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Evolution is a dynamic process. The two classical forces of evolution are mutation and selection. Assuming
small mutation rates, evolution can be predicted based solely on the fitness differences between phenotypes.
Predicting an evolutionary process under varying mutation rates as well as varying fitness is still an open
question. Experimental procedures, however, do include these complexities along with fluctuating
population sizes and stochastic events such as extinctions. We investigate the mutational path probabilities
of systems having epistatic effects on both fitness and mutation rates using a theoretical and computational
framework. In contrast to previous models, we do not limit ourselves to the typical strong selection, weak
mutation (SSWM)-regime or to fixed population sizes. Rather we allow epistatic interactions to also affect
mutation rates. This can lead to qualitatively non-trivial dynamics. Pathways, that are negligible in the
SSWM-regime, can overcome fitness valleys and become accessible. This finding has the potential to extend
the traditional predictions based on the SSWM foundation and bring us closer to what is observed in
experimental systems.

H ow repeatable is evolution? As the metaphor by Stephen J Gould goes ‘if we run the tape of life back from
the start how likely is it that we will get the same outcome that we see around us today?’1. The pioneering
work of Lenski et al. tackled this question experimentally with microbes. It is now possible to literally play

back evolution from a certain starting point and see where it leads2–6.
Such empirical explorations made the until then theoretical concept of fitness landscapes tangible. The concept

of a fitness landscape is a mapping between the genotype and the phenotype of an organism. Since selection acts
on the phenotype or essentially on the fitness of the phenotype, the genotype of each phenotype can be attributed a
certain fitness. Connecting the genotypes which are one mutational step away from each other leads to the
concept of fitness landscapes7,8. Such empirical studies do make it clear that predictions will not be based on
simple rules but complicated phenomena such as epistasis and epigenetics which play a major role in the process
of evolution6,9,10.

Epistasis is any deviation from the additive effects of alleles at different loci11. Epistasis gives rise to rugged
fitness landscapes which have been found to be quite common in experimental observations in a variety of model
systems12,13. In particular, reciprocal sign epistasis is a necessary condition for having a rugged fitness landscape14.
While in magnitude epistasis the fitness always increases (or decreases) with every additional mutation in a non-
additive manner, in sign epistasis, however, valleys appear in the fitness landscape. A certain mutation might have
a lower fitness than the previous state although it leads to higher fitness eventually. In such a case not all paths in
the fitness landscape might be accessible by the population15. Comparing experimental systems to theoretical
predictions made on the basis of the underlying fitness landscape helps elucidate the role of microscopic
properties of the system in determining the macroscopic evolutionary trajectory. The details of the process such
as the mutation rate, fitnesses of individual states and the global population size act as constraints on the
accessibility of paths13. Using the assumption of strong selection and weak mutation rates (SSWM), the system
advances on the fitness landscape in a stepwise fashion. This automatically limits the possible number of adaptive
paths10.

Evolutionary predictability and the speed of the dynamics is not only determined by the molecular
constraints of fitness and mutation rate but also by population dynamics14. Theoretical explorations often
assume a fixed population size starting at one node of the fitness landscape and its movement is tracked over
the course of time. Increasing the population size, or the mutation rate, we observe the phenomenon of
clonal interference15,16. This occurs when a second step mutant arises in a population even when the first step
mutation is not fixed. In other words, the SSWM assumption is no longer valid. Clonal interference has been
extensively explored experimentally17–19 as well as theoretically16,20–25. This phenomenon removes the limit on
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the accessibility of non-adaptive trajectories. If the fitnesses and
mutation rates align to particular conditions, i.e. the mutation
rates also underlie epistatic interactions, then such valley crossings
might be faster than adaptive trajectories24,26.

Populations in real systems are finite and their size can undergo
fluctuations which can lead to possible extinction events. Together
with the phenomena of clonal interference and epistatic interactions
between mutations (correlated rugged fitness landscapes), predicting
evolution through a given fitness landscape seems like an impossible
task. Herein we develop a general methodology for predicting all path
probabilities in a fitness landscape with epistatic interactions in a
multi-dimensional fitness landscape. To reflect a realistic scenario
we use a multi-type branching process (e.g. Ref. 27) to drop the
assumption of a constant population size. For presentation purposes
we limit ourselves to systems without back mutations. The model in
its full generality is free of this assumption, although it is unclear
how to define pathways when back mutations are allowed (see
Supplementary Information for a detailed explanation). To intro-
duce the framework we begin with a simple model in which the wild
type can have two independent mutations leading to the fittest type.
Then we increase the number of mutational events it takes to get to
the corresponding type leading to a generalization of the methodo-
logy. We briefly mention an application of this approach by linking
it to a cancer initiation model28 showing how mutational epistasis
changes the path probabilities. Finally we provide an outline on how
to extend the model to a general system where different mutations
need to be acquired to reach the final mutant.

