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1 Introduction

Higher-spin theories have been studied in significant detail in the last years.1 In par-

ticular the three-dimensional case has received significant attention due to a conjecture

by Gaberdiel and Gopakumar [7] about a duality between WN -minimal models and three-

dimensional higher-spin theories containing one complex scalar field and with gauge algebra

hs(λ). More precisely, WN -minimal models are two-dimensional conformal field theories

which are given by Wess-Zumino-Witten coset models of the form

SU(N)k ⊗ SU(N)1

SU(N)k+1
. (1.1)

This conjecture was put forward for the t’Hooft limit thereof in which N, k →∞ at fixed

0 ≤ λ =
N

N + k
≤ 1 . (1.2)

The above t’Hooft coupling is to be identified with the λ parameter of the hs(λ) higher-

spin theory. This duality is interesting because two-dimensional conformal field theories are

among the best understood interacting quantum field theories. Furthermore higher-spin

theories are much simpler than full string theories [12] particularly in three dimensions [13,

14] because higher-spin gauge fields are non-propagating in this case. The Gaberdiel-

Gopakumar conjecture therefore provides a relatively simple example of an AdS/CFT

duality from which one might hope to understand the general nature of these dualities in

more detail.

An explicit construction of an hs(λ) higher-spin theory in three dimensions is

Prokushkin-Vasiliev Theory [15]. Its physical field content is given by a complex scalar2

with m2 = −1 + λ2 and a tower of higher-spin gauge fields with spin s = 1, 2, 3, . . . ,∞
obeying Fronsdal equations [16] at order 1 in perturbations around AdS3. This is pre-

cisely the spectrum required by the Gaberdiel-Gopakumar conjecture. However, a priori

Prokushkin-Vasiliev Theory contains an additional sector consisting of Killing tensors and

a further set of gauge fields which are not related to Fronsdal fields.3 The field-theoretical

interpretation of these fields and their role within the Gaberdiel-Gopakumar duality is to

the best of our knowledge unclear. At order 2 in perturbation theory these fields will

generically interact with the physical sector. We will refer to them as twisted fields in the

following for reasons that will become clear in section 2. In this respect four-dimensional

Vasiliev Theory [17] is simpler than the three dimensional one as it is possible to formulate

the theory without the need for introducing a twisted sector.

It was known since the work of Vasiliev [18] that to order 1 in perturbation theory all

twisted fields can be set to zero consistently after an appropriate field redefinition. As we

will establish in section 3 this field redefinition is not unique and will lead to free parameters

in the second-order equations of motion. We will show that there exists a unique point in

1See e.g. [1–3]. For a non-exhaustive list of reviews we refer to [4–11].
2More precisely we will restrict ourselves to a truncation of Prokushkin-Vasiliev Theory with this physical

field content. Off the start Prokushkin-Vasiliev Theory contains two complex scalars [15].
3Note that this issue is unrelated to the problem of light states (see e.g. [7]).
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parameter space which allows for trivial solutions of the second-order twisted fields and one

can therefore truncate Prokushkin-Vasiliev Theory to its physical sector at this point. For

any other choice of the parameters the twisted fields cannot be set to zero consistently at

order 2. Interestingly, there exists another higher-spin theory in three dimensions that is

free of twisted fields by construction, which is the D-dimensional Vasiliev theory [19] at

D = 3 which corresponds to λ = 1. We will comment on this further in the conclusions of

this paper (see appendix G for technical details).

For vanishing scalar field the physical sector of Prokushkin-Vasliev Theory can be

described by hs(λ)⊕hs(λ) Chern-Simons Theory [20, 21] (see [22, 23] for an introduction).

For a non-vanishing scalar field much less about the dynamics of the theory is known, and

in particular a full action is not yet available. This is because Prokushkin-Vasiliev Theory

contains auxiliary coordinates and fields which have to be solved for in order to obtain

equations for the physical and twisted fields. To the second-order this becomes a task of

considerable technical difficulty and so far this has been studied mostly at the linear level

(with [24–30] among the exceptions). At the linear level the system obeys free equations

of motion and therefore the higher-spin fields and the scalar do not interact.

In this paper we will systematically extract and analyze the second-order equations of

motion of Prokushkin-Vasiliev Theory for both physical and twisted fields. In particular

we will compute the backreaction on the higher-spin gauge fields ϕm(s) due to the scalar

Φ directly from Prokushkin-Vasliev Theory to order 2 in perturbation theory. We do so

for λ = 1
2 . For this analysis we reformulate perturbation theory in a manifestly Lorentz-

covariant form. The theory at λ = 1
2 is technically simpler to deal with but we expect its

features to be generic.

