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We show how a broad class of lattice spin-1/2 models with angular- and distance-dependent
couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The
effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are
obtained by admixing van der Waals interactions between fine-structure split Rydberg states with
laser light. The strengths of the diagonal spin interactions as well as the “flip-flop”, and “flip-
flip” and “flop-flop” interactions can be tuned by exploiting quantum interference, thus realizing
different spin symmetries. The resulting energy scales of interactions compare well with typical
temperatures and decoherence time scales, making the exploration of exotic forms of quantum
magnetism, including emergent gauge theories and compass models, accessible within state-of-the-
art experiments.

PACS numbers: 37.10.Jk, 32.80.Ee,75.10.Jm

Understanding exotic forms of quantum magnetism is
an outstanding challenge of condensed matter physics [1].
Cold atoms stored in optical or magnetic trap arrays
provide a unique platform to realize interacting quan-
tum spins in various lattice geometries with tunable in-
teractions, and thus the basic ingredients of competing
magnetic orders and frustrated magnetism [2]. A central
experimental challenge for the observation of magnetic
phases with cold atoms is given by the requirement of
ultralow temperatures (and entropies), as set by the in-
teraction scales of magnetic interactions. For spin mod-
els derived from Hubbard dynamics for atoms in optical
lattices, this energy scale is set by the super-exchange
processes, J ∼ t2H/U , with tH the hopping amplitude
of atoms between lattice sites, and U the onsite inter-
actions, resulting in (rather small) energy scales of a
few-tens of Hertz (or few nK) regime [3] (see, however,
Ref. [4]). Instead, we consider below laser-excited in-
teracting Rydberg atoms [5], which provide us not only
with a complete toolbox to design and realize the complex
spin-1/2 models of interest, but also give rise to energy
scales much larger than relevant decoherence rates. In
contrast to models where a spin is encoded directly in
a Rydberg state [6] we use ground state atoms weakly
dressed with Rydberg states by laser light [7], which can
be trapped in (large spacing) optical [8] or magnetic lat-
tices [9] of various geometries. This provides a viable
route to make phases of exotic quantum magnetism ac-
cessible to present atomic experiments.

We are interested in general XY Z spin-1/2 models
with both isotropic and anisotropic interactions in 2D,
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Figure 1. (a) Atoms loaded in a kagome lattice driven by
laser light (L) propagating along the z-axis defined by the
magnetic field (B).(b) Atomic level scheme: 87Rb atoms
with hyperfine ground states |gσ〉 (representing spin-1/2)
coupled to n2P1/2 Rydberg states with σ± polarized light
and interacting via vdW interactions. (c) Spin interactions
Jα of Eq. (1) as a function of distance ρ realizing quan-
tum spin ice on a kagome lattice [10]. Red (gray) dot-
ted lines indicate NN and NNN interactions [red (gray)
arrows in panel (a)]. Here |r±〉 = |602P1/2,± 1

2
〉 with

Rabi frequencies Ω- = Ω+/4 = 2π × 2.5 MHz and detunings
∆- = −∆+ = 2π × 50 MHz (so that J+- = 0 — see text).

as represented by the Hamiltonian

H =
∑
i<j

[
Jz(rij)S

i
zS

j
z + J||(rij)S

i
z

+
1

2

(
J+-(rij)S

i
+S

j
- + J++(rij)S

i
+S

j
+ + H.c.

)]
,

(1)

where Sjα are spin-1/2 operators at the lattice sites
rj . Our goal is to design spin-spin interaction patterns
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Jα, including nearest-neighbor (NN) and next-nearest-
neighbor (NNN) couplings, as a function of rij = ri − rj
including the range, angular dependence, and strength of
the couplings. Below we wish to illustrate the broad tun-
ability offered by our setup in the context of a paradig-
matic example illustrated in Fig. 1: on a kagome lattice,
different coupling realizations of Eq. (1) encompass a va-
riety of physical models, including kagome quantum spin
ice (requiring J+- = 0) [10] and extended XY Z mod-
els [11]. These models encompass a prototypical feature
of frustrated quantum magnets, i.e., the emergence of dy-
namical gauge fields [1]. The specific form of the under-
lying gauge theories and the presence of topological spin
liquid phases has been actively debated, making the con-
trolled realization of such Hamiltonian dynamics timely
matched with current theoretical efforts. In the outlook
we discuss further many-body perspectives.

In our setup we consider single atoms loaded in trap
arrays of tunable geometry with spacings on the microm-
eter scale as demonstrated in recent experiments [8, 9],
with negligible intersite tunneling. We are interested here
in alkali atoms, where a pair of states from the two hy-
perfine manifolds in the atomic ground state represents
the effective spin-1/2 [12]. To be specific we consider
87Rb atoms and choose |g+〉 ≡ |52S1/2, F = 2,mF = 2〉
and |g-〉 ≡ |52S1/2, F = 1,mF = 1〉 as our spin-1/2 [see
Fig. 1(b)].

Interactions between these effective spin states are in-
duced by admixing highly lying Rydberg states to the
atomic ground states with laser light, where van der
Waals (vdW) interactions provide a strong coupling even
at micrometer distances. The key element is the excita-
tion of Rydberg states with finite orbital angular momen-
tum exhibiting fine structure splitting, and it is the com-
bination of the spin-orbit interaction and vdW interac-
tions which provides the mechanism for the spin-spin cou-
pling. As indicated in Fig. 1(b), we assume excitations by
left and right circularly polarized lasers with propagation
direction orthogonal to the lattice plane. In this configu-
ration the ground states are coupled to the two Rydberg
Zeeman levels |rσ=±〉 ≡ |n2P1/2,mj = ± 1

2 〉 ⊗ |mI = 3
2 〉.