Methods and Results
Probability Generating Function. For our methodology, we are
making use of extinction probabilities, more specifically the proba-
bility for different types to be present or not to be present. In
a branching process this probability can be recursively obtained
using probability generating functions (PGFs). Since the relation
between PGFs and the probability for a type to be present is the
main tool we are using, we devote this subsection to giving a short
overview about this correlation, although it is rather technical and
well known (e.g. Refs. 27, 30).

The PGF in discrete time for a one-type process is in general
defined as

f (s)~
X?
k~0

pksk, ð1Þ

where k denotes the number of offspring and pk represents the prob-
ability of having k offspring (the focal individual dies in this
context)27. For many biological processes, for example cell mul-
tiplication, it makes sense to only consider offspring numbers of 0
(death), 1 (nothing happens), and 2 (cell division). But in other
biological systems it makes sense to consider many offspring at once,
for example reproduction via numerous seeds in plants. Our analysis
is not restricted to any particular offspring distribution. However, for
the sake of simplicity, we restrict our example to the so called binary
splitting, i.e. either two or no offspring. The use of the argument s
is not obvious at this point. If we set s equal to 0, the probability
generating function reduces to f(0) 5 p0, which is the extinction
probability for a population of one individual in one time step.
Since all individuals behave independently, f (0)N~pN

0 is the extinc-
tion probability for a population of size N in one time step. Now
looking at the extinction probability within two time steps, we note
that with probability p2 we would have two individuals in the next
time step originating from one individual. Hence, the extinction
probability for a single individual within two time steps is,

p0zp2p2
0~f (f (0))~f 0(2)(0), ð2Þ

and that of population with N individuals is,

p0zp2p2
0

� �N
~ f (f (0))ð ÞN~ f 0(2)(0)

� �N
: ð3Þ

Continuing for further time steps, we see that f 0(t)(0) is the extinc-
tion probability for the system within t time steps.

As of now we assumed that individuals reproduce clonally i.e.
giving rise to the same type. Now we continue investigating the
extinction probability for a two-type process. Let us think of the
two types A and B, where an A individual can produce any number
of A or B individuals, and respectively for B. Then the general PGFs if
the process starts with one type A or one type B individual are defined
as

fA(sA,sB)~
X?

kA~0

X?
kB~0

pA
kA ,kB

skA
A skB

B , ð4Þ

fB(sA,sB)~
X?

kA~0

X?
kB~0

pB
kA,kB

skA
A skB

B , ð5Þ

where pA
kA,kB

(pB
kA ,kB

) denotes the probability of one A (B) individual
producing kA A and kB B individuals in the next time step. Let us try
to recover the extinction probability as for the one-type process. If we
set both sA and sB equal to zero and assume that we start with one A
individual, we obtain a similar result as above for the total extinction
probability

fA(0,0)~pA
0,0: ð6Þ

Oftentimes, one is rather interested in the extinction, or non-
presence, of just one particular type. Let us for example assume we
are only interested in the presence of B individuals. The probability of
having no B individuals in time step 1 is the sum over all probabilities,

where no B offspring is being produced
X?

kA~0
pA(B)

kA,0 ~fA(B)(1,0),

starting with one A (B) individual. Now looking at the probability of
having no B individuals in time step 2, we need to account for the
probability of having kA A and kB B individuals being produced in the
first time step. This leads to

X?
kA~0

X?
kB~0

pA
kA ,kB

fA(1,0)kA fB(1,0)kB ~fA(fA(1,0),fB(1,0))~ f 0(2)
A (1,0): ð7Þ

Continuing this procedure and analogous to the one-type process,

the probability of having no B individual in time t is f 0(t)A (1,0).
In a similar fashion this procedure can be extended to a multi-type

process with an arbitrary number of types. For further information
and detailed insights into extinction of branching processes we refer
to Refs. 27, 30.

Two dimensional fitness landscape. We begin with a minimal
fitness landscape. Envision a wildtype ab which can mutate at the
two loci to A and B, respectively. With both mutations, the system is
in the final state of AB. In such a system there are two different paths
as illustrated in Figure 1.