From the metric-like perspective it is expected that this backreaction has a com-

pact form:

�ϕm(s) + . . . =
gs
s
Jm(s) , (1.3)

with a priori undetermined coefficients gs. Up to terms proportional to the cosmological

constant Λ and the scalar’s equations of motion the canonical currents Jm(s) read

Jm(s) = (−i)s Φ∗( ~∇m − ~∇m)sΦ +O(Λ) . (1.4)

In section 4 we fix the coefficients gs by requiring closure of the scalar’s gauge transforma-

tions at λ = 1
2 and therefore determine the cubic action of the physical sector.4

In order to relate the backreaction obtained directly from Prokushkin-Vasiliev Theory

to (1.4) a field redefinition quadratic in the scalar field Φ is needed containing terms of

the form

∑
l

∇m . . .∇m
l︷ ︸︸ ︷

∇n . . .∇n Φ∗∇n . . .∇n∇m . . .∇mΦ . (1.5)

Field redefinitions of this type are also necessary to formulate Prokushkin-Vasiliev The-

ory in a manifestly Lorentz-covariant manner. These redefinitions contain generically an

4The general case will be presented elsewhere [31].
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infinite number of derivatives and are therefore potentially non-local. In particular they

allow for a complete removal of the backreaction in (1.3), as was first shown in [32]. Our

analysis highlights the urgent need for a better understanding of the class of allowed field

redefinitions in Prokushkin-Vasiliev Theory (see e.g. [33]).

Summarizing, our results are the following:

• The second-order Prokushkin-Vasiliev Theory at λ = 1
2 possesses free parameters

specifying the truncation to the physical sector. Only at one point in parameter

space can one consistently set all second-order twisted fields to zero.

• The backreaction on the second-order physical fields is computed explicitly in a man-

ifestly Lorentz-covariant manner, in particular at the point in parameter space men-

tioned hereabove.

• We determine the cubic action describing the physical sector of the theory by enforc-

ing closure of the gauge transformations for the scalar. The coupling constants gs
are thus fixed and read

gs =
1

(2s− 2)!
. (1.6)

Along the way, we reformulate perturbation theory in a manifestly Lorentz-

covariant form and we also systematically compute all cohomologies relevant for our

second-order analysis.

We have structured this paper in such a way that the reader should be able to fol-

low the presentation of our results without any detailed understanding of Prokushkin-

Vasiliev Theory. The equations of motion for twisted and physical fields are extracted

from Prokushkin-Vasiliev Theory but to second-order this is a technically involved task.

After reviewing necessary ingredients for our analysis in section 2 we will only quote the

extracted equations of motion and discuss their implications in section 3. In section 4

we will discuss the cubic action in a self-contained way. In section 5 we will then outline

how we extract the equations of motion from Prokushkin-Vasiliev Theory leaving the more

technical details to the appendices. The reader not interested in the way the results are

obtained may simply skip section 5, whereas the reader interested in the procedure should

read the latter section and then move to sections 3 and 4. In section 6 we discuss our

results and give an outlook.

2 Ingredients of higher-spin theories

In the following we summarize all the necessary ingredients for presenting our main results

in section 3. This section is structured as follows:

Section 2.1 will review some basic facts of the metric-like and frame-like formulation of

higher-spin theories.

Section 2.2 will present the higher-spin algebra hs( 1
2). We will briefly discuss how this

algebra is constructed and outline a particularly useful oscillator realization.

– 3 –
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Section 2.3 details the free equations of motion for the various fields of Prokushkin-

Vasiliev Theory. These involve not only scalar fields and higher-spin gauge fields, but

also additional fields whose interpretation is not obvious as we will discuss.

Section 2.4 explains the structure of the non-linear equations of motion for these fields.

We will discuss their form at both first and second order in perturbations around an

AdS3-background. This section will furthermore introduce the basic quantities we

calculated for this work.

Section 2.5 discusses whether some of the interactions terms in the equations of motion

of section 2.4 can be removed by field redefinitions. This question will be related to

studying the cohomologies of the adjoint and twisted-adjoint covariant derivative.

Section 2.6 details how these covariant derivatives can be expressed in Fourier space and

uses this fact to derive conservation identities for currents in Prokushkin-Vasiliev

Theory.

Some readers might want to skip some of the following subsections as they mostly review

well-established material [15, 34] for the discussion of our results in section 3. We summarize

all conventions used in this paper in appendix A.

