectively. For the
remainder of the paper we focus only on absorption at state
N. Analogous expressions for absorption at 0 can be found
in the Appendixes. We find the following expression for the
probability flux (per unit time) into state N

) B:
Pyji, (1) = l;\wlo

En_1* Rj_1, (D

where B;, = I—[lN lo' bi;, A =det(—A) and v, is the deter-
minant of the (ip — 1) x (ip — 1) top-left submatrix of —A
(denoted as —A%~1). We have introduced E; = EXV % ... «
E*) where the £*<)(t) are exponential distributions with
the eigenvalues of —A, A, > 0, as parameters. The symbol

* represents a convolution. The object R; is of the form
=4y e x (84,8, 2)

where y, > 0 are the eigenvalues of the submatrix —A =D In
these expressions § is the usual Dirac distribution, and &' is its
derivative, as described in Appendix A 1. We can identify the
prefactor B; v,/ A = ¢y, as the probability that the original
system gets absorbed in state N (as opposed to 0).

The effective dynamics shown in Fig. 2 are obtained by
evaluating the convolutions in Eq. (1). To illustrate this it
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is useful to first consider the convolution of the exponential
distribution £M(¢) with an object of the form 8(¢) + y~'8'(¢)
(y > 0). In Appendix A 4 we show that

5“H48+y1X)=[%Mﬂ+<l—%)5maﬂ. 3)

Assuming A/y < 1 (which will be the case throughout our
analysis) this describes a convex combination of a point mass
at zero and an exponential distribution. For samples, set = 0
with probability A/y, otherwise draw ¢ from E™)(r).

To arrive at the dynamics depicted in Fig. 2(a), each of the
io — 1 terms of the form § + y '8’ in Eq. (1) is paired up with
a separate exponential, as described in Appendix C 1. This
creates a total of 20~! possible forward-only channels with up
to iy — 1 exponential steps skipped, as shown in Fig. 2(a). To
arrive at the dynamics shown in Fig. 2(b), the iy — 1 objects of
the form § + y, '8’ are successively convoluted with the full
chain Ey_; from the right, as described in Appendix C 2. This
leads to iy channels, in which 0,1, ... ,ip — 1 exponential steps
are skipped. This can be illustrated as a single forward-only
channel, with appropriate rates of jumping from intermediate
eigenstates to absorption. By considering these forward-only
processes we arrive at closed-form expressions for the arrival
time distributions. For arrival at state N, the distribution is
given by (see Appendix C 3)

_ io—1
gl H;;l(yy — Ag) gt

v T—— 4

a=1 Hg;ll()‘ﬂ - )\a)

p#a

The representation shown in Fig. 2(a) corresponds to the
picture obtained for a restricted set of processes by probabilis-
tic methods in Ref. [14]. On the other hand, Fig. 2(b) reflects
the findings of Refs. [17,18], derived from the construction of
intertwining processes. Our analysis shows that these different
decompositions originate from one common structure, Eq. (1).
The explicit schemes in Fig. 2 provide a computational
method to generate samples from the arrival time distribution
efficiently, for example by carrying out simulations of these
forward processes using the Gillespie algorithm [24]. It is
important to keep in mind that the eigenstates shown in
Figs. 2(a) and 2(b) cannot be mapped one to one to the
states in Fig. 1. The equivalence of the real and eigenspace
representations only holds on the level of arrival time statistics.

Pyji(t) = Bj, 4)

IV. EVOLUTIONARY GAMES

As an application of this theory we now consider examples
of evolutionary dynamics with frequency-dependent selection
[1,25,26]. Such models are used to describe the interaction of
invading mutants (A) and resident wild-type individuals (B).
These scenarios can be formulated as evolutionary games [1].
We focus on a 2 x 2 normal form game,

A B (i) il g Noig
TTa(l) = s
AR S Nfl N_? 5)
B|T P = 7 N=i"1p
B N1 N—1

where m4(i) and mp(i) are the expected payoffs in
a population of i individuals of type A and N —i
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FIG. 3. (Color online) The conditional fixation time distributions
at i = N for different evolutionary games. Main panel: Lines show
results from the theory [Eq. (4)], symbols are from simulations
(10° runs per game). The mean fixation time (arrows) is not a
good description of the distribution. Inset: Open markers/dashed
lines show computer time needed to obtain arrival time distributions
from simulations, full markers/solid lines are for the semianalytical
approach and indicate the polynomial scaling. Direct simulations
can only approximate the exact arrival time distribution to a given
accuracy (see Appendix C4 for details). (N = 100, iy = 10, 8 =
0.1. Coexistence game: R = P =1.0,§ =T = 1.5; Coordination
game: R = P =1.5,S =T = 1.0; prisoner’s dilemma: R = —§ =
0.5,T = 1.0, P =0.0).

