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Abstract

The spectrum of Prokushkin–Vasiliev Theory is puzzling in light of the Gaberdiel–

Gopakumar conjecture because it generically contains an additional sector besides higher-

spin gauge and scalar fields. We find the unique truncation of the theory avoiding this

problem to order 2 in perturbations around AdS3. The second-order backreaction on the

physical gauge sector induced by the scalars is computed explicitly. The cubic action

for the physical fields is determined completely. We comment on a different higher-spin

theory without such additional fields at λ = 1.
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1 Introduction

Higher-spin theories have been studied in significant detail in the last years.1 In particular the three-

dimensional case has received significant attention due to a conjecture by Gaberdiel and Gopaku-

mar [10] about a duality between WN -minimal models and three-dimensional higher-spin theories

containing one complex scalar field and with gauge algebra hs(λ). More precisely, WN -minimal

models are two-dimensional conformal field theories which are given by Wess–Zumino–Witten coset

models of the form
SU(N)k ⊗ SU(N)1

SU(N)k+1
. (1.1)

This conjecture was put forward for the t’Hooft limit thereof in which N, k →∞ at fixed

0 ≤ λ =
N

N + k
≤ 1 . (1.2)

The above t’Hooft coupling is to be identified with the λ parameter of the hs(λ) higher-spin theory.

This duality is interesting because two-dimensional conformal field theories are among the best un-

derstood interacting quantum field theories. Furthermore higher-spin theories are much simpler than

full string theories [11] particularly in three dimensions [12, 13] because higher-spin gauge fields are

non-propagating in this case. The Gaberdiel–Gopakumar conjecture therefore provides a relatively

simple example of an AdS/CFT duality from which one might hope to understand the general nature

of these dualities in more detail.

An explicit construction of an hs(λ) higher-spin theory in three dimensions is Prokushkin–Vasiliev

Theory [14]. Its physical field content is given by a complex scalar2 with m2 = −1 + λ2 and a

tower of higher-spin gauge fields with spin s = 1, 2, 3, . . . ,∞ obeying Fronsdal equations [15] at

order 1 in perturbations around AdS3. This is precisely the spectrum required by the Gaberdiel–

Gopakumar conjecture. However, a priori Prokushkin–Vasiliev Theory contains an additional sector

consisting of Killing tensors and a further set of gauge fields which are not related to Fronsdal fields.3

The field-theoretical interpretation of these fields and their role within the Gaberdiel–Gopakumar

duality is to the best of our knowledge unclear. At order 2 in perturbation theory these fields will

generically interact with the physical sector. We will refer to them as twisted fields in the following

for reasons that will become clear in Section 2. In this respect four-dimensional Vasiliev Theory [16]

1See e.g. [1–3]. For a non-exhaustive list of reviews we refer to [4–10].
2More precisely we will restrict ourselves to a truncation of Prokushkin–Vasiliev Theory with this physical field

content. Off the start Prokushkin–Vasiliev Theory contains two complex scalars [14].
3Note that this issue is unrelated to the problem of light states (see e.g. [10]).
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is simpler than the three dimensional one as it is possible to formulate the theory without the need

for introducing a twisted sector.

It was known since the work of Vasiliev [17] that to order 1 in perturbation theory all twisted

fields can be set to zero consistently after an appropriate field redefinition. As we will establish in

Section 3 this field redefinition is not unique and will lead to free parameters in the second-order

equations of motion. We will show that there exists a unique point in parameter space which allows

for trivial solutions of the second-order twisted fields and one can therefore truncate Prokushkin–

Vasiliev Theory to its physical sector at this point. For any other choice of the parameters the twisted

fields cannot be set to zero consistently at order 2.

For vanishing scalar field the physical sector of Prokushkin–Vasliev Theory can be described by

hs(λ) ⊕ hs(λ) Chern–Simons Theory [18, 19] (see [20, 21] for an introduction). For a non-vanishing

scalar field much less about the dynamics of the theory is known, and in particular a full action is not

yet available. This is because Prokushkin–Vasiliev Theory contains auxiliary coordinates and fields

which have to be solved for in order to obtain equations for the physical and twisted fields. To the

second-order this becomes a task of considerable technical difficulty and so far this has been studied

mostly at the linear level (with [22–28] among the exceptions). At the linear level the system obeys

free equations of motion and therefore the higher-spin fields and the scalar do not interact.

In this paper we will systematically extract and analyze the second-order equations of motion of

Prokushkin–Vasiliev Theory for both physical and twisted fields. In particular we will compute the

backreaction on the higher-spin gauge fields ϕm(s) due to the scalar Φ directly from Prokushkin–

Vasliev Theory to order 2 in perturbation theory. We do so for λ = 1
2
. For this analysis we

reformulate perturbation theory in a manifestly Lorentz-covariant form. The theory at λ = 1
2
is

technically simpler to deal with but we expect its features to be generic.

From the metric-like perspective it is expected that this backreaction has a compact form:

�ϕm(s) + ... =
gs
s
Jm(s) , (1.3)

with a priori undetermined coefficients gs. Up to terms proportional to the cosmological constant Λ

and the scalar’s equations of motion the canonical currents Jm(s) read

Jm(s) = (−i)s Φ∗( ~∇m − ~∇m)
sΦ+O(Λ) . (1.4)

In Section 4 we fix the coefficients gs by requiring closure of the scalar’s gauge transformations at

λ = 1
2
and therefore determine the cubic action of the physical sector.4

In order to relate the backreaction obtained directly from Prokushkin–Vasiliev Theory to (1.4) a

field redefinition quadratic in the scalar field Φ is needed containing terms of the form

∑

l

∇m...∇m

l︷ ︸︸ ︷
∇n...∇n Φ

∗∇n...∇n∇m...∇mΦ . (1.5)

4The general case will be presented elsewhere [29].
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Field redefinitions of this type are also necessary to formulate Prokushkin–Vasiliev Theory in a

manifestly Lorentz-covariant manner. These redefinitions contain generically an infinite number of

derivatives and are therefore potentially non-local. In particular they allow for a complete removal

of the backreaction in (1.3), as was first shown in [30]. Our analysis highlights the urgent need for

a better understanding of the class of allowed field redefinitions in Prokushkin–Vasiliev Theory (see

e.g. [31]).

Summarizing, our results are the following:

• The second-order Prokushkin–Vasiliev Theory at λ = 1
2
possesses free parameters specifying

the truncation to the physical sector. Only at one point in parameter space can one consistently

set all second-order twisted fields to zero.

• The backreaction on the second-order physical fields is computed explicitly in a manifestly

Lorentz-covariant manner, in particular at the point in parameter space mentioned hereabove.

• We determine the cubic action describing the physical sector of the theory by enforcing closure

of the gauge transformations for the scalar. The coupling constants gs are thus fixed and read

gs =
1

(2s− 2)!
. (1.6)

Along the way, we reformulate perturbation theory in a manifestly Lorentz-covariant form and we

also systematically compute all cohomologies relevant for our second-order analysis.

We have structured this paper in such a way that the reader should be able to follow the pre-

sentation of our results without any detailed understanding of Prokushkin–Vasiliev Theory. The

equations of motion for twisted and physical fields are extracted from Prokushkin–Vasiliev Theory

but to second-order this is a technically involved task. After reviewing necessary ingredients for

our analysis in Section 2 we will only quote the extracted equations of motion and discuss their

implications in Section 3. In Section 4 we will discuss the cubic action in a self-contained way. In

Section 5 we will then outline how we extract the equations of motion from Prokushkin–Vasiliev

Theory leaving the more technical details to the appendices. In Section 6 we discuss our results and

give an outlook.

2 Ingredients of Higher-Spin Theories

In the following we summarize all the necessary ingredients for presenting our main results in Sec-

tion 3. This section is structured as follows:

Section 2.1 will review some basic facts of the metric-like and frame-like formulation of higher-spin

theories.
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Section 2.2 will present the higher-spin algebra hs(1
2
). We will briefly discuss how this algebra is

constructed and outline a particularly useful oscillator realization.

Section 2.3 details the free equations of motion for the various fields of Prokushkin–Vasiliev Theory.

These involve not only scalar fields and higher-spin gauge fields, but also additional fields whose

interpretation is not obvious as we will discuss.

Section 2.4 explains the structure of the non-linear equations of motion for these fields. We will

discuss their form at both first and second order in perturbations around an AdS3-background.

This section will furthermore introduce the basic quantities we calculated for this work.

Section 2.5 discusses whether some of the interactions terms in the equations of motion of Sec-

tion 2.4 can be removed by field redefinitions. This question will be related to studying the

cohomologies of the adjoint and twisted-adjoint covariant derivative.

Section 2.6 details how these covariant derivatives can be expressed in Fourier space and uses this

fact to derive conservation identities for currents in Prokushkin–Vasiliev Theory.

Some readers might want to skip some of the following subsections as they mostly review well-

established material [14,32] for the discussion of our results in Section 3. We summarize all conven-

tions used in this paper in Appendix A.

2.1 Frame-like and Metric-like Formulation of Higher-Spin Theories

Historically massless spin-s fields were first described by introducing a totally-symmetric tensor field

ϕm1...ms
with vanishing double trace [15],

ϕrk
rkm1...ms−4

= 0 . (2.1)

For non-vanishing cosmological constant Λ the free equations of motion then take the form

Fm(s) = ✷ϕm(s) −∇m∇nϕnm(s−1) +
1

2
∇m∇mϕ

n
nm(s−2) −m2ϕm(s) + 2Λgmmϕm(s−2)n

n = 0 , (2.2)

with m2 = Λ(s − (D + s − 3)(s − 2)). Furthermore gmn and ∇m denote (A)dSD metric and the

(A)dSD covariant derivative respectively. The equations of motion are invariant under the following

gauge transformations:

δϕm(s) = ∇mǫm(s−1) , (2.3)

for a traceless gauge parameter

ǫkkm(s−3) = 0 . (2.4)

An alternative approach, pioneered in [33], is to describe the higher-spin theory in terms of higher-

spin generalizations of the spin-2 vielbein and spin-connection. So far a fully non-linear theory can
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only be formulated using this formalism. In the following we will restrict ourselves to the three-

dimensional case, for which the number of spin-connections does not grow with the spin as opposed

to what happens in higher dimensions [34]. We denote the spin-s vielbein and spin-connection by

ea(s−1)
m , ωa(s−1),b

m , (2.5)

where both fields are traceless in their fiber indices. In the three-dimensional case we can furthermore

dualize the spin-connection to a symmetric tensor of the same type as the vielbein

ωa(s−1)
m ≡ ǫabc ω

a(s−2)b,c
m . (2.6)

In the following we will denote the (A)dS3 background fields by ham and ̟a
m. At the lowest order in

perturbations around the (A)dS3 background the Fronsdal field can be identified with the totally-

symmetric part of the higher-spin vielbein

ϕm(s) = ea(s−1)
m ham...ham . (2.7)

The free equations of motion are generalizations of the vanishing torsion and Riemann tensor equa-

tions in gravity and are given by

T a(s−1) ≡ ∇ea(s−1) − ǫabc hb ∧ ωa(s−2)c = 0 , (2.8a)

Ra(s−1) ≡ ∇ωa(s−1) + ǫabc h
b ∧ ea(s−2)c = 0 . (2.8b)

The Fronsdal equations are then found in exactly the same way as for the spin-two case, that is,

by solving the zero-torsion constraint (2.8a) for ω = ω(∇e) and then plugging the solution into

the second equation (2.8b). In three dimensions all higher-spin fields including the spin-2 field are

topological, i.e. the Fronsdal equations (2.2) or equivalently the frame-like equations (2.8) do not

describe any local degrees of freedom. Also in three dimensions there is the following isomorphism:

sp2 ≃ sl2 ≃ so(1, 2) , (2.9)

which allows to convert every vector index into two spinorial two-component indices with the help

of the matrices σαβ
m ∈ {I, σ1, σ3}. Every symmetric and traceless rank-k so(1, 2) tensor is therefore

isomorphic to a spinorial symmetric tensor of rank 2k

V a(k) ←→ V α(2k) . (2.10)

This dictionary will be used extensively in the following. Furthermore we will consider only the case

of negative cosmological constant in the rest of our discussion.

2.2 Higher-Spin Symmetry

The higher-spin algebra is a key ingredient of higher-spin theories. It links together a number of

higher-spin fields into a single connection, or more generally into a single module of the algebra
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[35–38]. The higher-spin algebra is constructed from a certain quotient of the universal enveloping

algebra of the AdS3-isometry algebra, which can be also equipped with some discrete elements or

further tensored with matrix algebras.

The AdS3-isometry algebra is semi-simple, so(2, 2) ≃ sp(2)⊕ sp(2), which leads one to consider

quotients of the universal enveloping algebra U(sp(2)). One then considers the associative algebra

[37, 39],

Aq(2, ν) = U(sp(2))/〈C2 +
1

4
(3− 2ν − ν2)〉 , (2.11)

where the denominator denotes the two-sided ideal generated by the quadratic Casimir C2 subtracted

by some number parametrized by ν ∈ R. With respect to its commutator the associative algebra

forms a Lie algebra which decomposes into (as a Lie algebra)

Aq(2, ν) = C⊕ hs(λ) . (2.12)

Here we defined the higher spin algebra hs(λ) with λ = 1
2
(ν + 1) while C is the identity component

of the universal enveloping algebra.

In this work we will focus on the case ν = 0 (i.e. λ = 1
2
) for which a particularly simple oscillator

realization of this algebra can be given, which we will briefly review in the following. Let {ŷα} be a

set of two canonically commuting oscillators, obeying

[ŷα, ŷβ] = 2iǫαβ . (2.13)

Using this definition we can realize the sp(2) algebra by considering the combinations Tαβ ≡
− i

4
{ŷα, ŷβ}, which satisfy

[Tαα, Tββ] = ǫαβTαβ . (2.14)

The associative algebra Aq(2, 0) can then be constructed by considering even functions of these

oscillators, i.e. f(ŷ) = f(−ŷ). Using (2.13) one can easily check that

C2 = −
1

2
T αβTαβ = −3

4
, (2.15)

which indeed corresponds to the case ν = 0. The AdS3-isometry algebra contains two copies of sp(2).

It is convenient to introduce a Clifford pair5 φ and ψ

φ2 = 1 , ψ2 = 1 , such that {φ, ψ} = 0 , (2.16)

which we further assume to commute with all ŷα oscillators. The Clifford element φ ensures the

doubling of sp(2). There is not yet any particular reason for introducing ψ but as we will see this

element is important for the theory to describe non-trivial dynamics. Using these definitions we can

realize the AdS3 algebra as follows

Lαβ ≡ −
i

4
{ŷα, ŷβ} , Pαβ ≡ φLαβ . (2.17)

5We do not collect the Clifford elements into a doublet {ψi, ψj} = δij because, as will be discussed below, the

vacuum solution for Prokushkin–Vasiliev theory breaks this symmetry.
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Here and in the following we set the cosmological constant Λ = 1. Using (2.13) and (2.16) one can

easily check that the definitions (2.17) indeed obey the expected commutation relations

[Lαα, Lββ] = ǫαβLαβ , [Lαα, Pββ] = ǫαβPαβ , [Pαα, Pββ] = ǫαβLαβ . (2.18)

The algebra can be effectively dealt with by replacing functions of operators ŷα with functions of

ordinary commuting variables yα that are multiplied with the help of the Moyal star-product

(f ⋆ g)(y) = f(y) exp i

(
~∂

∂yα
ǫαβ

~∂

∂yβ

)
g(y) =

1

(2π)2

∫
d2u d2v eiv

αuα f(y + u) g(y + v) , (2.19)

where any boundary terms are to be dropped when using the integral form.

For ν 6= 0 a deformed oscillator realization can be given but the corresponding star product is

not a Moyal product [40]. This makes the case ν = 0 technically simpler, although we expect it to

possess features similar to that of the more general Prokushkin–Vasiliev Theory.

Note that in the following we will refer somewhat loosely to functions of not only yα but also φ

and ψ as taking value in the higher-spin algebra.

2.3 Free Equations of Motions

In this section we will explain how free equations of motion for matter and higher-spin gauge fields

can be constructed from higher-spin symmetry. The relevant objects to describe higher-spin fields

and matter fields are a connection one-form ω and a zero-form C respectively which are functions6 of

yα, ψ and φ. Unless stated otherwise we consider bosonic fields only which corresponds to restricting

the fields to even functions of yα. As we will discuss C and ω additionally encode twisted fields

which are necessarily present if we want to describe non-trivial dynamics in this language.

Empty anti-de Sitter space, which is a vacuum solution of the higher-spin theory, can be described

by a flat connection Ω

dΩ = Ω ∧ ⋆Ω , (2.20)

that can be written in terms of the generators of the AdS3-isometry algebra (2.17) as

Ω =
1

2
̟ααLαα +

1

2
hααPαα , (2.21)

where again ̟αα and hαα denote the spin-connection and vielbein of AdS space7. The free equations

are then given by

DΩω = 0 , DΩC = 0 , (2.22)

6Note that we allow for a yα-independent components of the gauge connection, which results in an additional spin-1

field component of the connection.
7Allowing the vacuum connection to have non-zero values for higher-spin fields one can describe matter fields on

a more general background, e.g. a higher-spin black hole [41–43], but in a linearized approximation and therefore

neglecting the backreaction of matter fields. In this work we will however only consider a pure AdS3-background.
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where we have introduced the AdS3 covariant derivative DΩ:

DΩF = dF− Ω ∧ ⋆F+ (−1)|F|F ∧ ⋆Ω , (2.23)

where |F| denotes the form-degree of F. One can easily show that the covariant derivative is nilpotent

of degree 2, i.e. DΩ ◦DΩ = 0. Furthermore the free equations are invariant under the following gauge

transformations

δω = dξ − [Ω, ξ]⋆ , δC = 0 . (2.24)

Note that the φ-dependence of Pαα in (2.21) and the identity [φf, gψ] = φ{f, g}ψ imply that the

covariant derivative DΩ acts as follows:

DΩ { g(y, φ|x) + g̃(y, φ|x)ψ } = Dg(y, φ|x) + D̃g̃(y, φ|x)ψ , (2.25)

where we have conveniently defined the adjoint and twisted-adjoint covariant derivatives

D = ∇− 1

2
φ hαα[Lαα, •]⋆ = ∇− φhααyα∂yα , (2.26)

D̃ = ∇− 1

2
φ hαα{Lαα, •}⋆ = ∇+

i

2
φhαα(yαyα − ∂yα∂yα) , (2.27)

where ∇ is the usual Lorentz-covariant derivative:

∇ = d • −1
2
̟αα[Lαα, •]⋆ = d−̟ααyα∂

y
α . (2.28)

The above differential form of the operatorsD and D̃ can be easily derived using (2.19). An important

difference between the adjoint covariant derivative D and the twisted-adjoint covariant derivative D̃ is

that the former commutes with the yα-number operator yν∂yν , i.e. it slices fields into finite-dimensional

modules each having a fixed degree in yα, while the latter mixes components with different even (odd)

powers of yα. Both covariant derivatives are nilpotent as an immediate consequence of DΩ ◦DΩ = 0.

Due to (2.25) it is useful to decompose ω and C as follows:

ω(y, φ, ψ) = ω̃(y, φ)ψ + ω̂(y, φ) , C(y, φ, ψ) = C̃(y, φ) + Ĉ(y, φ)ψ . (2.29)

We refer to the fields ω̂ and Ĉ as physical and to ω̃ and C̃ as the twisted sector of the theory.8 Using

(2.25) the equations of motion and gauge transformations split as

D̃ω̃ = 0 , δω̃ = D̃ξ̃ , DC̃ = 0 , δC̃ = 0 , (2.30)

Dω̂ = 0 , δω̂ = Dξ , D̃Ĉ = 0 , δĈ = 0 . (2.31)

By expanding in yα we can see that the equations of motion have the following content:

8In [14] they were called auxiliary, but we use the term twisted since many of the fields in the physical sector are

auxiliary as well. Twisting is related to the type of higher-spin algebra representation they take values in as compared

to the physical fields.
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Higher-Spin frame-like fields, the vielbein and the spin-connection, are contained in ω̂(y, φ):

ω̂(y, φ) =
∑

s

1

(2s− 2)!
yα(2s−2)

(
ωα(2s−2) + φeα(2s−2)

)
, (2.32)

while splitting the equations (2.31) with respect to φ leads to the generalized zero-torsion and

zero-curvature conditions on these fields:

T α(n) = ∇eα(n) − hαγ ∧ ωγα(n−1) = 0 , (2.33a)

Rα(n) = ∇ωα(n) − hαγ ∧ eγα(n−1) = 0 , (2.33b)

which are exactly (2.8) in the spinorial language of (2.10) and are therefore equivalent to the

Fronsdal equation (2.2) as explained in Subsection 2.1. It is clear from this point of view that

the higher-spin fields are topological since (2.22) and (2.24) describe a flat connection.

Two physical scalar fields encoded in Ĉ. Indeed, the component form of the equations (2.31)

projected onto the two orthogonal subspaces by Π± = 1±φ

2
are

∇Ĉα(n)
± ± ihααĈα(n−2)

± ∓ i

2
hγγĈ

γγα(n)
± = 0 , (2.34)

and tell us that Ĉαα
± parametrizes the first derivative of Ĉ±. Contracting (2.34) for n = 2 with

an inverse vielbein leads to

hmαα(∇mĈ
αα
± ± ihααm Ĉ±) = 0 , (2.35)

where the contraction with the vielbein produces a trace of Ĉα(4), which is identically zero, and

which we have therefore left out altogether. Combining the resulting equation with (2.34) for

n = 0,

∇Ĉ± ∓
i

2
hγγĈ

γγ
± = 0 , (2.36)

we recover the Klein–Gordon equation,

�Ĉ± = −3
4
Ĉ± , (2.37)

for two real scalars.9

The rest of the equations express the remaining components as derivatives of the scalar:

Ĉα(2k) = (4i φ hmαα∇m)
kĈ(x) . (2.38)

Therefore, the dynamical content of D̃Ĉ = 0 is given by two scalar fields.10 Let us note that

the mass corresponds to a conformally coupled scalar, but Prokushkin–Vasiliev theory is not

9 According to [14] the scalars obey Ĉ†
+ = Ĉ−, which follows from the reality conditions (C(φ))† = C(−φ) where

y†α = yα and (φψ)† = ψφ.
10At this point it is clear that there is no need for doubling of the scalar fields. Indeed a single scalar field on the

AdS or a more general higher-spin background can be described along the same lines by taking Ĉ be a function Ĉ(y)

of yα and imposing

dĈ +A+ ⋆ Ĉ − Ĉ ⋆ A− = 0 , (2.39)

where A±(y) are two flat connections of Aq(2, 0). This equation is consistent, but how to introduce nonlinearities in

Ĉ therein is not known. The Prokushkin–Vasiliev construction allows to construct consistent nonlinearities for such

free equations of motion, but then one does need the φ element (and in fact also ψ).
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conformal. The value of the mass is given by the sp(2)-Casimir operator computed on the given

oscillator representation as can be seen by comparing with (2.15).

A twisted zero-form denoted by C̃. The equations for C̃ decompose into an infinite set of Killing

equations

∇C̃α(n)
± ∓ hαγ C̃

γα(n−1)
± = 0 . (2.40)

This can be seen by observing that the above covariant constancy condition precisely coincides

with the condition for a 0-form gauge parameter ξ(y, φ) to be a Killing tensor:

δω̂(y, φ) = DΩξ(y, φ) = Dξ(y, φ) ≡ 0 . (2.41)

Also, it is obvious that the above component equation (2.40) does not, unlike its physical coun-

terpart (2.34), mix different components of C̃. It is not clear what the physical interpretation

of such Killing tensors is and their role within the Gaberdiel–Gopakumar conjecture is unclear.

They generically mix with dynamical fields at the interacting level, as we explore in Section 3.

Let us note that a non-vanishing value for ν, as defined in Subsection 2.2, would lead to the

following vacuum value for the twisted zero-form [14]:

C̃ = ν . (2.42)

We will discuss this point in more detail in Section 3.

A twisted one-form called ω̃. One could think of it as the gauge field associated with C̃. In this

case the corresponding equations look like those for Ĉ, but imposed on one-forms. Moreover,

just as for C̃, it is not clear what the physical interpretation of this set of fields is — they

are definitely not related to Fronsdal fields. In particular, their role within the Gaberdiel–

Gopakumar duality is unclear.

2.4 Non-linear Equations of Motion

In the last subsection we have restricted our attention to the free theory. In this section we will

discuss the non-linear equations of motion. By expanding these equations of motion around an

AdS3-background and considering linear fluctuations one recovers the free equations of ω and C

discussed in the last subsection. Let us denote the fields of the non-linear theory by W and B,

whose linear order fluctuations are then the fields ω and C. Interactions for these fields can a priori

arise from allowing for the most general nonlinearities on the right-hand side of their equations of

motion, that is [44, 45],

dW = FW (W ,B) , (2.43a)

dB = FB(W ,B) . (2.43b)
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Equations of motion of this form are said to be unfolded and are further constrained by Frobenius

integrability, i.e. by consistency with d2 ≡ 0. The structure functions FW (W ,B) and FB(W ,B)

are assumed to be expandable in B:

FW (W ,B) = V(W ,W ) + V(W ,W ,B) + V(W ,W ,B,B) + . . . , (2.44a)

FB(W ,B) = V(W ,B) + V(W ,B,B) + V(W ,B,B,B) + . . . , (2.44b)

where our notation is that the functions V are linear in each argument. The first interaction vertices

are given explicitly by the higher-spin algebra:

V(W ,W ) = W ∧ ⋆W , V(W ,B) = W ⋆B −B ⋆W .

We shall also refer to the vertices V as cocycles,11 and they can be extracted from the Prokushkin–

Vasiliev equations as we will detail in Section 5. Notice that the deviation ofW from a flat connection

is proportional to B.

As a consequence of Frobenius integrability, the equations enjoy a gauge symmetry with a gauge

parameter ξ:

δW = dξ + ξ
δ

δW
FW (W ,B) = dξ − [W , ξ]⋆ +O(B) , (2.45a)

δB = ξ
δ

δB
FB(W ,B) = ξ ⋆B −B ⋆ ξ +O(B2) . (2.45b)

We stress that the deformation of the gauge symmetry is governed directly by the higher-spin algebra

to the lowest order only. The fully non-linear gauge symmetry algebra is a deformation of the higher-

spin algebra in the form of an open algebra with structure ’constants’ that depend on the fields

themselves (algebroid).

The simplest background solution for these non-linear equations is provided by a flat connection Ω

of the higher-spin algebra at vanishing matter field B = 0. We take Ω to be the AdS3 flat connection

of (2.21) and then expand up to the second order:

W = Ω + ω + ω(2) + . . . , B = C+C(2) + . . . . (2.46)

Linear Fluctuations: For the first-order perturbations ω and C one finds, in general,

dω = {Ω,ω}⋆ + V(Ω,Ω,C) −→ DΩω = V(Ω,Ω,C) , (2.47a)

dC = Ω ⋆C−C ⋆ Ω −→ DΩC = 0 . (2.47b)

We thus see that ω may generically not be a flat connection as it can have a non-vanishing source

represented by V(Ω,Ω,C). For Prokushkin–Vasiliev Theory on the AdS3-background we will find

11Due to the integrability condition the vertices V can be also interpreted as Chevalley–Eilenberg cocycles with value

in infinite-dimensional modules that W and B take values in [46, 47]. Since these modules are infinite-dimensional it

is difficult to say anything directly. A prescription to write a solution for the structure functions is given by Vasiliev

equations, which can be thought of as a tool to generate the required interaction terms.
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V(Ω,Ω,C) = 0 (up to a field redefinition of ω, see Section 5.5). This statement implies the flatness of

higher-spin-connections to the first order and is related to the non-propagating nature of higher-spin

fields in three dimensions12. The gauge transformations at linear order are given by

δω = dξ − [Ω, ξ]⋆ , δC = 0 . (2.48)

Splitting the fields into twisted and physical components as in (2.29) we obtain the following equations

of motion:

D̃ω̃ = 0 , DC̃ = 0 , (2.49)

Dω̂ = 0 , D̃Ĉ = 0 , (2.50)

which are the free equations of motion discussed in the previous subsection.

Second-Order Fluctuations: The second-order perturbations ω(2) and C(2), which are our main

concern in this paper, obey a system of equations which contain source terms a priori involving first-

and second-order fields:

DΩω
(2) = ω ∧ ⋆ω + V(Ω,Ω,C(2)) + V(Ω,ω,C) + V(Ω,Ω,C,C) , (2.51a)

DΩC
(2) = [ω,C]⋆ + V(Ω,C,C) . (2.51b)

In Prokushkin–Vasiliev Theory we can remove V(Ω,Ω,C(2)) by a field redefinition of ω(2), so that the

sources on the above right-hand sides depend on the first-order fields only. The gauge transformation

of the second-order fields are then given by

δω(2) = DΩξ
(2) − [ω, ξ]⋆ + ξ

V(Ω,ω,C)

δω
, δC(2) = [ξ,C]⋆ . (2.52)

Again, we can split these equations into physical and twisted components. The linear-order equations

of motion allow us to consistently set all first-order twisted fields to zero, and doing so we obtain the

following set of equations:

Dω̂(2) = ω̂ ∧ ⋆ ω̂ + V(Ω,Ω, Ĉ, Ĉ) , (D̃Ĉ(2))ψ = [ω̂, Ĉψ]⋆ , (2.53a)

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) , DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) . (2.53b)

These are the equations that we will study in Section 3. The cocycle V(Ω,Ω, Ĉ, Ĉ), which is bilinear

in the scalar fields, yields the matter backreaction that sources the Fronsdal equation to the second

order, i.e. it encodes the generalized stress-tensors. We will analyze this term in Section 3.2.

Note that by (2.53b) we can not set the second-order twisted fields to zero consistently. But

by performing field redefinitions one might be able to remove the source terms appearing in its

equations of motion and afterwards set these fields to zero. We will indeed show that this is possible

for Prokushkin–Vasliev Theory. We will discuss field redefinitions in the next section.

12In higher dimensions, and in particular for D = 4, or on more complicated backgrounds the latter cocycle is

non-zero.
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2.5 Field Redefinitions and Cohomologies

It is natural to ask whether we can remove terms from the above equations of motion by a field

redefinition. As an example let us consider the cocycle J = V(Ω,Ω, Ĉ, Ĉ), which is part of the

equation of motion for the gauge-connection (2.53a),

Dω̂(2) = ω̂ ∧ ⋆ ω̂ + J . (2.54)

We can perform a field redefinition of the type

ω̂(2) → ω̂(2) + F (Ω, Ĉ, Ĉ) , (2.55)

where F is linear in every argument. Field redefinitions quadratic in Ĉ, such as F , contain generically

terms of the form
∞∑

n,m,l=0

fn,m,l Ĉα(n)ν(l) Ĉα(m)
ν(l) yα(n+m) , (2.56)

where one has to appropriately contract with Hαα and hαα for redefinitions of form-degree 1 and 2

respectively. Following standard (but unfortunate) terminology we will refer to such field redefinitions

as pseudo-local. By (2.38) a pseudo-local field redefinition generically contains an infinite number of

derivatives of the physical scalar field for each spin, e.g. 2s = m+ n for zero-forms.

If the cocycle J is exact, i.e. J = DF (Ω, Ĉ, Ĉ), then it can evidently be removed by a pseudo-local

field redefinition ω̂(2) → ω̂(2)+F (Ω, Ĉ, Ĉ). On the other hand, the consistency of (2.54) with D2 = 0

leads to

DJ+Dω̂ ∧ ⋆ ω̂ − ω̂ ∧ ⋆Dω̂ = 0 . (2.57)

Upon using the first order equation of motion Dω̂ = 0 this implies that the current J is also closed,

i.e. DJ = 0. Therefore in order to make sure that the cocycle J cannot be removed by a pseudo-

local field redefinition we have to check whether it is an element of H2(D, ĈĈ), the cohomology of

the nilpotent operator D with respect to pseudo-local field redefinitions of form-degree 1 which are

quadratic in Ĉ.

This discussion generalizes to the other non-vanishing cocycles in (2.53) by considering cohomolo-

gies for the covariant derivatives D and D̃ with respect to field redefinitions that are linear in Ĉ,

linear in both Ĉ and ω̂, or quadratic in Ĉ. The notation for the corresponding cohomologies changes

in the obvious way. In Appendix E we have analyzed various cohomologies, and the most relevant

results of this analysis are summarized in Table 1. Hereafter we briefly discuss various implications

of these results.

degree n H
n(D, ĈĈ) H

n(D̃, Ĉ) H
n(D̃, ω̂Ĉ)

1 non-empty non-empty non-empty

2 empty empty non-empty

Table 1: Cohomologies of various form-degrees n and classes of field redefinitions.

16



Form-degree-2 cohomology H2(D, ĈĈ) for field redefinitions quadratic in Ĉ: This cohomology

is trivial and therefore any J on the right-hand side of (2.54) can be removed by a pseudo-local

field redefinition of the type (2.56). Thus any backreaction of the scalar fields on the higher-

spin fields, including the spinorial counterpart of the canonical s-derivative current (1.4), can

be removed by a pseudo-local field redefinition which generically contains an arbitrary number

of derivatives of the scalar field for each spin.13 Such redefinitions should not correspond to

physically allowed ones. A possible interpretation for the fact that an arbitrary backreaction can

be removed is that the class of pseudo-local field redefinitions (2.55) is too broad. Unfortunately

a criterion which restricts the class of field redefinitions to the physically allowed ones is not

yet known.14 More comments on this important issue can be found in the conclusions to this

paper.