2.1 Frame-like and metric-like formulation of higher-spin theories

Historically massless spin-s fields were first described by introducing a totally-symmetric

tensor field ϕm1...ms with vanishing double trace [16],

ϕrkrkm1...ms−4
= 0 . (2.1)

For non-vanishing cosmological constant Λ the free equations of motion then take the form

Fm(s) = 2ϕm(s) −∇m∇nϕnm(s−1) +
1

2
∇m∇mϕnnm(s−2) −m2ϕm(s) + 2Λgmmϕm(s−2)n

n

= 0 , (2.2)

with m2 = Λ(s− (D+ s− 3)(s− 2)). Furthermore gmn and ∇m denote (A)dSD metric and

the (A)dSD covariant derivative respectively. The equations of motion are invariant under

the following gauge transformations:

δϕm(s) = ∇mεm(s−1) , (2.3)

for a traceless gauge parameter

εkkm(s−3) = 0 . (2.4)

An alternative approach, pioneered in [35], is to describe the higher-spin theory in terms

of higher-spin generalizations of the spin-2 vielbein and spin-connection. So far a fully

non-linear theory can only be formulated using this formalism. In the following we will

restrict ourselves to the three-dimensional case, for which the number of spin-connections

– 4 –
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does not grow with the spin as opposed to what happens in higher dimensions [36]. We

denote the spin-s vielbein and spin-connection by

ea(s−1)
m , ωa(s−1),b

m , (2.5)

where both fields are traceless in their fiber indices. In the three-dimensional case we

can furthermore dualize the spin-connection to a symmetric tensor of the same type as

the vielbein

ωa(s−1)
m ≡ εabc ωa(s−2)b,c

m . (2.6)

In the following we will denote the (A)dS3 background fields by ham and $a
m. At the lowest

order in perturbations around the (A)dS3 background the Fronsdal field can be identified

with the totally-symmetric part of the higher-spin vielbein

ϕm(s) = ea(s−1)
m ham . . . ham . (2.7)

The free equations of motion are generalizations of the vanishing torsion and Riemann

tensor equations in gravity and are given by

T a(s−1) ≡ ∇ea(s−1) − εabc hb ∧ ωa(s−2)c = 0 , (2.8a)

Ra(s−1) ≡ ∇ωa(s−1) + εabc h
b ∧ ea(s−2)c = 0 . (2.8b)

The Fronsdal equations are then found in exactly the same way as for the spin-two case,

that is, by solving the zero-torsion constraint (2.8a) for ω = ω(∇e) and then plugging

the solution into the second equation (2.8b). In three dimensions all higher-spin fields

including the spin-2 field are topological, i.e. the Fronsdal equations (2.2) or equivalently

the frame-like equations (2.8) do not describe any local degrees of freedom. Also in three

dimensions there is the following isomorphism:

sp2 ' sl2 ' so(1, 2) , (2.9)

which allows to convert every vector index into two spinorial two-component indices with

the help of the matrices σαβm ∈ {I, σ1, σ3}. Every symmetric and traceless rank-k so(1, 2)

tensor is therefore isomorphic to a spinorial symmetric tensor of rank 2k

V a(k) ←→ V α(2k) . (2.10)

This dictionary will be used extensively in the following. Furthermore we will consider

only the case of negative cosmological constant in the rest of our discussion.

2.2 Higher-spin symmetry

The higher-spin algebra is a key ingredient of higher-spin theories. It links together a

number of higher-spin fields into a single connection, or more generally into a single module

of the algebra [37–40]. The higher-spin algebra is constructed from a certain quotient of

the universal enveloping algebra of the AdS3-isometry algebra, which can be also equipped

with some discrete elements or further tensored with matrix algebras.

– 5 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
4

The AdS3-isometry algebra is semi-simple, so(2, 2) ' sp(2) ⊕ sp(2), which leads one

to consider quotients of the universal enveloping algebra U(sp(2)). One then considers the

associative algebra [39, 41],

Aq(2, ν) = U(sp(2))/

〈
C2 +

1

4

(
3− 2ν − ν2

)〉
, (2.11)

where the denominator denotes the two-sided ideal generated by the quadratic Casimir C2

subtracted by some number parametrized by ν ∈ R. With respect to its commutator the

associative algebra forms a Lie algebra which decomposes into (as a Lie algebra)

Aq(2, ν) = C⊕ hs(λ) . (2.12)

Here we defined the higher spin algebra hs(λ) with λ = 1
2(ν + 1) while C is the identity

component of the universal enveloping algebra.

In this work we will focus on the case ν = 0 (i.e. λ = 1
2) for which a particularly

simple oscillator realization of this algebra can be given, which we will briefly review in the

following. Let {ŷα} be a set of two canonically commuting oscillators, obeying

[ŷα, ŷβ ] = 2iεαβ . (2.13)

Using this definition we can realize the sp(2) algebra by considering the combinations

Tαβ ≡ − i
4{ŷα, ŷβ}, which satisfy

[Tαα, Tββ ] = εαβTαβ . (2.14)

The associative algebra Aq(2, 0) can then be constructed by considering even functions of

these oscillators, i.e. f(ŷ) = f(−ŷ). Using (2.13) one can easily check that

C2 = −1

2
TαβTαβ = −3

4
, (2.15)

which indeed corresponds to the case ν = 0. The AdS3-isometry algebra contains two

copies of sp(2). It is convenient to introduce a Clifford pair5 φ and ψ

φ2 = 1 , ψ2 = 1 , such that {φ, ψ} = 0 , (2.16)

which we further assume to commute with all ŷα oscillators. The Clifford element φ ensures

the doubling of sp(2). There is not yet any particular reason for introducing ψ but as we

will see this element is important for the theory to describe non-trivial dynamics. Using

these definitions we can realize the AdS3 algebra as follows

Lαβ ≡ −
i

4
{ŷα, ŷβ} , Pαβ ≡ φLαβ . (2.17)

5We do not collect the Clifford elements into a doublet {ψi, ψj} = δij because, as will be discussed

below, the vacuum solution for Prokushkin-Vasiliev theory breaks this symmetry.