individuals of type B. For this example we assume
a pairwise comparison process, leading to birth and
death rates given by b; = g[+An(i)[i(N —i)/N and d; =
gl—Am(i)]i(N —i)/N,respectively, where A (i) = ma(i) —
mp() and g(z) = (1 + Bz)/2. The parameter 8 > 0 is the
so-called intensity of selection [1,27,28]. The parameters
R,S,T, P specify the interaction, and we consider three possi-
ble scenarios: coexistence (T > Rand S > P, stable heteroge-
neous population); coordination (R > 7 and P > S, unstable
heterogeneous population); and the prisoner’s dilemma (7 >
R > P > §, stable homogeneous population) [1].

As shown in Fig. 3, arrival time distributions can be broad
and skewed, such that the mean fixation time contains only
limited information. Figure 3 also demonstrates the compu-
tational benefits of our formalism. Evaluating the distribution
in Eq. (4) requires O(N?) operations as the spectra of —A
and —A =D are needed. Generating arrival time distributions
from simulation of the original birth-death process instead can
take exponentially long. For the coordination game and the
prisoner’s dilemma, fixation at N is rare and the bottleneck of
direct simulations is the limited sampling. For coexistence
games, fixation times are exponentially long in N. This
impedes accurate simulations. Direct numerical integration of
the master equation would suffer from the same problem.

V. EQUILIBRATION PROCESSES IN SYSTEMS
WITH MUTATION

We now consider birth-death processes without absorbing
states by adding mutation occurring at a rate u < 1, such that
by = O(u) and dy = O(u). All other transition rates depicted
inFig. 1 are O () and are only affected at sub-leading order by
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u (exact transition rates can be found in Appendix D 2). The
timescale of the dynamics is characterized by the so-called
mixing time, fyix. This is the time taken for the probability
distribution, P(¢), to come within a specified distance of the
stationary distribution P, i.e., t;x is the first time at which
d[P(tmix),P*] = €. The distance between distributions P and Q
commonly used in this context is d(P,Q) = ZlN=o |P; — Qil/2
with ¢ = 1/2 [22,23]. Using our results we can determine if
and when there is a correspondence between the mixing time
and the fixation time.

For very small mutation rates (0 < u N < 1) the stationary
distribution is of the form PiSt ~ (1 —0)éi0+ 0é; N, where
o = O(u°) (see Appendix D 2). In the strict absence of muta-
tion (u = 0) the system reaches fixation, so its terminal distri-
bution, <I’, is of the form q>i|i0 = (1 — ¢N\i0)8i$0 + ¢N\i08i.N- It
is clear that these two distributions are different; P* in systems
with # > 0 is independent of the initial condition. Thus there
is no obvious connection between fixation times and mixing
times in the limit u — 0.

However, equilibration in many systems with rare
mutations is a two-step process; the system first reaches
an intermediate distribution that is dependent on the initial
condition, before leaking on a longer timescale into the final
stationary state [23]. This is analogous to the quasistationary
distribution before reaching absorption in systems without
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FIG. 4. (Color online) Approach to the stationary distribution for
a system with small mutation rates. Reaction rates are given in
Eq. (D6). Dots show the trajectory of [Py (z), Pu”(r)] (found from
numerical integration of the master equation with mutation). The
probability quickly approaches the fixation distribution, @, before
slowly leaking to the stationary state, P*. For 0 < iy, < N, the
trajectory starts at (0,0) and leaves the shaded area at time ¢*.
For any point inside the shaded area, the distance to the points
(1 — @njig-®niip) and (1 — o,0) in our metric (solid lines) are equal.
Payoff parameters are R = P =1.25 and S =T = 0.75, which
corresponds to a coordination game. Remaining parameters are
B=0.1,N =100,ip =35and u = 107.
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FIG. 5. (Color online) Correspondence of mixing time and me-
dian fixation time for small mutation rates. (a) shows the un-
conditional fixation time distribution for the coordination game
(u = 0). (b) depicts the mixing time for u > 0 and ¢ = 1/2 (from
numerical integration of the master equation [23]). Reaction rates
and parameters are as in Fig. 4.

mutation [16]. Our analysis suggests that this intermediate
distribution of systems with 0 < uN < 1 is close to the
terminal distribution @ of the system with u =0, and
that both systems initially evolve along similar trajectories
(see Appendix D?2). This can be seen in Fig. 4 where we
represent the probability distribution as single points in the
(Py, Py) plane. The distribution first approaches the terminal
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FIG. 6. (Color online) This figure is as described in Fig. 4, except
the dynamics now follow the prisoner’s dilemma scenario. At time ¢*
we have d(t*) ~ 0.65, which means the mixing time and the median
fixation time do not correspond in this example. Parameters are R =
—-$§=05T=10,P=0.0,=0.025,N =100,ip = 50,andu =
1075,

042154-4



WHEN THE MEAN IS NOT ENOUGH: CALCULATING ...

distribution @ before slowly converging to the stationary
distribution. The most appropriate analog of fixation times in
systems with small mutation rates is thus the time to reach this
intermediate distribution, not the time to stationarity (mixing
time).