Form-degree-1 cohomology H
1(D, ĈĈ) for field redefinitions quadratic in Ĉ: The non-emptiness

of this cohomology [30] allows for sources to the twisted zero-form’s equations of motion,

DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) , (2.58)

that cannot be removed by a pseudo-local field redefinition

C̃(2) → C̃(2) +G(Ĉ, Ĉ) , (2.59)

which would imply that we cannot consistently choose Ĉ(2) ≡ 0. Beyond the second order

the twisted zero-form C̃(2) would therefore generically produce source terms to the physical

equations of motion, i.e. higher-order analogs of (2.53a). We will discuss this in more detail in

Section 3.

Form-degree-2 cohomology H2(D, ω̂Ĉ) for field redefinitions linear in both ω̂ and Ĉ: The equa-

tions of motion for the twisted gauge fields to the second order are given by

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) . (2.60)

As in the previous case the non-triviality of this cohomology therefore might prevent us from

setting the twisted field ω̃(2) to zero consistently. We will return to this point in Section 3.

We note that Table 1 also lists the results for H1,2(D̃, Ĉ) and H
1(D̃, ωĈ) for later reference.

2.6 Conservation

As explained in the last subsection the cocycles V(Ω,Ω, Ĉ, Ĉ) and V(Ω, Ĉ, Ĉ) of (2.51) have to be

closed or, differently put, conserved with respect to the covariant derivative D. This provides an

13The fact that the canonical s-derivative current can be removed by a pseudo-local field redefinition was first shown

in [30] and led to the development of an integration flow [48], which maps all physical and twisted fields in a field

frame in which they obey the free equations of motion.
14A conjecture regarding this point was put forward in [31].
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important consistency requirement to cross-check the validity of our calculations. Let us consider

q-forms, which are bilinears in the free fields Ĉ = Ĉ(y, φ|x):

Jq = Jµ1..µq
(y, φ|x) dxµ1 ∧ ... ∧ dxµq , with q = 0, 1, 2, 3 . (2.61)

Obviously the cocycles V(Ω,Ω, Ĉ, Ĉ) and V(Ω, Ĉ, Ĉ) correspond to q = 2 and q = 1 respectively.

The operator D defines a complex on q-forms Jq:

0 −→ J0 −→ J1 −→ J2 −→ J3 −→ 0 , (2.62)

In the following we will mostly work with Fourier-transformed fields,

Ĉ(y, φ) =

∫
dξ eiyξ Ĉ(ξ, φ|x) , (2.63)

which leads to the Fourier-transformed expressions for Jq

Jq =

∫
dξ dηKq(ξ, η, y) Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (2.64)

The sign flip in φ for one of the zero-forms Ĉ is due to the fact that Ĉ in the splitting (2.29) is

associated with the ψ-dependent term. The kernel Kq is given for the various form-degrees by

K0 = K(ξ, η, y) , K1 = hααKαα(ξ, η, y) , K2 = HααJαα(ξ, η, y) , K3 = HJ(ξ, η, y) ,

and we have used the definitions

Hαα ≡ hασ ∧ hασ , H ≡ Hαα ∧ hαα , (2.65)

which obey the following identities:

hαβ ∧ hγδ = 1

4
ǫαγHβδ + 3 more , (2.66a)

Hαβ ∧ hγδ = 1

6
(ǫαγǫβδ + ǫβγǫαδ)H . (2.66b)

Now with the help of the equations of motion for the Fourier-transformed fields,

∇Ĉ(ξ,+φ|x) = − i
2
φhαα

(
ξαξα − ∂ξα∂ξα

)
Ĉ(ξ,+φ|x) , (2.67a)

∇Ĉ(η,−φ|x) = +
i

2
φhαα (ηαηα − ∂ηα∂ηα) Ĉ(η,−φ|x) , (2.67b)

and of the identities (2.66) we find the following Fourier representations for D:

DK(ξ, η, y) = hααOααK(ξ, η, y) , (2.68a)

DhααKαα(ξ, η, y) =
1

4
HααOανKα

ν (ξ, η, y) , (2.68b)

DHααJαα(ξ, η, y) =
1

6
HOααJαα(ξ, η, y) , (2.68c)

18



where we have defined

Oαα ≡
i

2

[
(ηαηα − ∂ηα∂ηα)−

(
ξαξα − ∂ξα∂ξα

)
+ 2iyα∂

y
α

]
. (2.69)

Similarly the cocycles Ṽ(Ω, ω̂, Ĉ) in (2.53b) need to be conserved with respect to the twisted-adjoint

covariant derivative D̃. Let us therefore also consider p-forms which are linear in Ĉ and ω̂:

Jq =

∫
dξ dη

{
Lq(ξ, η, y) Ĉ(ξ, φ|x) ω̂(η,−φ|x) + L̄q(ξ, η, y) ω̂(ξ, φ|x) Ĉ(η, φ|x)

}
, (2.70)

where Lq and L̄q are given by

L1 = L(ξ, η, y) , L2 = hααLαα(ξ, η, y) , L3 = HααSαα(ξ, η, y) , (2.71a)

L̄1 = L̄(ξ, η, y) , L̄2 = hααL̄αα(ξ, η, y) , L̄3 = HααS̄αα(ξ, η, y) , (2.71b)

Using the equations of motion for ω̂ and Ĉ we again obtain a Fourier representation for D̃:

D̃L(ξ, η, y) = hααIααL(ξ, η, y) , (2.72)

D̃hααLαα(ξ, η, y) =
1

4
HααIανLα

ν (ξ, η, y) , (2.73)

where we have defined

Iαα ≡
i

2

[
(yαyα − ∂yα∂yα)−

(
ξαξα − ∂ξα∂ξα

)
+ 2iηα∂

η
α

]
. (2.74)

Analogous expressions hold for the barred kernels (2.73) upon replacing Iαα with Īαα defined as

Īαα ≡
i

2

[
(yαyα − ∂yα∂yα)− (ηαηα − ∂ηα∂ηα) + 2iξα∂

ξ
α

]
. (2.75)

As will be discussed in Section 3 we checked conservation for all cocycles studied in this paper.

3 Presentation of Results: Second-Order Backreactions

In this section we will discuss our main results obtained by studying the equations of motion (2.53).

We will postpone a detailed explanation of how we extracted the various cocycles from Prokushkin–

Vasiliev Theory to Section 5. As explained in Section 2, the Prokushkin–Vasiliev Theory at hand

contains two (real) physical scalars, encoded in the field Ĉ, as well as one physical (although non-

propagating) higher-spin gauge field for every spin, encoded in the connection ω̂. In addition, the

theory also contains a twisted sector, represented by a twisted zero-form C̃, and a twisted gauge

connection ω̃. Let us first focus on the twisted sector in Subsection 3.1 before discussing the second

order analysis of the physical sector in Subsection 3.2.
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3.1 Twisted Sector Results

In the following we will discuss whether we can find solutions of our theory for which all twisted

fields vanish. We are interested in such consistent truncations because the role of the twisted fields

within the AdS/CFT-duality and their field-theoretical interpretation is unclear — as was discussed

in Section 2.3. Therefore a trivial solution for these fields seems to be the most natural choice.

We will first discuss the twisted sector at linear order. We will see that we need to perform a field

redefinition in order to set the first-order twisted fields to zero consistently. This field redefinition

is not unique and will lead to the appearance of free parameters in the second-order equations

of motion, which can in turn be fixed by going to a field frame for which backreactions to the

second-order twisted zero-form C̃(2) and to the twisted gauge connection ω̃(2) can be removed by a

pseudo-local field redefinition.

This process will involve pseudo-local field redefinitions and therefore it is by no means guaranteed

that the theory after the redefinitions is equivalent to the theory before because of the non-localities

involved in this step.

As we will show in the following there is only one choice for the free parameters which allows for

trivial solutions of the twisted sector. This suggests a relation to the integration flow procedure [14] —

as we will discuss at the end of Section 3.1.2.

3.1.1 Linear Order

We mentioned in Section 2.4 that the cocycle V(Ω,Ω,C) in the linear equations of motion (2.47a)

for the connection ω vanishes only up to a field redefinition. We will explain this field redefinition

in more detail now.

As will be discussed in Section 5 analyzing Prokushkin–Vasiliev Theory leads to the following

equations of motion for the twisted sector [49]:

(D̃ω̃)ψ = V(Ω,Ω, Ĉ) = 1
8
Hαα(yα + i∂wα )(yα + i∂wα )Ĉ(w, φ|x)ψ|w=0 , (3.1a)

DC̃ = 0 , (3.1b)

where Hαα was defined in (2.65). Notice that there is a source term to ω̃ linear in the scalar field

Ĉ and therefore we are interested in performing a field redefinition of ω̃ which removes this source

term. After having performed such a field redefinition we can set the linear-order twisted fields

to zero consistently. As discussed above this is the truncation of the theory we are interested in.

The most general solution of the inhomogeneous differential equation (3.1a) is given by a particular

solution thereof together with the general solution of the complementary homogeneous equation.

As was first shown in [49], a particular solution of ω̃ in (3.1a) is M1 with

M1 =
1

4
φhαα

∫ 1

0

dt (t2 − 1)(yα + it−1∂yα)(yα + it−1∂yα)Ĉ(yt, φ) . (3.2)

Now, let us find the solution R of the complementary homogeneous equation, i.e. D̃R = 0. We are

interested in this solution only up to gauge transformations thereof. Therefore we want to identify two
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solutions R and R′ which differ only by a gauge transformation, i.e. R−R′ = D̃ǫ. The most general

solution of the homogenous equation — up to gauge transformations — is therefore an element of

the cohomology with respect to the nilpotent operator D̃ and linear functionals in Ĉ of form-degree

1, i.e. R ∈ H1(D̃, Ĉ).

This cohomology is non-empty as can be seen by comparing with Table 1. Indeed we show in

Appendix E that it forms a two-dimensional space with a representative given by15

R ≡ 1

4
φhαα

∫ 1

0

dt (t2 − 1)
{
g0
(
yαyα − t−2∂yα∂

y
α

)
Ĉb(ty) + 2d0t

−1yα∂
y
αĈf(ty)

}
. (3.3)

Here Ĉb and Ĉf are the even and odd parts of Ĉ with respect to yα whereas g0 and d0 are parameters

accounting for the two-dimensional nature of this cohomology. The above representative has been

chosen to look almost exactly like the particular solution M1 with the crucial difference that we

had to split Ĉ into bosonic and fermionic components Ĉb and Ĉf. As we discussed in Section 2.3

we consider the bosonic Prokushkin–Vasiliev Theory, for which the odd components of Ĉ vanish

identically, i.e. Ĉf ≡ 0, and therefore the cohomology is only one-dimensional. But in the next

section we will also briefly discuss the behavior of Prokushkin–Vasiliev Theory without imposing the

bosonic truncation and we therefore kept Ĉf in (3.3) for future reference.

In the case of the bosonic theory the general form of the field redefinition removing the source

term of (3.1) is therefore given by

M ′
1 ≡M1 +R =

1

4
φhαα

∫ 1

0

dt (t2 − 1)
(
g̃0 yαyα + 2iyαt

−1∂yα − g̃0 t−2∂yα∂
y
α

)
Ĉb(ty) , (3.4)

where we defined g̃0 = 1+ g0. After performing this field redefinition ω̃(y, φ|x)→ ω̃(y, φ|x) +M ′
1 we

can consistently choose trivial solutions for the twisted fields

ω̃ = 0 , C̃ = 0 , (3.5a)

The parameter g̃0 will play a key role in the following subsection, where we discuss the second-

order equations of motion of the twisted fields. Anticipating the results to be discussed therein, the

situation is that the second-order twisted fields can be consistently set to zero only at a particular

point in the parameter space of M ′
1, namely g̃0 = 0.

3.1.2 Second Order

In this section we will discuss the equation of motion (2.53) for the twisted scalar field to second

order before analyzing the corresponding equations for the twisted one-form. In the scalar sector the

equation of motion is given by

DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) . (3.6)

15We have a map from Ĉ which is a direct sum of two non-isomorphic irreducible modules, i.e. ĈB and ĈF , to the

direct sum of the same modules in which ω̃ takes values. Therefore the space is two-dimensional, which is a simple

instance of Schur’s lemma.
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We can analyze each yα-component of (3.6) separately as the adjoint covariant derivative D commutes

with the yα-number operator yν∂yν . We will try to follow a similar approach as for the linear order

and check if we can find a field redefinition which removes the source term on the right-hand side of

(3.6). This question is of particular interest as by (2.42) the yα-independent part of the Killing tensor

C̃ at zeroth order specifies the λ-parameter of the hs(λ) higher-spin theory.16 If the yα-independent

component of the source term Ṽ(Ω, Ĉ, Ĉ) cannot be removed by a field redefinition then the identity

component of C̃ is necessarily deformed at second-order in perturbation theory. Note that (3.6)

arises from (2.51b), which we repeat here for convenience:

DΩC
(2) = [ω,C]⋆ + V(Ω,C,C) . (3.7)

By ψ-counting this reduces in the twisted sector to

DC̃(2) = [ω̃ψ, Ĉψ]⋆ + Ṽ ′(Ω, Ĉ, Ĉ) , (3.8)

where we chose the linear solution C̃ ≡ 0. Using (3.4) we can perform the field redefinition ω̃ →
ω̃ +M ′

1 and afterward consistently set ω̃ ≡ 0, as discussed in the last subsection. Having done so

(3.8) will reduce to (3.6) but the field redefinition M ′
1 will lead to an additional contribution to the

cocycle Ṽ(Ω, Ĉ, Ĉ) which is then given by

Ṽ(Ω, Ĉ, Ĉ) = [M ′
1ψ, Ĉψ]⋆ + Ṽ ′(Ω, Ĉ, Ĉ) , (3.9)

and will therefore depend on g̃0 in the bosonic theory. From Prokushkin–Vasiliev Theory one extracts

the following explicit form of the source term in (3.6):

Ṽ(Ω, Ĉ, Ĉ) = φhαα
∫

d2ξd2η Kαα(ξ, η, y) Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (3.10)

where the kernel Kαα is given by

Kαα(ξ, η, y) =

∫ 1

0

dt

{
1

2
ei(y(1−t)−tη)ξ ξα

(
(1− t2)(ξα − ηα) + (1− t)2yα

)

−1
2
ei(y(1−t)−tξ)η ηα

(
(1− t2)(ηα + ξα)− (1− t)2yα

)

+
1

4
(t2 − 1)ei(y−η)(y+tξ)(g̃0 (y − η)α(y − η)α − 2(y − η)αξα + g̃0 ξαξα)

+
1

4
(t2 − 1)ei(y+ξ)(tη−y)(g̃0 (y + ξ)α(y + ξ)α − 2(y − ξ)αηα + g̃0 ηαηα)

}
.

In order to check whether there is some field frame in which we can set the yα-independent component

of C̃ to zero, we have to check whether Ṽ(Ω, Ĉ, Ĉ)|y=0 is a non-trivial element in the cohomology

H1(D, ĈĈ). Performing the integration over t in Kαα(ξ, η, y = 0) we obtain

Kαα(ξ, η, y = 0) = f(ηξ) ( (1 + g̃0) ηαηα − (1− g̃0) ξαξα) , (3.11)

where we have defined f(x) = 4(x cos(x)− x−3 sin(x)).

16The interpretation of the yα-independent component of C̃ at second and higher orders is less clear.
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The Fourier representation ofD in (2.68a) reads hααOαα. The operator Oαα does not mix different

powers of yα-oscillators. Therefore we can deduce that for Ṽ(Ω, Ĉ, Ĉ)|y=0 to be exact its kernel has

to be of the form

Kαα(ξ, η, y = 0)
!
= OααF (ηξ) =

i

2
(ηαηα − ξαξα) (F (ηξ) + F ′′(ηξ)) , (3.12)

where F (x) is an arbitrary function. By (3.11) this is only the case if

g̃0 = 0 (3.13)

and one can easily check that there exists a solution for F (ηξ) at this point in parameter space which

is given in Appendix B.2.1. Therefore we can consistently set the yα-independent component of C̃

to zero only for this choice of g̃0.

At this stage one might wonder what will happen if we also consider fermionic excitations. In

this case the cohomology H1(D̃, Ĉ) is two-dimensional and the field redefinition17 M̃1

M̃1 ≡M1 +R =
1

4
φhαα

∫ 1

0

dt (t2 − 1)
{
(g̃0 yαyα + 2iyαt

−1∂yα − g̃0 t−2∂yα∂
y
α)Ĉb(ty)

+ (yαyα + 2i d̃0 yαt
−1∂yα − t−2∂yα∂

y
α)Ĉf(ty)

}
,

(3.14)

therefore contains an additional free parameter d̃0 = 1 + d0. As shown in Appendix B.2.1 by

performing an analogous analysis as for the bosonic theory the yα-independent component of C̃ can

consistently be set to zero only for the choice

g̃0 = d̃0 = 0 . (3.15)

In fact we also show in Appendix B.2.1 that at this point in parameter space all yα-components of the

cocycle Ṽ(Ω, Ĉ, Ĉ) are exact and can thus be removed by a pseudo-local field redefinition. Therefore

the two parameter ambiguity introduced at the linear level by removing the source term in (3.6) with

a field redefinition M̃1 is uniquely fixed by choosing a field frame in which we can consistently set

C̃(2) ≡ 0.

Having fixed this ambiguity by (3.15) we will now analyze the twisted gauge sector. We will also

consider fermionic excitations. The equations of motion for the twisted gauge fields to second order

were given in (2.53b) and read

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) . (3.16)

However as we stressed around (2.53b) this equation only holds after a redefinition of ω̃(2). We will

discuss this field redefinition in more detail now. The equation (3.16) can be derived by considering

the ψ-dependent part of (2.51a) and using the fact that we set C̃ ≡ 0, which leads to

(D̃ω̃(2))ψ = Ṽ ′(Ω, ω̂, Ĉ) + Ṽ(Ω,Ω, Ĉ(2)) . (3.17)

From Prokushkin–Vasiliev Theory one obtains the following expression for the second source term:

Ṽ(Ω,Ω, Ĉ(2)) = 1
8
Hαα(yα + i∂wα )(yα + i∂wα )Ĉ

(2)(w, φ|x)ψ|w=0 (3.18)

17It can be shown that including fermionic fields does not change the form of M1.
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It is therefore of the same form as the corresponding source term (3.1a) at linear order. Performing

a field redefinition, ω̃(2) → ω̃(2) + M̃
(2)
1 with

M̃
(2)
1 =

1

4
φhαα

∫ 1

0

dt (t2 − 1)
{
(g̃1 yαyα + 2iyαt

−1∂yα − g̃1 t−2∂yα∂
y
α)Ĉ

(2)
b (ty)

+ (yαyα + 2i d̃1 yαt
−1∂yα − t−2∂yα∂

y
α)Ĉ

(2)
f (ty)

}
,

(3.19)

removes the source term Ṽ(Ω,Ω, Ĉ(2)) in (3.17). This can be shown as for the linear case but

now this field redefinition, apart from removing the source term Ṽ(Ω,Ω, Ĉ(2)), also leads to an

additional contribution to Ṽ ′(Ω, ω̂, Ĉ) due to the fact that the equation of motion for Ĉ(2) is given

by (D̃Ĉ(2))ψ = [ω̂, Ĉψ]⋆ as opposed to the linear case D̃Ĉ = 0. Therefore after performing this field

redefinition we obtain (3.16) with its source term Ṽ(Ω, ω̂, Ĉ) now depending on the parameters d̃1

and g̃1. We will show in Appendix B.2.2 that only for the choice

g̃0 = d̃0 = g̃1 = d̃1 , (3.20)

the source term Ṽ(Ω, ω̂, Ĉ) in (3.16) is exact and can therefore be removed by a pseudo-local field

redefinition.

Summarizing, we have shown that only for the parameter choice

g̃0 = d̃0 = g̃1 = d̃1 = 0 , (3.21)

there exists a field frame in which we can consistently set all second-order twisted fields to zero:

C̃(2) = 0 , ω̃(2) = 0 . (3.22)

However it is important to stress that it is not at all obvious whether the theory in this field frame

is equivalent to the theory before the field redefinitions because of the non-localities involved in this

step. Furthermore, it is shown in Appendix E that the cohomologies H0(D, ĈĈ) and H1(D̃, ω̂Ĉ) are

infinite-dimensional and therefore one would generically expect an infinite number of free parameters

to enter the third-order equations of motion due to the redefinitions of C̃(2) and ω̂(2) at second order.

However these ambiguities do not enter the second-order equations of motion.18

Interestingly this can be compared to the integration flow formalism pioneered in [14]. The

integration flow by construction maps all physical and twisted fields in a field frame in which they obey

the free equations of motion. This is achieved by a pseudo-local Bäcklund–Nicolai-type mapping [51].

In this formalism one can therefore consistently choose a solution with vanishing twisted fields. The

fact that there is only one point in parameter space which allows for a trivial twisted sector suggests

that this point should correspond to the integration flow solution of the twisted sector. However

integration flow also leads to free equations of motion of the physical fields and therefore corresponds

to a different field frame for the physical sector. We will discuss possible interpretations of this

observation in the conclusion to this paper.

18The cohomologies are infinite dimensional with respect to the AdS3-isometry algebra. However the fact that the

tensor product of various Ĉ fields are irreducible higher-spin algebra modules (up to permutations) [50] makes the

cohomology one-dimensional with respect to the higher-spin algebra. In other words higher-spin symmetry relates

various irreducible AdS3-isometry algebra components.
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3.2 Backreaction on the Fronsdal Sector

In this subsection we will analyze the implications of the cocycle J = V(Ω,Ω, Ĉ, Ĉ) of (2.53a) and

its relation to corrections of the Fronsdal equation (2.2) due to the presence of scalar fields. From

the metric-like formulation of the theory one expects these corrections to be of the form (1.4), which

upon combining all spins into a generating functional expressed in terms of Ĉ leads to19

∑

s

1

(2s)!
jα(2s) y

α(2s) = Ĉ(y, φ) Ĉ(y,−φ) , (3.23)

corresponding to the two-form

Jcan = Hαα∂yα∂
y
α Ĉ(y, φ) Ĉ(y,−φ) . (3.24)

The cocycle J = V(Ω,Ω, Ĉ, Ĉ) should be related to the canonical current Jcan, (3.24), by a pseudo-

local field redefinition. But as we discussed in Section 2.5 the cocycle J is exact and therefore can

be completely removed by a pseudo-local field redefinition. However the physically allowed class of

field redefinitions should allow us to relate the current J to the canonical current Jcan, but should

not allow for a field redefinition which also removes the canonical current Jcan. This suggests that

the class of pseudo-local field redefinitions is too broad.

In the following we will calculate the cocycle J in the field frame in which we can consistently

set the twisted fields to zero. But let us stress that there is no rigorous argument that this choice

corresponds to a physically allowed field frame.

Due to the fact that we do not have control of the physically allowed field redefinitions the

following analysis is only meant to illustrate the tools one would have to apply in order to extract

the second-order corrections to Fronsdal equations if this class of field redefinitions was known.

At the second order the Fronsdal equations (2.2) acquire a source jm(s),

Fm(s) = �ϕm(s) + ... = jm(s) . (3.25)

We will refer to the source jm(s) as the Fronsdal current. The double trace of the Fronsdal operator

vanishes. In spinorial language the Fronsdal operator therefore decomposes into two components,

Fα(2s) and Fα(2s−4), which respectively correspond to its traceless and trace part.

The second order equation of motion (2.53a) is given by

Dω̂(2) = J+ ω̂ ∧ ⋆ ω̂ . (3.26)

In this subsection we will not consider the contribution of ω̂ ∧ ⋆ ω̂, which is independently conserved

by (2.50) and would lead to self-interactions of the Fronsdal field governed by the higher-spin-algebra.

We will therefore only focus on the first term corresponding to a backreaction of the scalars in the

Fronsdal equation (3.25).

19This correspondence only holds up to improvement terms to make the metric-like current (1.4) traceless on-shell

as (3.23) is on-shell traceless.

25



Extracting J from Prokushkin–Vasiliev Theory is a technically involved task. We postpone the

discussion of how we calculated J in Fourier space to Section 5 and only present the result here. In

Fourier space the current J is of the general form (2.64) and therefore reads

J = Hαα

∫
dξdη Kαα Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (3.27)

where the kernel Kαα is given by

Kαα = yαyα f1(ξη, yξ, yη) + yαξα f2(ξη, yξ, yη) + yαηα f3(ξη, yξ, yη)

+ ξαξα f4(ξη, yξ, yη) + ηαηα f5(ξη, yξ, yη) + ξαηα f6(ξη, yξ, yη) , (3.28)

and f1...6 are functions determined by our calculation in Section 5. The precise form of the current

J as extracted from Prokushkin–Vasiliev Theory is given in Appendix B.1.2. Let us illustrate the

interpretation of the various terms in (3.28) by considering a term in the kernel of the form

Kαα = . . .+ ξα(N)ηα(M)yα(2−N−M) (yξ)
n(yη)m(ηξ)l + . . . . (3.29)

By expanding the corresponding two-form J in its spin-components, i.e. J =
∑∞

k=0
1
k!
Jα(k)y

α(k), one

obtains the following tensor structure from this term

Jα(2+n+m−N−M) ∼ . . .+ fn,m,l
N,M Hβ(N+M)

α(2−N−M) Ĉβ(N)α(n)ν(l)(φ) Ĉ
ν(l)

β(M)α(m)(−φ) + . . . . (3.30)

The constant fn,m,l
N,M is worked out in Appendix C.1.1. The spin-components of Jα(k) can uniquely be

decomposed in three pieces

Jα(k) = HββAα(k)ββ +Hα
β Bα(k−1)β +HααCα(k−2) , (3.31)

where A,B,C are zero-forms which are completely symmetric in all their spinorial indices.

3.2.1 Independently Conserved Subsectors

The adjoint covariant derivative D commutes with the yα-number operator yν∂yν and therefore each

spin-component of the current J is conserved independently. However, as we will explain in the

following, each spin-component splits even further into various independently conserved subsectors.

To see this let us define

ζ±α = (ξ ± η)α . (3.32)

In (3.28) the kernel Kαα was parametrized by six functions f1...6(ξη, yξ, yη). Using these ζ±α we can

define the following contractions

Z1 =
1

2
yζ+ , Z2 =

1

2
yζ− , Z3 = ξη , (3.33)

and we can then decompose the kernel Kαα as follows

Kαα =
∑

n,m

1

(n− 1)!(m− 1)!
K(n,m)

αα Zn−1
1 Zm−1

2 (3.34)
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where we defined

K(n,m)
αα =yαyα k

(n,m)
1 (Z3) + yαζ

+
α Z2 k

(n,m)
2 (Z3) + yαζ

−
α Z1 k

(n,m)
3 (Z3)

+ ζ+α ζ
+
α Z

2
2 k

(n,m)
4 (Z3) + ζ−α ζ

−
α Z

2
1 k

(n,m)
5 (Z3) + ζ+α ζ

−
α Z1Z2 k

(n,m)
6 (Z3) , (3.35)

In the expression above any negative power of Zi is understood to be set to zero. This decomposition

has the following nice property: Each kernel K
(n,m)
αα is independently conserved with respect to the

adjoint covariant derivative D as was first shown in [52]. Note that the spin of the kernel K
(n,m)
αα is

given by 2s = m + n + 2 and therefore this decomposition splits each spin-component further into

independently conserved pieces. This splitting crucially relies on the fact that we are expanding

around an AdS3-vacuum and does generically not hold on a more general background on which the

covariant derivative would mix various spin components.

For bosonic fields the kernel Kαα is invariant under η → −η. This symmetry exchanges Z1 with

Z2 and therefore the sectors (n,m) and (m,n) are no longer independent for the bosonic truncation

of the theory.

3.2.2 Solving the Torsion Constraint

We can decompose the covariant derivative as D = ∇+ φQ with Q = −hααyα∂yα. The cocycle J can

be split into J = J0+φJ1 and the second-order gauge connection ω̂(2) in its generalized Riemann and

torsion components as in (2.33). We can then rewrite (3.26) as

T ′(2) ≡ ∇e(2) +Qω(2) = J1 , R′(2) ≡ ∇ω(2) +Qe(2) = J0 , (3.36)

where we have dropped the second term on the right-hand side of (3.26) as discussed in the previous

subsection. The explicit form of J1, which can be found in Appendix B.1.2, shows that the higher-spin

theory has non-vanishing torsion. In particular the current J is of the form (3.27) and therefore only

depends on φ through the zero-forms Ĉ. Therefore J0 is obtained by considering the symmetric part

of Kαα in (3.27) with respect to ξ and η while J1 is obtained from the anti-symmetric component.

We therefore need to solve the torsion constraint in order to find the source to the Fronsdal

equations (3.25). This can be done by defining

ω(2) = ω(2)(e) +Q−1J1 , (3.37)

where Q−1J1 is the contorsion two-form and ω(2)(e) is the solution for ω(2) in terms of vielbein e at

vanishing torsion. Plugging this expression into (3.36) gives

T (2) = ∇e(2) +Qω(2)(e) = 0 , (3.38a)

R(2) = ∇ω(2)(e) +Qe(2) = j , (3.38b)

where j is given by

j = J0 −∇Q−1J1 . (3.39)
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It is important to note that the operator Q−1 is well-defined and in the basis (3.31) reads20

(Q−1J)α(k) =
2

k
hββAα(k)ββ − hαβ Bα(k−1)β −

2

k + 2
hααCα(k−2) . (3.40)

In the following subsection we will study j more closely and discuss how it is related to the Fronsdal

current (3.25).

3.2.3 Obtaining the Fronsdal Current

In this subsection we will first derive that j, in a decomposition analogous to (3.31), has a vanishing

B component. This observation will allow us to relate this object to the Fronsdal current jm(s)

appearing in (3.25).

Let us first note that the nilpotence of D and the conservation of J imply the following relations:

D2 = 0 → {∇, Q} = 0 , ∇2 +Q2 = 0 , (3.41)

DJ = 0 → ∇J0 +QJ1 = 0 , QJ0 +∇J1 = 0 . (3.42)

Using these relations one derives

∇j = ∇R(2) = 0 , Qj = QR(2) = 0 . (3.43)

These relations correspond to the differential and algebraic Bianchi identities respectively. The first

condition implies that the Fronsdal current j is conserved with respect to the Lorentz-covariant

derivative ∇. The second condition implies that

hα
ν ∧ jνα(k−1) = hα

ν ∧R(2)
να(k−1) ≡ 0 . (3.44)

By using (2.66b) one can show that this is only guaranteed to hold if and only if B ≡ 0 in the

decomposition (3.31) and therefore

jα(k) = Hββjα(k)ββ +Hααj
′
α(k−2) . (3.45)

This observation allows us to relate j to the Fronsdal current: the two above components of rank k+2

and k−2 correspond to the trace and traceless parts of the Fronsdal current jm(s) with 2s = k+2, in

accordance with the mapping between spacetime and twistor indices explained in Section 2.1. These

components can be conveniently expressed by

jα(2s+2) =
∑

l

∑

n+m=2s

an,m,l Ĉα(n+1)ν(l)(φ) Ĉ
ν(l)

α(m+1) (−φ) , (3.46a)

j′α(2s−2) =
∑

l

∑

n+m=2s

cn,m,l Ĉα(n−1)ν(l)(φ) Ĉ
ν(l)

α(m−1) (−φ) . (3.46b)

We summarize some of our explicit results for the coefficients an,m,l and cn,m,l of j in the following

subsection.

20k > 0 is implied in the relation above as there is no torsion constraint to be solved for the case of spin 1.
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3.2.4 Explicit Results

The explicit expressions for the full j are rather involved. In the following we will therefore only

illustrate its form by considering the following two interesting components:

Spin 1: We find a source for the Maxwell tensor dω̂(2) (with ω̂(2) = ω̂(2)(y = 0) ), which is pseudo-

local and reads

dω̂(2) = j = Hββ

(
∑

l∈2N

al

(
Ĉββν(l)(φ) Ĉ

ν(l)(−φ) + Ĉν(l)(φ) Ĉ
ν(l)

ββ (−φ)
)

−
∑

l∈2N+1

alĈβν(l)(φ) Ĉ
ν(l)

β (−φ)
)
,

where the coefficients are given by

al =
i(−i)l
l!

1

(l + 2)2(l + 4)
. (3.47)

One can decompose this result with respect to φ to obtain equations of motion for two spin-1

fields. We checked that the coefficients obey the conservation identity (C.22), which holds if

the coefficients of the first two terms are equal while the coefficient of the third term can be

arbitrary and does not affect conservation. At the linear level one can choose the connection

ω to take values in hs(1/2)⊕ hs(1/2) and therefore it will not contain any spin-1 field. To the

second-order however a source term for the spin-1 field is produced by the scalar fields. This

source term can be removed by a pseudo-local field redefinition and might therefore just be a

result of our particular choice of field-frame, but unless one has full control of the physically

allowed field redefinitions it is difficult to draw any definite conclusions from this result. We

will further discuss this point in the conclusions to this paper.

Spin 2: From our discussion in Subsection 3.2.1 it follows that we have five independently conserved

subsectors (3,−1), (2, 0), (1, 1), (0, 2), (−1, 3) for (n,m) in the case of spin-2. However we are

considering bosonic fields and therefore the sectors (n,m) and (m,n) are not independent as

also discussed in Subsection 3.2.1. Thus the backreaction of the scalar fields splits into three

separately conserved components for spin-2:

R(2)
αα = jαα = J (3,−1)

αα + J (1,1)
αα + J (2,0)

αα , where R(2)
αα ≡ ∇ω(2)

αα + hα
ν ∧ e(2)να . (3.48)

We find the following expressions for these components

J (3,−1)
αα = Hββj

(3,−1)
ααββ , (3.49)

J (1,1)
αα = Hββj

(1,1)
ααββ +Hααj

′(1,1) , (3.50)

J (2,0)
αα ≡ 0 . (3.51)
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For the expressions above we define

j
(3,−1)
α(4) =

∑

l∈2N

al

(
Ĉα(4)ν(l)(φ) Ĉ

ν(l)(−φ) + 3 Ĉα(2)ν(l)(φ) Ĉ
ν(l)

α(2)(−φ)
)
, (3.52)

j
(1,1)
α(4) =

∑

l∈2N

bl

(
Ĉα(4)ν(l)(φ)Ĉ

ν(l)(−φ)− Ĉα(2)ν(l)(φ) Ĉ
ν(l)

α(2)(−φ)
)
, (3.53)

j
′(1,1) =

∑

l∈2N

b′l Ĉν(l)(φ) Ĉ
ν(l)(−φ) , (3.54)

where projection on the φ-independent part is implied. The coefficients are then given by

al =
il−1

4l!