– 6 –
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Here and in the following we set the cosmological constant Λ = 1. Using (2.13) and (2.16)

one can easily check that the definitions (2.17) indeed obey the expected commutation

relations

[Lαα, Lββ ] = εαβLαβ , [Lαα, Pββ ] = εαβPαβ , [Pαα, Pββ ] = εαβLαβ . (2.18)

The algebra can be effectively dealt with by replacing functions of operators ŷα with func-

tions of ordinary commuting variables yα that are multiplied with the help of the Moyal

star-product

(f ? g)(y) = f(y) exp i

(
~∂

∂yα
εαβ

~∂

∂yβ

)
g(y) =

1

(2π)2

∫
d2u d2v eiv

αuα f(y + u) g(y + v) ,

(2.19)

where any boundary terms are to be dropped when using the integral form.

For ν 6= 0 a deformed oscillator realization can be given but the corresponding star

product is not a Moyal product [42]. This makes the case ν = 0 technically simpler,

although we expect it to possess features similar to that of the more general Prokushkin-

Vasiliev Theory.

Note that in the following we will refer somewhat loosely to functions of not only yα
but also φ and ψ as taking value in the higher-spin algebra.

2.3 Free equations of motions

In this section we will explain how free equations of motion for matter and higher-spin

gauge fields can be constructed from higher-spin symmetry. The relevant objects to de-

scribe higher-spin fields and matter fields are a connection one-form ω and a zero-form

C respectively which are functions6 of yα, ψ and φ. Unless stated otherwise we consider

bosonic fields only which corresponds to restricting the fields to even functions of yα. As

we will discuss C and ω additionally encode twisted fields which are necessarily present if

we want to describe non-trivial dynamics in this language.

Empty anti-de Sitter space, which is a vacuum solution of the higher-spin theory, can

be described by a flat connection Ω

dΩ = Ω ∧ ?Ω , (2.20)

that can be written in terms of the generators of the AdS3-isometry algebra (2.17) as

Ω =
1

2
$ααLαα +

1

2
hααPαα , (2.21)

where again $αα and hαα denote the spin-connection and vielbein of AdS space.7 The free

equations are then given by

DΩω = 0 , DΩC = 0 , (2.22)

6Note that we allow for a yα-independent components of the gauge connection, which results in an

additional spin-1 field component of the connection.
7Allowing the vacuum connection to have non-zero values for higher-spin fields one can describe matter

fields on a more general background, e.g. a higher-spin black hole [43–45], but in a linearized approximation

and therefore neglecting the backreaction of matter fields. In this work we will however only consider a

pure AdS3-background.

– 7 –
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where we have introduced the AdS3 covariant derivative DΩ:

DΩF = dF− Ω ∧ ?F + (−1)|F|F ∧ ?Ω , (2.23)

where |F| denotes the form-degree of F. One can easily show that the covariant derivative

is nilpotent of degree 2, i.e. DΩ ◦ DΩ = 0. Furthermore the free equations are invariant

under the following gauge transformations

δω = dξ − [Ω, ξ]? , δC = 0 . (2.24)

Note that the φ-dependence of Pαα in (2.21) and the identity [φf, gψ] = φ{f, g}ψ imply

that the covariant derivative DΩ acts as follows:

DΩ { g(y, φ|x) + g̃(y, φ|x)ψ } = Dg(y, φ|x) + D̃g̃(y, φ|x)ψ , (2.25)

where we have conveniently defined the adjoint and twisted-adjoint covariant derivatives

D = ∇− 1

2
φhαα[Lαα, •]? = ∇− φhααyα∂yα , (2.26)

D̃ = ∇− 1

2
φhαα{Lαα, •}? = ∇+

i

2
φhαα(yαyα − ∂yα∂yα) , (2.27)

where ∇ is the usual Lorentz-covariant derivative:

∇ = d • −1

2
$αα[Lαα, •]? = d−$ααyα∂

y
α . (2.28)

The above differential form of the operators D and D̃ can be easily derived using (2.19).

An important difference between the adjoint covariant derivative D and the twisted-adjoint

covariant derivative D̃ is that the former commutes with the yα-number operator yν∂yν , i.e.

it slices fields into finite-dimensional modules each having a fixed degree in yα, while the

latter mixes components with different even (odd) powers of yα. Both covariant derivatives

are nilpotent as an immediate consequence of DΩ ◦DΩ = 0.