The mixing time can related to the fixation time in a
different way: The probability distribution initially satisfies
d[P(t),P*] = d[P(r),®], which is a consequence of the dis-
tance measure used (solid lines in Fig. 4). This equivalence
holds while Py(¢) < 1 — o and Py(t) < o (see Appendix D 2).
Prior to the first time that this condition is violated, P(¢) is
approximately the same as in the system without mutation
where we have Pr(tsy < t) = 1 — d[P(t), ®] for the cumulative
fixation time distribution. The condition d[P(z),®] = 1/2
therefore translates into the time at which half of the samples
have reached fixation, and provided the above conditions hold
there is a correspondence between the mixing time and the
median fixation time. This is illustrated in Fig. 5 where we con-
sider the example of a coordination game with a symmetric sta-
tionary distribution [23]. If P is asymmetric and o < (1 — o)
(or vice versa), then the condition Py (t) < o is violated after
a short period of time. In such cases the above correspondence
may not hold for the median fixation time, but only for a lower
percentile. This is the case for the example shown in Fig. 6.

VI. CONCLUSION

In summary, we have constructed eigenspace representa-
tions that capture the full arrival time statistics of one-step
birth-death processes. The mapping into eigenspace has a
clear interpretation as forward-only exponential processes.
Sampling of the original arrival time distributions reduces
to simulating these forward-only processes, or equivalently
evaluating a finite sum of exponential random variables,
turning our results into an effective tool for model reduction.
The compact structure of the forward-only processes allows
us to derive exact, closed-form expressions for the arrival time
distributions of the original process in terms of its spectrum.
As we have demonstrated, the numerical evaluation of these
expressions is an efficient polynomial-time method to obtain
full arrival time statistics. We have also established a link
between equilibration times in systems with small mutation
rates and the median fixation time in absence of mutation in
some circumstances. Our work advances the understanding
of the mathematical structure underpinning the dynamics of
fixation. We have placed existing representations for simpler
cases into a wider and more coherent context [14,17,18].
Nevertheless, there are fundamental open questions. Claims
of probabilistic interpretations of Karlin and McGregor’s
theorem have been made [15,16], but in our view this picture
is still incomplete. We would argue that a full probabilistic
interpretation of the representations in eigenspace is only
reached when each time step of the forward-only process
can be constructed directly and uniquely from realizations
of the original process alone. Whether or not this is possible
is unclear.
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APPENDIX A: MATHEMATICAL BACKGROUND
MATERIAL

1. Dirac distribution and its derivative

The Dirac-6 distribution has support {0}. It can be written
in its Fourier representation, §(¢) = f _OOOO dw '". The distribu-
tional derivative, §’, can be conveniently defined by its Fourier
transform as well [29]. It has the form

o0
8@ = / (iw)e'® dw. (A1)
—0oQ0
When this is convoluted with a test function, f(¢), with infinite
support one obtains (after integration by parts)

/ 5 — ) f(r)de = f(0).

o0

(A2)

If a test function, g(¢), has finite support, say ¢ > 0, then one
finds

/O §'(t —)g(r)dr = g'(t) + g(0)8(7). (A3)

2. Laplace transform of an exponential distribution

We frequently use the Laplace transform of an exponential
distribution in our subsequent derivation. This is a standard
result, but it is useful to include it here. We consider and
exponential distribution with parameter A > 0, such that
EM(t) = e ™ (t > 0). The Laplace transform is obtained
as follows

LIEPD)] = / re Me" di

o0
:A/ e M gy

This integral is only convergent in the region Re(s) > —A.
Within this region we have

(A4)

L [E(A)(I)] — L

s+ A (A3)

3. Laplace transform of an object §(¢) + z718'(¢)

We now show that the Laplace transform of §() + z~'8'(t)
is 14+ z~'s. The object §'(¢) is the derivative of the Dirac-6
distribution §(¢) (see Appendix A1 above) and z > 0 is a
constant. We have

o0

L[8(r) + 2_18/(1‘)] = [8() + Z—la/(t)]e—st dt

0-

= /Oo e 18(t)dt + 77 e8]

o0
+z*‘s/ e*18(r) dt

=1+7z"s. (A6)