(
1

1 + l
− 6

2 + l
+

9

(3 + l)2
+

19

4(3 + l)
− 6

4 + l
+

7

5 + l
− 3

4(7 + l)

)
,

bl = −
il−1

4l!

(
1

2 + l
− 1

(3 + l)2
− 13

4 (3 + l)
+

4

4 + l
− 1

5 + l
− 1

6 + l
+

1

4(7 + l)

)
,

b′l =
il−1

l!

(
1

3(1 + l)2
+

7

12(1 + l)
− 3

2 + l
+

1

3 + l
+

1

3(4 + l)
− 1

4(5 + l)
− 1

6
δl,0

)
.

As a consistency check we confirmed that the backreaction is conserved by using (C.22). Let

us note that these expressions can be straightforwardly expressed in metric-like language by

using (2.38). The canonical current (3.24) is part of only one sector, namely J
(3,−1)
αα . Therefore

the class of physically allowed field redefinitions should allow us to completely remove the

other non-vanishing and independently conserved current J
(1,1)
αα . Furthermore both currents

are generically of pseudo-local form (2.56). If we truncate them to some finite value of l in

(2.56) we observe that J
(1,1)
αα can be removed by local field redefinitions whereas J

(3,−1)
αα can only

be removed by a pseudo-local redefinition.

Our calculation shows that the current j is pseudo-local, as illustrated by the two examples above.

One might think that this is an immediate consequence of the fact that our calculation also results

in a pseudo-local cocycle J. However extracting j from J by solving the torsion constraint as in

(3.39) might potentially project out all the pseudo-local terms in J. In fact one needs to consider

a pseudo-local ansatz if one wants to recover the canonical current (3.24) upon solving the torsion

constraint while keeping φ → −φ symmetry, which is the case for Prokushkin–Vasiliev Theory. We

discuss this point in more detail in Appendix C.1.6 and C.2.6.

4 Fixing the Cubic Action

In this section we explain how to determine completely the cubic action for the physical sector of

Prokushkin–Vasiliev Theory. In the previous section we presented our results concerning the second-

order physical equations of motion for the various fields presented in the theory and in particular we

obtained the backreaction to the physical gauge connection at order 2 in perturbation theory. As

explained in Section 3.2, upon solving the torsion constraint this backreaction is the source for the

Fronsdal tensor. From the standpoint of an action principle, these currents correspond to 0–0–s-like
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couplings. In the frame formalism that we have been dealing with so far such couplings would read

2
∑

s

gs

∫
ea(s−1) ∧ ja(s−1) , (4.1)

where ja(s−1) is a conserved two-form, bilinear in the physical scalar field Ĉ(y = 0). In the metric-like

picture we deal with currents jm(s) with ja(s− 1) = −1
2
jm

a(s−1) ǫmnr dx
n ∧ dxr being the two-form

dual thereof. The corresponding cubic couplings are known and classified: they read

Scurrents = 2
∑

s

gs
s

∫
ϕm(s)jm(s) , (4.2)

with the corresponding currents given by derivatives of the scalar fields, that is,21

jm(s)(Φ) ≡ (−i)sΦ∗( ~∇m − ~∇m)
sΦ + Λ(. . .) , (4.3)

for which we refer to [53]. These currents are hermitian and all prefactors are introduced for con-

venience (although the i is needed in order to make odd-spin currents hermitian too). The second

term in the above right-hand side denotes terms proportional to the cosmological constant Λ which

are needed to make the current conserved on AdS3. We have chosen to express the above currents

in terms of one complex scalar field Φ and its complex conjugate Φ∗, which are to be identified with

the Π±-projected components of Ĉ(y = 0), that is, Φ = Π+Ĉ(y = 0) and Φ∗ = Π−Ĉ(y = 0). As

one can check, odd-spin conserved currents can be written down only if at least two real scalars are

involved. As in this section we are interested in dealing with even and odd spins altogether, the

above thus constitutes the minimalistic option involving one complex scalar, which corresponds to

the truncation of Prokushkin–Vasiliev Theory we consider. As one can verify, the above expressions

for the currents indeed yield cubic couplings in (4.2) which are unique up to field redefinitions and

boundary terms.22

The form of the spin-s coupling is thus known for all spins. However, to the best of our knowledge

the relative coefficients gs of (4.2) have never been determined before. Indeed these are left arbitrary

at the cubic level, where the cubic cross couplings are invariant independently. These gs coefficients

in fact constitute the last piece of information needed to determine completely the cubic action for

the physical sector of Prokushkin–Vasiliev Theory at λ = 1
2
. Indeed, the kinetic pieces are known

and the higher-spin self-couplings are also known: they can be extracted from the Chern–Simons

action which describes the pure gauge sector [18, 19] (see below).

Presumably, the relative coefficients gs could be read off by comparing (4.2) with the Prokushkin–

Vasiliev backreaction. Such is, however, a non-trivial task, because the Fronsdal currents that are

so produced still contain infinite pseudo-local tails of derivatives and it is not clear which class of

21Whereas in the rest of this paper we have set Λ = 1 in this section we restore it for the purpose of keeping track

of the terms which vanish in the flat space-limit.
22As we are about to explain these currents deform the gauge transformations of the scalars. Evidently the currents

are unique in the space of such couplings only, for interactions which do not deform the gauge transformations can

always be constructed.
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field redefinitions one should use in order to map these tails to canonical form (4.3) (see previous

section). Another possibility is to start from the consistent cubic action and proceed with the quartic

Noether analysis. If a quartic completion exists thereof, quartic terms will be found which make the

action gauge invariant to quartic order, and the relative coefficients gs are expected to be fixed in

this manner.23 However there is a simpler way of determining the value of the relative coefficients

gs, which we now detail. The idea is to look at the deformation of the gauge transformations for

the scalar Φ, so that we can write down the complete cubic action including the relative coefficients

without having to go through the full quartic Noether analysis, only enforcing the so-called admis-

sibility condition on the scalar couplings [55, 56].

The coupling (4.2) is on-shell gauge invariant to the lowest order, that is, under δ(0)Φ = 0 and

δ(0)ϕm(s) = ∇mξm(s−1) we have

δ(0)Scurrents ≈ 0 , (4.4)

where ≈ denotes an on-shell equality and we have neglected boundary terms as we will do through

the rest of this section. This interaction term is abelian but deforms the gauge transformation rules

for the scalar field. Differently put, in order to make the term off-shell gauge invariant we need to

assign transformation rules to the scalar field, so that the terms in the above right-hand side are

canceled by the gauge variation of the scalar kinetic piece. Here we are simply expanding the full

invariance condition δS = 0 to order 1 in perturbation theory, that is,

δ(0)S(1) + δ(1)S(0) = 0 . (4.5)

In the above, S(0) is the kinetic piece:

S(0) ≡
∫

det|h|
(
∇mΦ

∗∇mΦ +m2Φ∗Φ
)
+ S

(0)
cs ≡ S

(0)
scalars + S

(0)
cs , (4.6)

where S
(0)
cs is the quadratic piece of the full Chern–Simons action for a higher-spin gauge connection

valued in hs(1
2
). Recall that

Scs ≡
k

4π

∫
tr
(
ω̂ ∧ dω̂ − 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
, (4.7)

where k is the Chern–Simons level, ω̂ = ω̂(y, φ) is the higher-spin connection and we do not take

twisted fields into account, thereby dropping ψ. The trace24 is trf(y) = f(0). The quadratic and

cubic pieces are extracted from the above action by perturbing around the AdS3 vacuum Ω of (2.21),

that is, performing ω̂ → Ω+ ω̂:

S
(0)
cs + S

(1)
cs =

k

4π

∫
tr
(
ω̂ ∧ dω̂ − 2Ω ∧ ω̂ ∧ ω̂ − 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
, (4.8)

23Also one could think of using more modern methods such as the BRST–Antifield ones, which are particularly

suited for addressing quartic-order issues. They are reviewed e.g. in [54] and in Chapter 4 of [9].
24To be precise, f(0) is a super-trace [4], but since we consider bosonic higher-spin fields f(y) = f(−y), it reduces

to a trace.
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where S
(1)
cs is part of S(1) in (4.5), which thus contains two terms: S(1) = S

(1)
cs + Scurrents.

The way one determines the deformation of the gauge transformations for the scalar is identifying

terms proportional to the equations of motion for the scalar in (4.5). This goes as follows: the

Chern–Simons cubic self-coupling in (4.8) is off-shell invariant on its own under the zeroth-order

gauge transformations for the higher-spin connection. Thus δ(0)S(1) roughly reads

δ(0)S(1) = δ(0)S
(1)
currents ≡

∫
ξ × C(E ,Φ) , (4.9)

where C(E ,Φ) is the expression obtained by taking the divergence of the currents (4.3) when inte-

grating by parts, so that as indicated it is linear in both the scalar field Φ and the equations of

motion E = E(Φ) thereof. By definition E ≈ 0 and hence C ≈ 0. On the other hand, the gauge

transformations for the higher-spin gauge connection do not get deformed by the above cubic cross-

coupling. This is evident by noticing that only the equations of motion for the scalar appear in the

above right-hand side. Therefore δ(1)S(0) yields the following expression:

δ(1)S(0) = δ(1)S
(0)
scalars =

∫
E(Φ)δ(1)Φ . (4.10)

The variations δ(1)Φ are linear in ξ and in Φ itself. Now integrating by parts in (4.9) in order to

write its integrand as E(Φ) × (. . . ) and comparing with the above right-hand side one can read off

the searched-for variations δ(1)Φ. They depend on the relative couplings gs, since they depend on

the current. The ’trick’ we will now use is, instead of solving some consistency condition for the

quartic Lagrangian, to solve some consistency condition for the first-order gauge transformations

of the scalar field. This workaround will prove to be much quicker in determining completely the

relative coefficients gs.

Let us consider the following consistency condition, which is part of the Noether procedure:

[δξ, δǫ]Φ ≈ δ[ξ,ǫ]Φ . (4.11)

Expanding this equation in perturbation theory and retaining the piece of order 2 we obtain

[δ
(1)
ξ , δ(1)ǫ ]Φ ≈ δ

(0)

[ξ,ǫ](1)
Φ+ δ

(1)

[ξ,ǫ](0)
Φ− ([δ

(0)
ξ , δ(2)ǫ ]− ξ ↔ ǫ)Φ . (4.12)

Solving the above consistency condition for δ(1)Φ should fix the relative coefficients gs which it

depends on. In general, doing so is as hard as solving the corresponding consistency condition for

the cubic interaction term involving the currents, for one needs to find a quartic completion δ(2)Φ

such that the above condition is fulfilled. The trick is to restrict one’s attention to Killing tensors,

that is, to gauge parameters ξ and ǫ such that δ(0)ϕm(s) = ∇mξm(s−1) = 0 and similarly for ǫ. In

such a case the last term in the above right-hand side is zero, because δ(2)Φ is proportional to the

higher-spin field and hence δ
(0)
ξ δ

(2)
ǫ Φ is zero on Killing tensors by simply using the chain rule. Further

noticing that δ
(0)

[ξ,ǫ](1)
Φ = 0 we find

[δ
(1)
ξ , δ(1)ǫ ]Φ ≈ δ

(1)

[ξ,ǫ](0)
Φ on Killing tensors ξ and ǫ. (4.13)
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This condition is necessary but non-sufficient in order for the variations δ(1)Φ to be consistent at

order 2 in the Noether analysis. The advantage of this procedure is now clear: we are solving (part

of) a second-order consistency condition in which no second-order quantity enters. Note that the

above requirement also goes under the name of admissibility condition for the scalar couplings [55,56].

In words, it says that the first-order gauge transformations should close to an algebra on the scalar

field when restricting to rigid parameters, i.e. the scalar field needs to sit in a representation of the

higher-spin algebra of rigid symmetries.

Remarkably, there is a well-known solution to the above condition on δ(1)Φ: the gauge trans-

formations for the scalar derived from the Prokushkin–Vasiliev theory are known to pass the above

admissibility condition.25 These gauge transformation are given here below, and we observe that

there are no free coefficients therein. According to Section 2.4 we have26

δ(1)C = [ξ,C]⋆ , (4.14)

where ξ = ξ(y, φ) is the first-order piece of ξ appearing in Section 2.4.27 The above transformation

rules can indeed be checked to satisfy the admissibility condition (4.13). Recalling that Ĉ is embedded

into C as C = Ĉψ + C̃ and splitting the gauge parameter as ξ = ξω + φξe, the interplay between φ

and ψ is seen to lead to

δ(1)Ĉ = [ξω, Ĉ]⋆ + φ{ξe, Ĉ}⋆ . (4.15)

From Prokushkin–Vasiliev Theory the transformations of the scalar field Φ = Π+Ĉ(y = 0) thus read

δΦ = tr{ξe, Ĉ+}⋆ = 2
∑

s

(−1)s−1

(2s− 2)!
ξα(2s−2)
e Ĉ+α(2s−2) =

∑

s

(2i)s

(2s− 2)!
ξm(s−1)
e ∇m(s−1)Φ , (4.16)

where we have used (2.38) in order to express Ĉα(2s−2) as derivatives of Ĉ(y = 0) and have defined

ξe = i
∑

s
1

(2s−2)!
ξ
α(2s−2)
e yα(2s−2).

28 Comparing the last expression above with the one obtained from

cubic action cross-couplings (see beginning of this section),

δ(1)Φ =
∑

s

(2i)sgsξm(s−1)∇m(s−1)Φ , (4.17)

we read off the relative gs coefficients. They are the following:

gs =
1

(2s− 2)!
. (4.18)

Let us note that the restriction to Killing tensors also implies that (4.16) is, in fact, the only Lorentz-

invariant combination one could write which is linear in the scalar and the gauge parameter — up

25In some sense such laws of transformation are the unique ones solving the admissibility condition [57].
26For ease of notation the δC(2) of Section 2.4 is here denoted just by δ(1)C.
27We set to zero consistently the ψ-dependent part of ξ since we choose ω̃ = 0.
28The reality conditions, ω̂† = −ω̂, require the gauge parameter ξ to be imaginary [14].
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to the relative factors. This is the solution to the admissibility condition (4.13). The complete cubic

action for the physical sector of Prokushkin–Vasiliev Theory thus reads

Scubic = S
(0)
cs + S

(1)
cs + S

(0)
scalars + Scurrents

=
k

4π

∫
tr

(
ω̂ ∧ dω̂ − 2Ω ∧ ω̂ ∧ ω̂ − 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
+

∫
det|h|

(
∇mΦ

∗∇mΦ +m2Φ∗Φ
)

+ 2
∑

s

gs

∫
ea(s−1) ∧ ja(s−1) ,

(4.19)

where the above cross-couplings can be rewritten in the metric-like language of (4.2) since at cubic

order the identification (2.7) holds [58, 59]. Below we give explicit expressions for some low-spin

currents.

Some comments are in order. Firstly we note that the above scalar transformation rules hold

for Killing tensors only. For generic gauge parameters ξ the right-hand side of (4.17) would include

terms with derivatives of the gauge parameter, produced by integrating by parts in (4.10) to isolate

E(Φ). Such terms can always be removed by redefining the scalar field, which will supplement the

currents (4.3) with improvements. The above procedure thus fixed the deformed gauge variations of

the scalar up to field redefinitions. Requiring the gauge transformations to contain no derivatives of

the gauge parameter determines the field frame to be the Prokushkin–Vasiliev one. The choice of

redefinitions that recovers the higher-spin algebra structure constants is perhaps more natural, as it

is (among other things) the one associated with the usual stress tensor in the spin-2 sector, as we

detail below.

Secondly let us stress that in so fixing the gs coefficients, although we have determined completely

the cubic action, it is not implied that a quartic completion thereof exists. Indeed, the condition we

have solved is necessary but non-sufficient. A priori, there might be no consistent quartic completion,

a unique one, or many. It could be argued that the very existence of Prokushkin–Vasiliev Theory

indicates that such a quartic completion does exist. However, our cubic action is free of twisted fields,

whereas we have only proven that the latter can be consistently set to zero in Prokushkin–Vasiliev

Theory to order 2 in perturbation theory. We thus consider it an open issue whether or not one can

achieve full consistency starting from our cubic action.

The above result and its simplicity are to be contrasted with the pseudo-local nature of the

Prokushkin–Vasiliev backreaction, in which the above simple coefficients are well hidden and hard to

extract. It is important to stress, however, that the gauge transformations are blind to the addition

of off-shell conserved currents on top of the above ones. In principle those can be pseudo-local. For

instance, one can obtain conserved currents of spin s as29

jm(s) = (gmm✷−∇m∇m)
kjm(s−2k) + Λ(. . .) . (4.20)

29The subleading terms in Λ can be conveniently extracted from the corresponding ambient space form but we do

not specify them in the following.
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It is however conceivable that the higher-derivative tail which is seen to arise from Prokushkin–

Vasiliev’s equations boils down to a pseudo-local contribution to the canonical currents, precisely in

the same fashion as the canonical stress tensor differs from the spin-2 current given below by terms

of the form (4.20).

Another important comment is that one can write down the cubic cross-couplings corresponding

to the above ones before the torsion constraint has been solved for. Such an action term would read
∫

tr (ω̂(y, φ) ⋆ ∧Jfr(y, φ)) , (4.21)

where ω̂(y, φ) takes values in the higher-spin algebra and contains both vielbeins and spin-connections,

and Jfr is the backreaction that has the property that the Fronsdal current it yields upon solving

the torsion constraint is the canonical s-derivative one (see Appendix C.1.6 and C.2.6).30 This way

of writing the coupling is more natural from the Prokushkin–Vasiliev vantage point. The coefficients

gs are the same.

It is instructive to give explicit forms for the spin-2 and spin-3 currents for which the deformation

of the scalar gauge transformation does not involve derivatives of the gauge parameter. For the sake

of generality we restore the cosmological constant Λ and do not fix the mass term of the scalar field

m2 = µΛ entering the mass-shell equation (✷−m2)Φ = 0, where µ = λ2 − 1 and in our case λ = 1
2

Spin-2 current. In the case of spin-2 we can construct a current that differs from the canonical

stress tensor by a trivial improvement term of the type (4.20). Such a spin-2 current reads

− jmm = Φ∇m∇mΦ∗ − 2∇mΦ∗∇mΦ+ Φ∗∇m∇mΦ

+ 2Λ(1− µ)gmmΦ∗Φ− gmmΦ✷Φ∗ − gmmΦ∗
✷Φ , (4.22)

and the induced gauge transformations are as anticipated; without derivatives of the gauge parameter:

δΦ = −2ξm∇mΦ . (4.23)

Spin-3 current. In the spin-3 case one builds a current differing from the canonical form by

improvement terms and the result is given by

−ijm(3) = Φ∇m∇m∇mΦ∗ − Φ∗∇m∇m∇mΦ+ 3∇mΦ∗∇m∇mΦ− 3∇m∇mΦ∗∇mΦ (4.24)

+ 2Λ(4− 3µ)gmmΦ∇mΦ∗ − 2Λ(4− 3µ)gmmΦ∗∇mΦ

− 9
2
gmm

✷Φ∇mΦ∗ + 9
2
gmm

✷Φ∗∇mΦ− 3
2
gmmΦ∇m

✷Φ∗ + 3
2
gmmΦ∗∇m

✷Φ .

The corresponding induced gauge transformation on the scalar again do not display any derivative

acting on the gauge parameter due to the above field-redefinition terms, so that we have:

δΦ = − i
3
ξmm∇m∇mΦ , (4.25)

30The Fronsdal current that it corresponds to is however traceless and differs from (4.3) by improvement terms.
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which is given for g3 =
1
24
.

Summarizing, we have used the admissibility condition to fix the last piece of arbitrariness in the

cubic action for the physical sector of Prokushkin–Vasiliev Theory. The solution to this consistency

condition is the transformation rules for the Prokushkin–Vasiliev scalar, precisely. The terms (4.19)

form the unique cubic action for the physical sector of Prokushkin–Vasiliev Theory.

Frame-like action. There is yet another way in which one may think of constructing the cubic

cross-couplings discussed hereabove. One can write down a quadratic action for scalar fields in the

following way:

Srr =
∑

k

a2k

∫
hννR

α(2k−1)νRν
α(2k−1) , (4.26)

where the free curvatures are defined as R = (D̃Ĉ)ψ. For generic values of the a2k coefficients the

above term involves all components Ĉα(k) of the physical scalar. However, as explained in [60] one

can tune the coefficients so that all components Ĉα(k) with k > 2 drop out, i.e. only the first two

(bosonic) components, Ĉ(y = 0) ≡ Φ and Ĉαα are involved. The corresponding coefficients are

an = 1
(n+2)n!

. Up to boundary terms the above expression is the first-order action for scalar fields,

and yields the standard kinetic term upon solving for Ĉαα as in (2.38). It is important to stress that

such an action can be written in RR-like form in AdS-space or for massive fields only, and not for

massless fields in flat space, since it relies on the presence of the yy-piece in the hαα(yαyα − ∂α∂α)-
part of D̃. Indeed reintroducing the cosmological constant Λ we see that it multiplies this term as

Λhααyαyα so that it degenerates in the flat limit.

One can now turn on interactions by simply replacing the background derivative D̃ with Dω =

D̃ − [ω̂, •]⋆ = d − [Ω + ω̂, •]⋆, which is similar to the Yang–Mills interactions considered in [60].

The action is then found to be consistent up to the cubic level following the standard arguments of

the Fradkin–Vasiliev approach [61, 62]. Indeed the variation is proportional to the free equations of

motion:

δS = 2
∑

k

a2k

∫
hγγ [ξ, R]

α(2k−1)γ
⋆ Rα(2k−1)

γ , (4.27)

and therefore vanishes on the free mass-shell R = 0. We note, however, that the interacting action also

contains quartic terms, which we neglect at cubic order. This action must be the cubic action we have

constructed in this section, as it is gauge invariant under the same deformed gauge transformations

δĈψ = [ξ, Ĉψ]. The RR-like action is however pseudo-local, since it involves all components of Ĉ(y)

even if we restrict to a particular spin in ω̂, and differs from the local cubic action constructed above

by a boundary term and further by a bulk term proportional to F = dω̂ − ω̂ ⋆ ∧ω̂. It would be

interesting to see which of the two actions it is easier to extract correlation functions from, as they

are computed in [27, 63]. It is also interesting to point out that in the cubic action constructed via

the Noether procedure the coefficients which we determine parametrize the interactions, and it is a

requirement about consistency of the interactions which fixes them.
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As a final comment let us note that the RR-like action is formally consistent to the cubic order

over any background that is described by a flat connection Ω of the higher-spin algebra, e.g. a

higher-spin black-hole. If Ω has non-vanishing components beyond the spin-2 sector the action in

the free approximation will depend on higher components Ĉα(2k) with k > 1, which brings in higher

derivatives31 in the equations of motion as in [43]. While for the simplest background, which is AdS,

the s–0–0 vertices are gauge invariant for any s separately, it is not so on more general backgrounds.

On those gauge invariance requires a relative normalization of different vertices to be fixed in terms

of the trace of the higher-spin algebra. It should be stressed that the mass of the scalar field that can

be consistently coupled is also fixed by the representation theory of the higher-spin algebra in order

to compensate the variation of the scalar-current coupling. Let us also recall that a scalar cannot

be coupled to a Chern–Simons theory for an sl(N) algebra with N > 2, and having a consistent

coupling requires the hs(λ) algebra.

5 Extraction of the Physical Equations

In this section we explain how the equations of motion (2.50) and (2.53a) for the physical fields

presented and discussed in Section 3 are extracted from the master equations of the Prokushkin–

Vasiliev theory. In a nutshell, the procedure for doing so goes as follows: one considers master

equations for master fields. The master fields depend on a doubled set of oscillators, that is, on the

yα’s of Section 3 but also on some zα’s which obey analogous commutation relations (see below).

The components of the master fields along the new zα oscillators are purely auxiliary, and the role of

some of the master equations is to allow one to solve for them in terms of the physical fields (those

that multiply yα oscillators only). The other master equations become the higher-spin equations of

motion once we plug the master fields with their zα-dependent part solved for (zα-on-shell forms).

As one can prove, the obtained equations no longer depend on zα. In the rest of this section we detail

this procedure and obtain the first- and second-order equations of motion for the physical higher-spin

gauge connections and scalar fields.

5.1 Master Fields and Master Equations

The Prokushkin–Vasiliev master equations are expressed in terms of three master fields

W =Wm(y, z, φ, ψ|x) dxm , B = B(y, z, φ, ψ|x) , Sα = Sα(y, z, φ, ψ|x) . (5.1)

The master field W is a spacetime one-form which includes the higher-spin gauge connections and

dreibeins as well as auxiliary components. The zero-form master field B includes the (complex) scalar

field and also auxiliary components. The master field Sα is completely auxiliary in the sense that it

31This indicates a difference between the Cauchy problem where data is given at t = 0 and the Taylor-like problem

that arises within the unfolded approach (the components Ĉα(k) parametrize on-shell derivatives of the scalar field

at a point). While the solution to the unfolded problem is always given by some Ĉ(y|x0), the Cauchy problem can

change.
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can be completely expressed in terms of the zero-form B, as will be explained below. All master fields

are functions of the spacetime coordinates xm, the Clifford factors φ and ψ introduced in (2.16), and

two sets of (mutually) commuting oscillators yα and zα, i.e. they obey

yαyβ = yβyα , zαzβ = zβzα , yαzβ = zβyα . (5.2)

The yα oscillators are those of Section 2.2 which are involved in the star-product (2.19), whereas the

zα oscillators are new ones, satisfying the following commutation relations:

[yα, yβ]⋆ = 2iǫαβ , [zα, zβ ]⋆ = −2iǫαβ . (5.3)

The corresponding star-product, generalizing (2.19), reads

f(y, z) ⋆ g(y, z) =
1

(2π)2

∫
d2u d2v f(y + u, z + u) g(y + v, z − v) exp (ivαuα) , (5.4)

where vα = ǫαβvβ and the antisymmetric epsilon tensor obeys ǫαγǫβγ = δαβ . All our conventions are

summarized in Appendix A. In the rest of this section all star-products will refer to this ’enlarged’

star-product. Evidently, upon considering functions of yα only in the above formula one recovers the

yα-star-product of (2.19).

The physical fields of Section 2 and 3 — the (higher-spin) gauge connections and dreibeins ω̂

as well as the scalar Ĉ — are embedded into the above master fields via their zα-independent

components. That is,

B = C+ B(2) + B(3) + · · · = B(y) +O(z)
C = C(y) = Ĉψ + C̃

Ĉ = Π+Ĉ +Π−Ĉ ≡ Ĉ+ + Ĉ− ,

(5.5)

so that, as explained in Subsection 2.3, the identity component of Ĉ is the physical scalar. For the

connection we have
W = ω +W(2) +W(3) + · · · = W (y) +O(z)

ω = ω(y) = ω̂ + ω̃ψ

ω̂ = ω + φe .

(5.6)

We have also displayed the ’twisted’ fields, which are discussed in Section 2.3. As is explained in

Section 3, one of the main points of this paper is to study the possibility of consistently setting them

to zero, at order 2 in perturbation theory. The actual gauge connections and dreibeins ω(x)α1...α2s
m

and e(x)α1...α2s
m are extracted as explained in (2.32). Also note that Ĉ± are the projected components

of Ĉ with respect to the projectors Π±, that we have used in (2.34).

The main prescription of Vasiliev-like theories (including Prokushkin–Vasiliev Theory) is to use

part of the master equations to solve for the zα-dependent part of the master fields in terms of the

physical sector. One then plugs these zα-on-shell forms into the dynamical master equations thereby

extracting the physical equations of motion for the physical fields. As will be seen, the dynamical
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master equations are linear covariant constancy conditions in the full yα and zα space, and plugging

the master fields with their zα-part solved for therein is really what produces interactions. The

Prokushkin–Vasiliev master equations read as follows:32

dW =W ∧ ⋆W , (5.7a)

dB ⋆ κ = [W,B ⋆ κ]⋆ , (5.7b)

dSα = [W,Sα]⋆ , (5.7c)

0 = {B ⋆ κ,Sα}⋆ , (5.7d)

[Sα,Sβ]⋆ = −2iǫαβ(1 + B ⋆ κ) , (5.7e)

where the last three equations above are those that allow one to solve for the zα-dependent part of

the master fields and the first two will then generate the physical equations for ω, e and Ĉ (and for

the twisted sector as well). Here above the Kleinian κ ≡ exp (iyαzα) was introduced, which has the

properties κ ⋆ κ = 1 and

κ ⋆ f(y, z) = f(−y,−z) ⋆ κ . (5.8)

The above Prokushkin–Vasiliev equations are invariant under the following gauge transformations

parametrized by the master gauge parameter ξ = ξ(y, z, ψ, φ|x):

δW = dξ − [W, ξ]⋆ , (5.9a)

δB ⋆ κ = [ξ,B ⋆ κ]⋆ , (5.9b)

δSα = [ξ,Sα]⋆ . (5.9c)

Let us note that the meaning of the last two master equations above is perhaps more easily understood

when they are rewritten in the following manner [64]:

dW =W ∧ ⋆W , (5.10a)

dTαβ = [W,Tαβ ]⋆ , (5.10b)

dSα = [W,Sα]⋆ , (5.10c)

i
4
{Sα,Sβ}⋆ = Tαβ , (5.10d)

[Tαβ ,Sγ]⋆ = Sαǫβγ + Sβǫαγ . (5.10e)

Here (5.10d) defines the zero-from Tαβ that together with Sα constitutes the five generators of

osp(1|2), two odd plus three even ones, as can be seen by inspecting (5.10d) and (5.10e) which

32For the original Prokushkin–Vasiliev theory the master equations formally read the same as Equations (5.7),

although for master fields W, B and Sα which depend on two extra Clifford-like elements ρ and k, and the Kleinian

κ in (5.7) is replaced by kκ. However we may project out these two extra elements by declaring W = W(y, z, φ, ψ),

B = B(y, z, φ, ψ) and Sα = ρSα(y, z, φ, ψ), yielding the Vasiliev theory [32]. Then sitting at λ = 1
2 (ν = 0) corresponds

to the theory we study, and which we keep naming Prokushkin–Vasiliev Theory although it is really a truncation

thereof [14, 49].
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are the defining relations of the osp(1|2) algebra. One then recovers the system (5.7) by setting

B ⋆ κ = − i
2
(Sα ⋆ Sα + 1).

Before moving to perturbation theory of the above master equations we should point out that

the original Prokushkin–Vasiliev system of equations is more general [14], and the theory that we

are interested in and which is introduced hereabove is really a (consistent) truncation thereof. As

explained in Section 2.2, the original Prokushkin–Vasiliev theory is really a one-parameter family of

theories, each of them based on the algebra hs(λ). The parameter λ is then related to the vacuum

value of C̃, which is denoted by ν. The truncation of interest to us is that which corresponds to

setting ν = 0. In some sense this theory is technically simpler, since we can make use of the explicit

realization of the star product (5.4), which we cannot do for generic values of λ (or ν). Also, with

respect to the original theory proposed in [14] we address the so-called reduced version thereof (see

footnote 32), although we expect it to have features similar to those of the more general theory.

5.2 Vacuum Values and zα-dependence

The above Prokushkin–Vasiliev master equations are background independent. However, we will be

interested in perturbative field excitations propagating on the (pure) AdS3 vacuum solution. The

vacuum of Section 2 is given by

Ω =
1

2
̟ααLy

αα +
1

2
φhααLy

αα with Ly
αα = − i

4
{yα, yα}⋆ . (5.11)

In order to start the perturbative analysis we further need to define the background values for the

two other master fields. As we are interested in pure AdS3 we choose the following [14]:

W = Ω , B = 0 , Sα = zα , (5.12)

and it can be easily checked that (5.7) are satisfied using [zα, •]⋆ = −2i∂zα•. We further stress that

W is taken to be equal to the above Ω at zeroth-order, so that there are no higher spins turned on,

and the scalar field is set to zero, so that we work on a vacuum with no matter. Lastly, the auxiliary

master field Sα takes the simplest non-zero form. In particular this form is consistent with the fact

that the components multiplying zα oscillators are auxiliary as Sα is to be purely auxiliary. Note

also that, as explained in Section 2.2 we work at ν = 0 which is why the twisted scalar field has a

zero vacuum value.

For practical purposes we will rewrite the master equations in terms of new master fields, shifted

by their background values as

Sα → zα + 2iAα , W → Ω+W , B → 2iB , (5.13)

where the extra factors of 2i are included for convenience. We shall be working in the bosonic theory,

which is implemented by declaring W and B to be of even degree in the total number of yα and

zα oscillators, while Sα is taken to be of odd degree. This is consistent with the aforementioned
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background values. In terms of the Kleinian operator κ of (5.8), the bosonic projection can be

rephrased as follows:

κ ⋆ B ⋆ κ = B , κ ⋆W ⋆ κ =W , κ ⋆Aα ⋆ κ = −Aα . (5.14)

The new, background-shifted and bosonic master equations now take the form

DΩW =W ∧ ⋆W , (5.15a)

DΩB = [W,B]⋆ , (5.15b)

∂zαW = DΩAα − [W,Aα]⋆ , (5.15c)

∂zαB = [Aα,B]⋆ , (5.15d)

∂zαAα = Aα ⋆Aα + B ⋆ κ , (5.15e)

where we are using the AdS3 covariant derivative of (2.23).