Due to (2.25) it is useful to decompose ω and C as follows:

ω(y, φ, ψ) = ω̃(y, φ)ψ + ω̂(y, φ) , C(y, φ, ψ) = C̃(y, φ) + Ĉ(y, φ)ψ . (2.29)

We refer to the fields ω̂ and Ĉ as physical and to ω̃ and C̃ as the twisted sector of the

theory.8 Using (2.25) the equations of motion and gauge transformations split as

D̃ω̃ = 0 , δω̃ = D̃ξ̃ , DC̃ = 0 , δC̃ = 0 , (2.30)

Dω̂ = 0 , δω̂ = Dξ , D̃Ĉ = 0 , δĈ = 0 . (2.31)

By expanding in yα we can see that the equations of motion have the following content:

8In [15] they were called auxiliary, but we use the term twisted since many of the fields in the physical

sector are auxiliary as well. Twisting is related to the type of higher-spin algebra representation they take

values in as compared to the physical fields.

– 8 –
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Higher-spin frame-like fields, the vielbein and the spin-connection, are contained

in ω̂(y, φ):

ω̂(y, φ) =
∑
s

1

(2s− 2)!
yα(2s−2)

(
ωα(2s−2) + φeα(2s−2)

)
, (2.32)

while splitting the equations (2.31) with respect to φ leads to the generalized zero-

torsion and zero-curvature conditions on these fields:

Tα(n) = ∇eα(n) − hαγ ∧ ωγα(n−1) = 0 , (2.33a)

Rα(n) = ∇ωα(n) − hαγ ∧ eγα(n−1) = 0 , (2.33b)

which are exactly (2.8) in the spinorial language of (2.10) and are therefore equivalent

to the Fronsdal equation (2.2) as explained in subsection 2.1. It is clear from this point

of view that the higher-spin fields are topological since (2.22) and (2.24) describe a

flat connection.

Two physical scalar fields encoded in Ĉ. Indeed, the component form of the equa-

tions (2.31) projected onto the two orthogonal subspaces by Π± = 1±φ
2 are

∇Ĉα(n)
± ± ihααĈα(n−2)

± ∓ i

2
hγγĈ

γγα(n)
± = 0 , (2.34)

and tell us that Ĉαα± parametrizes the first derivative of Ĉ±. Contracting (2.34) for

n = 2 with an inverse vielbein leads to

hmαα(∇mĈαα± ± ihααm Ĉ±) = 0 , (2.35)

where the contraction with the vielbein produces a trace of Ĉα(4), which is identi-

cally zero, and which we have therefore left out altogether. Combining the resulting

equation with (2.34) for n = 0,

∇Ĉ± ∓
i

2
hγγĈ

γγ
± = 0 , (2.36)

we recover the Klein-Gordon equation,

�Ĉ± = −3

4
Ĉ± , (2.37)

for two real scalars.9

The rest of the equations express the remaining components as derivatives of

the scalar:

Ĉα(2k) = (4i φ hmαα∇m)kĈ(x) . (2.38)

9 According to [15] the scalars obey Ĉ†+ = Ĉ−, which follows from the reality conditions (C(φ))† = C(−φ)

where y†α = yα and (φψ)† = ψφ.
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Therefore, the dynamical content of D̃Ĉ = 0 is given by two scalar fields.10 Let

us note that the mass corresponds to a conformally coupled scalar, but Prokushkin-

Vasiliev theory is not conformal. The value of the mass is given by the sp(2)-Casimir

operator computed on the given oscillator representation as can be seen by comparing

with (2.15).

A twisted zero-form denoted by C̃. The equations for C̃ decompose into an infinite set

of Killing equations

∇C̃α(n)
± ∓ hαγ C̃γα(n−1)

± = 0 . (2.40)

This can be seen by observing that the above covariant constancy condition pre-

cisely coincides with the condition for a 0-form gauge parameter ξ(y, φ) to be a

Killing tensor:

δω̂(y, φ) = DΩξ(y, φ) = Dξ(y, φ) ≡ 0 . (2.41)

Also, it is obvious that the above component equation (2.40) does not, unlike its

physical counterpart (2.34), mix different components of C̃. It is not clear what the

physical interpretation of such Killing tensors is and their role within the Gaberdiel-

Gopakumar conjecture is unclear. They generically mix with dynamical fields at the

interacting level, as we explore in section 3. Let us note that a non-vanishing value

for ν, as defined in subsection 2.2, would lead to the following vacuum value for the

twisted zero-form [15]:

C̃ = ν . (2.42)

We will discuss this point in more detail in section 3.

A twisted one-form called ω̃. One could think of it as the gauge field associated with

C̃. In this case the corresponding equations look like those for Ĉ, but imposed on

one-forms. Moreover, just as for C̃, it is not clear what the physical interpretation of

this set of fields is — they are definitely not related to Fronsdal fields. In particular,

their role within the Gaberdiel-Gopakumar duality is unclear.