This expression has no singularities, and thus the region of
convergence in terms of s is the entire complex plane. Note
that we explicitly define the lower integration limit as 0~
to include the & function in the integral, and we have used
lim,_,o- §(¢) = 0.
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4. Convolution of an exponential distribution with an object
@) +z7'8(1)

The convolution of an exponential distribution £ ®(r) with
an object of the form 8(¢) + z~'8(¢) (for constant z), as shown
in Eq. (3), is

EPx(8+271Y) =/ re T8t — 1)+ 2718t — )] dt
0

—1 _—Xt

=xe M +2az718(t) — A%z e

55(1) + (1 — 5)5“(:).
Z Z

(AT)

APPENDIX B: CALCULATION OF ABSORPTION TIME
DISTRIBUTIONS VIA LAPLACE TRANSFORMS

1. Laplace representation

As mentioned in the main text it is convenient to focus on
the states i = 1,...,N — 1 of the birth-death process shown
in Fig. 1 of the main paper. The dynamics of these states is
given by p = A - p, where A isan (N — 1) x (N — 1) matrix,
and where p;(t) is the probability that the system is in state
i at time 7. We note that this is not a probability-conserving
master equation, as probability mass continuously leaks into
the absorbing states. We will use the notation p; (lower case)
when we discuss the restricted system (with ZlN: _11 pi(t) <
1), and we will write P;(t) (upper case) when we discuss
the full system, i =0, ...,N. For the latter one always has

YV, Pi(r) = 1 at all times.
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The formal solution of the equation p = A - p, restricted to
sitesi = 1,...,N — 1, reads

p(r) = exp(At) - p(0).

We can take the Laplace transform and write the matrix
exponential in the resolvent form

Pis) = (sT—A)~" - p(0).

We have here written p(s) for the Laplace transform L[p(z)].
We consider initial conditions of the form p;(0) = §; ;, (1 <
ip < N — 1). Our strategy is to compute p(¢) and py_;(1),
and from these the rates d; p;(t) and by_ py_1(¢), with which
probability arrives in the absorbing states, can be obtained.
Thus we are interested in

Do) = [T — A) 14,
Pr—11io() = [T — A) Ty 14

The (i, j)th element of the inverse of an invertible matrix
B is given by [B~'];; = C;;/ detB, where C;; is the (j,i)th
cofactor of B. Thus we can write

Plio() = [T—A)"]1;, =

(B1)

(B2)

(B3)

1
——Ci,1,
det(sT— A) !
and likewise for the (N — 1,ip)th element.

(B4)

2. Calculation of cofactors

The cofactor C;, ; is found from dropping column 1 and
row ip from sI — A and evaluating

—d, 0
s+ ap —ds 0
—by s+ a3 —dy 0
. _ _ l[)+1 ’ . ° . N . ° .
Cip1 = (=D 0 —bjy—2 s+aj,—1 —d 0 ’ (BS)
0 0 —bi, s+ajy1  —digo 0
0 0 —by_2 s+ay_y
where a; = b; + d; is introduced for compactness. Using Laplace’s formula, this can be written as
S+ a1 —digy2 0
io —bit1 S+ a2 —diy3 0
Cor = (=™ <1_[ _di) : ,
i=2 0 —by_3 Ss+an—p —dy-i
0 —by_y s+an_i
io
= ( d,) det (SI — A(N,i[),]))
i=2
o N—ig—1
=[Td T G+ (B6)

i=2 a=1

The matrix Ay_;,—1) consists of the rows and columns io + 1, ..

.»N — 1 of the matrix A, i.e., it is the bottom right (N — iy —

1) x (N — iy — 1) submatrix of A. The matrix —A_;,—1) has eigenvalues x, > 0 (¢ = 1,...,N —ip — 1) and determinant
N—ig—1
det (—Aw—ip—1) = Xip = [[o=1" *Xa-

042154-6
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For the (iy, N — 1)th cofactor we have

s+ a;
N-2 —b,
Cign—1 = (=1)0tN=1 1_[ —b;

i=io

N-=-2
]_[ b; | det(sT — At~

l=l()

io—1

N-2
[T0: [T+ o)

i=iy a=l

The matrix A% consists of rows and columns 1, . ..,iy —
1 of the matrix A, i.e., it is the top-left (ip — 1) x (ip — 1)
submatrix of A. The matrix —A%~D has eigenvalues y, >
0(x =1,...,ip — 1) and determinant det (—A®~D) = ¢, =