The prescription for extracting the physical equations of motion from the above master equations

is now as follows: one solves the last three master equations for the zα-dependent part of the three

master fields in terms of their physical, zα-independent parts (for Sα, which will be seen to be

proportional to zα, we solve in terms of the physical components of the other master fields). More

precisely, we obtain such zα-on-shell forms by making use of the following integration formulas:

∂zαf
α(z, y) = g(z, y) → fα(z, y) = ∂zαǫ(z, y) + zαΓ1 〈g(z, y)〉 , (5.16a)

∂zαf(z, y) = gα(z, y) → f(z, y) = ǫ(y) + zαΓ0 〈gα(z, y)〉 , (5.16b)

where the homotopy integrals are defined as 33

Γn 〈f(z)〉 =
∫ 1

0

dt tn f(zt) . (5.17)

One thereby obtains

B = B(y, φ, ψ) + zαΓ0 〈[Aα,B]⋆〉 , (5.18a)

Aα = ∂zαǫ(y, z, φ, ψ) + zαΓ1 〈Aν ⋆Aν + B ⋆ κ〉 , (5.18b)

W = W (y, φ, ψ) + zαΓ0 〈DΩAα − [W,Aα]⋆〉 . (5.18c)

The ’initial data’ B(y, φ, ψ) and W (y, φ, ψ) are the physical, zα-independent fields, encoding the

higher-spin gauge connections and dreibeins as well as the scalar fields to all orders, as described

more precisely in the previous subsection. The arbitrary function ǫ is commented on below. Now,

upon plugging the above zα-on-shell forms into the first two master equations (5.15a,5.15b) one can,

without loss of generality, evaluate them at z = 0, yielding

DΩW|z=0 = W ∧ ⋆W|z=0 , (5.19)

33For n 6= m the nested homotopy integrals can be resolved as Γn ◦ Γm = −(Γn − Γm)/(n −m). For n = m one

needs
∫
dt tn log t, etc.
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DΩB|z=0 = [W,B]⋆|z=0 , (5.20)

and in the rest of this work we will always assume the equations to be evaluated at z = 0, even when

not explicitly stated. The reason one can take the above equations at zα = 0 is simply that, as one

can prove, once we have plugged the solutions (5.18) therein these equations no longer depend on

zα. This fact is non-trivial, and for its proof we refer to [4, 8, 65]. Once we know the equations are

zα-independent, putting zα to zero is not a loss of generality, but makes the following computations

easier as we can neglect terms that otherwise would have canceled each other in non-trivial ways.

In Section 5.4 we expand these two equations order by order in perturbation theory, thereby

extracting physically meaningful equations of motion for the first-order Ĉ(y, φ) and ω̂(y, φ) and then

taking the procedure to order 2, describing Ĉ(2) and ω̂(2). Let us note that such a procedure will also

yield equations of motion for the twisted sector, formed by C̃ and ω̃ as well as for their second-order

versions C̃(2) and ω̃(2). However, before proceeding with perturbation theory there is one more step

to perform, which is related to Lorentz invariance and to the arbitrary initial data ∂zαǫ(y, z, φ, ψ)

found in (5.18b). This is discussed in the following subsection.

5.3 Lorentz Invariance in The Schwinger–Fock Gauge

In the previous subsection we have explained how the physical equations of motion are obtained

by solving for the zα-dependence of the master fields as in (5.18) and then plugging the obtained

expressions into the first two master equations (5.19) (and further evaluating at zα = 0). However, in

solving for the master field Sα we find (the derivative of) an arbitrary function ∂zαǫ(y, z, φ, ψ) in the

solution, as is displayed in (5.18b). This master field, however, should be kept completely auxiliary,

that is, completely determined in terms of the other fields of the theory. The usual way of removing

the arbitrariness in ǫ(y, z, φ, ψ) is to impose the Schwinger–Fock gauge:

zαSα = 0 . (5.21)

As is easy to check, this gauge choice implies ǫ(y, z, φ, ψ) = ǫ(y, φ, ψ), and hence the first term in the

right-hand side of (5.18b) vanishes identically.34 Evidently, going to such a gauge leaves one with only

a subset of the original gauge transformations. As we will see below, at order 1 in perturbation theory

the residual gauge parameters are simply the ξ’s of (5.9c) which are independent of zα. At higher

orders the zα-dependent part of ξ will be non-zero but expressed in terms of the zα-independent

components thereof. Differently put, there is a gauge freedom in the solution for Sα and one chooses

to fix the gauge — leaving unaffected the part of the gauge freedom endowing the physical fields,

that is the zα-independent part of ξ. As we will be working in the above Schwinger–Fock gauge for

the master field Sα, expression (5.18b) becomes

Aα = zαΓ1 〈Aν ⋆Aν + B ⋆ κ〉 . (5.22)

34Indeed, given that the second term in the right-hand side of (5.18b) is proportional to zα, the gauge zαSα = 0

implies zα∂zαǫ(y, z, φ, ψ) = 0, and noticing that zα∂zα is the number-of-oscillators operator in zα-space, we conclude

that ǫ cannot depend on zα — unless it is non-analytic in zα.
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The issue with Lorentz invariance is now that the generators Ly
αα of the original ⋆-product or also

their naive extension to the yα, zα Weyl algebra Lyz
αα = − i

2
(yαyα − zαzα) do not preserve the above

condition, i.e. zαδΛSα 6= 0, where δΛSα is the gauge variation of Sα from (5.9c) with Λ = 1
2
ΛααLyz

αα

(explicit computations can be found in Appendix D). One then concludes that, in this gauge, neither

Ly
αα nor Lyz

αα provide us with a proper realization of the Lorentz generators on all the master fields

present in Prokushkin–Vasiliev’s equations. One might be tempted to instead conclude that there is

a tension between the Schwinger–Fock gauge and Lorentz invariance. However, as we will see below

one can identify other, field-dependent generators that realize the Lorentz symmetry.

Any proper set of Lorentz generators should satisfy the following requirements: (i) they ought

to transform all fields covariantly and the corresponding gauge variations of the fields should close

to the Lorentz algebra,35 (ii) they have to preserve the Schwinger–Fock gauge. Fortunately, one can

find generators which satisfy both of them, and they read [57]:

Ls
αβ ≡ Lyz

αβ −
i

4
{Sα,Sβ}⋆ = Lyz

αβ −Tαβ . (5.23)

Using (5.7d) and (5.7e) one proves straightforwardly that zαδΛSα = 0 for Λ = 1
2
ΛαβLs

αβ ≡ Λs. As

for the closure of the algebra, there is a subtlety: the above generators do not close to the Lorentz

algebra per se. The Lorentz algebra is only recovered when computing commutators of the fields’

gauge variations, while the above commutators obey

[Ls
αα, L

s
ββ]⋆ = ǫαβL

s
αβ +

δLs
αα

δB
[Ly

ββ ,B]⋆ −
δLs

ββ

δB
[Ly

αα,B]⋆ . (5.24)

The above issues are presented in further detail in Appendix D.

It might be helpful to point out that, at zeroth order in perturbation theory Sα = zα and hence

Ls = Ly. This fits nicely with the fact that for Sα = zα the condition zαSα = 0 is trivially satisfied

and preserved under the ‘naive’ Lorentz generators Ly. Note that this also implies that at zeroth

order W indeed is the chosen background Ω as in (5.12). At first and higher orders the expression

(5.23) acquires a dependence on the auxiliary field Sα, and the correct Lorentz generators are no

longer the naive ones.

Finding the correct Lorentz generators (5.23) is not the end of the story: we need to define the

spin-connection accordingly ! Indeed, the spin-connection is naturally defined to be the coefficient of

the Lorentz generators in W, and the spin-connection thus enters via the following equation:

W ≡ 1

2
ωαβLs

αβ +W , (5.25)

where W is assumed to be independent of ωαβ. In terms of this (correct) spin-connection the per-

turbation theory looks a little different from that obtained by (wrongly) declaring the coefficient of

Ly to be the spin-connection. This relabeling amounts to a (pseudo-local) field redefinition from the

35We will, however, allow for generators which realize the algebra only with respect to the fields’ variations, i.e. we

allow for algebroids.
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point of view of the physical theory in terms of Ĉ and ω̂. The above is the correct object to be called

a spin-connection when in the Schwinger–Fock gauge.

Our last point before considering the perturbative analysis in the next subsections is to comment

on the Lorentz-transformation rules of the fields, now with respect to the corrected generators. By

spin-connection we mean the one defined by (5.25). Under a local Lorentz transformation, in the

Schwinger–Fock gauge the master fields are rotated as follows:

δ
(
W +

1

2
ωααLs

αα(B)
)
=

1

2
(dΛαα − ωα

ν Λ
να)Ls

αα − [W,
1

2
ΛααLyz

αα]⋆ , (5.26a)

δB ⋆ κ =
1

2
Λββ[Ls

ββ ,B ⋆ κ]⋆ =
1

2
Λββ δB ⋆ κ

δB
[Ly

ββ ,B]⋆ , (5.26b)

δSα =
1

2
Λββ[Ls

ββ ,Sα]⋆ =
1

2
Λββ δSα

δB
[Ly

ββ ,B]⋆ , (5.26c)

where we assumed that B and Sα are expressed in terms of B according to (5.18a) and (5.22), and

the left-hand side of the first line is understood as

δ
(
W +

1

2
ωααLs

αα(B)
)
= δW +

1

2
δωααLs

αα(B) +
1

2
ωααδLs

αα(B) . (5.27)

As anticipated, the tensors are rotated covariantly by the Schwinger–Fock Lorentz generators, even

though the generators themselves do not close to the Lorentz algebra — see (5.24). Hence, require-

ment (i) announced at the beginning of this subsection is fulfilled. Let us point out, finally, that

in order to derive the above transformation rules one crucially uses two facts: for the last two lines

one uses the (anti-)commutation relations of Sα with itself and with B — see (5.15) — , while for

the first line it was sine qua non to correctly identify the spin-connection as in (5.25) and to use the

Lorentz algebra. Note, also, that the above transformation rules forW and B are the same we would

obtain from (5.9) upon using ξ = 1
2
ΛααLyz

αα, except for the fact that the spin-connection (respectively

its variation) is contracted with Ls
αα on the left-hand side (respectively right-hand side) of (5.26a),

not with Lyz
αα. Again, some more details about the issue of Lorentz invariance in the Schwinger–Fock

gauge can be found in Appendix D.

5.4 Manifest Lorentz-Covariant Perturbation Theory

Having identified the correct Lorentz generators (5.23) to be used in the Schwinger–Fock gauge (5.21),

in this subsection we develop a manifestly Lorentz-covariant perturbative expansion of (5.7). We

want to perform a redefinition ofW for the practical purpose of making manifest Lorentz covariance

with respect to the background. We do so in a two-step fashion. First we perform the following

redefinition of the master gauge connection which makes manifest the covariance with respect to the

spin-2 sector, as well as removing the vielbein e from W:

W → W +
1

2
ωααLs

αα +
1

2
φ eααLY

αα ≡ W + ω + e . (5.28)

For notational convenience in the above right-hand side, the new, redefined W will still be denoted

as W. In terms of that new W, and with all other fields shifted as in (5.13), the master equations
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(5.7) read as follows:

DyzW =W ∧ ⋆W − 1

2
RααLs

αα −
1

2
φT ααLy

αα −
i

8
eαν ∧ eνα{Sα,Sα}⋆ , (5.29a)

DyzB = [W,B]⋆ , (5.29b)

∂zαW = −[e +W,Aα]⋆ +
δAα

δB [e+W,B]⋆ , (5.29c)

∂zαB = [Aα,B]⋆ , (5.29d)

∂zαAα = Aα ⋆Aα + B ⋆ κ , (5.29e)

where we have introduced the curvature tensor R and Torsion T ,

Rαα ≡ dωαα − ωα
ν ∧ ωνα − eαν ∧ eνα , T αα ≡ deαα − 2ωα

ν ∧ eνα , (5.30)

and the new covariant derivative is given by

Dyz = d • −1
2
ωαα[Lyz

αα, •]⋆ −
1

2
eαα[φLy

αα, •]⋆ , (5.31)

in which the difference with (2.23) is in that the spin-connection is now contracted with Lyz
αα instead

of Ly
αα. It is important to note that in the first master equation here above we have dropped a term

proportional to zα, which we know will not contribute to the corresponding zα-independent equation,

for by definition the latter is obtained by evaluating the master equation at zα = 0. 36

It is now evident that in the above master equations there are no spin-connections appearing

outside of covariant derivatives. Hence the master equations are manifestly Lorentz covariant when

we correctly identify the spin-connection as in (5.25), and the ’price to pay’ for making that property

manifest is to have some extra terms in the equations (5.29a), (5.29c).

We are close to being able to formulate the perturbative master equations. Our last step is the

following: the redefinition (5.28) makes manifest Lorentz covariance with respect to the whole spin-2

sector. However, as we are interested in perturbation theory we choose to make it manifest with

respect to the background only, that is, we set ω and e in (5.28) to̟ = 1
2
̟ααLs

αα and h = 1
2
φ hααLY

αα,

the AdS3 background spin-connection and dreibein. Because the curvature R and torsion T of (5.30)

vanish for this background the resulting equations read

D̄yzW =W ∧ ⋆W − i

8
hαν ∧ hνα{Sα,Sα}⋆ , (5.32a)

D̄yzB = [W,B]⋆ , (5.32b)

36Evidently, terms proportional to zα appear in other master equations in (5.29), e.g. in the third one (5.29c).

However one should remember that such is not one of the master equations that will yield a physical equation of

motion. Rather, as we already noted the last three master equations allow one to solve for the zα-dependence of the

three master fields, and only the first two master equations are to be evaluated at zα = 0 — after plugging therein

the master fields with their zα-dependence solved for.
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and all other equations in (5.29) remain unchanged. Note that we have introduced the background

version of the covariant derivative Dyz, that is

D̄yz = d • −1
2
̟αα[Lyz

αα, •]⋆ −
1

2
hαα[φLy

αα, •]⋆ . (5.33)

Now using (5.16) we can again determine the zα-dependence of the master fields by integrating

(5.29c)-(5.29e), which leads to a slightly different result than (5.18):

B = B(y, φ, ψ) + zαΓ0 〈[Aα,B]⋆〉 , (5.34a)

Aα = zαΓ1 〈Aν ⋆Aν + B ⋆ κ〉 , (5.34b)

W = W (y, φ, ψ)− zνΓ0 〈[h,Aν]⋆ + [W,Aν ]⋆〉 , (5.34c)

where this result already takes into account the Schwinger–Fock gauge (5.21), which is why the

last term in (5.29c) has been dropped, on the account that zνΓ0

〈
δAν

δB
. . .
〉
= 0. Note that in the

zα-dependent part of the last equation hereabove the background spin-connection is not present.

Indeed such a term would break manifest Lorentz covariance and would arise if we had not identified

the Lorentz generators correctly in the Schwinger–Fock gauge, as can be seen by comparing with

(5.18).

5.5 Order-1 Perturbations

As discussed earlier, one of the goals of the present work is to explore the backreactions on the

different fields of the Prokushkin–Vasiliev theory at order 2 in perturbation theory. However, in

order to do so we found it was needed to carefuly analyze the first-order perturbation theory first.

This will also provide a warm-up exercise in view of the next subsection. As we have explained

already, the procedure is to plug the solutions (5.34) into the master equations (5.32) and evaluate

the result at zα = 0. Also, let us stress once again that the order of the operations plays a crucial

role here: if one evaluates the expressions (5.34) at zα = 0 first and then plugs the result in (5.32),

the dynamics is lost. The interactions come from the zα-dependence precisely !

At order 1 it should be evident that the right-hand sides of (5.32) are just zero, which simply

stems from the fact that the fields start at order 1 now, as they have been shifted by their background

values (and those right-hand sides are quadratic in the master fields). We thus have D̄yzW(1) = 0,

D̄yzB(1) = 0, so that the physical first-order equations of motion read

D̄yzW(1)
∣∣
z=0

= 0 , D̄yzB(1)
∣∣
z=0

= 0 , (5.35)

where it is implicit that the master fields now stand for the corresponding zα-on-shell forms of (5.34).

The first-order versions of (5.34) then are

B(1) = Ĉ(y, φ)ψ + C̃(y, φ) , (5.36a)

A(1)
α = zα

∫ 1

0

dt t Ĉ(−zt, φ)eityz ψ + zα

∫ 1

0

dt t C̃(−zt, φ)eityz , (5.36b)
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W(1) = ω̂(y, φ) + ω̃(y, φ)ψ +

∫ 1

0

dt (1− t)t φ hααzαzαC̃(−zt, φ)eityz +M2ψ , (5.36c)

where M2 is given by

M2 = −
1

2

∫ 1

0

dt (1− t)φ hααzαeityz
(
yα(1− t)− i(1 + t)t−1∂zα

)
Ĉ(−zt, φ) . (5.37)

Note that we have split C(y, φ, ψ) and ω(y, φ, ψ) in their twisted and physical component (see

Section 2 as well as 5.1). After some algebra, substituting (5.36) into (5.35) yields the following

result:

Dω̂ = 0 , (5.38a)

D̃ω̃ = 1
8
Hαα(yα + i∂wα )(yα + i∂wα )Ĉ(w, φ)|w=0 , (5.38b)

DC̃ = 0 , (5.38c)

D̃Ĉ = 0 , (5.38d)

where Hαα ≡ hαν ∧ hνα and the physical-space covariant derivatives D and D̃ are defined in (2.26).

The equations for ω̂, Ĉ and C̃ are exactly as in (2.30) and (2.31). The equation of motion (5.38b)

for the twisted one-form ω̃ is the one displayed in (3.1). It differs from (2.30) by a source term

involving the physical scalar fields. As explained in Section 3.1.1 we wish to consider solutions of

(5.38) for which the twisted fields ω̃ and C̃ are zero. As is further detailed in Section 3.1.1, the above

source term can be removed by performing the field redefinition ω̃(y, φ|x)→ ω̃(y, φ|x)+M1. In other

words we are finding a particular solution to the inhomogeneous first-order equation for ω̃. Hence

the equations of motion in the twisted sector are exactly given by (2.30) after performing this field

redefinition, i.e.

D̃ω̃ = 0 . (5.39)

Therefore we can consistently consider the trivial solution for the redefined fields (5.39) and (5.38b),

that is, ω̃ = 0, C̃ = 0, which we assume in the following.

After having performed the field redefinition of ω̃ by (3.2) the one-form W at linear order is

modified: instead of (5.36c) it is now given by

W(1) = ω̂(y, φ) +M1ψ +M2ψ ≡ ω̂(y, φ) +Mψ , (5.40)

where the solutions (3.5) have been used to eliminate the terms involving twisted fields in the right-

hand side of (5.36c). However the above field redefinition is not unique: as exposed in Section 2.5, the

generic zero-mode for the homogeneous equation (5.39) is parametrized by an arbitrary parameter g0

(in bosonic theory). This means that the generic form of W(1) after performing the field redefinition

that removes the source term of (5.38b) is the following:

W(1) = ω̂(y, φ) +Mψ +Rψ . (5.41)

This fact will play a crucial role in the following subsection, where we address the second-order

backreactions on the twisted fields. Recalling the results presented in Section 3.2, the situation is

that the twisted fields can be consistently set to zero at second-order only at a particular point in

the parameter space describing the zero-mode (3.3).
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5.6 Order-2 Perturbations

In spirit, the second-order analysis much resembles the first-order one: we solve for the zα-dependence

of the second-order master fields, plug the result in the first two master equations and evaluate the

latter at zα = 0, thereby obtaining the physical-space second-order equations of motion for the fields.

As can be expected, however, the details are much more intricate, and as we will see here below at

order 2 the Prokushkin–Vasiliev theory truly becomes non-trivial, namely the fields start to interact.

However, as the computational procedure has been made clear in the previous subsection and we

wish to keep the presentation concise we shall skip some specifics of the calculations and shall not

display the obtained expressions explicitly. The latter are to be found in Appendix B.1.

The zα-dependence of the second-order excitations is again easily computed from (5.34) and is

found to be

B(2) = Ĉ(2)(y, φ)ψ + C̃(2)(y, φ) + zαΓ0

〈
[A(1)

α ,B(1)]⋆
〉
, (5.42a)

A(2)
α = zαΓ1

〈
A(1)

ν ⋆A(1)ν
〉
+ zαΓ1

〈
B(2) ⋆ κ

〉
, (5.42b)

W(2) = ω̂(2)(y, φ) + ω̃(2)(y, φ)ψ − zνΓ0

〈
[h,A(2)

ν ]⋆ + [W(1),A(1)
ν ]⋆

〉
, (5.42c)

where we split again the zα-independent parts of the master fields into their physical and twisted

components. To obtain the physical equations of motion one now has to insert (5.42) as well as

(5.40), (5.36a) and (5.36b) into the first two master equations at second-order,

D̄yzW(2)|z=0 = (W(1) ∧ ⋆W(1) − iHααA(1)
α ⋆A(1)

α )|z=0 , (5.43a)

D̄yzB(2)|z=0 = [W(1),B(1)]⋆|z=0 . (5.43b)

In the following the evaluation at zα = 0, which is always meant after all star-products have been

performed, will no longer be indicated explicitly. It is important to note that we will only consider

the case where we have chosen vanishing solutions for the linear twisted fields as in (3.5).

After some algebra the above equations are turned into

D̄yz
(
Ĉ(2)ψ + C̃(2)

)
= −DyzzαΓ0

〈
[A(1)

α , Ĉψ]⋆

〉
+ [ω̂ +Mψ, Ĉψ]⋆ , (5.44)

D̄yz
(
ω̂(2) + ω̃(2)ψ

)
= DyzzνΓ0

〈
[h,A(2)

ν ]⋆
〉
+ DyzzνΓ0

〈
[ω̂ +Mψ,A(1)

ν ]⋆
〉

+ (ω̂ +Mψ) ∧ ⋆(ω̂ +Mψ)− iHααA(1)
α ⋆A(1)

α . (5.45)

Splitting again these equations in their physical and twisted components we arrive at the following

equations of motion:

(D̃Ĉ(2))ψ = V(ω̂, Ĉ) , (5.46a)

DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) , (5.46b)

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) , (5.46c)

Dω̂(2) = V(ω̂, ω̂) + V(Ω,Ω, Ĉ, Ĉ) , (5.46d)
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with the physical cocycles found to be

V(Ω,Ω, Ĉ, Ĉ) = (Mψ) ∧ ⋆(Mψ)− iHααA(1)
α ⋆A(1)

α + D̄yzzνΓ0

〈
[Mψ,A(1)

ν ]⋆
〉
+ (5.47a)

+ D̄yzzαΓ0

〈
[h, zαΓ1

〈
A(1)

ν ⋆A(1)ν
〉
]⋆
〉
+ D̄yzzαΓ0

〈
[h, zαΓ1

〈
B(2) ⋆ κ

〉
]⋆
〉
,

V(ω̂, ω̂) = ω̂ ∧ ⋆ω̂ , (5.47b)

V(ω̂, Ĉ) = [ω̂, Ĉψ]⋆ , (5.47c)

and those pertaining to the twisted sector reading

Ṽ(Ω, Ĉ, Ĉ) = −D̄yzzνΓ0

〈
[A(1)

ν , Ĉψ]⋆

〉
+ [Mψ, Ĉψ]⋆ , (5.48a)

Ṽ(Ω, ω̂, Ĉ) = {ω̂,Mψ}⋆ + D̄yzzνΓ0

〈
[ω̂,A(1)

ν ]⋆
〉
. (5.48b)

Obtaining an explicitly zα-independent expression thereof is a task of considerable technical difficulty

and we will outline the main techniques we used for performing this calculation in the next subsection.

The final form of the various cocycles, with no zα’s involved anymore, is given in Section 3.1.2 where

we present the corresponding results and comment on them, whereas the explicit expressions for

some of them are collected in Appendix B.

5.7 Explicit Evaluation of Cocycles

As commented on at the end of the previous subsection, evaluating the cocycles displayed there is

not an easy task. In order to do so we have developed some methods for computing, which we now

illustrate on the following example:

(M2ψ) ∧ ⋆(M1ψ)|z=0 , (5.49)

which is found in (5.47a). Each of the Mi’s hereabove contains a scalar field Ĉ, and it turns out to

be computationally advantageous to consider the Fourier transformations thereof, given by (2.63).

We will furthermore adopt the convention that the wave vector of the first Ĉ field is denoted by ξ

and that of the second field (for the above piece the one in M1) by η. This is important as for each

term in the cocycle (5.47a) we will obtain an expression of the form

∫
dξdη f(y, ξ, η) Ĉ(ξ, φ|x)ψ Ĉ(η, φ|x)ψ =

∫
dξdη f(y, ξ, η) Ĉ(ξ, φ|x) Ĉ(η,−φ|x) , (5.50)

so that this convention amounts to associating a wave vector η with the master field that comes with

a flipped sign for φ.

Now using the bosonic version of (3.2) and (5.37) forM1 and M2 we can rewrite (5.49) hereabove

using the integral representation of the star product (5.4) as

− 1

32π2
hαα ∧ hββ

{∫
dt dq dξ dη d2u d2v (1− t)(q2 − 1)eiq(y+v)η−ity(ξ−u)+ivu (5.51)

×uα[(y + u)α(1− t)− (1 + t)ξα](y + v − η)β(y + v − η)β
}
Ĉ(ξ, φ|x) Ĉ(η,−φ|x) .

50



After shifting uα → uα − qηα and vα → vα − t(y + ξ)α the above expression becomes

− 1

32π2
hαα ∧ hββ

{∫
dt dq dξ dη d2u d2v (1− t)(q2 − 1)R2eivu (5.52)

× (u− qη)α[(yα + uα − qηα)(1− t)− (1 + t)ξα]

× (yβ + v − t(y + ξ)β − ηβ)(yβ + vβ − t(y + ξ)β − ηβ)
}
Ĉ(ξ, φ|x) Ĉ(η,−φ|x) ,

where we have defined R2 ≡ exp i (q(y − t(ξ + y))η). We can now evaluate the integrals over u and

v by using the following identities:

1

(2π)2

∫
d2u d2v eivu = 1 , (5.53a)

1

(2π)2

∫
d2u d2v eivu uαvβ = iǫαβ , (5.53b)

whereas this type of integral vanishes if the number uα’s is different from the number of vα’s. Using

these identities we arrive at our final result for (5.49), that is
∫

dt dq d2ξ d2η (q2 − 1)R2 (5.54)

×
{−i

4
Hαα

(
T 2
αS

2
α + q(1− t)2ηαS2

α

)
+

1

8
hαα ∧ hββ

(
q ηαT

2
αS

2
βS

2
β

)}
Ĉ(ξ, φ|x) Ĉ(η,−φ|x) ,

where we have denoted certain combinations of yα, ηα and ξα by S2 and T 2, whose definitions are

found in (B.6). One could simplify this expression further by using the basic identity (A.10) for

two-forms, but evaluating the resulting expression is rather cumbersome and can be done most easily

using a computer algebra program. The piece which we have explicitly evaluated in this subsection is

part of the cocycle (5.47a), which is by far the hardest one to compute. In Appendix B.1 we display,

however, the simplest form we obtain for the whole of it.

Consistent truncation to the physical sector: The above computation is an example of how

to explicitly evaluate a piece on the right-hand side of equations of motion for the physical gauge

connection. However, hereabove we do so in the field-frame corresponding to the redefinition of W
by (3.2). We now explain how to obtain the expression for the cocycle studied above in the field

frame corresponding to using the redefinition M̃1 at g̃0 = d̃0 = 0, that is, the frame for which the

second-order twisted fields can be trivialized consistently.

At g̃0 = d̃0 = 0 the redefinition M̃1 is given by

M̃1 =
i

4
φhαα

∫ 1

0

dt (t2 − 1) (y − ξ)α(y − ξ)α sin (tyξ) Ĉ(ξ, φ|x) = 1

2

(
M1 − M1|t→−t

)
. (5.55)

This form suggests that the expressions for the redefinition M̃1 can be obtained by anti-symmetrizing

over t, over q or over both t and q for terms that are of the form (M1ψ) ⋆ X , X ⋆ (M1ψ) or (M1ψ) ∧
⋆(M1ψ) respectively. For the example (5.49) we would therefore need to anti-symmetrize with respect

to q. The resulting expression is a bit more intricate as it involves additional types of exponentials.

It is therefore advantageous to calculate the various cocycles with respect to M1 and then impose

appropriate antisymmetrization.
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6 Discussion and Outlook

Briefly put, our results are the following:

Twisted Fields: the second-order Prokushkin–Vasiliev theory at λ = 1
2
, with first-order twisted

fields set to zero, possesses free real parameters. Only at one point in this parameter space

can one consistently set all second-order twisted fields to zero without redefining the physical

fields.

Physical Sector: the backreactions on the second-order physical fields in this theory have been

computed explicitly in the Schwinger–Fock gauge in a manifestly Lorentz-covariant manner, in

particular at the point in parameter space mentioned hereabove.

Cubic Action: we have determined completely the cubic action describing the physical sector of

the theory. The relative coupling constants gs parametrizing each spin-s canonical current were

fixed by solving the admissibility condition, which is part of the Noether procedure.

Along the way, we have also shed light on how to formulate perturbation theory in a manifestly

local Lorentz-covariant way in the Schwinger–Fock gauge and have also systematically computed all

cohomologies relevant for our second-order analysis. Hereafter we comment and expand on the above

results.

Let us first comment on twisted fields. When truncating the theory to linear order in perturbation

theory, it was known since the work of Vasiliev [32] that one can indeed set these fields to zero after

a field redefinition of the twisted gauge connection ω̃. In Section 3.1 we establish that there is a

two-parameter ambiguity in this field redefinition. The twisted gauge connection ω̃ will enter the

equations of motion when we expand the theory to second order in perturbation theory, as in (3.8).

Changing the two parameters d̃0 and g̃0 in the redefinition (3.14) thus modifies the twisted scalar’s

equation of motion accordingly. As for the second-order twisted gauge connection ω̃(2) one first

removes the backreaction depending on Ĉ(2) along the same lines as for the corresponding first-order

equation. The remaining backreaction depends on two other parameters d̃1 and g̃1. The most general

second-order theory is thus parametrized by four parameters (two in the bosonic case). As we explain

in Section 3.1, there is a unique point in parameter space where the second-order backreaction on the

twisted scalar and twisted gauge connection can be removed by a pseudo-local field redefinition. That

point corresponds to the values d̃0,1 = g̃0,1 = 0, for the parameters defined in (3.4) and (3.19). Only

for this single point in parameter space there exists a truncation of Prokushkin–Vasiliev Theory to its

physical sector to second order in perturbation theory. For any other set of values for the parameters

the backreaction on either C̃(2) or ω̃(2) is non-trivial in cohomology, and hence cannot be removed

by any pseudo-local field redefinition.

Let us stress once again that we analyzed Prokushkin–Vasiliev Theory only up to order 2 in

perturbation theory, and we have nothing definite to say about higher-order perturbation theory.

The field redefinitions which allow us to consistently set the second order twisted fields to zero
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are not unique as our cohomological analysis of Appendix E shows. In fact they form an infinite-

dimensional parameter space of possible field redefinitions, whereas at order 1 the redefinitions of ω̃

form a two-dimensional parameter space. However this infinite set of parameters presumably boils

down to only one independent parameter by higher-spin covariance. Beyond this we can only say

that two scenarios are possible: it could be that at order 3 the truncation to the physical sector

leaves us with free parameters or not.

One should also note that there exists a so-called non-local integration flow for the Prokushkin–

Vasiliev Theory [14,48]. In brief, this is a pseudo-local, non-perturbative field redefinition that maps

the original theory to a free one. In particular it achieves the decoupling of the twisted fields at

all orders. In comparison with our findings, this means that the first-order part of the integrating

flow’s field redefinition on ω̃ corresponds to the redefinition (3.14) of ω̃ at d̃0 = g̃0 = 0. However the

integration flow also leads to free equations in the physical sector. This is compatible with the fact

that, as we prove in Appendix E, the relevant cohomology is trivial and therefore any backreaction

to the physical equations of motion of the second-order gauge field can be removed.

All of our discussion highlights the urgent need for a better understanding of field redefinitions in

Prokushkin–Vasiliev Theory and their locality properties. Allowing for any kind of field redefinition,

including pseudo-local ones, should not be physically allowed as one can then remove any backreaction

of the matter fields to the gauge fields at order 2. It is easy to implement the requirement that field

redefinitions should be local and not pseudo-local. However, this is not the correct criterion, as can be

seen e.g. by noticing that pseudo-local tails in our physical backreaction cannot be removed by local

field redefinitions. Another possible criterion might be the asymptotic behavior of the pseudo-local

field redefinitions. But as we checked in Appendix F, field redefinitions that should be physically

not allowed seem to have the same asymptotic behavior as physically allowed ones — at least to

leading order. It is also important to note that the field redefinition performed in (5.28) which

enforces manifest Lorentz covariance (with respect to the background) is of the pseudo-local type.

Similarly, the field redefinition of C̃(2) which removes the backreaction thereof at g̃0 = d̃0 = 0 is

also pseudo-local. It is unclear what the functional class corresponding to acceptable pseudo-local

field redefinitions is. Ultimately, ’acceptable’ means that the said class of field redefinitions does not

change the observables as for example correlation functions. Those should correspond to redefinitions

allowing us to remove everything from the backreaction but the canonical currents of Section 4 (once

the torsion constraint is solved for). Such a requirement is conceptually clear, but is nevertheless

difficult to translate explicitly in terms of restrictions on the functional class of field redefinitions one

should allow for.37

The interpretation one should have of the twisted fields is unclear to us. These include Killing-like

tensor fields, sitting in finite-dimensional representations of the AdS3 isometry algebra. From the

perspective of Minimal Model Holography [10], there does not seem to be any natural boundary dual

for them. Thus, having in mind this duality one could conjecture the existence of a non-perturbative

formulation of a higher-spin theory in dimension 3 involving no twisted fields and defined at any value

37See e.g. [66] for a discussion of flat-space non-localities in the context of amplitudes computation.
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of the λ parameter. In particular it would be interesting to find out whether one can reformulate

Prokushkin–Vasiliev Theory without twisted fields at the non-perturbative level.