2.4 Non-linear equations of motion

In the last subsection we have restricted our attention to the free theory. In this section we

will discuss the non-linear equations of motion. By expanding these equations of motion

around an AdS3-background and considering linear fluctuations one recovers the free equa-

tions of ω and C discussed in the last subsection. Let us denote the fields of the non-linear

10At this point it is clear that there is no need for doubling of the scalar fields. Indeed a single scalar

field on the AdS or a more general higher-spin background can be described along the same lines by taking

Ĉ be a function Ĉ(y) of yα and imposing

dĈ +A+ ? Ĉ − Ĉ ? A− = 0 , (2.39)

where A±(y) are two flat connections of Aq(2, 0). This equation is consistent, but how to introduce non-

linearities in Ĉ therein is not known. The Prokushkin-Vasiliev construction allows to construct consistent

nonlinearities for such free equations of motion, but then one does need the φ element (and in fact also ψ).
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theory by W and B, whose linear order fluctuations are then the fields ω and C. Interac-

tions for these fields can a priori arise from allowing for the most general nonlinearities on

the right-hand side of their equations of motion, that is [46, 47],

dW = FW (W ,B) , (2.43a)

dB = FB(W ,B) . (2.43b)

Equations of motion of this form are said to be unfolded and are further constrained

by Frobenius integrability, i.e. by consistency with d2 ≡ 0. The structure functions

FW (W ,B) and FB(W ,B) are assumed to be expandable in B:

FW (W ,B) = V(W ,W ) + V(W ,W ,B) + V(W ,W ,B,B) + . . . , (2.44a)

FB(W ,B) = V(W ,B) + V(W ,B,B) + V(W ,B,B,B) + . . . , (2.44b)

where our notation is that the functions V are linear in each argument. The first interaction

vertices are given explicitly by the higher-spin algebra:

V(W ,W ) = W ∧ ?W , V(W ,B) = W ?B −B ?W .

We shall also refer to the vertices V as cocycles,11 and they can be extracted from the

Prokushkin-Vasiliev equations as we will detail in section 5. Notice that the deviation of

W from a flat connection is proportional to B.

As a consequence of Frobenius integrability, the equations enjoy a gauge symmetry

with a gauge parameter ξ:

δW = dξ + ξ
δ

δW
FW (W ,B) = dξ − [W , ξ]? +O(B) , (2.45a)

δB = ξ
δ

δB
FB(W ,B) = ξ ?B −B ? ξ +O(B2) . (2.45b)

We stress that the deformation of the gauge symmetry is governed directly by the higher-

spin algebra to the lowest order only. The fully non-linear gauge symmetry algebra is

a deformation of the higher-spin algebra in the form of an open algebra with structure

‘constants’ that depend on the fields themselves (algebroid).

The simplest background solution for these non-linear equations is provided by a flat

connection Ω of the higher-spin algebra at vanishing matter field B = 0. We take Ω to be

the AdS3 flat connection of (2.21) and then expand up to the second order:

W = Ω + ω + ω(2) + . . . , B = C + C(2) + . . . . (2.46)

11Due to the integrability condition the vertices V can be also interpreted as Chevalley-Eilenberg cocycles

with value in infinite-dimensional modules that W and B take values in [48, 49]. Since these modules

are infinite-dimensional it is difficult to say anything directly. A prescription to write a solution for the

structure functions is given by Vasiliev equations, which can be thought of as a tool to generate the required

interaction terms.

– 11 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
4

Linear fluctuations: for the first-order perturbations ω and C one finds, in general,

dω = {Ω,ω}? + V(Ω,Ω,C) −→ DΩω = V(Ω,Ω,C) , (2.47a)

dC = Ω ?C−C ? Ω −→ DΩC = 0 . (2.47b)

We thus see that ω may generically not be a flat connection as it can have a non-vanishing

source represented by V(Ω,Ω,C). For Prokushkin-Vasiliev Theory on the AdS3-background

we will find V(Ω,Ω,C) = 0 (up to a field redefinition of ω, see section 5.5). This statement

implies the flatness of higher-spin-connections to the first order and is related to the non-

propagating nature of higher-spin fields in three dimensions.12 The gauge transformations

at linear order are given by

δω = dξ − [Ω, ξ]? , δC = 0 . (2.48)

Splitting the fields into twisted and physical components as in (2.29) we obtain the following

equations of motion:

D̃ω̃ = 0 , DC̃ = 0 , (2.49)

Dω̂ = 0 , D̃Ĉ = 0 , (2.50)

which are the free equations of motion discussed in the previous subsection.