H:f 1] Yo

3. Arrival time distributions

Putting things together we have

i N—ip—1 N—-1
P =[]di J] s+x)
i=2 a=1 B=1
(B8)
N-2 io—1 N-—1 1
Pr—11iy(5) = H bi 1‘[1@ +y05);"[1 T
1=lg a= =

Here we have used det(s1— A) = ]_[2]:_1I Ef + Ag), where
Ag > 0 are the eigenvalues of —A. Using Po(s) = dipi1(s)
and P ~n(s) = by_1Ppn_1(s), we obtain the Laplace transforms
of the absorption time distributions at sitesi =0 and i = N,
respectively. They are given by

lo Nlnl

PO\ZO(S)—Hd H (s+xa);"[ls+k

- lol

Pujy(s) = l_[b H<s+ya>1_[ vy

i=ig a=1

(B9)

4. Time representation of solutions
Combining Egs. (AS5), (A6), and (B9), we can write

i N—ip—1
-~ 0 0~ £ 5(/\;;)
Pojig(s) = | |d | | L [xa8(t) + 8'(1)] | | LLE O
ip—1 N—1
) B LI
Piig(s) = | | | |£[ya5(t)+8(t)] === e o1

—1 Ap

h

ll()

(B10)
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—ds 0
s+ ap —ds 0
0 —biy-3 Ss+aj,—2 —di_1
0 _bi[)*z s+ ajy—1

B7)

(

Using the fact that L’l[f(s) -g(s)] = f * g, we can perform
the inverse Laplace transform of the expressions in Eq. (B10).
We find

_l() Nl()l

[ldi T xa
Po\io(t) = + EMD oL EGN-D)
[T 2
L p=1
* (8 +X1_18/) OO (8 + x;li0718l),
CN-1 Qg1
H b 1_[ Yo
. Pl 2
PN\ig(t) = ZUN_Ia 5()‘1) * * 5()~N—1)
[T 2
p=1
(0 y18) w x5+ 5 L8). BLD

This is the expression shown in Eq. (1). We identify the
prefactors in square brackets as the fixation probabilities ¢qj;,
and ¢y;,, respectively.

5. Symmetry of the fixation time distributions

By choosing the initial conditions iy = N — 1 and iy = 1,
the expressions in Eq. (B11) can be reduced to
LEPh
Pon-1(1) = /\—' EM g g0V
Li=1 ]
= goin-1EN-1,
INn—1EN (B12)
. [N=1, ]
Pyji(t) = )\_’ ER) % EGAn-1)
Li=1 ™ ]
=i En-1,
where E;, = £V x ... % £39_ From this we conclude
Pon_1(t)  Pyp(t
oN—1(t) _ N ( ), (B13)
PojN—1 oV

042154-7
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that is the conditional arrival time distribution at state i = 0
given ip = N — 1 is equal to the conditional arrival time
distribution at state i = N given iy = 1. This symmetry has
been known for the mean fixation time [3,30], and it was
recently shown that the correspondence holds for the full
distribution [21]. Our approach offers an alternative way to
obtain this intriguing result.

APPENDIX C: COMPUTING EIGENSPACE
REPRESENTATIONS

As the convolution operator is commutative, we can order
the convolutions in Eq. (B11) in any way. The exponential
distributions and the objects of the form §(t) 4+ z~'6'(¢) in
Eq. (B11) can hence be combined in multiple ways.

1. Convolutions I: Pairing § + z;'§’ with individual
exponential distributions

In this section we choose to couple E%*-)(r)
with 8(t)+x’18 (t) for the purposes of P0|,0(t) and
with 8(t)+y’18(t) when we calculate PN‘,O(I) Carry-
ing out these convolutions in Eq. (B11), we arrive at

Pojig(1) = ojiy X E s -5 E40)

« [ )\,10+1 S + (1 )\'i0+1 >50“i0+1)} %
XN—ip—1 XN—ig—1
« |:)»N—l S + (1 _ AN_1>€(AN_])],
X1 X1

Pouo(l)
Pojiy

J

=En_1 % (8 +x'8) -

PHYSICAL REVIEW E 92, 042154 (2015)

PN\io(t) — ¢N\io % 5(11) %% E(AN—iO)

* |:)\N 1o+18 + (1 _ )‘N—50+1>g()~N10+1)i| *
Yig—1 Yip—1

AN_ AN_
*[ v 'a+<1__N l)g@w]. 1
1 V1

We stress that the objects §(¢) +x;'8’(t) [or &(t) +
y5'8'(1)] can be paired with any of the exponential distri-
butions. We chose to match these at the end of the exponential
chain so that the reduced chains can be systematically
compared. This is the representation described in Fig. 2(a).