In fact there exists another three-dimensional, matter-coupled higher-spin theory which involves

no twisted fields: the Vasiliev D-dimensional theory [5, 64, 67] is defined without the twisted sector

and can be consistently considered at D = 3, as we discuss in Appendix G. One can choose to couple

a twisted sector to this D-dimensional Vasiliev Theory at D = 3 and in fact also for any D, even

though it is not required by consistency and its original formulation does not include it. As we

discuss in Appendix G, in comparison to Prokushkin–Vasiliev Theory the D-dimensional theory has

different features, and a manifestation thereof is the equations of motion for the spin-1 sector and

the behavior of the twisted sector. Furthermore the D-dimensional theory at D = 3 corresponds to

λ = 1 and at present it is not known how to embed this point into one parameter family of theories.

Lastly, let us comment on our findings regarding the cubic action for the physical sector of the

Prokushkin–Vasiliev theory, which are presented in Section 4. Let us stress again that we have fixed

completely the cubic action, and we have done so by solving a necessary but non-sufficient quartic-

order condition (4.13), the so-called admissibility condition. This means that our cubic action is

not guaranteed to be consistent at quartic order. Differently put, it is not necessarily true that we

can find quartic terms to add on top of our cubic action such that it is consistent at that order. In

general, it may be that the spectrum needs to be enlarged in order to achieve full consistency starting

from our cubic action. In particular, it would be most interesting to find out whether twisted fields

are required in order to achieve consistency to all orders for generic values of λ.

Let us further comment on the possibility of removing the entire physical backreaction by means

of a pseudo-local field redefinition. Although it signals a lack of control at the level of the equations of

motion, it could make sense at the level of the corresponding action. The boundary terms produced

by an exact current J = DU should be kept at the action level while they are neglected for the

equations of motion. In a rather daring fashion, one might then think of this feature as realization

of the AdS/CFT lore, since by performing a (pseudo-local) field redefinition we are producing a

left-over boundary term.

Let us close by highlighting some open questions and possible continuations of the present inves-

tigations.

• An obvious generalization of our results would be that of considering the Prokushkin–Vasiliev

theory at generic values of λ, which is especially interesting from the AdS/CFT perspective.

• Understanding the role of the twisted sector, if any, in the context of Minimal Model Holography

seems a prime issue. In light of the Gaberdiel–Gopakumar duality one would like to either

construct a theory involving no twisted fields or try to make sense of twisted fields from the

boundary perspective.

• A related issue is that of completing the cubic action (4.19) to quartic order, if possible at all.

More particularly, one would wish to see whether a completion thereof exists.
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• Another possible direction of investigation, although potentially intricate technically, is to

explore the equations of motion at order 3 in perturbation theory, paying special attention

to the possibility of setting the twisted fields to zero consistently and making sure the whole

parameter space of the theory is taken into account.

• Last but not the least, we mention the most pressing issue of correctly characterizing the

functional class of field redefinitions one should allow for in the context of Prokushkin–Vasiliev

Theory and in other higher-spin theories more generally. These should leave the correlation

functions invariant and we expect them to yield the canonical currents (1.4) starting from the

backreaction computed in this work.
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A Notation and Conventions

Our symmetrization convention and index notation go as follows: indices denoted by the same letter

without further subindices are assumed to be symmetrized without extra factors. For example, XαYα

is understood as Xα1Yα2 + Xα1Yα2 , without further normalization. If symmetric indices sit on the

same object we further contract the notation as follows: a symmetric rank-n tensor will be denoted

as Tα(n), which means the tensor components Tα1...αn
are completely symmetric in the exchange of

any two indices. Note that this can lead e.g. to expressions of the form XαYα(n−1), which should be

understood as Xα1Yα2...αn
+ (n− 1) terms.

The master fields entering the master equations (5.7) are W = Wm(y, z, φ, ψ|x)dxm, B =

B(y, z, φ, ψ|x) and Sα = Sα(y, z, φ, ψ|x). We work at λ = 1
2
so that B has zero vacuum value.

W is shifted by the AdS3 background connection Ω ≡ 1
2
̟ααLαα + 1

2
φhααLαα as W → Ω +W. The

auxiliary field Sα is shifted according to Sα → zα + 2iAα. The shifted master fields obey the master

equations (5.15). The breakdown of master fields into field components is as follows: for the scalar
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one has
B = C+ B(2) + B(3) + · · · = B(y) +O(z)

C = C(y) = Ĉψ + C̃

Ĉ = Π+Ĉ +Π−Ĉ ≡ Ĉ+ + Ĉ− .

(A.1)

For the connection it reads

W = ω +W(2) +W(3) + · · · = W (y) +O(z)
ω = ω(y) = ω̂ + ω̃ψ

ω̂ = ω + φe .

(A.2)

For all these fields the full yα, zα-space star-product is

f(y, z) ⋆ g(y, z) =
1

(2π)2

∫
d2u d2v f(y + u, z + u) g(y + v, z − v) exp (ivαuα) . (A.3)

In particular we have [yα, yβ]⋆ = 2iǫαβ , [zα, zβ]⋆ = −2iǫαβ .
We use various covariant derivatives through the text. The AdS3 covariant derivative is given by

DΩF = dF− Ω ∧ ⋆F+ (−1)|F |F ∧ ⋆Ω , (A.4)

where |F| denotes the form degree of F. The covariant derivative acts as DΩ(X + X̃ψ) = DX +

(D̃X)ψ, where

D = ∇− 1

2
φhαα[Lαα, •]⋆ = ∇− φhααyα∂yα , (A.5a)

D̃ = ∇− 1

2
φhαα{Lαα, •}⋆ = ∇+

i

2
φhαα(yαyα − ∂yα∂yα) , (A.5b)

∇ = d • −1
2
̟αα[Lαα, •]⋆ = d−̟ααyα∂

y
α . (A.5c)

In the process of extracting physical equations from master equations in Section 5 we also use the

following covariant derivative:

Dyz = d • −1
2
ωαα[Lyz

αα, •]⋆ −
1

2
eαα[φLy

αα, •]⋆ , (A.6)

as well as its background version

D̄yz = d • −1
2
̟αα[Lyz

αα, •]⋆ −
1

2
hαα[φLy

αα, •]⋆ . (A.7)

Our conventions for index contraction and raising / lowering are as follows:

yα = yβǫβα , yα = ǫαβyβ , ǫαβǫαγ = δβγ , (A.8)

so that AαB
α = −AαBα ≡ −AB = BA and ǫ12 = ǫ12 ≡ 1. Our derivatives have indices which are

raised and lowered in the usual way, so that ∂α = ∂βǫβα, ∂
α = ǫαβ∂β and we have

∂αyβ = ǫαβ , ∂αyβ = ǫαβ , ∂αy
β = δβα , ∂αyβ = −δαβ , (A.9)

and analogously for the zα-oscillators. Last but not least we recall the following identities for the

background vielbein:

hααµ hναα = −1
2
δνµ hααµ hµββ = −1

4
δαβ δ

α
β . (A.10)

56



B Backreactions

In this Appendix we will summarize our results concerning the various backreactions in Prokushkin–

Vasiliev Theory. We will first focus on the backreaction to the Fronsdal fields in Section B.1 and

then discuss the twisted scalar and gauge sector in Section B.2.

B.1 Fronsdal Sector

In the following Section B.1.1 we will collect the raw expressions for all the contributions to

V(Ω,Ω, Ĉ, Ĉ) in Fourier space and then in Section B.1.2 summarize our strategy to simply relate

these expressions by partial integration and Fierz identities.

B.1.1 Raw Expressions for the Backreaction on the Fronsdal Sector

In the following we will first summarize the result for the backreaction V(Ω,Ω, Ĉ, Ĉ) when using

the field redefinition M1, as discussed in Section 3.1.1, and then explain how the results for the

redefinition M ′
1 can be obtained from it.

It is convenient to introduce the following exponents that appear in various structures below

Q = exp i (tq(η + y)(y + ξ)) , P = exp i (t(η + y)(y + ξ)) , (B.1a)

K = exp i(y − qη)(y + tξ) , R1 = exp i (t(y − q(η + y))ξ) , (B.1b)

R2 = exp i (q(y − t(ξ + y))η) . (B.1c)

The Fourier images of the functions involved in the computation when setting to zero the linearized

twisted sector are:

Aα = zα

∫ 1

0

dt teit(y+ξ)zĈ(ξ, φ|x)ψ , (B.2)

M1 =
1

4
φhαα

∫ 1

0

dt (t2 − 1)(y − ξ)α(y − ξ)αeityξĈ(ξ, φ|x) , (B.3)

M2 =
1

2
φhαα

∫ 1

0

dt (−zαyα(1− t)2 + (1− t2)zαξα)eit(y+ξ)zĈ(ξ, φ|x) . (B.4)

A lengthy but straightforward computation of all the terms of the backreaction, in complete analogy

with the example discussed in Section 5.7, yields the following result. The terms therein are to be

added up as they are and integrated over the homotopy parameters t, q and the wave-twistors ξ, η

after multiplying with Ĉ(ξ, φ)Ĉ(η,−φ):

D̄yzzαΓ0 〈[h, zαΓ1 〈Aν ⋆Aν〉]⋆〉 =
−i
2
Hαα t3 P (η − ξ)α(η − ξ)α , (B.5a)

D̄yzzαΓ0

〈
[h, zαΓ1

〈
B(2) ⋆ κ

〉
]⋆
〉
=
i

2
Hαα t2 P (η − ξ)α(η − ξ)α , (B.5b)

D̄yzzνΓ0 〈[M1ψ,Aν ]⋆〉 =
i

2
Hαα q(1− q)t

{
S1
αξα R

1 + ξ ↔ η
}
, (B.5c)

D̄yzzνΓ0 〈M2ψ ⋆Aν〉 =
i

2
Hαα

(
−q2t C1

α(ξ − η)α − q3t(1− t)2 (η + y)α(ξ − η)α (B.5d)
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− tq2C1
α(ξ + y)α + tq2(1− t)2(1− q)(η + y)α(ξ + y)α

)
Q

+
1

2
hαα ∧ hββ

(
q3t2 (ξ + y)α(ξ − η)α(η + y)βC

1
β

)
Q , (B.5e)

D̄yzzνΓ0 〈Aν ⋆M2ψ〉 =
i

2
Hαα

(
qt2(ξ − η)αC2

α + qt3(1− q)2(ξ + y)α(ξ − η)α (B.5f)

− t2qC2
α(η + y)α + t2(1− t)q(1− q)2(ξ + y)α(η + y)α

)
Q

+
1

2
hαα ∧ hββ q2t3

(
(η + y)α(ξ − y)α(ξ + y)βC

2
β

)
Q , (B.5g)

−iHααAα ⋆Aα = i Hαα t2q2Q (y + ξ)α(y + η)α , (B.5h)

M2ψ ⋆ ∧M2ψ =
i

4
Hαα

{
C1

αC
2
α + (1− q)2t(ξ + y)αC

1
α + (1− t)2q(η + y)αC

2
α (B.5i)

+ qt(1− t)2(1− q)2(η + y)α(ξ + y)α
}
Q

+
1

4
hαα ∧ hββ

(
tq (η + y)αC

1
α(ξ + y)βC

2
β

)
Q , (B.5j)

M2ψ ⋆ ∧M1ψ =
−i
4

(q2 − 1)Hαα
(
T 2
αS

2
α + q(1− t)2ηαS2

α

)
R2 (B.5k)

+
1

8
hαα ∧ hββ

(
(q2 − 1)q ηαT

2
αS

2
βS

2
β

)
R2 , (B.5l)

M1ψ ⋆ ∧M2ψ =
−i
4
Hαα (t2 − 1)

(
−T 1

αS
1
α + t(1− q)2S1

αξα
)
R1 (B.5m)

+
1

8
hαα ∧ hββ

(
(t2 − 1)t S1

αS
1
αξβT

1
β

)
R1 , (B.5n)

M1ψ ⋆ ∧M1ψ =
−1
16

Hαα (t2 − 1)(q2 − 1) K
(
U1
αU

2
α(U

1U2) + 4iU1
αU

2
α

)
, (B.5o)

where we denoted

C1
α = (1− t2)ξα − (1− t)2 ((1− q)yα − qηα) , U1

α = (y + tξ − η)α , (B.6a)

C2
α = (1− q2)ηα − (1− q)2 ((1− t)yα − tξα) , U2

α = (y − qη − ξ)α , (B.6b)

T 1
α = (1− q2)ηα − (1− q)2(y + tξ)α , S1

α = (1− q)yα − qη − ξ , (B.6c)

T 2
α = (1− t2)ξα − (1− t)2(y − qη)α , S2

α = (1− t)yα − tξ − η . (B.6d)

In evaluating various cocycles the following formulas were useful:insertions being carefully tracked

we find

D̄yzzνΓ0 〈fν(y, z)〉
∣∣
z=0

= iφhαα∂yαfα(y, 0) , (B.7a)

D̄yzzνΓ0 〈[h, zνf(y, z)]〉
∣∣
z=0

= −Hαα∂yα∂
y
αf(y, 0) , (B.7b)

D̄yzzνΓ0 〈[h, zνΓ1 〈f(y, z) ⋆ κ〉]〉
∣∣
z=0

= −1
2
Hαα∂yα∂

y
αf(0,−y) . (B.7c)

It is the sum of the above expressions, i.e. (B.5a)-(B.5o), that we checked against the conservation

identity (2.68c) and found to consist of several independently conserved quantities.

Result for the Redefinition M ′
1: If we perform a pseudo-local redefinition (3.4) that allows for

the removal of the backreactions to the twisted-sector at second order then we need to modify the

58



formulas above. The bosonic projection implies that M ′
1 is given by

M ′
1 =

i

4
φhαα

∫ 1

0

dt (t2 − 1)(y − ξ)α(y − ξ)α sin (tyξ)Ĉ(ξ, φ|x) = 1

2

(
M1 − M1|t→−t

)
. (B.8)

This form implies that the corrected backreaction can be obtained by anti-symmetrizing over t, over

q or over both t and q the terms of (B.5a)-(B.5o) that are of the form (M1ψ) ⋆ X , X ⋆ (M1ψ) or

(M1ψ) ∧ ⋆(M1ψ) respectively.

B.1.2 Simplified Backreaction on the Fronsdal Sector

Due to Fierz identities that can be combined with integration by parts over t or q there is no

unique way of presenting the final result. One of the simplest forms is summarized below. Our

general strategy was to get rid of four-fermion terms by trying to represent them as derivatives of

the exponents with respect to t and q, times a prefactor that is only bilinear in spinors.

The four-fermion structures in front of R1 and R2 can be reabsorbed by total derivatives. For the

contributions containing the Q exponential there are certain four-fermion terms left, which is much

less than the 15 coefficients of the most general ansatz. As for the K-terms, the four-fermion terms

can be removed up to a single term.

Finally, the full expression for the backreaction splits into the following two independently con-

served components

Jpv = Jredef + Jphys , (B.9)

where we have defined

Jphys = Hαα

∫
dt dq dξ dη (JQαα + JPαα) Ĉ(ξ, φ)Ĉ(η,−φ) , (B.10)

Jredef = Hαα

∫
dt dq dξ dη (JKαα + JR1

αα + JR2
αα) Ĉ(ξ, φ)Ĉ(η,−φ) , (B.11)

and the various kernels are given by

JQαα = {d1yαyα + d2ξαξα + d3ηαηα + d4ξαηα + d5ξαyα + d6ηαyα

− d7(yαηα(yη)− ξαyα(yξ)− ξαηα(ξη))}Q ,

JKαα = −1
8
i(1 − q)(1 + t)((q + t)(ηαηα − ξαξα)− (q + 1)(t+ 1)yαηα − (q − 1)(t− 1)yαξα

+ (1 + qt)yαyα − (q − 1)(t+ 1)(2qt− q + t)ξαηα)K

− 1

16
(q − 1)3(q + 1)(t− 1)(t+ 1)3(ηξ)ξαηαK ,

JPαα = {p1ξαξα + p2ηαηα + p3( t ξαηα + ξαyα + ηαyα)}P ,
JR

1

αα = {ρ1ξαξα + ρ2ηαηα + ρ3yαξα + ρ4yαηα + ρ5ξαηα}R1

+
1

16
i
(
t2 − 1

)
{ξαηα(t+ 2)− yαηα}Kt ,

JR
2

= −JR1
(
t→−q
q→t
ξ↔η

, R1→R2

Kt→Kq

)
,
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where the functions Kt and Kq are given by

Kq = exp iq(yη) = K|t=0 , (B.12)

Kt = exp it(yξ) = K|q=0 , (B.13)

and the coefficients are functions of t, q and are given by

d1 =
i

8
(−q + 4q2 − 3q3 + 4qt− 9q2t+ 4q3t+ 8q2t2 + q3t2) , ρ1 =

i

4
t(−1 + q)(1 + q + t) ,

d2 = − i
8
(−3q + 3q3 + 4qt+ q2t− 8q3t+ 3q3t2) , ρ2 = − i

4
(−1 + q)q ,

d3 = − i
4
(−q + 2qt+ q2t) , ρ3 =

i

4
t(−1 + q)2(1 + q + t) ,

d4 =
i

4
(3q − 2q2 − 2qt− 3q2t− 2q3t+ 10q2t2 + 2q3t2) , ρ4 = − i

4
(−1 + q)2 ,

d5 = − i
4
(−2q2 + 3q3 − 2qt+ 2q2t− 6q3t+ 2q2t2 + q3t2) , ρ5 =

i

4
(−1 + q)(−1 + q2t+ qt(1 + t)) ,

d6 =
i

4
(q − 2q2 + 2qt+ 3q2t− 2q3t− 2q2t2 + 2q3t2) ,

d7 =
1

4
(−qt+ 2q2t− 2q2t2 − 2q3t2 + 3q3t3) ,

p1 = − i
4
t(1 − t)2 , p2 = − i

4
(−t+ t3) , p3 =

i

2
(−t+ t2) .

Result for Redefinition M ′
1: As explained around (B.8), it is easy to navigate to the point where

the backreaction for the twisted zero-forms vanishes. The terms JQ and JP are left untouched. For

the R1 and R2 structures we apply

JR
1 → 1

2

(
JR

1 − JR
1
∣∣∣
t→−t

)
, JR

2 → 1

2

(
JR

2 − JR
2
∣∣∣
q→−q

)
. (B.14)

For the JK we apply both t and q anti-symmetrization. The only subtlety is about the Kt and Kq

terms of JR
1
and JR

1
, since they are a combination of the boundary terms produced by K, R1 and

R2 but it turns out that the rules (B.14) can be applied to them as well.

B.2 Backreactions on the Twisted Sector

In the following we will summarize various aspects of the backreactions arising in the twisted sector

of Prokushkin–Vasiliev Theory. We will first focus on the backreaction to the twisted scalar field in

Appendix B.2.1 and then analyze the gauge sector in Section B.2.2.

B.2.1 Scalar Sector

Without the bosonic projection a computation similar to the one discussed in Section 3.1.2 but with

the κ insertions being carefully tracked yields

Ṽ(Ω, Ĉ, Ĉ) = −D̄yzzνΓ0

〈
Aν ⋆ Ĉψ + Ĉψ ⋆ π(Aν)]

〉
+ (Mψ) ⋆ Ĉψ − Ĉψ ⋆ π(Mψ) , (B.15)

where M =M1 +M2 and π(f(y, z)) = κ ⋆ f ⋆ κ = f(−y,−z). This results in

Ṽ(Ω, Ĉ, Ĉ) = φhαα
∫

d2ξd2η Kαα(ξ, η, y) Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (B.16)
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with the kernel Kαα given by

Kαα =

∫ 1

0

dt
{1
2
ei(y(1−t)+tη)ξ ξα

(
(1− t2)(ξα + ηα) + (1− t)2yα

)

−1

2
ei(y(1−t)−tξ)η ηα

(
(1− t2)(ηα + ξα)− (1− t)2yα

)
(B.17)

+
1

4
(t2 − 1)ei(y−η)(y+tξ)(y − ξ − η)α(y − ξ − η)α

+
1

4
(t2 − 1)ei(y+tη)(y+ξ)(y + ξ + η)α(y + ξ + η)α

}
.

The contribution to the Killing constant is

DC̃(2)|y=0 = dC̃(2)(y = 0) =

∫
d2ξd2η HααKαα(y = 0) Ĉ(ξ, φ)Ĉ(η,−φ) , (B.18)

where we have used (2.26) and the kernel Kαα(y = 0) is given as

Kαα(y = 0) =φ {f(ηξ)(ηαηα + ξαξα + 2ξαηα) + (ηαηα − ξαξα)(f(ηξ) + g(ηξ)/2)} , (B.19)

with the coefficient functions given as

f(x) =

(
cos x− sin x

x

)
1

x2
, g(x) = −i (2 + x2 − 2 cosx− 2x sin x)

x3
.

Taking the most general zero-form that can contribute to the Killing constant

∫
d2ξd2η F (ηξ)Ĉ(ξ, φ)Ĉ(η,−φ) , (B.20)

the derivative (2.68a) generates a single tensor structure

(ηαηα − ξαξα)(F (ηξ) + F ′′(ηξ)) . (B.21)

Therefore the first term in (B.19) cannot be represented as an exact form. However this term is

precisely canceled if we take the ambiguity in M1, discussed in Section 3.1.1, into account. As we

explained in Section 3.1.1 the ambiguity is given by (3.3), which in Fourier space reads

R =
1

4

∫
d2ξd2η

∫ 1

0

dt (t2 − 1)φhαα
{
g0(yαyα + ξαξα)Ĉb(ξ, φ|x)− 2d0yαξαĈf(ξ, φ|x)

}
cos (tyξ) .

This ambiguity will lead to an additional contribution to (B.15) which is given by Rψ ⋆ Ĉψ − Ĉψ ⋆
π(Rψ). Its yα-independent component will modify (B.19) by

g0φh
αα(ξαξα + ηαηα)f(ηξ)− d0φhαα(ξαηα)f(ηξ) . (B.22)

Combining it with (B.19) and comparing with (B.21) we see that it can be made exact at g0 = −1,
d0 = −1 with

F (x) =
i (−1 + eix)

2x
+ A cosx+B sin x , (B.23)
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where A and B are integration constants corresponding to fermionic and bosonic components of the

super-trace belonging to H0(D, ĈĈ). The choices g0 = −1 and d0 = −1 obviously correspond to

g̃0 = 1 + g0 = 0 and d̃0 = 1 + d0 = 0 in (3.14). Therefore, the ambiguity in making a redefinition

given by elements R ∈ H1(D̃, Ĉ) is fixed by requiring exactness of (B.15), the corresponding kernel

(B.17) having the form

Kαα =
1

2
ei(y(1−t)+tη)ξ ξα

(
(1− t2)(ξα + ηα) + (1− t)2yα

)

− 1

2
ei(y(1−t)−tξ)η ηα

(
(1− t2)(ηα + ξα)− (1− t)2yα

)
(B.24)

+
i

4
(t2 − 1)(y − ξ − η)α(y − ξ − η)αeiyη sin t(y − η)ξ

+
i

4
(t2 − 1)(y + ξ + η)α(y + ξ + η)αe

iyξ sin tη(y + ξ) .

Exactness of Kαα beyond yα = 0: In order to check whether all the yα-components of the above

backreaction, and not only the Killing constant, are exact it is quite useful to find the corresponding

generating function that represents the above backreaction in the basis of Appendix C.2. One can

easily extract generating functions for the coefficients of the corresponding tensor structures in this

basis. This is done using the following representation of the identity under the contour integral sign

of Appendix C.2:

f(x, y, z) ∼
∮

ω

1− ω
β

1− β
γ

1− γ f(ω
−1x, β−1y, γ−1z) , (B.25)

where ω = τ−1, β = X−1 and γ = Y −1. The equivalence relation ’∼’ is defined in (C.59). We then

arrive to the following contribution for the scalar sector where integration in t is implicit:

~J (1) =




ω(g0+1)(t2−1)
2−2ω2t2

ω(t2−1)(4d0−2(g0+2))(ωt2−1)
4−4ω2t2

ω(t2−1)(4d0+2g0)(ωt2+1)
4−4ω2t2

−ω(t2−1)(2d0−2(g0+2))((2ω−1)t2−1)
8ω2t2−8

ω(t2−1)(4d0+2g0)((2ω+1)t2+1)
8−8ω2t2

0




. (B.26)

We will now fix g0 = −1 and d0 = −1 and show that for this choice this backreaction is exact.

Furthermore, the above choice cancels any odd power of γ in the corresponding generating functions

but leaves all even powers. In the following we will study the even powers in γ and analyze whether

or not they are trivial in cohomology.

With this choice for the redefinition and expanding in β and γ up to order βn and γm one gets
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the following result:

~J (1)
n,m =

1

8




ω
t2ω2−1

[A
(1)
n,m(t) +B

(1)
n,m(t)tω]

2ω
t2ω2−1

[A
(2)
n,m(t) +B

(2)
n,m(t)tω]

2ω
ωt+1

[((1− t)m + (t− 1)m) (1− t)n+1]
ω

t2ω2−1
[A

(4)
n,m(t) +B

(4)
n,m(t)tω]

0
2ω

ωt+1
[(t + 1) ((1− t)m + (t− 1)m) (1− t)n+1]




. (B.27)

In the expression above we define

A(1)
n,m = − ((−u)m + um) vn + ((−v)m + vm)un

B(1)
n,m = −tun (vm + (−v)m)− t (um + (−u)m) vn

A(2)
n,m = un (t (vm + (−u)m + (−v)m) + vm − (−u)m + (−v)m)− um+1vn + (−u)m+1vn − um+n+1

B(2)
n,m = −t

(
un (t (vm + (−u)m + (−v)m) + vm − (−u)m + (−v)m) + um+1vn + u(−u)mvn − um+n+1

)

A(4)
n,m = vun

(
vm+1 + t (2um + 2(−u)m + (−v)m)− 2um − 2(−u)m + (−v)m

)
− u2 (um + (−u)m) vn

B(4)
n,m = (−t)v un

(
vm+1 + t (2um + 2(−u)m + (−v)m)− 2um − 2(−u)m + (−v)m

)
− tu2 (um + (−u)m) vn

where again the integration over t is implicit and we defined u = 1 − t and v = 1 + t. To show its

exactness it is first important to use the Fierz identity freedom to bring the above expressions to a

canonical form. We then distinguish various cases:

For n > 0 and m > 0: Labeling by DJ
(0)
m,n the exact term associated with the term βnγm we get

J (0)
m,n =

ω2

8 (1− ω2)

∫ 1

0

dt
[
2ωn

(
(1− t)m+2(1 + t)n

(m+ 1)(ωt− 1)
+

(t+ 1)m+2(1 − t)n
(m+ 1)(ωt+ 1)

)

− 4ω
(
1− t2

)
(m+ n+ 1)(1− t)m+n

(m+ 1)(ωt+ 1)

+
t(2mn+m+ 3n+ 2)(1− t)m(1 + t)n

(m+ 1)(n+ 1)
+
t(2mn+m+ 3n+ 2)(1 + t)m(1− t)n

(m+ 1)(n+ 1)

+
(1− t)m(1 + t)n(2(m+ 1)(n+ 1)− ω(m+ n+ 2))

ω(m+ 1)(n+ 1)

+
(1 + t)m(1 − t)n(ω(m+ n+ 2)− 2(m+ 1)(n+ 1))

ω(m+ 1)(n+ 1)
+

2(m− n)(1− t)m+n+1

(m+ 1)(n+ 1)

]
, (B.28)

where m ∈ 2N is even, otherwise there is no need for an improvement.

For n > 0 and m = 0: The exact term is given by

J (0)
m,n =

∫ 1

0

dt
− (1+ 1

ω
)n(−1+ω)(−2+n(−1+ω)+2tω)

−1+tω
+

(−1+ω

ω
)n(6+3n+2(n+2t)ω−(2+n)ω2)

1+tω

4 (−1 + t2)ω
, (B.29)

where again m ∈ 2N is even as otherwise there is no need for an improvement.

For m > 0 and n = 0: Again we can construct an exact term which is given by

J (0)
m,n =

∫ 1

0

dt

(
−1+ω

ω

)1+m

2(1 + t)
(
t+ 1

ω

) , (B.30)

where again m ∈ 2N.

Note that we have used slightly different conventions for the sign of n and m here as compared to

Appendix E in which they were defined as γ−m and β−n.
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B.2.2 Gauge Sector

Let us recall that the equations of motion for the twisted gauge fields to second order read

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) . (B.31)

As explained in Subsection 3.1.2 the source term will in general depend on g0, d0, g1 and d1. An

explicit calculation shows that the source term is given by

Ṽ(Ω, ω̂, Ĉ) = φhαα
∫

dξ dη
{
Kαα Ĉ(ξ, φ|x) ω̂(η,−φ|x)ψ + K̄αα ω̂(ξ, φ|x) Ĉ(η, φ|x)ψ

}
. (B.32)

The kernels are given by

Kαα =

∫ 1

0

dt

{
1

4
(t2 − 1) (yα − ηα − ξα)(yα − ηα − ξα) ei(y−η)(tξ+η)

+
1

4
(t2 − 1) g0 (yαyα + ηαηα + ξαξα − 2yαηα) cos(t(y − η)ξ)eiyη

−1

2
(t2 − 1) d0 (yαξα + ξαηα) cos(t(y − η)ξ)eiyη

+
1

2
ηα(yα − ξα + (2t− 1)ηα) e

i[(1−t)y−tξ]η (B.33)

−1

4
(t2 − 1)(yα − ξα + ηα)(yα − ξα + ηα)e

i(ty+η)(ty+ξ)

−1

4
(t2 − 1) g1 (yαyα + ξαξα + ηαηα − 2ξη) cos(ty(ξ − η))eiηξ

−1

2
(t2 − 1) d1 (yαηα − yαξα) cos(ty(ξ − η))eiηξ

}
,

and also by

K̄αα =

∫ 1

0

dt

{−1
4

(t2 − 1)(yα + ξα − ηα)(yα + ξα − ηα) ei(y+ξ)(tη−y)

−1

4
(t2 − 1) g0 (yαyα + ξαξα + 2yαξα + ηαηα) cos(t(y + ξ)η)eiyξ

−1

2
(t2 − 1) d0 (yαηα + ξαηα) cos(t(y + ξ)η)eiyξ

+
1

2
ξα(−yα + ηα + (2t− 1)ξα) e

i[(1−t)y−tη]ξ (B.34)

+
1

4
(t2 − 1)(yα − ξα − ηα)(yα − ξα − ηα)ei(ty−η)(ty+ξ)

+
1

4
(t2 − 1) g1 (yαyα + ξαξα + ηαηα + 2ξαηα) cos(ty(ξ + η))eiξη

−1

2
(t2 − 1) d1 (yαηα + yαξα) cos(ty(ξ + η))eiξη

}
.

We will show that this term is exact only for the choice g0 = d0 = g1 = d1 in the following. We will

discuss this for the kernel K̄αα here, but we also checked that the kernel Kαα can be removed. For

this purpose it is advantageous to decompose the kernel Kαα as follows

K̄αα =

∮ (
J1 ξαξα + J2

(ηα + yα)ξα
(s+ τ)

+ J3
(ηα − yα)ξα

s− τ + J4
(ηα + yα)(ηα + yα)

(s+ τ)(s+ τ)

+J5
(ηα − yα)(ηα − yα)
(s− τ)(s− τ) + J6

(ηα + yα)(ηα − yα)
(s+ τ)(s− τ)

)
exp(iτξη + isyξ + iryη) . (B.35)
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The contour integration is with respect to the variables s+ τ , s− τ and r. As in Appendix C.2 the

Ji are formal series in these three variables

Ji =
∑

n,m

Jm,n
i (τ, r, s) =

∑

n,m

(s− τ)m(s+ τ)nki(r) , (B.36)

where we defined Jm,n
i (τ, r, s) = (s− τ)m(s+ τ)nki(r).

This decomposition is similar to the one of Appendix C.2 but we had to slightly modify it as we

are now considering the twisted-adjoint covariant derivative D̃ acting on functionals linear in both

Ĉ and ω̂ as opposed to the adjoint covariant derivative D acting on functionals quadratic in Ĉ in

Appendix C.2.

As discussed in Appendix C.2 the twisted-adjoint covariant derivative only mixes those Jm,n
i

which have the same values for m and n. By adding an exact term, which we parametrize by k(0),

and using the freedom of Fierz identities expressed by three arbitrary functions χi(r) the coefficients

ki change as follows:

δ~k =




k(0) + χ′
1,

k(0)(−1 + s)− nχ1 − χ2,

k(0)(1 + s)−mχ1 + χ′
3,

(−1 + n)χ2,

(1−m)χ3,

k(0)(−1 + s2) +mχ2 − nχ3




, (B.37)

where we denoted χ′
i = ∂rχi. We distinguish various cases for n and m.