Here, |mI = 3
2 〉 is the maximally polarized nuclear spin

state, which remains a spectator in our dynamics [13].
This choice of laser configuration leads to spin couplings
Jα(ρij) with a purely radial dependence as a function of
the distance ρij = |ri−rj |, as shown in Fig. 1(c). This il-
lustrates the design of kagome quantum spin ice (J+- = 0)
[10] for realistic atomic parameters. As discussed below,
an angular dependence of Jα can be obtained by inclining
the laser beams [14].

To obtain the desired spin-spin interactions in Eq. (1)
we consider a pair of atoms and derive by adiabatic elimi-
nation of the Rydberg levels the effective Hamiltonian for
the ground state spins. Our starting point is the micro-

scopic Hamiltonian, Hmic =
∑2
i=1

[
H

(i)
A +H

(i)
L

]
+HvdW,
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Figure 2. (a) C6 coefficients of Eq. (2) in atomic units for
Rb atoms vs. principal quantum number n. (b) Ratios of
diagonal and the m-changing C6. (c) Eigenenergies Eσσ′(ρ)
(thick solid lines), energies of states with a single Rydberg
excitation in r+ (gray dashed line) and r- (gray dotted line)

vs. ρ/rc with rc = (c++/2|∆+|)1/6. Asymptotic energies and
eigenstates are indicated on the right. Here, ∆+- ≡ ∆+ + ∆-.

which is written as the sum of a single atom Hamiltonians
including Zeeman split energy levels of the various states,
the laser driving and the vdW interaction. In the rotat-

ing frame we have H
(i)
A = −∆+|r+〉i〈r+| −∆-|r-〉i〈r-| and

H
(i)
L = 1

2Ω+e
iϕ+ |g-〉i〈r+| + 1

2Ω-e
iϕ- |g+〉i〈r-| + H.c., where

∆σ denotes the laser detunings, Ωσ the Rabi frequen-
cies and ϕσ local laser phases. Since the derivation of
the effective Hamiltonian is invariant under local gauge
transformations, in the following we fix ϕσ = 0 without
loss of generality.

At the heart of our scheme is the vdW interaction
HvdW between the Zeeman sublevels in the n2P1/2 man-
ifold. For the atomic configuration of Fig. 1(a) (atoms in
the xy-plane and lasers propagating along z) this vdW
interaction has the structure (see SM)

HvdW(ρ) =


V++(ρ) 0 0 W++(ρ)

0 V+-(ρ) W+-(ρ) 0
0 W+-(ρ) V-+(ρ) 0

W++(ρ) 0 0 V--(ρ)

 (2)

written in the basis {|r-r-〉, |r-r+〉, |r+r-〉, |r+r+〉} of Ryd-
berg Zeeman states. Here, Vσσ′(r) ≡ cσσ′/ρ6 are the (di-
agonal) vdW interactions between the pair states |rσrσ′〉,
with V++ = V-- and V+- = V-+. In addition we have “flip-
flop” interactions between the states |r-r+〉 and |r+r-〉 and
also “flip-flip” and “flop-flop” interactions between the
Rydberg states |r-r-〉 and |r+r+〉, with coupling strength
W+- and W++, respectively, where W+-(ρ) = −3W++(ρ) ≡
w/ρ6. This arises from the fact that in our configura-
tion the total magnetic quantum number M = mj +mj′

can change by 0 or ±2 [15]. The corresponding C6 co-
efficients c++, c+-, and w of Rb, which can be attractive
or repulsive, are plotted in Fig. 2(a) as a function of
the principal quantum number n. We emphasize that in
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writing the time-independent Eq. (2) we have assumed
∆Er − (∆+ −∆-) = 0, corresponding to the energy con-
servation condition for Raman processes between the spin
ground states. We note, however, that ∆+ and ∆- can
still be chosen independently via an appropriate choice
of laser frequencies and Rydberg Zeeman splitting ∆Er
[16].

In the following we will derive the effective spin-
spin interactions of Eq. (1) by weakly admixing these
Rydberg-Rydberg interactions to the ground state man-
ifold with lasers. We note, however, the basic features of
these spin-spin interactions can already be identified in
HvdW: (strong) diagonal interactions V++ and V-+ will in-
duce tunable Jz interactions between the dressed ground
states |g-〉 and |g+〉, while the couplings W+- and W++ give
rise to the J+- and J++ spin flip terms, respectively.

In the limit of weak laser excitation we obtain the effec-
tive spin-spin interaction between the ground states by

treating the laser interactions H
(1)
L +H

(2)
L as a perturba-

tion. As a first step we diagonalize H
(1)
A +H

(2)
A +HvdW

as the dominant part of the Hamiltonian in the subspace
of two Rydberg excitations. This results in four new
eigenstates |Eσσ′(ρ)〉 and energies Eσσ′(ρ), (σ, σ′ = +, -)
shown in Fig. 2(c), which can be interpreted as Born-
Oppenheimer adiabatic potentials (see the SM for a de-
tailed discussion). We note that for large distances
E++(ρ → ∞) = −2∆+ and E--(ρ → ∞) = −2∆-, cor-
responding to states |r+r+〉 and |r-r-〉, respectively, while
the states |r-r+〉 and |r+r-〉 become asymptotically de-
generate with energy E+-(ρ → ∞) = E-+(ρ → ∞) =
−(∆++∆-). The ratios α1 = W+-/V+- and α2 = W++/V++
shown in Fig. 2(b) determine the sign of the slope of
the new eigenenergies at short distances. In particu-
lar, for n2P1/2 states of 87Rb we find that for n ≥ 41
the eigenenergies E++(ρ), E+-(ρ) and E-+(ρ) are repul-
sive while E--(ρ) is attractive at short distances [see
Fig. 2(c)]. For detunings ∆+/∆- < 0 and ∆+ + ∆- < 0
we avoid resonant Rydberg excitations for all distances;
i.e., there are no zero crossings of Eσσ′(ρ), and perturba-
tion theory in Ωσ/|Eσ′σ′′ | is valid for all ρ.