2. Convolutions II: Recursively convolving
with exponential chain

If we write Egs. (B11) in the form

Py, (1) /
¢0“|, = Ex % (8+x7"8) o (04231, 18,
1o
P io(f — — /
(ZL() = Ey_1 % (5+y7'8) %% (0 +,1,8). (€D
Nlio
where E; = EX % ... % £49 then we can recursively con-

volute the objects involving § functions onto the chain of
exponentials from the right. We note that

A Ae
Ecx@+z'8)=|=E )+ (1-—= Ex(t)} (C3)
z z

which follows directly from Eq. (A7). From this, each of
the recursive convolutions introduces a new exponential chain
with one step less. For example,

(5 +x1v —ig— 15/)

= [(1 - kNl)ENl g 2} # (8 4xy"0) w8+ a3t 18

X1 X1

AN_ AN AN_1\AN— AN_ AN
:{(1_ N1)<1_ Nl)EN_l+|:(1_ N1> Nl+ N1<1_ N2)1|EN_2
X X3 X1 X2 X1 X2

AN—1 AN_2
X1 X2

EN_3} (8+x3"8) =

k(8 +xyt, 8. (C4)

Performing all the convolutions leads to the following expressions:

P io([) N—ip—1 1 N—iy
—25'0”0 :( 1_[ xa) Z|:EN o(t) l—[)\N _B

a=1 a=1
o o @
X Z Xj = AN-j Z (sz+1 - )‘N—jz) Z Z (xjN*"O*”N_iU_a_l B )LN_jNioa)i|7
=1 2= =i IN=ig=a=
IN—ig—a—1
5 io—1 io a—l
Pon® _ (P L Z[ENO,(I) [Trv-s
PNl N =1
o o bl

XZ y/]

Ji=1 /7:j1

> (Vi atio—an —AN,io_a)}. (C5)

;=2 Jig—a=
Jig—a—1
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These expressions can be written as
N—io

Pojiy (1) = dojiy Y, Gy W En—a(0),
a=1

(C6)
Prig (1) = i ZG(” En_o(t).

a=1

where G%la and Gi\y,)w are constants (independent of time).
The fixation time distributions are thus linear combinations of
the distributions Ey_,. We note here the equalities

N—ip iy
Yoy, =1.) a6y, =1 (CT)
a=1 a=1

We now proceed to express the above linear combination
of exponential chains [Eq. (C6)] as the single chain shown
in Fig. 2(b). In the schematic shown in this figure the system
can transition to two possible states if currently in eigenstate
a: either « — o + 1 or « — N. These paths have transition
rate FyA, and (1 — F,)A,, respectively. The total rate of
transitioning out of « is then A,, and the waiting time at «
is an exponential distribution with parameter A,, no matter
whether the system transitions to o + 1 or to N. The quantity
F, denotes the probability that the next state of dynamics in
eigenspace is o + 1, if the system is currently in eigenstate
«. With probability 1 — F, the next state is eigenstate N.
Evaluating the probability of a trajectory in terms of F,, and
then matching with Eq. (C6) gives

1-YY% .G,
Fut ZK i fOI‘ a < N —1. (CS)
1— Z" G,
We can express all transition rates in Fig. 2(b) as
— Foha, B=a+1<N,
Tosp = { (I —=F)ry, a<N—-1,8=N. (C9)

3. Evaluation of bottom-line arrival time distributions

The final expressions for the (un-normalized) arrival time
distributions follow directly from Eq. (C6). First we note that
the convolution of £ exponential distributions has the form

V4
Eo(t) = A bt (C10)
o= (1) X 11550
B#a

Substituting this expression into Eq. (C6), or equivalently
Eq. (C5), we arrive at the final expressions

=" Gy = ha)

i N-1
Py, (1) = (1_[ dz) e M,

=1 a=1 ﬂ—l()‘ﬁ — Aa)
pe (Cl11)
N-1 N-1 l—[lu 1(
: Yy = o) e
Pyjiy(1) = l_[be Z o A
£=iy a=1 Hﬂ*l()‘ﬁ _)‘a)
B#a

Evaluating these expressions requires the calculation of the
eigenvalues x, Yy, and A,.
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4. Accuracy and efficiency of simulation-based approaches

In the inset of Fig. 3 we show that computing arrival time
distributions directly from simulations is less efficient than
computing them exactly using our formalism. To generate the
CPU-time curve for the simulation method we measure the
distance, d, between the histogram of arrival times at state N,
pn, against the exact distribution. This distance is defined by

M

1

i=0

tiyi P .
(1 — t)ow (i) — / Paio gl (12
1,

i Nlio

where M is the number of histogram bins. Note that this
is the continuous analog of the distance measure between
distributions to be discussed in the next section. The histogram,
pn, is populated with an increasing amount of independent
realizations until the distance falls below d = 1/2. We then
plot the time taken to complete this number of simulation runs
of the given process.