Traditionally, epistatic models are discussed in terms of different
fitness values, whereas the mutation rates stay the same13,14. Exem-
plarily the fitness landscape for a system with sign epistasis is shown
in Figure 1. In such a system where the mutation rates stay the same,
i.e. mA~mB

A and mB~mA
B , it is clear that the path via Ab is the most

probable one. However, if the mutation rates change, e.g. mB
A?mA,

also the path via aB can become accessible. Changing mutation rates
amounts to including epistasis in the mutational landscape in addi-
tion to epistasis in the fitness landscape29.

www.nature.com/scientificreports
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For the four types of the above model, we need to consider four
different PGFs, one for each type

fab(sab,sAb,saB,sAB)~dabzbab((1{mA{mB)sabzmAsAbzmBsaB)2,

fAb(sab,sAb,saB,sAB)~dAbzbAb((1{mA
B )sAbzmA

B sAB)2,

faB(sab,sAb,saB,sAB)~daBzbaB((1{mB
A)saBzmB

AsAB)2,

fAB(sab,sAb,saB,sAB)~dABzbABs2
AB,

ð8Þ

where bi and di are the birth and death probabilities of type i. The
exponent of 2 arises from a branching process with binary splitting.
The arguments sab,…,sAB correspond to extinction probabilities of
the respective type as discussed above. The functions fi correspond to
the extinction probability of the whole process given that the process
starts with a single individual of type i. The PGF fi at time t is
recursively calculated as

f (t)
i (sab,sAb,saB,sAB)~fi(f

(t{1)
ab ,f (t{1)

Ab ,f (t{1)
aB ,f (t{1)

AB ): ð9Þ

Time Distribution. Using the generating functions we now approach
the extinction time distribution of the binary branching process.
Particularly starting with 1 wild type individual, the probability of

having no AB-individual at time t is f (t)
ab (1,1,1,0)~f (t). Thus the

probability of having at least 1 AB-individual at time t is 12f(t).
The probability, that at least 1 AB-individual appears exactly at time
t is the probability, that there is an AB-individual at t minus the
probability that there was already one at time t21:

t(t)~(1{f (t)){(1{f (t{1))~f (t{1){f (t): ð10Þ

Starting with N wild type individuals the probability that there are
no AB-individual at time t is then f(t)N. This leads to the time distri-
bution as,

t(t)~f N(t{1){f N (t): ð11Þ

However, the arising AB should start a lineage that does not die
out. Hence we are interested in the probability of having a successful
AB-individual. To calculate this we use the known extinction prob-
ability of an AB-individual in place of sAB. The probability of an

AB-individual going extinct is its death probability divided by its
birth probability eAB: 5 dAB/bAB

31. The modified PGFs for this pur-
pose then read as

fab(sab,sAb,saB)~dabzbab((1{mA{mB)sabzmAsAbzmBsaB)2,

fAb(sab,sAb,saB)~dAbzbAb((1{mA
B )sAbzmA

B eAB)2,

faB(sab,sAb,saB)~daBzbaB((1{mB
A)saBzmB

AeAB)2:

ð12Þ

Note, that the PGF for the final mutant type is not necessary
anymore. We can now calculate the time distribution until the first
successful mutant appears the same way as described above. Figure 2
shows the perfect agreement between the recursive solution and 5000
simulations. The parameters, specified in the Figure 2’s caption, are
entirely arbitrarily chosen to reflect an epistatic fitness landscape as
sketched in Figure 1. The reason we chose a very slightly advantage-
ous fitness for the type Ab-individuals is solely to stress the fact,
that this method holds for any fitness values, not only if some are
restricted, for example to being neutral.

For a three-type continuous time branching process, as in

A?
mB B?

mC C, the time distribution was computed in Ref. 32. This
was done using the analytical solution of the probability generating

function for the two-type process A?
mB B33 and the fact, that in con-

tinuous time mutations follow a Poisson distribution. Adding a sec-
ond intermediate type, e.g. B2, would also give such a process but
immediately results in unwieldy analytical calculations.

Path Probabilities. In the current example there are two possible
paths by which the wildtype can reach the final mutant AB, either
ab R Ab R AB or ab R aB R AB. Experimental evidence shows that
not all paths are equally probable15,34. Beginning with ab then what is
the probability of the first AB mutant arising via either path and how
long does it take for the different pathways?