In fourth order, in the small param-
eter Ωσ/|Eσ′σ′′ | � 1 we obtain an ef-
fective spin-spin interaction Hamiltonian

H̃ =
∑
σ,σ′

[
Ṽσσ′ |gσgσ′〉〈gσgσ′ |+ W̃σσ′ |gσgσ′〉〈gσ̄gσ̄′ |

]
between the dressed ground states atoms. The diagonal
interactions are

Ṽσσ =
Ω4
σ̄

8∆3
σ̄

V++ (V++ − 2∆σ)−W 2
++

W 2
++ − (V++ − 2∆+) (V++ − 2∆-)

,

Ṽ+- =
Ω2
+Ω2

-

16∆2
+∆2

-

(∆+ + ∆-)
V+- (∆+- − V+-) +W 2

+-

(∆+- − V+-)2 −W 2
+-

,

(3)

which, for small distances, are steplike potentials with
Vσσ′(ρ→ 0) = −Ω2

σ̄Ω2
σ̄′(∆σ̄+∆σ̄′)/(16∆2

σ̄∆2
σ̄′). We have

absorbed single particle light shifts in the definition of
the detunings (see Appendix). For the “flip-flop” and

(a)

(b)

Figure 3. Path of perturbative couplings between the states
(a) |g+g+〉 and |g-g-〉 and (b) |g+g-〉 and |g-g+〉 visualizing the
perturbative expressions behind J++ and J+- of Eqs. (5), re-
spectively. The energies Eσσ′ are plotted for a specific inter-
atomic distance ρ (with abbreviation Ω̄σ ≡ Ωσ/

√
2). Yellow

and blue dotted paths can interfere destructively (see text).

“flop-flop” interactions we get

W̃+- =
Ω2
+Ω2

-

16∆2
+∆2

-

(∆+ + ∆-)
2
W+-

(∆+ + ∆- − V+-)2 −W 2
+-

,

W̃++ = − Ω2
+Ω2

-

4∆+∆-

W++

W 2
++ − (V++ − 2∆+) (V++ − 2∆-)

,

(4)

which are peaked at R6
+- =

√
c2+- − w2

+-/|∆+ + ∆-| and

R6
++ =

√
(c2++ − w2

++)/(4∆+∆-), respectively, and go to
zero for small and large distances. The spin couplings of
Eq. (1) are then obtained as

J||(rij) =
1

4

[
Ṽ++(rij)− Ṽ--(rij)

]
,

Jz(rij) =
1

4

[
Ṽ--(rij)− 2Ṽ+-(rij) + Ṽ++(rij)

]
,

J+-(rij) = 2W̃+-(rij), and J++(rij) = 2W̃++(rij).

(5)

Figure 1(c) shows a plot of Eq. (5) for n = 60
P1/2Rydberg states and for a particular set of laser pa-
rameters with ∆- = −∆+ such that J+- = 0. The di-
agonal Jz interaction is steplike with a repulsive (anti-
ferromagnetic) soft core at small distances, ρ < 2 µm,
and an attractive (ferromagnetic tail) at long distances.
The spin flip term J++ is peaked at ρ ≈ 2.5µm while
J+- = 0, thus realizing the Hamiltonian of quantum
spin ice on a kagome lattice [10] at a lattice spacing
a = 1.8 µm. The lifetime of the 60P1/2 Rydberg
state including blackbody radiation at T = 300 K is
τ60 = 133µs [17] which yields an effective ground state
decay rate of Γeff = (Ω-/2∆-)

2τ−1
60 ≈ 2π × 18 Hz for

Ω- = 2π× 5 MHz and ∆- = 2π× 50 MHz, which is more
than one to two orders of magnitude smaller than typi-
cal interaction energy scales shown in Fig. 1(c). The fine
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Figure 4. (a)-(c) Effective spin-spin interactions Jα of
Eq. (1) as a function of r and ϑ for a laser propagat-
ing along the z axes and atoms in the zx plane. Here
|r±〉 = |602P1/2,± 1

2
〉 with Ω- = Ω+/2 = 2π × 5 MHz and

(∆-,∆+) = 2π × (−60, 40) MHz. (d) Cut through the energy
surfaces Eσσ′ along the z axis. In contrast to Fig. 2(c) reso-
nances appear, indicated with a star where Jα becomes singu-
lar as shown in panels (a)-(c). (e) Cut through panels (a)-(c)
for ϑ = 0 (solid lines) and ϑ = π/8 (dotted lines).

structure splitting between the 60P1/2 and 60P3/2 man-
ifolds is ∆EFS ≈ 2π × 920 MHz which is much larger
than the Rydberg interactions for distances larger than
about 2 µm.