APPENDIX D: RELATION TO EQUILIBRATION
PROCESSES

1. Dynamics without mutation

In the system without mutation all realizations reach
fixation eventually. If the dynamics is started from state i
[i.e., Pi(t = 0) = §;,,] the stationary state of the birth-death
process, i.e., the terminal distribution, is of the form

Diii, = (1 = dwiig)8i0 + dwjigdin, (i =0, ..., N).

The quantity ¢y);, is the probability that the process reaches
the absorbing state N. The probability of being absorbed at 0
isl— ¢N| io

Let us now consider the distance of the distribution P(z)
from this distribution ® = (1 — ¢n};,,0, ...,0,dy};,). In line
with the existing literature [22,23] we use the distance measure

1 N
z;lpl_Ql

for two distributions P and Q. We then have

(D1)

d[P.Q] = (D2)

N-1
d[P(z), @] =1 |Po) — (1 — ¢wiio)| + Y Pi(r)
2
i—1

+ | Py (r) — ¢N|i0[|' (D3)
Probability continuously flows into the absorbing states, hence
Py(t) < 1 — ¢nyji, and Py(t) < dnyi, [Po(t) approaches 1 —
@i, from below with time, and similarly for Py(¢)]. We can
therefore simplify the above expression, and we are left with

1 N—1
d[P(t),®] = 5[1 — Po(t) — Py() + ) Pi(t)}

i=1
=1- Py(t) — PN(t).

This means that the distance d(¢) = d[P(¢),®] is given by
the probability that the system has not yet reached fixation in
either of the absorbing states by time ¢. This in turn means
that 1 — d(¢) = Pr(tsx < 1) is the probability to have reached
fixation by time ¢, i.e., it is the cumulative distribution of the

(D4)
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unconditional fixation time fgx. The quantity —d (1) is therefore
the probability density function of the unconditional fixation
time.

As a side remark we note that the mean unconditional
fixation time can be expressed as follows

(tr) = / [—d(O dt
0

= [—d(t]y” + / d(t)dt
0

= /oo d(t)dt.
0

Thus the mean unconditional fixation time is the area under
the curve d(t).

(D5)

2. Dynamics with mutation
a. Definitions

We now consider systems with mutation, which occurs
with rate # < 1. This means that the states 0 and N are no
longer absorbing. More specifically we consider systems in
which by = O(u) and dy = O(u), i.e., escape from the states
0 and N occurs with a rate proportional to u. All remaining
transition rates (b;,d;,i = 1, ...,N — 1) are O(u®), and hence
are only affected at sub-leading-order by the introduction of
mutation. For u = 0, one recovers the case with absorbing
states (bg = dy = 0). Below we will compare the system with
small mutation rates with the system without mutation.

The rates used for the analysis shown in Figs. 4, 5, and 6
are given by (see Ref. [23])

. _ . _ . 2
bi=(1— u)%g[wn(m + g%
(D6)
i(N — i) o ui
di=0 - Do A+ 2L

2N

b. Stationary state

For u > 0 there are no absorbing states and the dynamics
reaches a stationary distribution, P, with full support, i.e.,
Pft >0 for all i =0,1,...,N. This distribution can be
expressed as [31]

i
b4
st __ J— st
])i>0 - 1_[ d: PO ’
j=t

(D7)

-1

st oy b
Py = 1-{-21_[7

i=1j=1 "~/

In the limit of small mutation rates (0 < uN < 1), it can be
seen that

P by ({5 b;
c=2(T]2]|=0w for i=1,...N-1. (D8

P by 14

Together with the normalization condition (3", P = 1)
we can determine that Pj' and Py must be O(u”), and the

PHYSICAL REVIEW E 92, 042154 (2015)

remaining probability masses are O (u). With this we can write
P =(1—0)50+ 08N+ O), (D9)

for i =0,...,N, where 0 = O(u°). This indicates that in
the limit of small mutation the distribution is peaked at the
boundaries.

c. Intermediate distribution

The system without mutation (¢ = 0) has terminal distribu-
tion @, as discussed above. In particular Py(t) and Py(t), the
probability masses concentrated in the absorbing states, grow
with time and we have Py(t) — 1 — ¢ny;, and Py (1) — onyj
ast — oo.