The probability, that the first mutant arises exactly at time t via
pathway Ab is (derived in the SI),

rAb(t)~f N (t{1){(�f (Ab)(t))N , ð13Þ

where �f (Ab)(t) is defined in the Supporting Information (SI) and is
being computed in a similar fashion as f(t). The total probability for
this path %Ab is then the summation of rAb(t)

Figure 1 | Mutational pathways for a system with two loci. There are two

different pathways to reach the final mutant. Fitness is represented by the

size of the circles denoting the types. Thus the wildtype ab and Ab have a

similar fitness whereas AB has a significantly greater fitness compared to

the wildtype while aB is much less fit than the wildtype. When all mutation

rates are the same, the pathway via aB would be not adaptive, since this type

has a low fitness. If the mutation rate mB
A is large enough, especially if

mB
A?mA (indicated by the thick arrow), this pathway becomes accessible.

Figure 2 | Time distribution of reaching the final mutant for a four type
fitness landscape as in Fig. 1. Solid line represents the recursive solution

and the bars represent 5000 simulations. The parameters are: Death

probabilities: dab 5 0.5, dAb 5 0.49995, daB 5 2/3, dAB 5 0.25. Birth

probabilities are 1 minus the corresponding death probability. Mutation

probabilities are mB~mA
B~2:10{6, mA 5 2?1025, mB

A~0:005. Population

size in the beginning: N 5 30000.

www.nature.com/scientificreports
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%Ab~
X?
t~1

rAb(t): ð14Þ

Computationally the sum would go up to a tmax, where
f (Ab)(tmax{1){f (Ab)(tmax)vE (where usually machine epsilon is
chosen as E). The total extinction probability of a multi-type
branching process is determined by the smallest fixed point
s�~(s�ab,s�Ab,s�aB,s�AB) of the probability generating functions f(s*) 5

s*, where s�ab is the extinction probability, if the process starts with
one ab-individual27. Nevertheless those total extinction probabilities
are not suitable for the question, via which path the first successful
AB-mutant arises. The problem lies in the time; the pathway via Ab
for example could have a very low extinction probability whereas
the pathway via aB might have an extinction probability of 1/2.
Intuitively one would expect the path via Ab to be more frequent.
However, if the path via aB is much faster (e.g. due to mB

A?mA
B ) one

would actually find that each path happens with probability that
approaches 1/2. Therefore, it is important to do the recursive analysis
to include the probability, that a successful mutant did not arise
through any other path beforehand.

Figure 3 shows the probability densities for the different pathways
of the minimal model. Interestingly, the pathway via aB is predomi-
nantly prominent in the beginning but overall less likely. Hence if
experiments are stopped after a short time interval then they might
provide conclusions which can be upended by looking at the experi-
ments at a later time point.

Multiple mutations in two dimensions. In the earlier model the
wildtype had two possible mutations a R A and b R B. It is
possible, that a to A and b to B are a multi-step process. Hence we
can assume that it takes m mutations to go from a to A and n to go
from b to B. Hence for m 5 n 5 1 we recover the simple model as
discussed above. The calculation of the time distribution can be
directly transferred from the simple model by including all
necessary probability generating functions for all available types.
Increasing the length of the dimensions has a direct impact on the

number of paths leading from the wildtype to the final mutant.

In particular there are N~
mzn

m

� �
possible paths. Assuming in

general m mutations in the A dimension and n in the B dimension we
enumerate the paths as follows. Path 1 is the path where at first all A
mutations and subsequently all B mutations happen. Path 2 is the
path where all but one A mutations happen first, then one B, then the
last A, and finally all other B mutations. Figure 4 shows the different
paths for a system with four mutations for type A and one mutation
for type B. Thus calculating the path probability for any particular
path p now takes the form,

rp(t)~f N (t{1){ �f (p)(t)
� �N

, ð15Þ

where f(t) is the probability generating function as in Eq. A.2 and �f (p)

is defined analogously to Eq. A.9 in the SI

�f (p)(t) : ~�f 0(t)
p0

1,1, . . . ,1|fflfflfflfflffl{zfflfflfflfflffl}
mzn

,
dm,n

bm,n
,1, . . . ,1

0
BB@

1
CCA

~�f p0
�f 0(t{1)
p0

,�f 0(t{1)
p1

, . . . ,
dm,n

bm,n
,�f 0(t{2)

q1
, . . . ,�f 0(t{2)

qmn

� �
:

ð16Þ

Here, the probability generating functions with a p index belong to
types along the regarded path (which in total are m 1 n 1 1 without
back mutations, beginning at 0, with which we always label the sub-
index for the wild type). Accordingly, probability generating func-
tions with a q index are associated with types, that do not belong to
the respective path (which are in total m 3 n). The probability
generating function for the final mutant type is again replaced by
the extinction probability of this type. We use our framework with
this extension on the cancer initiation model proposed in Ref. 28.
Therein a model with several mutational steps to reach state A and
one mutational step for state B is analyzed (cf. Fig. 4). The direct
change in fitness for the A mutations is (nearly) zero, and the B
mutation alone is even deleterious. However, if an individual obtains
all A mutations and the B mutation, the fitness is enhanced which in
the model leads to rapid proliferation. Here, we provide an example
on how the path probabilities change, when epistasis is not just in the
fitness landscape but in the mutational landscape as well. Figure 5
compares the path probability distributions with and without epis-
tasis in the mutational landscape. The fitness values, the birth and
death probabilities respectively, as well as the ‘‘nonepistatic’’ muta-
tion probabilities, are the same as in Ref. 28.

Figure 3 | Probability distribution for the different pathways. Orange

represents the pathway via aB and blue the pathway via Ab. The bars are the

results of simulations, the solid lines depict the computed results. In the pie

charts the distribution of the pathways are illustrated up to 500 time steps

(shaded area, left pie chart) and up to 5000 time steps (right pie chart).

Stopping after a few lineages have reached the final mutant might lead to a

false distribution: The other pathway might just need longer, but have a

smaller extinction probability. The parameters are: Death probabilities:

dab 5 0.5, daB 5 2/3, dAb 5 0.49995, dAB 5 0.25. Birth probabilities are 1

minus the corresponding death probability. Mutation probabilities are

mB~mA
B ~2:10{6, mA 5 2?1025, mB

A~0:005. Initial Population size is

N 5 30000.

Figure 4 | Exemplary numbering of the different mutational pathways in
a system with m 5 4 mutations for type A and n 5 1 mutation for B.

www.nature.com/scientificreports
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Multi dimensional fitness landscapes. The cancer landscape
discussed above is a two dimensional system. In principle it is
possible to extend this approach to higher dimensions. For fitness
landscapes of higher orders15,35 it is still possible to write down the
system of probability generating functions and apply the approach
explained here. The concept remains the same. For each type the
probability generating functions are needed except for the final
mutant type, here only the extinction probability is necessary (SI).
Finally the probability generating function for the wild type needs
to be recursively calculated for the time distribution. For the path
probabilities the probability generating functions related to types not
along the considered path again are one time step behind, similar as in
Eq. 16. However for these experimental fitness landscapes while we
can get accurate data elucidating the fitness landscape, the mutational
landscape is usually hard to determine.

Discussion
We have presented a theoretical framework to study mutational
pathways in epistatic systems. The crucial part is that in our analysis
epistasis affects not only fitness (i.e. proliferation and death rates) but
also mutation rates. Hereby we could show, that pathways become
accessible, that without mutational epistatic effects are mostly
unlikely to happen (cf. e.g. Figure 5). Our analysis is based on
multi-type branching processes and hence it does not rely on the
assumption of a constant population size.

While we have focused on a fairly simple system with a fitness
landscape with a single peak, the approach can be extended to a
rugged fitness landscape. Moreover, if back mutations are involved,
one can still calculate the time distribution, although pathways are

not clearly defined in a system with back mutations anymore (see
SI). Furthermore in the current scenario in each time step the
individuals could replicate or die. In addition we could have a
resting probability where the individuals remain in the same
state with a certain probability. Such complicated scenarios can
be incorporated in our framework as well (SI). The computations
can be precisely represented in analytic terms and need to be
solved recursively.

We apply our framework to a cancer model including mutational
epistasis28 and show how the path probabilities are altered by it.
Mutational epistasis can thus lead to heterogeneity in the density
of different mutant types between different age groups as reaching
the final mutant early is only possible by one mutational pathway
which is not possible at later time points.

As shown here the mutational landscape can undermine the cur-
rent predictions based solely on fitness landscapes. Just like in long
term evolution, experimental as well as theoretical approaches ought
to be balanced between studying effects of selection and the strengths
of mutations. The theoretical analysis based on the approach
explained here helps in understanding the importance of mutational
epistasis, even though the computations have to be solved recur-
sively. In particular, it makes analyzing the fitness and mutational
landscapes more interactive, since long-lasting simulations are not
necessary any more.
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