The form and strength of the effective spin-spin inter-
actions of Eqs. (3) and (4) shown in Fig. 1(c), including
J+- = 0 for ∆+ = −∆-, can be understood in terms of
quantum interference of the various paths contributing
to the perturbation expressions of Eq. (5). These paths
are illustrated in Fig. 3: both the states |g+g+〉 and |g-g-〉
[panel (a)] and also the states |g+g-〉 and |g-g+〉 [panel
(b)] are coupled via four laser photons (blue arrows), giv-
ing rise to W̃++ and W̃+-, respectively. In particular, the
states |g+g+〉 and |g-g-〉 are coupled either via |E++〉 or via
|E--〉 with position dependent coupling rates Ωσ sinχ(ρ)
and Ωσ cosχ(ρ). For large distances sinχ(ρ) → 0 and
thus W̃++ → 0 while at short distances the “flop-flop”
process is suppressed by the large resolvents E−1

σσ′ giving
rise to the peaked form of W++ as a function of ρ. Panel
(b) shows eight possible paths which can couple the |g+g-〉
and |g-g+〉 states. We note that both the two blue and the
two yellow dotted paths coupling |g+g-〉 either to |E+-〉 or
to |E-+〉, respectively, differ only by the energy denomi-
nators ∆−1

+ or ∆−1
- . Thus, for ∆+ = −∆- the two yellow

dotted paths and also the two blue dotted paths will in-
terfere destructively and the “flip-flop” process vanishes,
i.e. J+- = 2W̃+- = 0, as shown in Fig. 1(c).

We now turn to a setup with laser propagation direc-
tion (z axis) inclined with respect to the 2D plane con-
taining the trapped atoms. This allows for an angular
dependence (anisotropy) of the Jα(rij). In addition, we

find as a new feature the appearance of resonances in
the spin-spin couplings as a function of spatial distance
in the lattice. The origin of the anisotropy is the strong
dependence of the various vdW interaction matrix ele-
ments on the angle ϑ between the z axis (defined by the
laser propagation direction) and the relative vector con-
necting the two atoms i and j (see Appendix for details).
As an example, we show in Fig. 4 the spin-spin interac-
tions for a propagation direction of both lasers parallel
to the 2D plane (zx plane). The anisotropy of the Jα
as a function of the angle ϑ is shown in panels (a)-(c).
In particular, W++(r, ϑ) ∼ sin2 ϑ, and thus vanishes along
the z direction, reflecting the conservation of angular mo-
mentum M = mj + m′j . In addition for ϑ 6= π/2 reso-
nances appear at specific interparticle distances, where
one of the eigenenergies Eσσ′ crosses the energy surface
E = 0 corresponding to ground state atoms |gσ, gσ′〉 [in-
dicated by the red stars in panel (d)]. This gives rise
to clepsydra-shaped resonances in Jα, as shown in pan-
els (a)-(c), which in our perturbative treatment appear
as singularities as a function of the distance, with Jα
changing sign across the resonance.

We conclude with a perspective on the quantum many-
body physics opened by the present work. The toolbox
described above, together with techniques of adiabatic
state preparation [18] paves the way toward the engineer-
ing of frustrated spin models, where different aspects of
the interaction pattern can be exploited. First, the inde-
pendent tunability of both J+- and J++ couplings selects
a particular spin symmetry, either conserving the total
magnetization

∑
j S

z
j or the parity

∏
j S

z
j , giving rise to

a U(1) or Z2 symmetry, respectively. This finds immedi-
ate application in the context of extended quantum ice
models [19], as illustrated in Fig. 1 for kagome quantum
spin ice [10]. Within the same geometry, moving away
from the ∆+ = −∆- regime, a finite J+- can be switched
on, and extended XY Z models can be realized [11, 20].
The ability of controlling each coupling strength in an
angular- and distance-dependent way (c.f. Fig. 4) points
toward the realization of models displaying intermediate
symmetry, such as, e.g., compass models [21]. By prop-
erly choosing the lattice spacings on a square lattice, it is
possible to single out interactions along one direction of
pure zz type, and of ++ type along the other, thus real-
izing extended square compass models. The large energy
scales provided by the vdW interactions, combined with
in situ measurement techniques demonstrated in large-
spacing lattices [8, 9], have the potential to make the ob-
servation of different physical phenomena encompassed
by these models, such as emergent gauge theories and
exotic spin liquid states [1], accessible within Rydberg
atom experiments. Finally, we remark that the ideas
proposed can be adapted to other dipolar systems such
as, e.g., polar molecules [22].
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been informed by T. Pohl of related work in the context
of spin-1 models. [23]

Appendix A: Van der Waals interactions between
j = 1/2 Rydberg states

Away from Foerster resonances two laser excited Ryd-
berg atoms dominantly interact via van der Waals inter-

actions [5]. These van der Waals interactions, H
(i,k)
vdW, will

mix different Zeeman sublevels |mj〉 in the nP1/2 mani-

fold [15]. Let us denote by P̂ =
∑
i,j |mi,mj〉〈mi,mj | a

projection operator into the nP1/2 manifold, then dipole-
dipole interactions

V
(i,k)
dd (r) = −

√
24π
5

1

r3

∑
µ,ν

C1,1;2
µ,ν;µ+νY

µ+ν
2 (ϑ, ϕ)∗d(i)

µ d(j)
ν ,

will couple states in the P̂ manifold to intermediate
states, Q̂α,β = |α, β〉〈α, β|, which have an energy differ-
ence δαβ . Here, d(i) is the dipole operator of the i-th
atom and r = (r, ϑ, ϕ) is the relative vector between atom

i and atom j in spherical coordinates and d
(i)
µ is the µ-th

spherical components (µ, ν ∈ {−1, 0, 1}) of the atomic

dipole operator. With Cj1,j2;J
m1,m2;M we denote the Clebsch-

Gordan coefficients and Y ml are spherical harmonics. In
second order perturbation theory this gives rise to