The rates of the system with small mutation differ from
those of the system without mutation only by corrections of
O(u). At small mutation rates we expect the dynamics on a
short timescale (t < u~") to be essentially that of the system
without mutation, the effects of mutation only set in at a longer
time. Of course the boundary states are no longer absorbing,
but we argue that the system initially approaches a distribution
close to ® before reaching its stationary distribution P

This can be seen mathematically as follows: Let P“=9(¢) =
[Pé”:O)(t), ... ,PI(\,”:O)(t)] be the probability distribution of the
system without mutation. The time evolution is described by
the master equation

P=0 = M. PO, (D10)

where M is an (N + 1) x (N + 1) transition matrix (to be
distinguished from the truncated matrix A). Let P“)(¢) be the
distribution in the system with mutation whose evolution is
described by

P™ = (M 4 uQ) - P, (D11)

where the matrix Q reflects the difference between the systems
with and without mutation. The elements of both matrices Ml
and Q are O(u%). Now, let q(¢) = P™(¢) — P“=0)(¢), such that

q=M-q+uQ - -P". (D12)

We want to calculate how the separation, q, grows in time
given that both systems (with and without mutation) start from
the same initial condition [i.e., q(0) = 0]. For this purpose it is
convenient to work in the eigenspace of M. This matrix has two
zero eigenvalues, wo = w; = 0, with eigenvectors (vp); = 80
and (v;); = &; y. These are the absorbing states of the system
without mutation.

Decomposing q(t) = Y, G(t)aV, into eigendirections v,
of M we have

To = Moo + uga(t), (D13)

where we have written Q - P®)(¢) = > o 8a(t)V, and we note
that g, (1) = O(u?). This can be integrated to give

t
Gu(t) = ue! / e Mg (T)dr. (D14)
0

On short time scales (1 < u~") q(¢#) = O(u), and hence the
separation q(¢) is also O(u). That is to say in the limitu — 0,
both systems (with and without mutation) initially evolve along
the same trajectory. On this time scale both systems approach
the distribution ®.
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On a longer time scale [t = O(u~")], differences between
the two systems become of O(u°). However these differences
are concentrated on the states i = 0 and i = N. Effectively,
a redistribution of probability mass between the boundary
states takes place. The distribution of the system with mutation
evolves from q)i\io = (1 — ¢N|i0)8i,0 + ¢N|i08i,N to PiS[ = (1 —
0)8i.0 + 0d; n, as shown in Fig. 5.

d. Distance from stationarity and mixing times

Approximating the stationary distribution of the system
with small mutation rate as PiSt = (1 —0)di 0+ 0d; y wehave

dP (). P ~ %[!Pé‘”(r) ~(1-0)

N—-1
+Y PP+ |PY0) -0

i=1

i|, (D15)

for the distance between the distribution P®)(¢) of the system
with mutation at time ¢ and the stationary distribution. While
Py(t) and Py(t) are monotonically increasing with time in the
system without mutation, this is not necessarily the case if
there is mutation. Hence we cannot easily drop the absolute
values in Eq. (D15) as in the case without mutation.

We observe, though, that Pé”)(t =0)=0 and PI(\,”)(t =
0) =0 for 0 < ip < N. Hence, there is an initial phase of
the dynamics in which Pé”)(t) <1—o0 and PZ(\;‘)(I) < 0. Let
us write t* for the first time at which either Py(t*) =1 — o
or Py(t*) = o (whichever happens first). Prior to this time we

PHYSICAL REVIEW E 92, 042154 (2015)

have

AP (1), P ~ [(1 —0) = P

| =

N—1
+Y P o - Pl(\;’)(t):|

i=1

=1-P" ) — PP ). (D16)

This is the same as the distance to the fixation distribution, ®,
in the system without mutation, given in Eq. (D4). From this
we can conclude that

AP (1), P = d[PV(1),®] for t<t*.  (DI7)

This is illustrated in Figs. 4 and 6, where the distributions P*
and ® are represented as single points in the (P, Py) plane.
Therefore, for times ¢ < t*, we have the relation

d[P™(t),P"] = d[P“(1),®]

~ d[P“=0(r),®] = Pr(tsy > 1). (D18)

That is to say, the mixing time is related to the cumula-
tive distribution of fixation times. The first time at which
d[P™(t),P"] = ¢, provided ¢ < t*, is approximately the (1 —
&)th percentile of the unconditional fixation time distribution.
Choosing ¢ = 1/2, we have the equivalence with between the
mixing time and the median fixation time. This equivalence
holds for the example shown in Figs. 4 and 5. However, it does
not hold in the example shown in Fig. 6 where the stationary
state is asymmetric in the (Py, Py) plane. In this case the
equivalence in Eq. (D18) breaks down prior to the time at
which d[P®(t),P*] = 1/2.
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