For m = 1 or n = 1: By (B.37) for the choice of n = 1 or m = 1 the components k4 and k5

respectively can not be changed by Fierz identities and adding an exact form. These components

therefore have to vanish up to polynomials. Upon defining α = r−1 this leads to

(n,m) = (1,−1) → (d1 + g0 − g1 − d0)~v1 ∼ 0 ,

(n,m) = (1,−2) → (g0 + g1 − d0 − d1)(1− t2α)~v1 ∼ 0 ,

(n,m) = (−1, 1) → (g0 − g1 − d1 + d0)~v2 ∼ 0 ,

(n,m) = (−2, 1) → (d1 − d0 + g1 − g0)(1 + t2α)~v2 ∼ 0 ,

where ~v1 = (0, 0, 0, v, 0, 0)T and ~v2 = (0, 0, 0, 0, v, 0)T with v = (−1 + t2) α
8t2α2−8

and integration over

t from 0 to 1 is implicit. These equations then imply that

g0 = g1 = d0 = d1 (B.38)

and it can be easily checked that all other sectors (1, m) and (n, 1) for m,n ≤ 0 also vanish up to

polynomials for the choice (B.38).
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For n < 0 and m = 0: In this case we can remove the corresponding components of the kernel

K̄αα by adding an exact form with

k(0) =

∫ 1

0

dt
(−1 + t)(1 + t)−n(r + t)(−n+ 2r − (2− n)t) + (r − t)(2(r + t) + (1− t)−n(1 + t)(−n+ 2r + (2− n)t)

2i(1− r2)(r − t)(r + t)
,

where we have restricted ourselves to the choice g0 = g1 = d0 = d1 = −1 for the sake of obtaining an

expression of reasonable size. However we also made sure that this holds for the general case (B.38).

For m < 0 and n = 0: In this case the source term identically vanishes for the choice g0 = g1 =

d0 = d1 = −1. We also checked that it is exact for values different from −1.

For n < 0 and m < 0: An exact form similar as in the case n < 0, m = 0 can be constructed.

We will not give its explicit form here as it is quite involved.

By a completely analogous procedure we also checked that the kernel Kαα is exact with respect

to the twisted-adjoint covariant derivative D̃. Therefore we have shown that for the choice (B.38)

we can fully remove the source term Ṽ(Ω, ω̂, Ĉ) in (3.16) by a pseudo-local field redefinition.

C Basis

In this appendix we will summarize a few aspects of two different basis for the various backreactions

studied in this paper. We will first focus on the index form in Subsection C.1 and then study the

integral form in Subsection C.2.

C.1 Index Basis

This appendix is devoted to describing the various details of the index form for the backreactions

discussed in Section B. This form can be obtained by Taylor expanding a backreaction,

J(y) =
∑

k

1

k!
Jα(k)y

α...yα . (C.1)

In the following we will discuss in Appendix C.1.1 how one can efficiently obtain the index form Jα(k)

from the Fourier-space expression of Section C.1.1. Then we will discuss in Section C.1.2 how one

can derive a conservation identity in this formalism, which we generalize in Section C.1.3 to other

form-degrees. As we will see the index representation is only fixed up to Fierz identities which we will

discuss in Section C.1.4. In Section C.1.5 we will then focus on how to solve the torsion constraint,

as discussed in Section 3.2.

C.1.1 Obtaining the Index Basis from Fourier Space

The most general two-form structure for the physical backreaction reads

Jα(2s=m+n) = αn,m,l
1 HααCα(n−1)ν(l)C

ν(l)
α(m−1) + αn,m,l

2 Hα
β Cα(n−1)βν(l)C

ν(l)
α(m)
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+ αn,m,l
3 Hα

β Cα(n)ν(l)C
ν(l)

α(m−1)β + αn,m,l
4 HββCα(n)ββν(l)C

ν(l)
α(m) (C.2)

+ αn,m,l
5 HββCα(n)ν(l)C

ν(l)
α(m)ββ + αn,m,l

6 HββCα(n)βν(l)C
ν(l)

α(m)β ,

where α2, α3 and α4, α5 are not really independent unless the fields have additional Yang–Mills

indices. There is an additional ambiguity due to Fierz identities, which we will discuss below.

We can extract these coefficients from expressions in Fourier space which have the following most

general form (omitting all integrals):

Hγγξγ(A′′)ηγ(B′′)yγ(2−A′′−B′′)(yξ)
A′

(yη)B
′

(ηξ)C
′

exp i(ayξ + byη + cηξ)P (t, q) Ĉ(ξ, φ)Ĉ(η,−φ) , (C.3)

where a, b, c are possibly functions of t, q, constants or zero. Then the coefficient of

Hβ(A′′+B′′)
α(2−A′′−B′′) Ĉβ(A′′)α(n)ν(l)Ĉ

ν(l)
β(B′′)α(m) , (C.4)

is found to be

fn,m,l(A′, B′, C ′|A′′, B′′) =
(−)A′′+B′′

(−i)A′′+B′′+A′+B′+l+C′

(m+ n− A′′ −B′′ + 2)!

(n−A′)!(m− B′)!(l − C ′)!

×
∫

dt dq an−A′

bm−B′

cl−C′

P (t, q) , (C.5)

which is related in a simple way to αi by

αn,m,l
1 = fn−1,m−1,l(A′, B′, C ′|0, 0) , αn,m,l

2 = fn−1,m,l(A′, B′, C ′|1, 0) ,
αn,m,l
3 = fn,m−1,l(A′, B′, C ′|0, 1) , αn,m,l

4 = fn,m,l(A′, B′, C ′|2, 0) ,
αn,m,l
5 = fn,m,l(A′, B′, C ′|0, 2) , αn,m,l

6 = fn,m,l(A′, B′, C ′|1, 1) .

Note that for vanishing parameter a in (C.5) the corresponding term has to be replaced by δn,A′ and

analogously for b and c. Therefore the coefficients fn,m,l
N,M,L of (3.30) are given by

fn,m,l
N,M = (−1)N+M(−i)N+M+n+m+2l(m+ n−N −M + 2)! . (C.6)

C.1.2 Conservation in Index Form

Since there is only one three-form structure

HĈα(n)ν(l)Ĉ
ν(l)

α(m) , (C.7)

imposing the conservation leads to a single identity among six αn,m,l
i :

αn,m,l
4

−σ(n+ l + 2)(n+ l + 3)

3
− αn−1,m+1,l−1

4

(m+ 1)

3
+ αn−2,m+2,l

4

σ(m+ 1)(m+ 2)

3
+ αn,m,l−2

4

−σ
3

+

αn,m,l
5

σ(m+ l + 2)(m+ l + 3)

3
− αn+1,m−1,l−1

5

−(n+ 1)

3
+ αn+2,m−2,l

5

−σ(n+ 1)(n+ 2)

3
+ αn,m,l−2

5

σ

3
+

αn+1,m−1,l
6

−σ(n+ 1)(n+ l + 3)

3
+ αn−1,m+1,l

6

σ(m+ 1)(m+ l + 3)

3
− αn,m,l−1

6

(m− n)
6

+ (C.8)

αn+1,m−1,l+2
1

−σ(l + 2)(l + 1)

3
+ αn−1,m+1,l+2

1

σ(l + 2)(l + 1)

3
+ αn−1,m+1,l

1

σ

3
+ αn+1,m−1,l

1

−σ
3

+
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αn+1,m−1,l+1
2

−σ(l + 1)(n+ l+ 3)

3
− αn,m,l

2

(m+ n+ 2)

6
+ αn+1,m−1,l−1

2

−σ
3

+ αn−1,m+1,l+1
2

−σ(l + 1)(m+ 1)

3
+

αn−1,m+1,l+1
3

−σ(l + 1)(m+ l+ 3)

3
− αn,m,l

3

(m+ n+ 2)

6
+ αn−1,m+1,l−1

3

−σ
3

+ αn+1,m−1,l+1
3

−σ(l + 1)(n+ 1)

3
= 0 ,

where σ = i/2 is the coefficient in the equations of motion

∇Ĉα(k) = −2σφhααĈα(k−2) + σφhββĈ
α(k)ββ . (C.9)

C.1.3 Index Form of Differential at Degree 0 and 1

The most general one-form structure reads

Kα(2s=m+n) = βn,m,l
1 hααCα(n−1)ν(l)C

ν(l)
α(m−1) + βn,m,l

2 hα
β Cα(n−1)βν(l)C

ν(l)
α(m)

+ βn,m,l
3 hα

β Cα(n)ν(l)C
ν(l)

α(m−1)β + βn,m,l
4 hββCα(n)ββν(l)C

ν(l)
α(m) (C.10)

+ βn,m,l
5 hββCα(n)ν(l)C

ν(l)
α(m)ββ + βn,m,l

6 hββCα(n)βν(l)C
ν(l)

α(m)β ,

which leads to the following transformations of αi that parametrize DK (φ is omitted):

δαn,m,l
2 = βn−1,m+1,l−1

4

(m+ 1)

2
+ βn,m,l

4

−2σ(n+ l + 3)n

2
+ βn−2,m+2,l

4

2σ(m+ 2)(m+ 1)

2
,

δαn,m,l
4 = βn−1,m+1,l+1

4

2σ(m+ 1)(l + 1)

2
+ βn,m,l

4

−n
2
,

δαn,m,l
6 = βn−1,m+1,l

4

−(m+ 1)

2
+ βn,m,l+1

4

2σ(n+ l + 4)(l + 1)

2
+ σβn,m,l−1

4 ,

δαn,m,l
3 = βn+2,m−2,l

5

−2σ(n+ 1)(n+ 2)

2
+ βn,m,l

5

2σm(m+ l + 3)

2
+ βn+1,m−1,l−1

5

−(n+ 1)

2
,

δαn,m,l
5 = βn+1,m−1,l+1

5

2σ(n+ 1)(l + 1)

2
+ βn,m,l

5

−m
2

,

δαn,m,l
6 = σβn,m,l−1

5 + βn,m,l+1
5

2σ(m+ l + 4)(l + 1)

2
+ βn+1,m−1,l

5

−(n+ 1)

2
,

δαn,m,l
1 = βn+1,m−1,l+1

1

−2σn(l + 1)

2
+ βn−1,m+1,l+1

1

−2σm(l + 1)

2
+ βn,m,l

1

(n+m+ 2)

2
,

δαn,m,l
2 = −βn−1,m+1,l+2

1

2σ(l + 1)(l + 2)

2
− βn−1,m+1,l

1 σ ,

δαn,m,l
3 = βn+1,m−1,l+2

1

2σ(l + 1)(l + 2)

2
+ βn+1,m−1,l

1 σ ,

δαn,m,l
1 = βn+1,m−1,l

2

−σn(n+ l + 3)

2
+ βn−1,m+1,l

2

σm(m+ 1)

2
+ βn,m,l−1

2

m

4
,

δαn,m,l
2 = βn+1,m−1,l+1

2

−σn(l + 1)

2
+ βn,m,l

2 (1 +
m

4
) ,

δαn,m,l
3 = βn+1,m−1,l+1

2

σ(n+ l + 4)(l + 1)

2
+ βn+1,m−1,l−1

2

σ

2
+ βn,m,l

2

−m
4

,

δαn,m,l
4 = βn,m,l

2

−σ
2

+ βn,m,l+1
2

−σ(l + 2)(l + 1)

2
(C.11)

δαn,m,l
6 = βn+1,m−1,l+2

2

σ(l + 2)(l + 1)

2
+ βn+1,m−1,l

2

σ

2
,

δαn,m,l
1 = βn−1,m+1,l

3

σm(m+ l + 3)

2
+ βn−1,m+1,l

3

−σn(n+ 1)

2
+ βn,m,l−1

3

−n
4
,

δαn,m,l
2 = βn−1,m+1,l+1

3

σ(m+ l + 4)(l + 1)

2
+ βn−1,m+1,l−1

3

σ

2
+ βn,m,l

3

−n
4
,

δαn,m,l
3 = βn−1,m+1,l+1

3

−σm(l + 1)

2
+ βn,m,l

3 (1 +
n

4
) ,
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δαn,m,l
5 = βn,m,l

3

σ

2
+ βn,m,l+1

3

σ(l + 2)(l + 1)

2
,

δαn,m,l
6 = βn−1,m+1,l+2

3

−σ(l + 2)(l + 1)

2
− βn−1,m+1,l

3

σ

2
,

δαn,m,l
2 = βn−1,m+1,l

6

σ(m+ 1)(m+ l+ 4)

2
+ βn+1,m−1,l

6

−σn(n+ 1)

2
+ βn,m,l−1

6

−n
4
,

δαn,m,l
3 = βn+1,m−1,l

6

−σ(n+ 1)(n+ l + 4)

2
+ βn−1,m+1,l

6

σm(m+ 1)

2
+ βn,m,l−1

6

m

4
,

δαn,m,l
4 = βn,m,l+1

6

σ(l + 1)(m+ l + 4)

2
+ βn,m,l−1

6

σ

2
+ βn+1,m−1,l

6

−(n+ 1)

4
,

δαn,m,l
5 = βn,m,l+1

6

σ(l + 1)(n+ l + 4)

2
+ βn,m,l−1

6

σ

2
+ βn−1,m+1,l

6

−(m+ 1)

4
,

δαn,m,l
6 = βn+1,m−1,l+1

6

σ(n+ 1)(l + 1)

2
+ βn−1,m+1,l+1

6

σ(m+ 1)(l + 1)

2
+ βn,m,l

6

−(n+m)

4
.

As a consequence of DD ≡ 0 such α’s obey the conservation identity (C.8). Applying D to the most

general zero-form

γn,m,lĈα(n)ν(l)Ĉ
ν(l)

α(m) , (C.12)

gives a variation of βn,m,l
i that does not affect αn,m,l

i :

δβn,m,l
1 = γn+1,m−1,l(−σn(n + 1)) + γn−1,m+,l(2σm(m+ 1)) ,

δβn,m,l
2 = γn,m,l(−n) + γn−1,m+1,l+1(2σ(l + 1)(m+ 1)) ,

δβn,m,l
3 = γn,m,l(−m) + γn−1,m+1,l+1(2σ(l + 1)(n+ 1)) , (C.13)

δβn,m,l
4 = γn,m,l+2(+σ(l + 2)(l + 1)) + γn,m,lσ ,

δβn,m,l
5 = γn,m,l+2(−σ(l + 2)(l + 1))− γn,m,lσ ,

δβn,m,l
6 = 0 .

C.1.4 Fierz Identities

Not all of the six α’s are independent due to the Fierz identities, which also play an important role in

simplifying four-fermion terms in the backreaction of Appendix B.1.2. There are three independent

Fierz identities that can be obtained from

HxµĈα(n−1)ν(l+1)Ĉ
ν(l+1)

α(m) +Hx
γ Ĉµα(n−1)ν(l)Ĉ

ν(l)
α(m)γ −Hx

γ Ĉγα(n−1)ν(l)Ĉ
ν(l)

α(m)µ ≡ 0 , (C.14)

by contracting or symmetrizing x with some of the Ĉ’s and symmetrizing µ with α’s:

HααĈα(n−1)ν(l+1)Ĉ
ν(l+1)

α(m) +Hα
γ Ĉα(n)ν(l)Ĉ

ν(l)
α(m)γ −Hα

γ Ĉγα(n−1)ν(l)Ĉ
ν(l)

α(m+1) ≡ 0 , (C.15a)

Hγ
α Ĉγα(n−1)ν(l+1)Ĉ

ν(l+1)
α(m) +HγγĈγα(n)ν(l)Ĉ

ν(l)
α(m)γ −HγγĈγγα(n−1)ν(l)Ĉ

ν(l)
α(m+1) ≡ 0 , (C.15b)

Hγ
α Ĉα(n−1)ν(l+1)Ĉ

ν(l+1)
α(m)γ +HγγĈα(n)ν(l)Ĉ

ν(l)
α(m)γγ −HγγĈγα(n−1)ν(l)Ĉ

ν(l)
α(m+1)γ ≡ 0 . (C.15c)

This leads to the following transformations of the coefficients that do no affect the expression but

only its presentation in terms of α’s:

δαn,m,l
2 = ǫn−1,m,l−1

1 , δαn,m,l
4 = −ǫn,m−1,l

1 , δαn,m,l
6 = ǫn−1,m,l

1 ,
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δαn,m,l
3 = ǫn,m−1,l−1

2 , δαn,m,l
5 = ǫn−1,m,l

2 , δαn,m,l
6 = −ǫn,m−1,l

2 , (C.16)

δαn,m,l
1 = ǫn−1,m−1,l−1

3 , δαn,m,l
2 = −ǫn−1,m−1,l

3 , δαn,m,l
3 = ǫn−1,m−1,l

3 .

Here all ǫ’s are understood to be vanishing for the case of at least one negative index. The conservation

identity is invariant under Fierz transformations. Analogous formulas can be derived for Fourier-

space representation of two-forms, but it is somewhat difficult to effectively use Fierz identities due

to the appearance of fake poles like yα = ηα(yξ)−ξα(yη)
(ηξ)

.

There is a natural way of fixing all Fierz transformations. Any one- or two-form J(y) can be

decomposed into three zero-forms as

J(y) = Hββ∂β∂βA(y) +Hα
β yα∂βB(y) +Hααy

αyαC(y) , (C.17)

which in components corresponds to (3.31). One can solve for the Fierz transformations that map

six α’s into just three sets of coefficients as

A(y) =
∑

n,m,l

an,m,l 1

(n+m+ 2)!
Ĉα(n+1)ν(l)Ĉ

ν(l)
α(m+1) y

α(n+m+2) , (C.18)

B(y) =
∑

n,m,l

bn,m,l 1

(n+m)!
Ĉα(n)ν(l)Ĉ

ν(l)
α(m) y

α(n+m) , (C.19)

C(y) =
∑

n,m,l

cn,m,l 1

(n +m− 2)!
Ĉα(n−1)ν(l)Ĉ

ν(l)
α(m−1) y

α(n+m−2) , (C.20)

which requires us to impose the following relations among α2,3,4,5,6 by applying Fierz identities:

αn−1,m+1,l
4

n(n+ 1)
=
αn+1,m−1,l
5

m(m+ 1)
=

αn,m,l
6

2(m+ 1)(n+ 1)
,

αn,m,l
2

n
=
αn,m,l
3

m
, (C.21)

that can be solved unambiguously for ǫn,m,l
1,2,3 . In fact, there are three invariants I4, I5, I6 of the Fierz

transformations and the a, b, c coefficients are linear combinations thereof,

an,m,l = In,m,l
6 ,

bn,m,l(m+ n) = In,m,l
5 + In,m,l

4 +
m− n

m+ n+ 2
In,m,l−1
6 ,

cn,m,l =
−m
m+ n

(
n

m+ n+ 1
In,m,l−2
6 +

n

m
In,m,l−1
5 − In,m,l−1

4

)
,

where we have defined

I6 = αn,m,l
6 + αn+1,m−1,l

5 + αn−1,m+1,l
4 ,

I5 = αn,m,l
3 − αn+1,m−1,l−1

5 − αn,m,l+1
1 ,

I4 = αn,m,l
2 + αn−1,m+1,l−1

4 + αn,m,l+1
1 .

In terms of the a, b, c coefficients the conservation identity is given by

σ

3(1 +m+ n)(2 +m+ n)
((1 +m)(2 +m)a−1+n,1+m,−2+l − (1 + n)(2 + n)a1+n,−1+m,−2+l)+ (C.22)

(2 + l +m+ n)(3 + l +m+ n)σ

3(1 +m+ n)(2 +m+ n)
((1 +m)(2 +m)a−1+n,1+m,l − (1 + n)(2 + n)a1+n,−1+m,l)
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− 1

3
(1 + n)σb1+n,−1+m,−1+l − 1

3
(1 + l)(2 + l +m+ n)σ((1 +m)b−1+n,1+m,1+l + (1 + n)b1+n,−1+m,1+l)

− 1

6
(m+ n)(2 +m+ n)bn,m,l +

1

3
(1 + l)(2 + l)σ(c−1+n,1+m,2+l − c1+n,−1+m,2+l)+

σc−1+n,1+m,l

3
− σc1+n,−1+m,l

3
− 1

3
(1 +m)σb−1+n,1+m,−1+l = 0 .

By only considering the terms proportional to σ in the above expression the action of ∇ on (C.17)

can be obtained.

C.1.5 Fronsdal Currents

In solving for the Fronsdal current from the backreaction one needs to evaluate j = (I −∇Q−1)J as

we discussed in Section 3.2. Assuming that the backreaction is given in the form (C.17), the middle

component of j vanishes as discussed in Section 3.2 and hence

j(y) = Hββ∂β∂β j(y) +Hααy
αyαj′(y) , (C.23)

where

j(y) =
∑

n,m,l

an,m,l
F

1

(n+m+ 2)!
Ĉα(n+1)ν(l)Ĉ

ν(l)
α(m+1) y

α(n+m+2) , (C.24)

j′(y) =
∑

n,m,l

cn,m,l
F

1

(n+m− 2)!
Ĉα(n−1)ν(l)Ĉ

ν(l)
α(m−1) y

α(n+m−2) . (C.25)

The coefficients an,m,l
F and cn,m,l

F for the Fronsdal current j can be expressed in terms of those for J

given in the basis (C.17):

an,m,l
F = an,m,l +

2σ

(n+m+ 2)(m+ n)
(−(2 +m)(a−1+n,1+m,−1+l + (1 + l)(4 + l +m+ n)a−1+n,1+m,1+l)+

+ (2 + n)(−a1+n,−1+m,−1+l − (1 + l)(4 + l+m+ n)a1+n,−1+m,1+l))

− σ

2
(m+ n)(b−1+n,1+m,l − b1+n,−1+m,l) +

σ

2
(1 + l)(2 + l)(m+ n)(b−1+n,1+m,2+l − b1+n,−1+m,2+l) ,

cn,m,l
F = cn,m,l +

2σ

(m+ n)(2 +m+ n)
(−mc−1+n,1+m,−1+l − nc1+n,−1+m,−1+l+ (C.26)

− (1 + l)(l +m+ n)(c−1+n,1+m,1+l − nc1+n,−1+m,1+l))

+
σ(2 +m+ n)

2(m+ n)(1 +m+ n)
(m(1 +m)b−1+n,1+m,−2+l − n(1 + n)b1+n,−1+m,−2+l)+

+
σ(2 +m+ n)(l +m+ n)(1 + l +m+ n)

2(m+ n)(1 +m+ n)
(m(1 +m)b−1+n,1+m,l − n(1 + n)(2 +m+ n)b1+n,−1+m,l) .

C.1.6 Local Conserved Tensors

The canonical spin-s conserved tensor has s-derivatives and is fixed up to an overall factor. The

simplest way to get a generating function for all such tensors is to take

T (y|x) = Ĉ(y, φ|x)Ĉ(y,−φ|x) , (C.27)
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which can be checked to obey ∇αα∂yα∂
y
αT = 0. The freedom in the relative factors can be taken into

account by

T can(y|x) =
∫
dt f(t)Ĉ(yt, φ|x)Ĉ(yt,−φ|x) , (C.28)

where t counts the rank of the conserved tensors. The dual closed two-forms are

Jcan(y|x) = Hαα∂α∂α

∫
dt f(t)Ĉ(yt, φ|x)Ĉ(yt,−φ|x) , (C.29)

and an equivalent form in Fourier space (to be compared with the formulas of Appendix B.1.2) is

Jcan(y|x) = Hαα

∫
dt (−t2f(t))(ξ − η)α(ξ − η)αeity(ξ−η)Ĉ(ξ, φ|x)Ĉ(η,−φ|x) . (C.30)

The moments fn of f(t) make relative factors in front of conserved tensors. The index form of the

above expression is

αn,m,l
4 =

(−)m(m+ n)!

m!n!
δl,0fn+m , αn,m,l

4 = αn,m,l
5 = −1

2
αn,m,l
6 . (C.31)

All other αi ≡ 0. The coefficients, of course, obey identity (C.8) that ensures the conservation (it

splits into three independent equations). There is no hook part, bn,m,l = 0, as discussed around (3.45)

and the tensor is traceless cn,m,l = 0

an,m,l = −(−1)
mfn+m(m+ n+ 2)!δl,0
(n+ 1)!(m+ 1)!

. (C.32)

One can use Jcan in two ways: it is a doublet (with respect to φ) of traceless conserved tensors or

one can put Jcan as a source for ω(y, φ). In the latter case one finds a nonzero torsion and solving

for the Fronsdal current as explained in Appendix C.1.5 we have that cn,m,l
F = 0, i.e. the Fronsdal

current is still traceless, and

an,m,0
F = −(−)

mfm+n(m+ n+ 2)!

(m+ 1)!(n+ 1)!
, an,m,1

F = −i(−1)
mfm+n(m+ n + 2)!

(m+ 2)(m+ 1)!(n+ 1)!
, (C.33)

i.e. it involves ĈĈ-terms with no more than one index contracted and hence the expression is local

but contains higher derivatives. One can show that the canonical current is exact, i.e. J = DK,

with cn,m,l = bn,m,l = 0 and

an,m,l = −2(−1)
mil(4 + 2l +m+ n)fm+n(m+ n + 1)!(m+ n+ 2)!

(m+ 1)!(n+ 1)!(3 + l +m+ n)!
. (C.34)

We thus see that representing it as an exact form requires a pseudo-local expression. However, it

contains l! in the denominator, which gives a seemingly good asymptotic behavior. Therefore, the

redefinition, which is clearly unphysical appears to be a well-defined expression. It is also possible

to represent it as a ∇-exact form with

an,m,l = −(−)
m
(
i
2

)l√
πfm+n(m+ n+ 2)!Γ

[
1
2
(4 +m+ n)

]

Γ
[
1 + l

2

]
(m+ 1)!(n+ 1)!Γ

[
1
2
(5 + l +m+ n)

] . (C.35)
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C.1.7 Pseudo-local Conserved Tensors

Example 1. A simple example of a pseudo-local conserved tensor shows up in the second-order

computations:

J(y|x) = Hαα

∫
dt f(t)(ξ − η)α(ξ − η)αeit(y+η)(y+ξ)Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (C.36)

which is conserved for any f(t), the corresponding coefficients being

αn,m,l
4 =

(−)m(−i)l+2(m+ n+ l)!

m!n!l!
fn+m+l , αn,m,l

4 = αn,m,l
5 = −1

2
αn,m,l
6 . (C.37)

It comes from (B.5a) and (B.5b) terms in the second-order perturbation theory. This gives

an,m,l =
(−)m(−i)lfm+n+l(m+ n + 2)!

(m+ 1)!(n+ 1)!l!
. (C.38)

Solving for the Fronsdal current as explained in Appendix C.1.5 we find that cn,m,l
F = 0, i.e. the

current is traceless and

an,m,l
F =

(−1)mi−l((m+ n)fl+m+n − lf−1+l+m+n + (4 + l +m+ n)f1+l+m+n)(m+ n+ 2)!

(m+ n)l!(m+ 1)!(n+ 1)!
, (C.39)

which leads to a pseudo-local expression.

Example 2. There is another choice of the coefficients corresponding to a conserved backreaction

αn,m,l
4 = fn+m , αn,m,l

4 = αn,m,l
5 = −1

2
αn,m,l
6 . (C.40)

These coefficients correspond to a pseudo-local expression and have a considerably worse asymptotic

behavior since there are no damping factorials. In the symmetrized form we have

cn,m,l = fn+m . (C.41)

The Fronsdal current is found to be a total trace, i.e. an,m,l
F = 0, and

cn,m,l
F = −i((1 + 2i) + (1 + i)(m+ n) + l(1 + l +m+ n))fm+n

2 +m+ n
. (C.42)

Example 3: Canonical backreaction. As it was mentioned, if one takes the local conserved

tensor jcan(y, φ) and uses it as a source for Dω̂(y, φ) one has to solve for the contorsion tensor. As a

result the Fronsdal current has terms with one pair of contracted indices. One can solve the inverse

problem: what is JFr(y, φ) such that it yields the canonical conserved tensor as a Fronsdal current,

i.e. the terms Ĉα(n)ν(l)Ĉ
ν(l)

α(m) with l > 0 are absent in j, the canonical backreaction. Such JFr(y, φ)

must be pseudo-local since one pair of contracted indices produced by the contorsion tensor needs

to be canceled by l = 1 term from JFr(y, φ), which thereby produces l = 2 terms and so on. The

solution is

an,m,l = −(−1)
l+mil(m+ n)(4 + 2l +m+ n)fn+m(m+ n + 1)!(2 +m+ n)!

(m+ 1)!(n+ 1)!(l +m+ n+ 3)!
, (C.43)
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and the Fronsdal current is exactly (C.32).

This solution is remarkable in the sense that a pseudo-local expression is necessary in order to get

the canonical s-derivative conserved tensor on the right-hand side of the Fronsdal equations provided

that the symmetry φ→ −φ of the equations is not broken, i.e. the same expression JFr(y, φ) appears

on the right hand side of (HS) torsion and Riemann two-forms. In particular this is true for the s = 2

case of the Einstein equations.

The Fronsdal backreaction is exact, i.e. can be represented as JFr = DUFr for some UFr. The

expression is quite cumbersome and we give its leading behavior only

an,m,l
U = −i

l(−1)l+m(m+ n + 1)!(m+ n+ 2)!Gm+n,l

(m+ 1)!(n+ 1)!(l +m+ n + 3)!
, (C.44)

Gk,l = −2kfk
(
l log l + ... +

kl

l!

)
.

Therefore it has again a factorially damped asymptotic behavior.

C.2 Integral Basis

In the following we discuss a basis that we use extensively in our analysis of the cohomologies and

cocycles in Prokushkin–Vasiliev Theory, which are discussed in Appendix E and Appendix B.2. We

consider q-forms that are either linear or quadratic in physical zero-forms Ĉ and consist of vielbeins.

We will focus on the linear case first.

C.2.1 Basis Linear in Ĉ

For the various form-degrees the most general ansatz for objects containing Ĉ linearly is given by

J0 =

∮
dτ J (0)(τ)Ĉ(yτ) , (C.45a)

J1 = iφ

∮
dτ hαα

(
J
(1)
1 (τ)yαyα + J

(1)
2 (τ)τ−1yα∂

y
α + J

(1)
3 (τ)τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.45b)

J2 =

∮
dτ Hαα

(
J
(2)
1 (τ)yαyα + J

(2)
2 (τ)τ−1yα∂

y
α + J

(2)
3 (τ)τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.45c)

J3 = iφ

∮
dτ HJ (3)(τ)Ĉ(yτ) , (C.45d)

where we have encoded the arbitrary relative coefficients of the different tensor structures by a formal

series in τ−1 given by

J
(k)
i (τ) =

∞∑

l=1

j
(k)
i,l τ

−l−1 . (C.46)

We normalize the integration measure such that the following equation holds

∮
dτ τ−k = δ1,k . (C.47)
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For illustration purposes let us briefly outline how using (C.46) the zero-form ansatz (C.45a) can be

rewritten as

∞∑

l=0

∮
dτ j

(0)
l τ−l

(
∞∑

k=0

1

k!
Ĉα(k)τ

kyα(k)

)
=

∞∑

l,k=0

1

k!
j
(0)
l

(∮
dτ τ−l+k

)
Ĉα(k)y

α(k) =

∞∑

k=0

1

k!
j
(0)
k Ĉα(k)y

α(k) .

Similarly one obtains the following tensor structure for form-degree q in (C.45):

q = 0 : j
(0)
k Ĉα(k) , (C.48)

q = 1 : 2j
(1)
1,kh

ααĈα(k−2) + j
(1)
2,khββĈ

ββα(k) + j
(1)
3,kh

α
γ Ĉ

α(k−1)γ , (C.49)

q = 2 : 2j
(2)
1,kH

ααĈα(k−2) + j
(2)
1,kHββĈ

ββα(k) + j
(2)
1,kH

α
γ Ĉ

α(k−1)γ , (C.50)

q = 3 : j
(3)
k HĈα(k) . (C.51)

Where we have have only listed the coefficients of the various powers of yα-oscillators dropping an

overall factorial 1
k!
.

C.2.2 Basis Quadratic in Ĉ

For the discussion of cohomologies with respect to pseudo-local field redefinitions (2.56) that we

present in Appendix E it is useful to consider expressions in Fourier space using (2.63). We will

again use the convention that the first and the second zero-form Ĉ is associated with wave-twistor

ξα and ηα respectively as discussed in Appendix B.1 and therefore
∫

d2ξd2η J (p)(ξ, η, y) Ĉ(ξ, φ|x) Ĉ(η,−φ|x) . (C.52)

It is convenient to define

ζ±α = (ξ ± η)α . (C.53)

One can then express the most general ansatz for p-forms consisting of vielbeins and quadratic in

the zero-form Ĉ in terms of J (p) by

J (0) =

∮
J (0)(s+ r)−1(s− r)−1K̃ , (C.54a)

J (1) = φ

∮
hαα

(
J
(1)
1 yαyα + J

(1)
2 (s− r)−1yαζ

+
α + J

(1)
3 (s+ r)−1yαζ

−
α (C.54b)

+J
(1)
4 (s− r)−2ζ+α ζ

+
α + J

(1)
5 (s+ r)−2ζ−α ζ

−
α + J

(1)
6 (s+ r)−1(s− r)−1ζ+α ζ

−
α

)
K̃ ,

J (2) =
1

4

∮
Hαα

(
J
(2)
1 yαyα + J

(2)
2 (s− r)−1yαζ

+
α + J

(2)
3 (s+ r)−1yαζ

−
α (C.54c)

+J
(2)
4 (s− r)−2ζ+α ζ

+
α + J

(2)
5 (s+ r)−2ζ−α ζ

−
α + J

(2)
6 (s+ r)−1(s− r)−1ζ+α ζ

−
α

)
K̃ ,

J (3) =
φ

6

∮
HJ (3)(s+ r)−1(s− r)−1K̃ , (C.54d)

where the contour integrals are with respect to τ , X = s+ r and Y = s− r. Furthermore we defined

K̃ = exp
[
− iτ

2
ζ+ζ− +

i(s− r)
2

yζ− +
i(s+ r)

2
yζ+

]
. (C.55)
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Again the coefficient functions J
(k)
i are formal series in τ−1, X−1 = (s − r)−1 and Y −1 = (s + r)−1

given by

J
(k)
i =

∑
j
(k)
i (l, n,m)τ−l(s− r)−m(s+ r)−n . (C.56)

Note that inverse powers of τ lead to contractions between the Ĉ fields. The choice of considering a

basis with respect to ζ± is a very practical one as it turns out to diagonalize the covariant derivative

D. This will be explained in more detail in the following.

C.2.3 Derivatives for Linear Basis

In the following we consider the action of the twisted-adjoint covariant derivative D̃ with respect to

functionals linear in Ĉ. This will be of great importance in Appendix E in which we will analyze the

cohomology of this differential. Using the equations of motion for Ĉ given by

[
∇+

i

2
φ hαα(yαyα − ∂yα∂yα)

]
Ĉ(y, φ) = 0 , (C.57)

one obtains the following action of D̃ on the expressions in (C.45):

D̃J0 =
iφ

2

∮
dτ (1− τ 2)J (0)(τ)hαα

(
yαyα + τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.58a)

D̃J1 =
1

2

∮
dτ Hαα

(
J̃
(2)
1 (τ)yαyα + J̃

(2)
2 (τ)τ−1yα∂

y
α + J̃

(2)
3 (τ)τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.58b)

D̃J2 = −
iφ

2

∮
dτ HJ̃ (3)(τ)Ĉ(yτ) , (C.58c)

with the coefficient functions given by

J̃
(2)
1 (τ) = +

1

2

[
2τ − (τ 2 − 1)∂τ

]
J
(1)
2 (τ) ,

J̃
(2)
2 (τ) =

[
2τ − (τ 2 − 1)∂τ

]
(J

(1)
3 (τ)− J (1)

1 (τ)) ,

J̃
(2)
3 (τ) = −1

2

[
2τ − (τ 2 − 1)∂τ

]
J
(1)
2 (τ) ,

J̃ (3)(τ) =
1

3

[
(τ 2 − 1)∂2τ − 2τ∂τ + 2

]
(J

(2)
3 (τ) + J

(2)
1 (τ)) .