H
(i,k)
vdW = P̂

∑
αβ

V
(i,k)
dd Q̂α,βV

(i,k)
dd

δαβ
P̂ , (A1)

where H
(i,k)
vdW is understood as an operator acting in the

manifold of Zeeman sublevels.
Due to the odd parity of the electric dipole oper-

ators d
(i)
µ and d

(j)
ν , the dipole-dipole interaction, Vdd,

can couple initial nP1/2 states only to n′S1/2 or n′′D3/2

states. Therefore, there are four possible channels
shown in Tab. I(left) for which the matrix element
〈nP1/2m1|〈nP1/2m1|Vdd|n′, `α, jα,mα〉|n′′, `β , jβ ,mβ〉 of
Eq. (A1) is non-zero. Here, (`α,β , jα,β) can either corre-
spond to S1/2 or D3/2 states depending on the channel.
While there is no selection rule for possible final principal
quantum numbers n′ and n′′ which solely determine the
overall strength of the matrix element, the dipole-dipole
matrix element is only non-zero if the magnetic quantum
numbers and the spherical component of the dipole op-
erator fulfill m1 + µ = mα and m2 + ν = mβ . The total
vdW interaction of Eq. (A1) can be obtained by summing
over all channels ν, that is

V̂vdW =
∑
ν

C
(ν)
6 Dν(ϑ, ϕ)/r6. (A2)

Here, C
(ν)
6 contains the radial part of the matrix elements

C
(ν)
6 =

∑
nα,nβ

Rα1R
β
2Rα3R

β
4

δαβ
(A3)

which accounts for the overall strength of the interaction
and is independent of the magnetic quantum numbers.
WithRki =

∫
drr2ψni,`i,ji(r)

∗r ψnk,`k,jk(r) we denote the
radial integral. The matrix

Dν(ϑ, ϕ) = P̂
∑

mα,mβ

MQ̂
(ν)
α,βM P̂ (A4)

on the other hand is a matrix in the subspace of magnetic
quantum numbers which contains the relative angles be-
tween the two atoms (s = 1/2)

〈m1,m2|M|mα,mβ〉 =(−)s−m1
√

(2`1 + 1)(2j1 + 1)(2`α + 1)(2jα + 1)

{
`1 `α 1
jα j1 s

}(
`α 1 `1
0 0 0

)
×(−)s−m2

√
(2`2 + 1)(2j2 + 1)(2`β + 1)(2jβ + 1)

{
`2 `β 1
jβ j2 s

}(
`β 1 `2
0 0 0

)
×

[
−
√

24π

5

∑
µ,κ

C1,1;2
µ,κ;µ+κ

(
jα 1 j1
mα µ −m1

)(
jβ 1 j2
mβ κ −m2

)
Y µ+κ

2 (ϑ, ϕ)∗

]
,

(A5)

and Q̂
(ν)
α,β is a projector onto the final states (`α,β , jα,β) corresponding to channel ν ∈ {a, b, c, d} of Tab. I. For the

individual channels we find

(a) Da(ϑ, ϕ) =
2

9
14 −D0(ϑ, ϕ),

(b) Db(ϑ, ϕ) =
4

9
14 −D0(ϑ, ϕ),

(c,d) Dc(ϑ, ϕ) = Dd(ϑ, ϕ) = D0(ϑ, ϕ),

(A6)
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with 14 the 4× 4 identity matrix and

D0(ϑ, ϕ) =
1

81


3 cos(2ϑ) + 11 3e−iφ sin(2ϑ) 3e−iφ sin(2ϑ) 6e−2iφ sin2(ϑ)
3eiφ sin(2ϑ) 13− 3 cos(2ϑ) −3 cos(2ϑ)− 5 −3e−iφ sin(2ϑ)
3eiφ sin(2ϑ) −3 cos(2ϑ)− 5 13− 3 cos(2ϑ) −3e−iφ sin(2ϑ)
6e2iφ sin2(ϑ) −3eiφ sin(2ϑ) −3eiφ sin(2ϑ) 3 cos(2ϑ) + 11

 (A7)

written in the basis {| 12
1
2 〉, |

1
2

1
2 〉, |

1
2

1
2 〉, |

1
2

1
2 〉} of Zeeman

states in the j = 1/2 Rydberg manifold. For the special
orientations (i) ϑ = 0 we find

D0(0, 0) =
1

81


14 0 0 0
0 10 −8 0
0 −8 10 0
0 0 0 14

 (A8)

and (ii) for ϑ = π/2 the matrix simplifies to

D0(π2 , 0) =
1

81


8 0 0 6
0 16 −2 0
0 −2 16 0
6 0 0 8

 . (A9)

The total vdW interaction matrix in the nP1/2 subspace
becomes

H
(i,k)
vdW =

[
2

9

(
C

(a)
6 + 2C

(b)
6

)
14

+
(

2C
(c)
6 − C(a)

6 − C(b)
6

)
D0(ϑik, ϕik)

]
/r6
ik, (A10)

where the coefficients C
(ν)
6 depend on the principal quan-

tum number n, see Fig. 5.