Second-order fluctuations: the second-order perturbations ω(2) and C(2), which are

our main concern in this paper, obey a system of equations which contain source terms a

priori involving first- and second-order fields:

DΩω
(2) = ω ∧ ?ω + V(Ω,Ω,C(2)) + V(Ω,ω,C) + V(Ω,Ω,C,C) , (2.51a)

DΩC(2) = [ω,C]? + V(Ω,C,C) . (2.51b)

In Prokushkin-Vasiliev Theory we can remove V(Ω,Ω,C(2)) by a field redefinition of ω(2),

so that the sources on the above right-hand sides depend on the first-order fields only. The

gauge transformation of the second-order fields are then given by

δω(2) = DΩξ
(2) − [ω, ξ]? + ξ

V(Ω,ω,C)

δω
, δC(2) = [ξ,C]? . (2.52)

Again, we can split these equations into physical and twisted components. The linear-order

equations of motion allow us to consistently set all first-order twisted fields to zero, and

doing so we obtain the following set of equations:

Dω̂(2) = ω̂ ∧ ? ω̂ + V(Ω,Ω, Ĉ, Ĉ) , (D̃Ĉ(2))ψ = [ω̂, Ĉψ]? , (2.53a)

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) , DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) . (2.53b)

Let us stress again that the cocycles depend linearly on all their arguments and that their

ψ-dependence is also linear. We will study (2.53) extensively in section 3. The cocycle

12In higher dimensions, and in particular for D = 4, or on more complicated backgrounds the latter

cocycle is non-zero.
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V(Ω,Ω, Ĉ, Ĉ), which is bilinear in the scalar fields, yields the matter backreaction that

sources the Fronsdal equation to the second order, i.e. it encodes the generalized stress-

tensors. We will analyze this term in section 3.2.

Note that by (2.53b) we can not set the second-order twisted fields to zero consistently.

But by performing field redefinitions one might be able to remove the source terms appear-

ing in its equations of motion and afterwards set these fields to zero. We will indeed show

that this is possible for Prokushkin-Vasliev Theory. We will discuss field redefinitions in

the next section.

2.5 Field redefinitions and cohomologies

It is natural to ask whether we can remove terms from the above equations of motion by

a field redefinition. As an example let us consider the cocycle J = V(Ω,Ω, Ĉ, Ĉ), which is

part of the equation of motion for the gauge-connection (2.53a),

Dω̂(2) = ω̂ ∧ ? ω̂ + J . (2.54)

We can perform a field redefinition of the type

ω̂(2) → ω̂(2) + F (Ω, Ĉ, Ĉ) , (2.55)

where F is linear in every argument. Field redefinitions quadratic in Ĉ, such as F , contain

generically terms of the form

∞∑
n,m,l=0

fn,m,l Ĉα(n)ν(l) Ĉα(m)
ν(l) yα(n+m) , (2.56)

where one has to appropriately contract with Hαα and hαα for redefinitions of form-degree 1

and 2 respectively. Following standard (but unfortunate) terminology we will refer to such

field redefinitions as pseudo-local. By (2.38) a pseudo-local field redefinition generically

contains an infinite number of derivatives of the physical scalar field for each spin, e.g.

2s = m+ n for zero-forms.

If the cocycle J is exact, i.e. J = DF (Ω, Ĉ, Ĉ), then it can evidently be removed by a

pseudo-local field redefinition ω̂(2) → ω̂(2)+F (Ω, Ĉ, Ĉ). On the other hand, the consistency

of (2.54) with D2 = 0 leads to

DJ +Dω̂ ∧ ? ω̂ − ω̂ ∧ ?Dω̂ = 0 . (2.57)

Upon using the first order equation of motion Dω̂ = 0 this implies that the current J is

also closed, i.e. DJ = 0. Therefore in order to make sure that the cocycle J cannot be

removed by a pseudo-local field redefinition we have to check whether it is an element of

H2(D, ĈĈ), the cohomology of the nilpotent operator D with respect to pseudo-local field

redefinitions of form-degree 1 which are quadratic in Ĉ.

This discussion generalizes to the other non-vanishing cocycles in (2.53) by considering

cohomologies for the covariant derivatives D and D̃ with respect to field redefinitions

that are linear in Ĉ, linear in both Ĉ and ω̂, or quadratic in Ĉ. The notation for the
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degree n Hn(D, ĈĈ) Hn(D̃, Ĉ) Hn(D̃, ω̂Ĉ)

1 non-empty non-empty non-empty

2 empty empty non-empty

Table 1. Cohomologies of various form-degrees n and classes of field redefinitions.

corresponding cohomologies changes in the obvious way. In appendix E we have analyzed

various cohomologies, and the most relevant results of this analysis are summarized in

table 1. Hereafter we briefly discuss various implications of these results.