It is convenient to introduce an equivalence relation for formal series in τ−1 denoted by g and f ,

f(τ) ∼ g(τ) iff f(τ)− g(τ) = P (τ) , (C.59)

with P (τ) being an arbitrary polynomial. The latter equivalence relation is useful since then one has

∮
dτ f(τ) =

∮
dτ g(τ) ⇐⇒ f(τ) ∼ g(τ) . (C.60)

We will use this equivalence relation extensively in Appendix E.
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C.2.4 Derivatives for Quadratic Basis

In this subsection we will analyze the action of the adjoint covariant derivative D in the integral

basis and we will keep the freedom in Fierz-transformations as this will be useful for our analysis.

To this end we will consider the following choice of the coefficient functions in (C.54):

J
(q)
i = J (q)

m,n(τ, r, s) = (s− r)m(s+ r)nk
(q)
i (τ) . (C.61)

These coefficient functions therefore contain a fixed number of (s − r) and (s + r) factors but an

arbitrary power of τ . One can determine the action of D on the various p-forms of (C.54). After

some manipulations and integrations by parts one arrives at the following representation:

Dk(0) =
i

2




−k(0)
−(1− τ)k(0)
−(1 + τ)k(0)

0

0

−(1− τ2)k(0)




, (C.62a)

D




k
(1)
1

k
(1)
2

k
(1)
3

k
(1)
4

k
(1)
5

k
(1)
6




=
1

2




(mτ +m− nτ + n− 2)k
(1)
1 − (1 + τ)∂τk

(1)
2 − nk

(1)
2 + (1− τ)∂τk(1)3 −mk

(1)
3

m(1− τ2)k(1)1 − 2(1 + τ)k
(1)
2 + 2(n− 1)k

(1)
4 + (m− 2)k

(1)
6

n(1− τ2)k(1)1 − 2(1− τ)k(1)3 + 2(m− 1)k
(1)
5 + (n− 2)k

(1)
6

(m− 1)(1− τ2)k(1)2 + [m− n− 2 + (m+ n− 2)τ ]k
(1)
4 − (1− τ2)∂τk(1)4 − (m− 1)(1− τ)k(1)6

(n− 1)(1− τ2)k(1)3 + [m− n+ 2 + (m+ n− 2)τ ]k
(1)
5 + (1− τ2)∂τk(1)5 − (n− 1)(1 + τ)k

(1)
6

−2n(1 + τ)k
(1)
4 − 2m(1− τ)k(1)5




,

(C.62b)

D




k
(2)
1

k
(2)
2

k
(2)
3

k
(2)
4

k
(2)
5

k
(2)
6




=

i

2

(
− 4mn(1− τ2)k(2)1

+n[(m+ n− 2 + (m− n)τ + (1− τ2)∂τ ]k(2)2 +m[(m+ n− 2 + (m− n)τ − (1− τ2)∂τ ]k(2)3

−2n[(n− 1) + (1 + τ)∂τ ]k
(1)
4 − 2m[(m− 1)− (1− τ)∂τ ]k(1)5

−[2(n− 1)(m− 1) + (m− n+ (m+ n− 2)τ)∂τ − (1− τ2)∂2τ ]k
(2)
6

)
.

(C.62c)

It is important to stress here that in the basis (C.54) the covariant derivative D does not mix tensor

structures corresponding to different m and n values. Put differently, in this basis D is diagonal

with respect to m and n and not only with respect to spin, which is given by 2s = −(m+ n). This

property is most useful in identifying independently-conserved sectors of the backreaction.

It can be shown that the above representation of D squares to zero and is compatible with the

following representation of the Fierz identities:

δ




k
(i)
1

k
(i)
2

k
(i)
3

k
(i)
4

k
(i)
5

k
(i)
6




=




∂τχ
(i)
1

mχ
(i)
1 − ∂τχ

(i)
3

−nχ(i)
1 + ∂τχ

(i)
2

−(m− 1)χ
(i)
3

−(n− 1)χ
(i)
2

mχ
(i)
2 + nχ

(i)
3




, (C.63)

where the χi
(k) are arbitrary functions of τ . Using these relations we will study the various coho-

mologies quadratic in Ĉ in Appendix E.
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C.2.5 Solving the Torsion Constraint

Below we give the formulas allowing to map the backreaction to Fronsdal currents, as discussed in

Section 3.2, using the D-diagonal basis introduced above. The action of Q−1 in this basis is diagonal
with respect to different contractions of the vielbein but it mixes various components within each

diagonal subsector. It is given by

~k′
(1)

= Q−1~k(2)

=
1

m+ n− 2




2k1(τ)

−(n− 2)k2(τ) −mk3(τ)
−nk2(τ)− (m− 2)k3(τ)

1
(m+n) [2m(m− 1)k5(τ) − 2m(n− 1)k4(τ) + (m− 1)(n−m− 2)k6(τ)]

1
(m+n) [2n(n− 1)k4(τ) − 2n(m− 1)nk5(τ) + (n− 1)(m− n− 2)k6(τ)]

1
(m+n) [2n(n−m− 2)k4(τ) + 2m(m− n− 2)k5(τ) + (m− n− 2)(n−m− 2)k6(τ)]




. (C.64)

To evaluate (I −∇Q−1) we also need the representation for ∇ in this basis:

~k′
(2)

= ∇~k(1) =




−i (τk1(τ)(m− n)− t (k′2(τ) + k′3(τ))− nk2(τ)−mk3(τ))
i (m (τ 2 − 1) k1(τ) + 2tk2(τ) + 2(n− 1)k4(τ) + (m− 2)k6(τ))

i (n (τ 2 − 1) k1(τ)− 2tk3(τ) + 2(m− 1)k5(τ) + (n− 2)k6(τ))

i ((m− 1) (τ 2 − 1) k2(τ)− (τ 2 − 1)k′4(τ)− tk4(τ)(m+ n− 2)− (m− 1)tk6(τ)))

i ((n− 1) (τ 2 − 1) k3(τ) + (τ 2 − 1) k′5(τ) + tk5(τ)(m+ n− 2) + (n− 1)tk6(τ))

2it(nk4(τ)−mk5(τ))




.

(C.65)

In the following we give some examples for Fronsdal currents and study their relation with the

Prokushkin–Vasiliev currents.

C.2.6 Canonical Currents

In the following we will give more details on canonical currents.

Canonical Vasiliev’s currents: In the following we study in more detail the canonical current

sector of Vasiliev’s backreaction that sources the Dω̂(2) = · · · equation. In our basis this is associated

with:

~k(2) =




0

0

0

k
(2)
4 (τ)

0

0




, (C.66)
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for (m,n) = (1, 1− 2s) and with:

~k(2) =




0

0

0

0

k
(2)
5 (τ)

0




, (C.67)

for (m,n) = (1−2s, 1). These two components can be combined into bosonic and fermionic canonical

currents possibly including higher-derivative encoded by higher powers in τ−1 which are all individ-

ually conserved. The analysis of the local cohomology38 suggests that the other components of the

backreaction should be interpreted as improvements, being in one to one correspondence with im-

provements in the metric-like language. This observation is of key importance to study the very

complicated Vasiliev backreaction. Indeed, upon solving the torsion constraint one can show that

only this sector gives rise to canonical currents together with a possible higher-derivative ✷ tail.

In the following we are first going to study more in details the improvement that removes the

canonical current. It is first convenient to make the choice39 (m,n) = (1, 1− 2s) with the vector k
(2)
i

given by




k
(2)
1

k
(2)
2

k
(2)
3

k
(2)
4

k
(2)
5

k
(2)
6




=




0

0

0

Cτ−1

0

0




, (C.68)

setting to zero any higher-derivative tail for the moment.

Conservation is trivial due to the choice m = 1 and, as well, no Fierz identity can be used to

change the constant C because m = 1.

In order to show that this term is exact one is then left with a single differential equation to be

solved taking into account equivalence up to polynomials in τ . The differential equation then reads:

[
(1− τ 2)∂τ − 2s(1− τ) + 2

]
k
(1)
4 (τ) ∼ Cτ−1 . (C.69)

The above equation can therefore be conveniently rewritten as:

(1 + τ)2s(1− τ)2 ∂
∂τ

[
(1 + τ)−2s+1(1− τ)−1k4(τ)

]
= Cτ−1 + p(τ) , (C.70)

or changing variables in terms of ω = τ−1, as:

− ω−2s(1 + ω)2s(1− ω)2 ∂
∂ω

[
ω2s(1 + ω)−2s+1(1− ω)−1k4(ω)

]
= Cω + p(ω−1) . (C.71)

38By local cohomology we mean that we restrict the space of functionals to be polynomial in the derivatives.
39The choice (m,n) = (1− 2s, 1) is equivalent.
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In this form one can integrate the above as:

k4(ω) = −
(1 − ω)(1 + ω)2s−1

ω2s

∫ ω x2s

(1 + x)2s(1− x)2
[
Cx+ p(x−1)

]
. (C.72)

Due to the particular form of the solution one can reduce the polynomial function ambiguity that

would produce non-polynomial effects on the solution to only three free parameters: p(τ) = α(1 +

τ) + β(1 − τ) + γτ 2s+1 associated to the possibility of generating single poles in the integrand, all

other polynomial being related to these up to a polynomial shift in k4(τ). At this point we can drop

γ since it would give a solution that is not meromorphic in ω ∼ 0.

Requiring for instance40 α = −C
2

and β = −3C
2

one can recast the solution in terms of the

following series:

k
(1)
4 (ω) ∼ C(1− ω)(1 + ω)2s−1

2F1(2s, 2s, 2s+ 1,−ω)

= C(1− ω)(1 + ω)2s−1
∞∑

l=0

(−1)l (2s+ l − 1)!

l!(2s+ 1)!(2s+ l)
ωl . (C.73)

Fronsdal Currents from Vasiliev Currents: In the canonical current sector one observes also

nice simplifications when solving the torsion constraint. It is indeed easy to see, restricting the

attention for simplicity to the case (m,n) = (1, 1− 2s), that the corresponding Fronsdal current, i.e.

the source to the Fronsdal tensor after having solved the torsion constraint, can be obtained from

the Vasiliev current that sources Dω̂(2) as:

jFr. = − 1

2(s− 1)

(1− ω)2s(1 + ω)2

ω2s

∂

∂ω

[
ω2s(1− ω)−2s+1(1 + ω)−1k

(2)
4 (ω)

]
. (C.74)

The problem of finding which Vasiliev current would give rise to the standard canonical current

as source to the Fronsdal tensor upon solving the torsion constraint, becomes then similar to the

problem of solving for improvements and we actually already have the solution displaying a one

parameter ambiguity. We can indeed integrate the above equation as:

k
(2)
4 (ω) = −2(s− 1)

(1 + ω)(1− ω)2s−1

ω2s

∫ ω x2s

(1− x)2s(1 + x)2

(
Cx+ α

)
, (C.75)

with α arbitrary. The above covers for a given choice of α the case studied in index form in (C.43).

Notice however that changing α we observe two very different asymptotic behavior of the corre-

sponding coefficients as l → ∞. The generic asymptotics is 1
l2l!

but for a given choice of α we get

the asymptotic behavior 1
l2sl!

. Anyway the above is pseudo-local and it should be what we should

match from Vasiliev’s backreaction if it would give rise to canonical Fronsdal currents without higher-

derivative tail.

40We can also avoid to fix either α or β. In this case the difference of the corresponding solutions for two different

values of the parameters encode non-trivial cohomologies at form degree-1 and hence parametrize ambiguities in

defining the corresponding redefinition.
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The canonical current sector of Vasiliev’s backreaction general structure: The general

structure of the canonical current sector extracted from the Vasiliev backreaction is remarkably

simple for any spin. Its structure involves 3 types of terms that combined together sum up to the

function k
(2)
4 :

k
(2)
4 ∼

1

ω2s+1

[
p2s+1
1 (ω) log(1+ω)+ p2s+1

2 (ω) log(1−ω)+ p2s+1
3 (ω)Li2(ω)+ p

2s+1
4 (ω)Li2(−ω)

]
, (C.76)

where p
(2s+1)
i (ω) are polynomials of degree at most 2s + 1 and encode the spin-dependence of the

result. The structure of the Vasiliev backreaction is remarkably simple and similar to the structure

of the Vasiliev current that gives the canonical Fronsdal current. The difference is given by the dilog

contribution and the degree of the polynomial coefficients that is one power higher, as opposite to

the simple polynomial coefficient (1 + ω)(1− ω)2s−1 that we found in the previous paragraph. The

above is true both before and after the twisted-sector decoupling. Notice however that after the

redefinition that decouples the twisted sector the polynomial multiplying the Dilog function becomes

of lower degree.

D More on Lorentz Invariance in The Schwinger–Fock Gauge

In this appendix we provide some details related to Section 5.3, where the issue of preserving Lorentz

invariance for Prokushkin–Vasiliev Theory in the Schwinger–Fock gauge (5.21) is discussed.

D.1 Preserving the Schwinger–Fock Gauge

For the naive Lorentz generators Lyz one finds

δΛSα = [Lyz,Sα]⋆ = 2SβΛβ
α +

δSα
δB

[Ly,B]⋆ , (D.1)

where the variation δ on the above right-hand side is a simple functional variation (with respect to B

in this case). The structure of the right-hand side is as follows: in the commutator with Sα, Lyz can

either act on the oscillator zα that Sα is proportional to, or it can act on the rest of the expression

(5.22) for Sα. Now, the rest thereof is a Lorentz-invariant quantity (no free oscillator indices), and is

fully determined in terms of B, which is why we can write the second term in the above right-hand

side in such a way.

Evidently, the above transformations do not preserve the Schwinger–Fock gauge zαSα = 0. The

corrected Lorentz generators Ls of (5.23) do preserve the gauge, and one easily checks it to be true

by using, on top of the definition (5.23), the relations (5.7e). The result of taking the variation of

Sα with respect to the correct generators is

δΛSα =
δSα
δB

[Ly,B]⋆ , (D.2)

which is proportional to zα and hence preserves the Schwinger–Fock gauge zαSα = 0. The above

equation is also compatible with the fact that Sα is an auxiliary field.
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D.2 Recovering the Lorentz Algebra and Covariant Rotation of Fields

eq:MassimoAnsatzOneForm First, let us explain how the commutation relations (5.24) for the Lorentz

generators in the Schwinger–Fock gauge are obtained. This is straightforward: looking at the def-

inition (5.23) and recalling (5.7d), (5.7e) one finds (5.24), where it should be made clear that the

dependence of Ls
αα on B is via Sα.

Let us now explicitate how a true Lorentz algebra is recovered when looking at the commutator

of local Lorentz transformations on the various master fields. For this we will assume the covariant

laws of rotation explicitated in (5.26). Let us first look at the scalar master field B. Using (5.7d) one

finds

δΛ1B =
δB
δB

[Ly
1 ,B]⋆ , (D.3)

where Ly
1 ≡ 1

2
Λαα

1 Ly
αα. From this, applying a second transformation δΛ2• to B + δΛ1B and antisym-

metrizing with respect to the exchange of Λ1 and Λ2 one concludes that

(δΛ1 ◦ δΛ2 − δΛ2 ◦ δΛ1)B ≡ [δΛ1 , δΛ2]⋆B =
δB
δB

[[Ly
1 , L

y
2 ],B]⋆ , (D.4)

where one has to use the Jacobi identity. The Lorentz algebra is thus restored on B since the

generators Lyz truly close to the Lorentz algebra, without extra terms as in (5.24).

Let us then look at the auxiliary master field Sα. We know from Section 5.3 that the variation

δΛSα with respect to Ls ≡ 1
2
ΛααLs

αα reads

δΛSα =
δSα
δB

[Ly,B]⋆ , (D.5)

since this is precisely what allows one to claim that the corrected Lorentz generators Ls preserve the

Schwinger–Fock gauge (see previous subsection). Then proceeding as in the above case of the scalar

master field B one finds

(δΛ1 ◦ δΛ2 − δΛ2 ◦ δΛ1)Sα ≡ [δΛ1 , δΛ2 ]⋆Sα =
δSα
δB

[[Ly
1 , L

y
2 ],B]⋆ , (D.6)

and the Lorentz algebra thus closes on Sα too.

For the one-form master field W we recall first the splitting (5.25) of W into its spin-connection

and the rest of it:

W ≡ 1

2
ωαβLs

αβ +W , (D.7)

where W does not depend on ωαβ. Then we note again its law of transformation under a local Lorentz

transformation, which is given in (5.26a). It reads

δ(W +
1

2
ωααLs

αα(B)) =
1

2
(dΛαα − ωα

ν Λ
να)Ls

αα − [W,
1

2
ΛααLyz

αα]⋆ . (D.8)

The proof then follows that of the other master fields.

As we observe, once the covariance rotation of the fields is proven, the closure of the Lorentz

algebra on the fields follows automatically by simply making use of the Jacobi identity. The most

non-trivial piece of work is thus that of obtaining the transformation laws, and in particular the

above form (D.8).
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D.3 Identifying the Proper Spin-Connection

It is convenient to first investigate the zeroth-order implications of the above identification (D.7) of

the correct spin-connection in the Schwinger–Fock gauge. At zeroth order, as we already pointed

out, Ls = Ly and hence

W̄ =
1

2
̟αβLy

αβ + W̄ =
1

2
(̟αβ + hαβ)Ly

αβ , (D.9)

so that the redefinition boils down to renaming the part of the background connection containing the

dreibein as W. This is again in harmony with the fact that, at order zero, Ls = Ly means that the

background gauge connection W̄ is already in the form (5.25). At first order we have the following

relation:

W(1) =
1

2
ω(1)αβLy

αβ +
1

2
̟αβL

s,(1)
αβ +W(1) , (D.10)

and things become more complicated. As one can see, from the standpoint of the naive identification

of the spin-connection the equation (D.7) amounts to a redefinition thereof, which is nevertheless the

identical field redefinition at order zero in perturbation theory. Things are also simpler at order 1

since L
s,(1)
αβ (z = 0) = 0.

D.4 Possible Sources of Lorentz Non-Manifest Covariance

A possible source of Lorentz non-covariance is when D̄yz on the left hand side of (5.32a), (5.32b) acts

on terms proportional to zα. But as the spin-connection in (5.33) is now contracted with Lyz
αα terms

of this form will lead to a contribution of the type

(d+
1

2
̟αα[Lyz

αα, •])zνfν(y, z)
∣∣∣∣
z=0

=
1

2
̟αα(yα∂

y
α + zα∂

z
α)z

νfν(y, z)

∣∣∣∣
z=0

= 0 . (D.11)

The zα-dependent terms (5.34) will contribute through the vielbein part of (5.33) as
[
h,

(
f(y, z)

g(y, z)ψ

)]
=

(
φhαα(yα − i∂zα)∂yαf(y, z)

− i
2
φhαα ((yα − i∂zα)(yα − i∂zα)− ∂yα∂yα) g(y, z)ψ

)
, (D.12)

so that on the z = 0 surface we find for an arbitrary function zνfν(y, z)+z
νgν(y, z)ψ a non-vanishing

contribution given by
[
h,

(
zνfν(y, z)

zνgν(y, z)ψ

)]

z=0

=

(
−iφhαα∂yαfα(y, 0)

−φhαα(yα − i∂yα)g(y, 0)ψ

)
. (D.13)

Therefore, we have shown that all possible sources of Lorentz non-covariance disappear and one can

therefore use the perturbation scheme outlined in Section 5.4 to recover manifestly Lorentz covariant

results at any order in perturbation theory.

E Cohomologies

In the following we will discuss cohomologies of the twisted-adjoint covariant derivative D̃ and the

adjoint covariant derivative D. We will analyze cohomologies with respect to functional classes of
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both linear or quadratic functionals of the scalar field Ĉ and furthermore for functional classes linear

in the physical gauge connection ω̂ and scalar field Ĉ. For this purpose we will use the integral basis

introduced in Appendix C.2.

E.1 Cohomology Linear in Ĉ

In the following we consider in detail the cohomology of D̃ with respect to functionals linear in Ĉ. In

particular the cohomology at form-degree 1 parameterizes ambiguities in the redefinitions of ω̃. The

analysis of the cohomology at form-degree 2 shows that it is always possible to remove the linear

source to ω̃. The form-degree 0 cohomology is reviewed for completeness.

E.1.1 Form-Degree 0

At form-degree 0 the cohomology is entirely fixed by demanding closure. By (C.58a) a zero-form

(C.45a) is closed if the following equivalence relation holds:

(1− τ 2)J (0)(τ) ∼ 0 . (E.1)

The most general solution to the above relation is given by

J (0)(τ) ∼ α+ βτ

1− τ 2 , (E.2)

since any higher power of τ in the numerator would only contribute polynomially. We therefore

conclude that there are two elements in cohomology. Plugging this result into (C.45a) and rewriting

the coefficient function as a geometric series we obtain

∮
dτ

α + βτ

1− τ−2
τ−2

(
∞∑

k=0

1

k!
Ĉα(k)τ

kyα(k)

)
=

∞∑

m,k=0

∮
dτ

(
α

τ 1+2m+1−k
+

β

τ 1+2m−k

)
1

k!
Ĉα(k)y

α(k) (E.3)

= αĈf(y) + βĈb(y) ,

where we have dropped an overall sign. We thus see that the two elements in cohomology correspond

to the bosonic and fermionic components of Ĉ(y).

E.1.2 Form-Degree 1

By (C.58b) a closure of a one-form translates to the following relation

[
2τ + (1− τ 2)∂τ

]
f(τ) ∼ 0 , (E.4)

where f stands for J
(1)
2 and J

(1)
1 − J

(1)
3 in (C.45b). The above operator sends polynomials of degree

n into polynomials of degree (n+ 1):

τn → −(n− 2)τn+1 + nτn−1 . (E.5)
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For n 6= 2 we can therefore remove an arbitrary monomial kτn+1 by shifting f(τ)→ f(τ) + 1
2−n

kτn.

Note that shifting f(τ) in this way is allowed since the countour integral of (C.45b) is blind to

such polynomials contributions. This allows us to restrict our attention to the following differential

equation:

[
2τ + (1− τ 2)∂τ

]
f(τ) = (1 + τ)2(1− τ)2∂τ

[
(1 + τ)−1(1− τ)−1f(τ)

]
= α + βτ 3 . (E.6)

It is convenient to perform the change of variables ω = τ−1 which results in the following differential

equation: [
2

ω
+ (1− ω2)∂ω

]
f(ω) = α+

β

ω3
, (E.7)

whose solutions can be expressed as

f(ω) =
(1 + ω)(1− ω)

ω2

∫ ω

dω′ ω′2
(
α + β

ω′3

)

(1− ω′)2(1 + ω′)2
, (E.8)

and upon integration are given by

fα(τ) ≡ f(τ)|β=0 ∼ −
α(1− ω2)

2ω2
tanh−1(ω) +

α

2ω
=

∞∑

k=1

α

(2k + 1)(2k − 1)
ω2k−1 , (E.9)

fβ(τ) ≡ f(τ)|α=0 ∼
β

2ω2
+
β

2

(
1− 1

ω2

)
log

(
1

ω2
− 1

)
. (E.10)

We drop the second solution fβ since it is not analytic41 around ω = 0 and therefore is not a formal

series in τ−1. By (C.58a) an exact one-form is given by

J1 = iφ

∮
q(τ)hαα

(
yαyα + τ−2∂yα∂

y
α

)
Ĉ(yτ) , (E.11)

where q(τ) is an arbitrary function, and therefore corresponds to the choices

J
(1)
2 ∼ 0 , J

(1)
1 ∼ J

(1)
3 ∼ q(τ) . (E.12)

Therefore for closed one-forms we can set J
(1)
2 and J

(1)
3 −J

(1)
1 independently to be equal to fα. Exact

one-forms satisfy J
(1)
2 ∼ 0 and J

(1)
3 −J

(1)
1 ∼ 0. As a result any choice α 6= 0 corresponds to an element

in the cohomology. Therefore the cohomology is two-dimensional and we can obtain a particularly

useful representative by choosing

J
(1)
2 ∼ fd0 , J

(1)
1 − J

(1)
3 ∼ fg0 , J

(1)
1 + J

(1)
3 ∼ 0 . (E.13)

A calculation similar to (E.3) shows that this results in the following representative:

1

4
φhαα

∫ 1

0

dt g0(t
2 − 1)

(
yαyα − t−2∂α∂α

)
Ĉb(ty) +

1

2
φhαα

∫ 1

0

dt d0(t
2 − 1)t−1yα∂

y
αĈf(ty) , (E.14)

where we have used the identity

2

(2k + 1)(2k − 1)
=

∫ 1

0

dt (1− t2)t2k−2 . (E.15)

This is exactly the ambiguity R, given in (3.3), of the redefinition M1.

41A β 6= 0 inevitably gives rise to non-analytic solutions at ω = 0 due to a pole of order 3.
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E.1.3 Form-Degree 2

At form-degree 2 we can also solve the closure condition translated in terms of the following linear

ordinary differential equation:

[
(1− τ 2)∂2τ + 2τ∂τ − 2

]
f(τ) ∼ 0 . (E.16)

Taking into account the most general polynomial coefficients that can affect the solution non-

polynomially one arrives to the equation

[
(1− τ 2)∂2τ + 2τ∂τ − 2

]
f(τ) = ατ + βτ 2 . (E.17)

To study the behavior at infinity one can again perform the change of variable ω = 1
τ
which results

in [
ω2(1− ω2)∂2ω + ω(3− ω2)∂ω + 2

]
f(ω) = −α

ω
− β

ω2
. (E.18)

The exact elements are parametrized by f ∼ 0 while the cohomology is in correspondence with the

solutions of the above ordinary differential equation that are analytic at ω = 0 up to polynomials

in ω−1. The solutions of the homogeneous equation are not analytic at ω = 0. In particular the

homogeneous solution is a power series in ω−1 and α and β produce log(ω)-singularities at ω = 0.

We therefore conclude that the cohomology at form-degree 2 is trivial.

E.2 Cohomology Quadratic in Ĉ

In this subsection we will analyze the cohomology of the adjoint covariant derivative D with respect

to pseudo-local field redefinitions, as defined in (2.56) (also see comments there below). The analysis

of form-degree 1 is needed for the study of source terms to the twisted zero-form C̃(2) and form-degree

2 for the backreaction on the higher-spin gauge fields ω̂(2). Form-degree 0 cohomology parameterizes

parameterizes the redefinitions of Ĉ(2).

E.2.1 Form-Degree 0

Note that by (C.62a) the covariant derivative D does not produce any contributions to J
(1)
4 and J

(1)
5

of (C.54b). Therefore we can impose m ≤ 0 and n ≤ 0 as greater values for m and n in (C.61) would
only lead to contributions that are projected out by the contour integral in (C.54b). The closure

condition is required to hold only up to Fierz identities (C.63) and therefore takes the form:



−k(τ)− 2iχ′
1(τ)

−(1− τ)k(τ) − 2i (mχ1(τ)− χ′
3(τ))

−(1 + τ)k(τ) + 2i (nχ1(τ) − χ′
2(τ))

2i(m− 1)χ3(τ)

2i(n− 1)χ2(τ)

−
(
1− τ2

)
k(τ) − 2i(mχ2(τ) + nχ3(τ))




∼ 0 , (E.19)

where we have used the notation χ′
i = ∂τχi. We consider the following three cases separately:

• m < 0 and n < 0,
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• m = 0 and n < 0 (and m↔ n),

• m = 0 and n = 0.

For m < 0 and n < 0: By summing and subtracting the second and third equations after mul-

tiplying them by n and m respectively we can eliminate χ1 in the second equation:




−k(τ)− 2iχ′
1(τ)

−k(τ)[τ(m − n) +m+ n]− 2i (mχ′
2(τ) − nχ′

3(τ))

k(τ)[τ(m + n) +m− n]− 2i (2mnχ1(τ)−mχ′
2(τ)− nχ′

3(τ))

2i(m− 1)χ3(τ)

2i(n− 1)χ2(τ)

−
(
1− τ2

)
k(τ) − 2i(mχ2(τ) + nχ3(τ))




∼ 0 . (E.20)

From the fourth and fifth equation we can conclude that χ2 ∼ χ3 ∼ 0. The last equation then implies

k(τ) ∼ α + βτ

1− τ 2 , (E.21)

as we have learned from the study of the cohomology of D̃ linear in Ĉ at form-degree 0. The

coefficient β must be set to zero since it cannot be removed by χ′
1 in the first equation, because

χ′
1 cannot contain a τ−1 pole. This choice of β is however incompatible with the second equation,

showing that there is no cohomology.

For m = 0 and n < 0: For m = 0 only J
(1)
2 , J

(1)
4 and J

(1)
6 in (C.54b) are not projected out by

the contour integrals over (s− r). Therefore we only have to consider the second, fourth and sixth

component of (E.20). The fourth equation implies χ3 ∼ 0 and the sixth equation has again a solution

for k(τ) of the type (E.21). The parameter β has to be tuned to solve the second equation in (E.20):

n k(τ) (1− τ) ∼ 0 , (E.22)

which implies α = β:

k(τ) ∼ α

1− τ = − αω

1− ω , ω =
1

τ
. (E.23)

Analogous solutions are obtained for n = 0 and m < 0 if one replaces τ → −τ . We therefore find

a cohomology for each pair (n, 0) and (0, m). This is equivalent to having one bosonic and one

fermionic cohomology upon combining (n, 0) and (0, m) appropriately.

For m = 0 and n = 0: In this case only J
(1)
6 in (C.54b) is not projected out by the contour

integrals over (s− r) and (s+ r). Therefore only the sixth component of (E.20) has to be considered

and the corresponding solution is given by

k(τ) ∼ α + βτ

1− τ 2 = −αω
2 + β ω

1− ω2
, ω =

1

τ
. (E.24)

This implies that we have again one bosonic (α = 0) and one fermionic (β = 0) cohomology. The

cohomology (0, 0) can be seen to correspond to Tr(Ĉ ⋆ Ĉ).
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E.2.2 Form-Degree 1

By using Fierz identities (E.19) and adding exact forms we remove various components of

~k(1) =




k
(1)
1

k
(2)
2

k
(3)
3

k
(4)
4

k
(5)
5

k
(6)
6




. (E.25)

One can distinguish the following cases for m and n in (C.61):

• n < 0 and m < 0. One can use an exact form (C.62a) to remove the last component in (E.25)
and the term proportional to τ−1 in the first component. Then one can apply a Fierz identity

(C.63) to remove the fourth and fifth entry and the remaining terms in the first component.
This leaves us with

~k(1) =




0

f(τ)

g(τ)

0

0

0




. (E.26)

As we will discuss in the following we find one bosonic and one fermionic cohomology for each

spin in this case.

• m = 0 and n < 0. In this case only k
(1)
2 , k

(1)
4 and k

(1)
6 will not be projected out by the

contour integral in (C.54). By choosing χ
(1)
3 appropriately in (C.63) we can eliminate the

fourth component. We can then remove the sixth by adding an exact form. This results in

~k(1) =




0

f(τ)

0

0

0

0




, (E.27)

and the case n = 0, m < 0 can be obtained from this one by swapping the 2nd and 3rd

components and performing τ → −τ . Combining both cases we find again one bosonic and

one fermionic cohomology for each spin.

• m = 1 and n < 0. In this case only k
(1)
4 is kept by the contour integral. This component is

unaffected by an arbitrary Fierz identity and by adding an exact form. Therefore the 1-form

representative can be chosen as:
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~k(1) =




0

0

0

f(τ)

0

0




, (E.28)

and again the case n = 1, m < 0 can be obtained from this one by swapping the 4th and

5th components and performing τ → −τ . Combining both cases we find one bosonic and one

fermionic cohomology for each spin, as in the previous case.

• m ≥ 0 and n ≥ 0. In this case only the sixth component is not projected out by the contour

integrals. Therefore all 1-forms are trivially exact.