We note that the vdW Hamiltonian describing the in-
teractions between S1/2-states can be written in the exact
same form as Eq. (A10). However, the coupling terms,

C
(ν)
6 , correspond to the channels of Tab. I(right). There-

fore, the radial matrix elements for S1/2 states differ only
slightly due to the fine structure splitting ∆EFS between
P1/2 and P3/2 states, see Fig. 5(right). In the limit where
the fine structure can be neglected compared to other

energy scales we find C
(a)
6 = C

(b)
6 = C

(c)
6 = C

(d)
6 and

the vdW interaction of Eq. (A10) between nS1/2 states

becomes diagonal, that is H
(i,k)
vdW = (2/3)C

(a)
6 14. Thus,

there is no vdW mixing between Zeeman sublevels if the
fine-structure splitting can be neglected. This can be
understood by a simple argument: Since for s-states the
different mj levels are proportional to the electronic spin
ms, that is |mj = ± 1

2 〉 = |` = 0,m` = 0〉 ⊗ |ms = ± 1
2 〉,

and since dipole-dipole interactions cannot mix spin de-
grees of freedom there cannot be any vdW mixing of

Zeeman levels in the absence of fine-structure. The first
correction will be proportional to ∼ ∆EFS/δαβD0. It is
therefore only the spin-orbit coupling in the intermediate
Qα,β manifold which mixes different Zeeman sublevels in
the case of S1/2 states.

On the contrary, for P1/2 states, the radial coefficients

C
(ν)
6 differ much more strongly due to the energy differ-

ence between d- and s-states and due to the fact that
Zeeman sublevels in the nP1/2 manifold are already a

superposition between ms = ± 1
2 states of the electronic

spin. Therefore, mixing of Zeeman sublevels for nP1/2

states can be of the same order of magnitude than the
diagonal terms and play a significant role. In the special
(1D) case ϑ = 0, the doubly excited levels | 1

2
1
2 〉 and | 12

1
2 〉

are not coupled to any other doubly excited states which
is a consequence of the conservation of the total angular
momentum. On the contrary, for ϑ = π/2 (atoms po-
larized perpendicular to the plane), the Hamiltonian of
Eq. (A10) reduces to Eq. (2), with

c++ =
2

81

(
5C

(a)
6 + 14C

(b)
6 + 8C

(c)
6

)
,

c+- =
2

81

(
C

(a)
6 + 10C

(b)
6 + 16C

(c)
6

)
,

w++ = − 2

27

(
C

(a)
6 + C

(b)
6 − 2C

(c)
6

)
,

w+- =
2

81

(
C

(a)
6 + C

(b)
6 − 2C

(c)
6

)
= −w++

3
.

(A11)

shown in Fig. 2(a) as a function of the principal quantum
number n. In the following sections of this supplemental
material, we will consider this particular orientation as it
is the simplest configuration of vdW coupling where the
doubly laser-excited state | 1

2
1
2 〉 is only coupled to | 12

1
2 〉.

Appendix B: Laser excitation and hyperfine ground
states

The laser Hamiltonian, H
(i)
L , couples two hyperfine

ground states |g-〉 and |g+〉 to the Zeeman sublevels in
the nP1/2 Rydberg manifold with detunings ∆σ and Rabi
frequencies Ωσ (σ = +, -), respectively, see Fig. 1(b).
Uncoupling the nuclear spin the hyperfine ground states
read
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Figure 5. We plot the C
(ν)
6 for (left) nP1/2 and (right) nS1/2 Rydberg states of 87Rb as a function of the principal quantum

number n for different channels ν of Tab. I.

ν (`, j) + (`, j) −→ (`α, jα) + (`β , jβ)
(a) P1/2 + P1/2 −→ S1/2 + S1/2

(b) P1/2 + P1/2 −→ D3/2 +D3/2

(c) P1/2 + P1/2 −→ S1/2 +D3/2

(d) P1/2 + P1/2 −→ D3/2 + S1/2

ν (`, j) + (`, j) −→ (`α, jα) + (`β , jβ)
(a) S1/2 + S1/2 −→ P1/2 + P1/2

(b) S1/2 + S1/2 −→ P3/2 + P3/2

(c) S1/2 + S1/2 −→ P1/2 + P3/2

(d) S1/2 + S1/2 −→ P3/2 + P1/2

Table I. Dipole-dipole interactions can couple P1/2 (left) and S1/2 (right) states to four channels (a-d).

|g+〉 ≡ |52S1/2, F = 2,mF = 2〉 = |mj = 1
2 〉|mI = 3

2 〉,

|g-〉 ≡ |52S1/2, F = 1,mF = 1〉 =
1

2

[
|mj = 1

2 〉|mI = 1
2 〉 −

√
3|mj = − 1

2 〉|mI = 3
2 〉
]
,

where mI is the projection quantum number of the nuclear spin. Using σ+ and σ- polarized light for the transition

|g-〉
Ω+,σ+−−−→ |nP1/2,mj = + 1

2 〉 ⊗ |mI = 3
2 〉,

|g+〉
Ω-,σ-−−−→ |nP1/2,mj = − 1

2 〉 ⊗ |mI = 3
2 〉,

(B1)

respectively, couples to two different Rydberg states but both in the same nuclear state. Thus, hyperfine structure can
be treated as a spectator in the Rydberg manifold. Neglecting (small) hyperfine interactions, these are closed cycle
transitions and do not couple to any other states in the hyperfine manifold. There are several alternative possibilities,
e.g.

|g+〉 ≡ |52S1/2, F = 2,mF = 1〉 =
1

2

[√
3|mj = 1

2 〉|mI = 1
2 〉+ |mj = − 1

2 〉|mI = 3
2 〉
]
,

|g-〉 ≡ |52S1/2, F = 1,mF = 0〉 =
1√
2

[
|mj = 1

2 〉|mI = − 1
2 〉 − |mj = − 1

2 〉|mI = 1
2 〉
]
,

which can be laser excited to specific Rydberg states

|g-〉
Ω+,σ+−−−→ |nP1/2,mj = − 1

2 〉 ⊗ |mI = 1
2 〉,

|g+〉
Ω-,σ-−−−→ |nP1/2,mj = + 1

2 〉 ⊗ |mI = 1
2 〉.

Appendix C: Effective ground state potentials

1. Adiabatic elimination

In the dressing limit, Ωσ � ∆σ′ , atoms initially in their
electronic ground states |g〉1 . . . |g〉N are off-resonantelly
coupled to the Rydberg states |r〉1 . . . |r〉N and the new
“dressed” ground states inherit a tunable fraction of the
Rydberg interaction [7]. The effective interaction po-
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tential between N atoms in their dressed ground states,
|g̃〉1 . . . |g̃〉N , can be obtained by diagonalizing the Hamil-
tonian Hmic for a fixed relative position and zero kinetic
energy. The total Hamiltonian Hmic has block structure

Hmic =


H0 Ω1 0 0

Ω†1 H1 Ω2 0

0 Ω†2 H2 Ω3

0 0 Ω†3 H3

. . .

 (C1)

where Hn governs the dynamics in the subspace with n-
Rydberg excitations present, while the Ωn matrices de-
scribe the coupling between adjacent sectors n and n− 1
due to the laser. Only subspaces Hn≥2 contain the in-
teraction potentials Vij and Wij since we assume that
ground and Rydberg states do not interact at long dis-
tances.

As a first step we diagonalize H
(1)
A +H

(2)
A +HvdW as the

dominant part of the Hamiltonian in the subspace of two
Rydberg excitations. This results in four new eigenstates

|Eσσ(ρ)〉 = [cosχ(ρ)|rσrσ〉+ σ sinχ(ρ)|rσ̄rσ̄〉] /
√

2,

|Eσσ̄(ρ)〉 = (|rσrσ̄〉+ σ|rσ̄rσ〉) /
√

2

where σ = +, - and we defined σ̄ ≡ −σ with correspond-
ing eigenenergies

Eσσ(ρ) = V++(ρ)−∆+- + σ
√
δ2
+- +W++(ρ)2,

Eσσ̄(ρ) = V+-(ρ)−∆+- + σW+-(ρ),
(C2)

shown in Fig. 2(c). Here, we used the short hand nota-
tion ∆+- ≡ ∆+ + ∆-, δ+- ≡ ∆+ − ∆- and tan 2χ(ρ) =
W++(ρ)/δ+-.

Adiabatically eliminating (up to fourth order in
Ωσ/Eσ′σ′′ � 1) of the Rydberg states yields an effective
interaction in the subspace of hyperfine ground states

H̃ = H0 + H1 −Ω1H
−1
1 Ω†1

+ Ω1H
−1
1 Ω1H

−1
1 Ω†1H

−1
1 Ω†1

−Ω1H
−1
1 Ω2H

−1
2 Ω†2H

−1
1 Ω†1

(C3)

which yields (for two atoms)

H̃ =


Ṽ++ 0 0 W̃++

0 Ṽ+- W̃+- 0

0 W̃ ∗+- Ṽ-+ 0

W̃ ∗++ 0 0 Ṽ--

 (C4)

written in the basis of the hyperfine states
{|g+g+〉, |g-g+〉, |g+g-〉, |g-g-〉}. In the following we
will discuss the various potentials separately.

2. The potential Ṽ++ and Ṽ--

Adiabatic elimination up to fourth order in Ω/∆ of the Rydberg states yields

Ṽ++ =
Ω2
-

2∆-

− Ω4
-

4∆3
-

+
Ω4
-

4∆2
-

V++ − 2∆+

W 2
++ − (V++ − 2∆-) (V++ − 2∆+)

,

Ṽ-- =
Ω2
+

2∆+

− Ω4
+

4∆3
+

+
Ω4
+

4∆2
+

V++ − 2∆-

W 2
++ − (V++ − 2∆-) (V++ − 2∆+)

,

where asymptotically we just recover the single particle light shifts (up to fourth order)

Ṽ∞++ ≡ Ṽ++(r →∞) =
Ω2
-

2∆-

− Ω4
-

8∆3
-

,

Ṽ∞-- ≡ Ṽ--(r →∞) =
Ω2
+

2∆+

− Ω4
+

8∆3
+

.

(C5)

The relative height of the potentials becomes

(Ṽ++ − Ṽ∞++ )/Ṽ0 =
1− α2

1 − σβ(r/R1)6

α2
1 − [1− σ(r/R1)6] [1− βσ(r/R1)6]

,

(Ṽ-- − Ṽ∞-- )/Ṽ0 =

(
Ω+

Ω-

)4
1

β3

1− α2
1 − σ(r/R1)6

α2
1 − [1− σ(r/R1)6] [1− βσ(r/R1)6]

,
(C6)

with α2
1 = (w++/c++)

2 [shown in Fig. 2(b)], β = ∆+/∆-, Ṽ0 = Ω4
-/(8∆3

-), σ = sign(c++)sign(∆-) and R6
1 = |c++|/(2|∆-|).

Due to the resolvent both potentials can be divergent for W 2
++ − (V++ − 2∆-) (V++ − 2∆+) = 0, when two Born-
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Figure 6. Plot of the relative height given by Eqs. (C6) for α2
1 = 1.41 (n = 60) and σ = −1 for various laser detuning fractions

β.

Oppenheimer surfaces undergo an avoided crossing. This happens at

R6
div =

(∆- + ∆+) c++ ±
√

(∆- −∆+)
2
c2++ + 4∆-∆+w2

++

4∆-∆+

=
1 + β ±

√
(1− β)

2
+ 4βα2

1

2β
σR6

1. (C7)

In order to avoid such divergences and to obtain steplike potentials we require Im(Rdiv) 6= 0. For α2
1 > 1 this is for

example the case when β < 1 − 2α2
1 + 2α1

√
α2

1 − 1. Figure 6 shows a typical example of Eq. (C6) for n = 60 where
α2

1 = 1.41 and σ = −1. In this case the potential has no singularity (avoided crossing) for β < −0.30.
For α1 = 0 one obtains the well known result of a single dressed Rydberg level, i.e. (Ṽ++ − Ṽ∞++ )/Ṽ0 =

−1/
[
1− σ(r/R1)6

]
[7].