Let us expand further on these cases:

n < 0 and m < 0: Non-trivial cohomologies are in correspondence with the solution of the fol-

lowing condition:

D~k(1) = −i




−(τ + 1)f ′(τ) − nf(τ)− (τ − 1)g′(τ) −mg(τ) + 2χ′
1(τ)

−2 ((τ + 1)f(τ)−mχ1(τ) + χ′
3(τ))

2 ((τ − 1)g(τ)− nχ1(τ) + χ′
2(τ))

−(m− 1)
((
τ2 − 1

)
f(τ) + 2χ3(τ)

)

−(n− 1)
((
τ2 − 1

)
g(τ) + 2χ2(τ)

)

2(mχ2(τ) + nχ3(τ))




∼ 0 . (E.29)

One can easily solve the fourth and fifth equations as

f(τ) ∼ α + βτ + 2χ3(τ)

1− τ 2 , g(τ) ∼ γ + δτ + 2χ2(τ)

1− τ 2 . (E.30)

Summing and substracting the second equation multiplied by n and the third equation multiplied

by m we obtain:

−n(τ + 1)f(τ) +m(τ − 1)g(τ) +mχ′
2(τ)− nχ′

3(τ) ∼ 0 , (E.31)

n(τ + 1)f(τ) +m(τ − 1)g(τ)− 2mnχ1(τ) +mχ′
2(τ) + nχ′

3(τ) ∼ 0 , (E.32)

where in the second equation we can drop mχ′
2(τ)+nχ

′
3(τ) due to the last component which requires

it to be a polynomial. Substituting the solution for f(τ) and g(τ) one arrives to:

2τY (τ)

τ 2 − 1
−
(

n(α + βτ)

(m− 1)(τ − 1)
− m(γ + δτ)

(n− 1)(τ + 1)

)
+

2X(τ)

τ 2 − 1
+ Y ′(τ) ∼ 0 , (E.33)

n(α + βτ)

(m− 1)(τ − 1)
+

m(γ + δτ)

(n− 1)(τ + 1)
− 2imnχ1(τ)−

2itX(τ)

τ 2 − 1
+

2iY (τ)

τ 2 − 1
∼ 0 , (E.34)

where we have defined X(τ) = mχ2(τ) + nχ3(τ) and Y (τ) = mχ2(τ) − nχ3(τ). While the last

equation can be solved to fix χ1(t) completely up to polynomials, the first equation can be rewritten

as
in(α + βτ)

(m− 1)(τ − 1)
− im(γ + δτ)

(n− 1)(τ + 1)
− 2τY (τ)

τ 2 − 1
+ Y ′(τ) ∼ 0 . (E.35)
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after noticing that without loss of generality one can set X(τ) = 0. Taking into account the form

of the homogeneous part of the equation, any polynomial of the type (1− τ 2)p(τ) on the right-hand

side can be reabsorbed by a polynomial shift in Y . Hence, the most general equation we need to

solve is actually

Y ′(τ) +
2τ

1− τ 2Y (τ) = −
in(α + βτ)

(m− 1)(τ − 1)
+

im(γ + δτ)

(n− 1)(τ + 1)
+ C +Dτ . (E.36)

Its solution can be easily found and, after changing variables to ω = τ−1, reads:

Y (ω) =
1− ω2

4(m− 1)(n− 1)ω2

[
log(1− ω)

(
2C(m− 1)(n− 1) + 2D(m− 1)(n− 1) (E.37)

+i(m(m− 1)(γ + δ) + n(n− 1)(α− β))
)

+ log(ω + 1)
(
− 2C(m− 1)(n− 1) + 2D(m− 1)(n− 1)

−i(m(m− 1)(γ + δ) + n(n− 1)(α− β))
)
− 4D(m− 1)(n− 1) log(ω)

−2i (m(m− 1)(ω − 1)(γ − δ) + n(n− 1)(ω + 1)(α+ β))

ω2 − 1

]
.

From the above it is clear that any D needs to be set to zero while, without loss of generality, it is

convenient to make the following choice:

α =
m(m− 1)(γ − δ)− βn(n− 1)

n(n− 1)
, C = i

(
βn

m− 1
− δm

n− 1

)
, (E.38)

which without affecting the positive powers in ω up to an overall constant, cancels any pole in ω−1.

Plugging now everything back into the first equation one finally gets

(n− 1) (2γ(m− 1)2 + β(n− 1)n(τ − 1)) + δ(m− 1)2(n(τ − 1) + 2)

n(m− 1)(n− 1) (τ 2 − 1)
∼ 0 . (E.39)

Its solution is given by

β = −δ(m− 1)2

(n− 1)2
, γ = − δ

n− 1
. (E.40)

To summarize we find the following solutions:

f(ω) ∼ σ

[
ω

1 + ω
−m tanh−1(ω)

]
, g(ω) ∼ σ

[ −ω
1− ω − n tanh

−1(−ω)
]
, (E.41)

where σ is an arbitrary overall constant that might depends on m and n. This gives rise to one

bosonic and one fermionic cohomology for each choice of m and n. Recall that the above functions

should be interpreted as formal series around ω = τ−1 ∼ 0.

The above shows how the cohomology in the space of pseudo-local functionals is non-trivial.

Considering also the local cohomology, the only possibility to have a local cohomology is to find a

local and exact one-form whose improvement is pseudo-local. This amount to solving the condition

that the following vector has polynomial components in τ−1:
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~k(1) =




−f(τ)− 2iχ′
1(τ)

−(1− τ)f(τ) − 2imχ1(τ)

−(1 + τ)f(τ) + 2inχ1(τ)

0

0

−
(
1− τ2

)
f(τ)




, (E.42)

when f(τ) is a non-polynomial function. Gauge fixing the third component using χ1(τ) one can see

that no such solution exists so that there is no local cohomology.

m = 0 and n < 0: In this case we can further use exact forms to fix f(τ) ∼ f2τ
−2 + O(τ−3) so

that the term of order τ−1 vanishes. Non-trivial cohomologies are then in correspondence with the

solution of the following equation:

D~k(1) = −i




0

2i ((τ + 1)f(τ) + χ′
3(τ))

0

−i
((
τ2 − 1

)
f(τ) + 2χ3(τ)

)

0

−2inχ3(τ)




∼ 0 , (E.43)

where, due to the condition m = 0, we have set to zero trivially-vanishing pieces. One can now set

to zero χ3 up to polynomials and arrive to the solution:

f(τ) ∼ σ

1 + τ
=

σ ω

1 + ω
. (E.44)

Therefore, we have again one bosonic and one fermionic cohomology.

In the case of a local cohomology we have to find the non-polynomial functions f(τ) for which

the following is polynomial:

~k(1) =




0

(τ − 1)f(τ)

0

0

0(
τ2 − 1

)
f(τ)




. (E.45)

One can then find a solution of the form

f(τ) =
p(τ−1)

1− τ , (E.46)

for any polynomial p. The above infinite solutions are however trivial in local cohomology since

p(τ−1) = τ−k − 1 = (τ−1 − 1) p̃(τ−1) = τ−1(1− t) p̃(τ−1) , (E.47)

gives a ~k(1) which is locally exact for any k > 0 and the constant gives rise to a trivial 1-form. We

thus find no cohomology in the space of local functionals.
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m = 1 and n < 0: As explained above only the fourth component (or the fifth if we exchange

m and n) contributes after performing the contour integrals. Non-trivial cohomologies are in corre-

spondence with the solution of the following ODE:

(1− τ 2)f ′(τ)− f(τ)((n− 1)τ − n− 1) ∼ 0 . (E.48)

Looking at the form of the differential operator and at its image on polynomials, it is easy to see

that up to polynomials we need to solve:

(1− τ 2)f ′(τ)− f(τ)((n− 1)τ − n− 1) = α + βτ + γτ−n+2 . (E.49)

Going to the point at infinity one can drop the γ term since it gives rise to poles in ω ∼ 0 while α

and β are uniquely fixed up to an overall coefficient, by the requirement that the expansion in ω is

analytic at ω = 0 and starts from the linear term. One can indeed rewrite the above equation as:

(1− τ)2(1 + τ)−n+1∂τ

[
(1− τ)−1(1 + τ)nf(τ)

]
= α + βτ , (E.50)

whose solution in terms of ω can be easily integrated as

f(ω) = −(1− ω)(1 + ω)−n

ω−n+1

∫ ω

dx
x−n+1(α+ βx−1)

(1− x)2(1 + x)−n+1
. (E.51)

The analyticity condition in ω is automatically satisfied due to the absence of poles at x = 0.

Performing the integration one can see that modulo polynomials only one constant among α and β

remains arbitrary, while the solution takes the form

f(ω) ∼ σ
(1− ω)(1 + ω)−n

ω−n+1
tanh−1(ω) , (E.52)

where σ is an arbitrary constant that can depend on n. Again we find no local cohomology.

E.2.3 Form-Degree 2

At form-degree 2 we can distinguish three relevant cases:

• n < 0 and m < 0,

• n < 0 and m = 0,

• n < 0 and m = 1.

All other cases are either obtainable from the ones above or are trivial.

n < 0 and m < 0: The preliminary step in order to study the cohomology is to parametrize the

most general term that cannot be made exact fixing the freedom in Fierz transformations and exact

forms. At this form-degree this freedom amounts to nine arbitrary functions. Three functions χ
(2)
i

due to Fierz identities and six functions due to the freedom of adding an exact form D~f (1). The

resulting expression is given by
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~k(2) =













































i
(

(τ + 1)f ′

2(τ) + nf2(τ) + (τ − 1)f ′

3(τ) +mf3(τ)− ik1(τ) − 2χ′

1(τ)
)

− if1(τ)(mτ +m− nτ + n− 2)




i
(

2mn
(

τ2 − 1
)

f1(τ) + 2n(τ + 1)f2(τ)− 2mτf3(τ) + 2mf3(τ) + 2(n − 1)nf4(τ) + 2m2f5(τ) − 2mf5(τ) + 2mnf6(τ)

−2mf6(τ) − 2nf6(τ)− ink2(τ) − imk3(τ) − 2Y ′(τ)
)









−i
(

− 2n(τ + 1)f2(τ) − 2m(τ − 1)f3(τ) + n(−2(n − 1)f4(τ) + 2f6(τ) + ik2(τ) + 4mχ1(τ))

+m(2(m − 1)f5(τ)− 2f6(τ)− ik3(τ)) − 2X′(τ)
)





(

i
(

(m − 1)
(

τ2 − 1
)

f2(τ)− (τ − 1)
(

(τ + 1)f ′

4(τ) + (m− 1)f6(τ)
)

− f4(τ)(τ(m + n− 2) +m− n− 2)
)

+k4(τ) +
i(m−1)(X(τ)−Y (τ))

n

)

(

i
(

(n− 1)
(

τ2 − 1
)

f3(τ) +
(

τ2 − 1
)

f ′

5(τ) + f5(τ)(τ(m + n− 2) +m− n+ 2) + (n− 1)(τ + 1)f6(τ)
)

+k5(τ) +
i(n−1)(X(τ)+Y (τ))

m

)

i(2n(τ + 1)f4(τ) − 2m(τ − 1)f5(τ) − ik6(τ)− 2X(τ))













































.

(E.53)

Above we have changed variables defining X(τ) = mχ2(τ) + nχ3(τ) and Y (τ) = mχ2(τ) − nχ3(τ)

while summing and subtracting the first and the second components in D~f (1) after multiplying them

with n and m respectively. At this point it is not hard to see that:

• The last component can be removed by fixing X(τ);

• The third component can be removed by fixing χ1;

• The fourth and fifth component can be removed upon choosing f2 and f3 respectively;

• The first component and the second component can be removed by fixing either f6 or f1 if the

conservation condition is enforced.

We then conclude that there is no pseudo-local cohomology at form-degree 2 if n < 0 and m < 0.

One can also show that the corresponding local cohomology is trivial as well.

n < 0 and m = 0: This case is similar to the previous one except that only the first, third and

fifth component of the vector are projected out by the contour integrals over s+ r and s− r.

n < 0 and m = 1: In this case only the fourth component contributes and the condition to be

an exact form reads:

[(1− τ)n + 1 + τ ]f(τ) +
(
1− τ 2

)
f ′(τ) ∼ k(τ) . (E.54)

Notice that the choice m = 1 makes conservation trivial so that the only condition to solve is whether

there exist a solution of the above equation that admits a well-defined expansion around ω = τ−1 ∼ 0.

We can then study the above question by considering k(τ) = τ−k and studying the corresponding

solutions:

[(1− τ)n + 1 + τ ]f(τ) +
(
1− τ 2

)
f ′(τ) = τ−k + α + βτ . (E.55)

Re-expressing the equation above in terms of ω and fixing the ambiguity up to elements belonging

to the 1-form cohomology, one recovers the equation:

(
1− ω2

)
f ′(ω) + [1 + ω − n(1− ω)]f(ω)

ω
= ωk , (E.56)

93



whose solution can be integrated as:

f(ω) = −(1 − ω)(1 + ω)−n

ω−n+1

∫ ω

dx
xk−n+1

(1− x)2(1 + x)−n+1
(E.57)

The solution for k ≥ 1 has the following structure:

f(τ) ∼ (1− ω)(1 + ω)−n

ω−n
[An,k log(1− ω) +Bn,k log(1 + ω)] , (E.58)

where for any n and k:

Ak,n =
1

2πi

∮

x=1

dx
xk−n+1

(1− x)2(1 + x)−n+1
, (E.59)

Bk,n =
1

2πi

∮

x=−1

dx
xk−n+1

(1− x)2(1 + x)−n+1
. (E.60)

Hence this concludes the proof that the cohomology at form-degree 2 is trivial in the space of pseudo-

local functionals.

E.3 Cohomologies Linear in Ĉ and ω̂

The cohomologies Hn(D̃, ω̂Ĉ) and Hn(D̃, Ĉω̂) can be trivially obtained from the cohomologies cal-

culated in the previous subsections. This is due to the observation that upon appropriate relabeling

of ξ, η and y the Fourier representation of D̃ acting on functionals linear in Ĉ and ω̂, which are

given by (2.73) and (2.74), reduce to the Fourier representation of the adjoint covariant derivative D

acting on functionals quadratic in Ĉ given in (2.69). Note however that the form-degree n is shifted

by one as ω̂ is a one-form.

F Asymptotic Behavior

Below we collect in detail the large-l asymptotic behavior of the various expressions that appear in

the main text:

(C.33) : an,m,l|l→∞ ∼ exactly zero , (F.1a)

(C.34) : an,m,l|l→∞ ∼
−4lilfm+n

(m+ n+ l + 3)!
, (F.1b)

(C.35) : an,m,l|l→∞ ∼
2l

l!l
m+n+4

2

, (F.1c)

(C.38), (C.39) : an,m,l|l→∞ ∼
(−i)lfm+n+l

l!
an,m,l
F |l→∞ ∼

i−lfm+n+l

l!
, (F.1d)

(C.41), (C.42) : cn,m,l|l→∞ ∼fn+m cn,m,l
F |l→∞ ∼− l2fn+m , (F.1e)

(C.43) : an,m,l|l→∞ ∼
(−i)lfn+m

(m+ n+ l + 3)!
, (F.1f)

(B.5h) : an,m,l|l→∞ ∼−
i(−i)l(−1)m(m+ n)!

l!m!n!(l+m+ n+ 3)2
, (F.1g)

(B.9) : an,m,l|l→∞ ∼−
i(−i)l(−1)m(m+ n)!

l!l2m!n!
, (F.1h)
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(C.44) : an,m,l|l→∞ ∼
(−i)ll log lfn+m

(l +m+ n+ 3)!
, (F.1i)

(B.23) : a0,0,l|l→∞ ∼
(i)l

l!
, (F.1j)

(C.75) : an,m,l|l→∞ ∼
1

l2sl!
(F.1k)

(B.28) : an,m,l|l→∞ ∼
(i)l

l!lq
, q ≥ 0 . (F.1l)

The backreaction obtained from the Prokushkin–Vasiliev theory, (B.9), is quite complicated but using

its large-l asymptotic we see that its D-exact representation JPV = DUPV has large-l asymptotics

which are no worse than 1
l!
. Apart from the artificial example of (F.1e), all large-l asymptotics have

the same damping factor 1/l!.

G D-Dimensional Theory at D = 3

This section is devoted to another three-dimensional higher-spin theory. Namely, we wish to consider

the generic D-dimensional Vasiliev theory [67], which is known not to require the presence of any

twisted sector. After some simplifications the D-dimensional Vasiliev theory can be reduced to42

dW +W ⋆W = 0 , {Sα,B ⋆ κ}⋆ = 0 , (G.1)

d(B ⋆ κ) + [W,B ⋆ κ]⋆ = 0 , [Sα,Sβ]⋆ = −2iǫαβ (1 + B ⋆ κ) , (G.2)

dSα + [W,Sα]⋆ = 0 , (G.3)

supplemented with the so-called kinematical constraints

[F 0
αβ,W]⋆ = 0 , [F 0

αβ ,B]⋆ = 0 , [F 0
αβ ,Sγ]⋆ = ǫαγSβ + ǫβγSα , [F 0

αβ ,κ]⋆ = 0 , (G.4)

where κ = eiyz is the usual Klein operator and F 0
αβ = − i

4
{yaα, yaβ}+ i

4
{zα, zβ} are the sp(2) generators

of the algebra Howe dual to the AdS algebra so(D, 2). The Lorentz and translation generators of the

background anti-de Sitter algebra so(D, 2) are

Lab =
i

4
{yaν , ybν} , P a =

i

4
{yaν , yν} , (G.5)

and by the Howe duality property they commute to the sp(2) generators.

In generic D this system describes interactions of all s = 0, 1, 2, 3, . . . fields and there is no

need to involve a twisted sector, which we recall is a built-in feature of Prokushkin–Vasiliev Theory

studied in this paper. One could, however, choose to add twisted fields and couple them to the D-

dimensional Vasiliev theory. This is done by enlarging the higher-spin algebra and yields an extended

42We do not give a detailed account of this theory, referring to the original paper [67] for definitions, to [5] for

a review and to [64] for a brief summary and explanations on how to slightly reduce the field content to the form

presented in this appendix.
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D-dimensional theory. The minimalistic option is to add a Klein operator k for yaα, i.e.
43

[yα, k] = [zα, k] = 0 , {yaα, k} = 0 , k2 = 1 . (G.6)

No modification of the above equations is needed. The vacuum is the canonical one, i.e. B = 0,

Sα = zα, with

Ω =
1

2
ωa,bL

ab + haP
a , (G.7)

where ωa,b and ha are the spin-connection and vielbein of AdS space. Now the linearized equations

for W = Ω +w, B = C and Sα = zα + sα reduce to

DΩw = 0 , ∂zαw =
i

2
DΩsα , DΩ(C ⋆ κ) = 0 , (G.8)

∂zαC = 0 , ∂zαs
α = C ⋆ κ . (G.9)

These equations can be solved as usual. First, C = C(ya, y, k) is zα-independent and

dC+ Ω ⋆C−C ⋆ π(Ω) = 0 , (G.10)

where π(Ω) = κ⋆Ω⋆κ is the automorphism that flips the sign of the translation generator P a = i
2
yaνy

ν.

The equation splits into two different equations for the components C = Ĉ + C̃k:

DC̃ = dC̃ + Ω ⋆ C̃ − C̃ ⋆ Ω = 0 , (G.11)

D̃Ĉ = dĈ + Ω ⋆ Ĉ − Ĉ ⋆ Ω̃ = 0 . (G.12)

The interpretation is straightforward: Ĉ obeys the usual equation for higher-spin Weyl tensors and

descendants thereof, i.e. it describes the gauge invariant field-strengths of higher-spin fields. Instead,

C̃ describes an infinite set of totally-symmetric AdS Killing tensors, including the Killing constant.

For completeness we also write the solution for w:

w = ω +
i

2
hb

∫
(1− t)dt

(
izν∂

bνĈ(ya,−zt) + zνy
bνC̃(ya,−zt)k

)
eityz , (G.13)

where ω = ω(ya, y, k) = ω̂ + ω̃k also splits into a higher-spin algebra connection ω̂ and a twisted

ω̃, which has the same mysterious interpretation as its Prokushkin–Vasiliev cousin. Let us point

out that, contrary to Prokushkin-Vasiliev Theory, in D > 3 there are non-trivial sources on the

right-hand sides of the first-order equations of motion:

D̃ω̃ = dω̃ + Ω ⋆ ω̃ − ω̃ ⋆ Ω̃ = − i
4
ha ∧ hb yaνybνC̃(ym, 0) , (G.14)

43Due to the form of generators (G.5) there is an ambiguity on how to couple k to the algebra as to ensure

kP ak = −P a. While the simplest option is in the main text, let us give an alternative realization that is in the spirit

of the Prokushkin-Vasiliev theory. The alternative relations read:

{yα, k} = {zα, k} = 0 , {ρ, k} = 0 , [yα, ρ] = [zα, ρ] = 0 , [yaα, k] = [yaα, ρ] = 0 , k2 = ρ2 = 1 .

As in the Prokushkin-Vasiliev theory a truncation needs to be imposed such that W and B are ρ-independent and

Sα = ρsα(y
a
α, yα, k). The vacuum for Sα is ρzα and it functions the same way as zα in the original theory thanks to

[ρzα, k] = 0, [k,κ] = 0.
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Dω̂ = dω̂ + Ω ⋆ ω̂ − ω̂ ⋆ Ω = +
i

4
ha ∧ hb ∂aν∂bνĈ(ym, 0) , (G.15)

which for ω̂ amount to the nontriviality of higher-spin Weyl tensors in D > 3. The sources disappear

at D = 3 except for s = 1, which will be discussed below.

G.1 Confronting two Three-Dimensional Higher-Spin Theories

From now on we will consider the case D = 3. We are thus left with a three-dimensional higher-

spin theory which also involves a twisted sector, and it is therefore natural to compare it with the

Prokushkin–Vasiliev theory studied in the main text. We anticipate the fact that in Prokushkin–

Vasiliev Theory the twisted fields are built in whereas here we add them ’by hand’ seems to indicate

that the two theories should differ. We find it however enlightening to compare them precisely, which

we comment on in the following.

The above theory at D = 3 also involves Killing tensors, but there is only one Killing constant

therein while there are two in the Prokushkin–Vasiliev theory, the doubling being due to the φ-

dependence. The field Ĉ describes one scalar field and a spin-one field which are present, while the

Weyl tensors for s ≥ 2 vanish identically. In contrast, in Prokushkin–Vasiliev Theory there is no

dynamical spin-one field, which is also clear by noticing that the interactions among higher-spin fields

are Chern–Simons-like. We also see that the spectrum of the higher-spin algebras do not match, the

difference being that there are two Lorentz scalars in the physical sector of Prokushkin–Vasiliev while

there is only one such scalar in the D-dimensional theory at D = 3 because the spin-one Weyl tensor

is equivalent to a three-dimensional vector.44

Again let us stress that the key difference with Prokushkin–Vasiliev Theory is that the twisted

sector of the extended D-dimensional theory is not built-in, which we have shown to be not straight-

forward in Prokushkin–Vasiliev. The truncation is achieved by requiring all fields not to depend on

k.

When going to the second order in the extended D-dimensional theory we find that the structure

of the backreaction is different. For example, D̃Ĉ(2) ∼ ĈĈ + C̃C̃ and DC̃(2) ∼ ĈC̃, while in

Prokushkin–Vasiliev we have instead DC̃(2) ∼ ĈĈ + C̃C̃ and D̃Ĉ(2) ∼ ĈC̃, which illustrates the

general statement that the twisted sector can be truncated away in the extended D-dimensional

theory but not in Prokushkin–Vasiliev Theory.

As mentioned above another difference lies in the field content. The D-dimensional theory ex-

trapolated to D = 3 has degrees of freedom associated with s = 0 and s = 1, the corresponding

energies, which can be read off from the general formulas E = D + s − 3, which gives E = 0 for

s = 0 and E = 1 for s = 1. The AdS masses are m2 = 0 and m2 = −2. In dimension 3 a vector field

is dual to a scalar with m2 = 0, so we have two scalars of the same mass m2 = 0. This should be

compared with the masses of the scalars in the Prokushkin–Vasiliev theory, where m2 = −1 + λ2.

The precise truncation of Prokushkin–Vasiliev Theory we consider in the paper corresponds to

λ = 1
2
and should be dual to the W 1

2
-minimal model. The D-dimensional theory fits λ = 1 and

44The difference is however not drastic since a vector field is dual to a scalar in dimension 3.
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should be dual to a 2D free boson theory as it generically occurs in higher dimensions. Both λ = 1

and λ = 1
2
seem to be generic from the bulk point of view, which only makes it even more surprising

to have such different behaviors of the twisted sectors in both cases.

G.2 Twisted Sector

Let us have a closer look at the twisted sector. This discussion applies both toD-dimensional Vasiliev

Theory and to Prokushkin–Vasiliev Theory. We first look at the gauge twisted fields ω̃ and discuss

the field content, gauge symmetries and possible gauge invariant equations and then show how the

twisted zero-forms C̃ source ω̃ via (G.14).

Twisted one-forms. When decomposed into Lorentz tensors (G.14) splits into an infinite set of

equations that involve

ω̃a(s+k),b(s) , k = 0, 1, 2, . . . , (G.16)

for every s = 0, 1, 2, . . . . There exists a standard technique, the σ−-cohomology, used to analyze the

content of any unfolded equation [5,34]. The procedure consists of taking the part of the differential

that lowers the degree of a fiber tensor. In our case the relevant operator is D̃, so that

(σ−ω̃)
a(s+k),b(s) = hc ∧

(
ω̃a(s+k)c,b(s) +

1

k + 2
ω̃a(s+k)b,b(s−1)c

)
, (G.17)

which is dubbed σ− and can be checked to be nilpotent. The σ−-cohomology for all kinds of AdS-

modules was computed in [5, 68, 69]. Following standard techniques, the metric-like content of ω̃ is

given by H1(σ−). It is easy to see that for s > 1 the only tensor in the kernel of σ− is given by

ω̃a(s),b(s) = hcΦ
a(s),b(s),c , (G.18)

where Φa(s),b(s),c is not traceless but has only one non-vanishing trace so that the independent metric-

like fields described by the twisted sector are Φs, s = 1, 2, . . . :

Φa(s),b(s),c , Φa(s),b(s−1)n,
n . (G.19)

In addition to the above elements, the case s = 0 is degenerate due to the non-trivial kernel of σ−

given by ha Φ. Also for s = 1 there is an additional element given by45 h[bΦa], where however Φa

cannot be identified with the trace of Φa,b,c.

To summarize, the indpendent components of ω̃ are given by

ω̃a(s),b(s) = hcΦ
a(s),b(s),c , ω̃a,b = h[aΦb] , ω̃a = haΦ . (G.20)

The above fields, being one-forms, are gauge fields whose metric-like components transform as

δΦa(s),b(s),c = ∇cξa(s),b(s) + permutations− trace , (G.21)

45These cocycles of σ− become trivial if the trace constraints on the fiber tensors are relaxed.

98



with a traceless gauge parameter whose physical components belong to H0(σ−), and hence in the

metric-like formalism has the same index structure as the higher-spin Weyl tensors. Remarkably,

the rigid symmetries associated with these gauge fields are the infinite-dimensional Weyl modules

themselves, in contrast with the physical higher-spin fields whose rigid symmetries are given by

Killing tensors and hence are finite-dimensional at a fixed spin. For s = 0 one finds in particular

δΦ = (�+ 2(d− 2))ξ , (G.22)

and rigid symmetries are given by (�+ 2(d− 2))ξ = 0, i.e. correspond to an on-shell scalar field.

The rest of the Lorentz components of ω̃ are either pure gauge or expressed as derivatives of

Φs. Possible gauge-invariant equations are given by H
2(σ−). One finds three independent first order

operators:

Ea(s),b(s),c,d , Ea(s),b(s−1),c , Ea(s−1),b(s−1) , (G.23)

corresponding to the irreducible components of a two-form with the index structure of a Weyl tensor:

Ea(s),b(s)
c,dh

c ∧ hd . (G.24)

Note that only the trace of Φs contributes to the last operator in (G.23), ∇mΦ
a(s−1)m,b(s−1)n,

n . For

the degenerate case s = 0 there are no equations possible since the cohomology is empty.

Twisted zero-forms. As it was already said, (G.11) describes Killing tensors encoded in C̃. The

Killing equation (G.11) also splits into an infinite set of equations for a finite number of fields:

C̃a(s−1),b(k) , k = 0, ...., s− 1 . (G.25)

In particular the first equation of each chain,

∇mC̃
a(s−1) + hbmC̃

a(s−1),b = 0 , (G.26)

implies, after symmetrizing the indices, the standard Killing equation ∇aC̃a(s−1) = 0. There is also

a degenerate case s = 1 for which we have a Killing constant C̃.

Equations for twisted one-forms. Now we see that (G.14) sets to zero the first two operators

from (G.23), imposing equations thereon. The last operator matches the symmetry of one of the

Killing tensor components and yields one more equation:

∇mΦ
a(s−1)m,b(s−1)n,

n = C̃a(s−1),b(s−1) . (G.27)

In particular the Killing constant appears as a source for the s = 1 field ∇mΦ
m = C̃(y = 0). Nothing

dramatic happens for D = 4 and all the conclusions above are still true.

The Killing equations (G.11) or (G.26) can be easily solved using the ambient space technique,

see e.g. [70], the solution for a spin-s tensor being a polynomial in the boundary coordinates with

the powers of the Poincare coordinate z ranging from −(s− 1) to (s− 1).
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As in Prokushkin–Vasiliev Theory, at second order one finds on the right-hand side of Fronsdal

equations some currents built out of the first order fields that include C̃C̃. Therefore, even if the

physical scalars and higher-spin fields are switched off at first order there is a non-trivial source for

higher-spin fields at second order due to the Killing tensors.

In Appendix E we observe that the definition of the twisted one-forms ω̃ is ambiguous due to an

option to shift them by physical fields of the form h ∧ Ĉ. Differently put the cohomology H
1(D̃),

with coefficients Ĉ in the twisted-adjoint module of the higher-spin algebra, is not empty. Despite

the difference between the way the twisted and physical fields couple to each other in Vasiliev Theory

and Prokushkin–Vasiliev, it is easy to see that H1(D̃) is non-trivial also in the former.

G.3 Invariant Definition of Twisted Sectors

Let us conclude this appendix with a small remark on the algebraic interpretation of the twisted

sector. It turns out that, at least algebraically, the definition and realization of the twisted sector

does not require any extra ingredients as compared to those already present in any higher-spin theory.

Any known higher-spin algebra comes as an associative algebra on which we then define the

Lie bracket to be the commutator of the corresponding associative product. Moreover, it comes

equipped with an automorphism, π, that flips the sign of AdS-translations, which in the conformal

basis can be seen to exchange translations with boosts and flip the sign of the dilatation generator.

This automorphism allows one to construct the twisted-adjoint representation, where the action of

the higher-spin algebra on itself is twisted by π, i.e. ãdax = a ⋆ x − x ⋆ π(a). The twisted-adjoint

representation is the one used to describe degrees of freedom, e.g. scalar fields in the Prokushkin–

Vasiliev theory. Given an order-two automorphism π one can build an extended associative algebra

that is hs⊕ hs as a linear space equipped with the following product:

(a, x) ⋆ (b, y) = (a ⋆ b+ x ⋆ π(y), x ⋆ π(b) + a ⋆ y) , a, b, x, y ∈ hs . (G.28)

This is the algebra upon which the higher-spin theory extended with twisted fields is built. The

adjoint representation of the extended algebra contains both the usual adjoint and the twisted-

adjoint representations of the higher-spin algebra it was built from:

[(a, x), (b, y)]⋆ = ([a, b]⋆ + x ⋆ π(y)− y ⋆ π(x), a ⋆ y − y ⋆ π(a) + x ⋆ π(b)− b ⋆ x) . (G.29)

Given a Klein operator k that implements the automorphism via π(x) = k ⋆ x ⋆ k, k2 = 1, the

extended algebra is just the algebra of a+ x ⋆ k.

The algebraic interpretation of the twisted sector is then related to the fact that the Klein operator

realizes the inversion operator I: kKik = Pi, kPik = Ki and kDk = −D, which are the exact same

identities that follow from Ki = IPiI, where Pi, Ki, D, Lij are the generators of the AdS algebra in

the conformal basis. For conformal fields we have Iφ(x) = (x2)−∆φ( x
x2 ). Therefore, the twisted sector

can be interpreted as describing the same field content as usual but viewed from the point at infinity.

All that being said it is still not clear what is the physical meaning of the twisted sector in the AdS
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dual theory. What is clear is that the above inversion which sends lowest-weight representations to

highest-weight ones clashes with unitarity.

An interesting question to ask is which of the symmetries does a higher-spin theory extended with

a twisted sector realize. The AdS background is given by a flat connection Ω of the anti-de Sitter

algebra whose twisted part is identically zero. Decomposing the global symmetry equation δΩ = 0

into physical and twisted parts we find

0 = dξ + [Ω, ξ] , 0 = dξ̃ + [Ω, ξ̃] . (G.30)

Therefore, the global symmetry algebra is the extended higher-spin algebra hs ⊕π hs. The vacuum

value of the physical B in AdS is zero, which leads to the following additional constraints on the

global symmetry algebra of the vacuum unless B̃ = 0:

0 = B̃ ⋆ π(ξ̃)− ξ̃ ⋆ π(B̃) , 0 = B̃ ⋆ π(ξ)− ξ ⋆ B̃ . (G.31)

Here lies one of the crucial differences with the Prokushkin–Vasiliev theory, in which we have, rather,

0 = [B̃, ξ̃ψ] , 0 = [B̃, ξ] . (G.32)

In the latter case B̃ can be non-zero along the Killing constant without having to restrict the global

symmetry algebra.46 In the D-dimensional case the second equation of (G.31) implies that the only

B̃ that does not restrict ξ is B̃ = 0. This leaves us with only one option — B̃ = 0 — to preserve the

full higher-spin algebra in the vacuum even in the situation in which the backreaction on the twisted

sector can be trivialized (in which one could in principle treat B̃ as a set of coupling constants).

46In [14] it was argued that ξ̃-transformations mix physical fields with twisted fields, whose solutions are not

normalizable, and on these grounds should be eliminated, i.e. one has to impose ξ̃ = 0. This may need to be

reconsidered in view of physical fields yielding non-trivial backreactions on the twisted sector.
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