3. Coupling element W̃++

For the coupling matrix element W̃++ adiabatic elimination up to fourth order in Ω/∆ yields

W̃++ = −ei∆φ Ω2
-Ω2

+

4∆-∆+

W++

W 2
++ − (V++ − 2∆-) (V++ − 2∆+)

(C8)

where ∆φ = (k1−k2)(r1 +r2) is the phase difference between the two lasers at the center of mass position. Note that
this phase can be gauged away using a local gauge transformation – a rotation around the z-axis in the spin-basis.
Asymptotically and at the origin (r = 0) the coupling matrix element vanishes

W̃++(r →∞) = 0, and W̃++(r → 0) = 0. (C9)

In dimensionless units W̃++ reads

W̃++/Ṽ0 =− 1

2β

(
Ω+

Ω-

)2
α1σ(r/R1)6

α2
1 − [1− σ(r/R1)6] [1− βσ(r/R1)6]

. (C10)

Again, this matrix element is regular for α2
1 > 1 and β < 1− 2α2

1 + 2α1

√
α2

1 − 1.
Figure 6(c) shows a typical example of Eq. (C10) for n = 60 where α2

1 = 1.41 and σ = −1. In this case the potential
has no singularity (avoided crossing) for β < −0.30. The coupling matrix element has a maximum at

R6
1,max =

√
(1− α2

1)/βR6
1 with

W̃++(R1,max) = −ei∆φ Ṽ0

2β

(
Ω+

Ω-

)2
α1

1 + 2
√
β (1− α2

1) + β
.

(C11)

4. Potential Ṽ+-

For the potential Ṽ+- adiabatic elimination up to fourth order in Ω/∆ yields

Ṽ+- =
Ω2
-

4∆-

+
Ω2
+

4∆+

− Ω4
-

16∆3
-

− Ω2
+Ω2

-

16∆2
-∆+

− Ω2
+Ω2

-

16∆-∆2
+

− Ω4
+

16∆3
+

+
(∆- + ∆+)

2
Ω2
-Ω2

+ (∆- + ∆+ − V+-)

16∆2
-∆2

+

(
(∆- + ∆+ − V+-)2 −W 2

+-

) (C12)
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where asymptotically we just recover the single particle light shifts (up to fourth order)

Ṽ∞+- ≡ Ṽ++(r →∞) =
Ω2
-

4∆-

− Ω4
-

16∆3
-

+
Ω2
+

4∆+

− Ω4
+

16∆3
+

. (C13)

The relative height of the potential becomes

(Ṽ+- − Ṽ∞+- )/Ṽ0 =
(1 + β)

2β2

(
Ω2
+

Ω-

)2 1
2 (1 + β)σ′(r/R2)6 − 1 + α2

2[
1
2 (1 + β)σ′(r/R2)6 − 1

]2 − α2
2

(C14)

with α2
2 = (W+-/c+-)

2 [shown Fig. 2(b)], σ′ =
sign(c+-)sign(∆-) and R6

2 = |c+-|/(2|∆-|). Due to
the resolvent the second term can be divergent for
(∆- + ∆+ − V+-)2−W 2

+- = 0, when two potential surfaces
undergo an avoided crossing. This happens at

R′6div =
c+- ± w+-

∆- + ∆+

=
1± α2

1
2 (1 + β)

σ′R2. (C15)

In order to avoid such divergences and to obtain steplike
potentials we require Rdiv ∈ C. This can only be fulfilled
for −1 < α2 < 1 and β < −1. Figure 7 shows a typical
example of Eq. (C14) for n = 60 where α2

2 = 0.46 and
σ′ = 1. In this case the potential has no singularity
(avoided crossing) for β < −1. We note that for β = −1
the potential vanishes.

5. Coupling element W̃+-

For the coupling matrix element W̃+- adiabatic elimi-
nation up to fourth order in Ω/∆ yields

W̃+- = ei∆φ12
Ω2
-Ω2

+

16∆2
-∆2

+

(∆- + ∆+)
2
W+-

(∆- + ∆+ − V+-)2 −W 2
+-

(C16)

where ∆φ12 = (k1 − k2)(r1 − r2) is the phase difference
between the two lasers and relative position. Asymp-
totically and at the origin (r = 0) the coupling matrix
element vanishes

W̃+-(r →∞) = 0, and W̃+-(r → 0) = 0. (C17)

In dimensionless units W̃+- reads

W̃+-/Ṽ0 =

(
Ω+

Ω-

)2
1

2β2

α2
1
2 (1 + β)

2
σ′(r/R2)6[

1
2 (1 + β)σ′(r/R2)6 − 1

]2 − α2
2

.

(C18)

Again, this matrix element is regular for −1 < α2 < 1
and β < −1. Figure 7 (right panel) shows a typical
example of Eq. (C18) for n = 60 where α2

1 = 1.41 and
σ = −1. We note that for β = −1 the coupling matrix
element vanishes. The coupling matrix element has a

maximum at

R6
2,max = −2

√
1− α2

2

1 + β
R6

2 with

W̃+-(R2,max) = − Ṽ0

4β2

(
Ω+

Ω-

)2(√
1− α2

2 − 1

)
β + 1

α2
.

(C19)
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