Form-degree-2 cohomology H2(D, ĈĈ) for field redefinitions quadratic in Ĉ: this co-

homology is trivial and therefore any J on the right-hand side of (2.54) can be re-

moved by a pseudo-local field redefinition of the type (2.56). Thus any backreaction

of the scalar fields on the higher-spin fields, including the spinorial counterpart of the

canonical s-derivative current (1.4), can be removed by a pseudo-local field redefini-

tion which generically contains an arbitrary number of derivatives of the scalar field

for each spin.13 Such redefinitions should not correspond to physically allowed ones.

A possible interpretation for the fact that an arbitrary backreaction can be removed

is that the class of pseudo-local field redefinitions (2.55) is too broad. Unfortunately

a criterion which restricts the class of field redefinitions to the physically allowed

ones is not yet known.14 More comments on this important issue can be found in the

conclusions to this paper.

Form-degree-1 cohomology H1(D, ĈĈ) for field redefinitions quadratic in Ĉ: the non-

emptiness of this cohomology [32] allows for sources to the twisted zero-form’s equa-

tions of motion,

DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) , (2.58)

that cannot be removed by a pseudo-local field redefinition

C̃(2) → C̃(2) +G(Ĉ, Ĉ) , (2.59)

which would imply that we cannot consistently choose Ĉ(2) ≡ 0. Beyond the second

order the twisted zero-form C̃(2) would therefore generically produce source terms to

the physical equations of motion, i.e. higher-order analogs of (2.53a). We will discuss

this in more detail in section 3.

Form-degree-2 cohomology H2(D, ω̂Ĉ) for field redefinitions linear in both ω̂ and Ĉ:

the equations of motion for the twisted gauge fields to the second order are given by

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) . (2.60)

13The fact that the canonical s-derivative current can be removed by a pseudo-local field redefinition

was first shown in [32] and led to the development of an integration flow [50], which maps all physical and

twisted fields in a field frame in which they obey the free equations of motion.
14A conjecture regarding this point was put forward in [33].
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As in the previous case the non-triviality of this cohomology therefore might prevent

us from setting the twisted field ω̃(2) to zero consistently. We will return to this point

in section 3.

We note that table 1 also lists the results for H1,2(D̃, Ĉ) and H1(D̃, ωĈ) for later

reference.

2.6 Conservation

As explained in the last subsection the cocycles V(Ω,Ω, Ĉ, Ĉ) and V(Ω, Ĉ, Ĉ) of (2.51)

have to be closed or, differently put, conserved with respect to the covariant derivative

D. This provides an important consistency requirement to cross-check the validity of our

calculations. Let us consider q-forms, which are bilinears in the free fields Ĉ = Ĉ(y, φ|x):

Jq = Jµ1...µq(y, φ|x) dxµ1 ∧ . . . ∧ dxµq , with q = 0, 1, 2, 3 . (2.61)

Obviously the cocycles V(Ω,Ω, Ĉ, Ĉ) and V(Ω, Ĉ, Ĉ) correspond to q = 2 and q = 1

respectively. The operator D defines a complex on q-forms Jq:

0 −→ J0 −→ J1 −→ J2 −→ J3 −→ 0 , (2.62)

In the following we will mostly work with Fourier-transformed fields,

Ĉ(y, φ) =

∫
dξ eiyξ Ĉ(ξ, φ|x) , (2.63)

which leads to the Fourier-transformed expressions for Jq

Jq =

∫
dξ dηKq(ξ, η, y) Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (2.64)

The sign flip in φ for one of the zero-forms Ĉ is due to the fact that Ĉ in the splitting (2.29)

is associated with the ψ-dependent term. The kernel Kq is given for the various form-

degrees by

K0 = K(ξ, η, y) , K1 = hααKαα(ξ, η, y) , K2 = HααJαα(ξ, η, y) , K3 = HJ(ξ, η, y) .

Notice that boldfaced Kq denote forms whereas non-boldfaced ones such as K denote

components. We have used the definitions

Hαα ≡ hασ ∧ hασ , H ≡ Hαα ∧ hαα , (2.65)

which obey the following identities:

hαβ ∧ hγδ =
1

4
εαγHβδ + 3 more , (2.66a)

Hαβ ∧ hγδ =
1

6
(εαγεβδ + εβγεαδ)H . (2.66b)
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Now with the help of the equations of motion for the Fourier-transformed fields,

∇Ĉ(ξ,+φ|x) = − i
2
φhαα

(
ξαξα − ∂ξα∂ξα

)
Ĉ(ξ,+φ|x) , (2.67a)

∇Ĉ(η,−φ|x) = +
i

2
φhαα (ηαηα − ∂ηα∂ηα) Ĉ(η,−φ|x) , (2.67b)

and of the identities (2.66) we find the following Fourier representations for D:

DK(ξ, η, y) = hααOααK(ξ, η, y) , (2.68a)

DhααKαα(ξ, η, y) =
1

4
HααOανKα

ν (ξ, η, y) , (2.68b)

DHααJαα(ξ, η, y) =
1

6
HOααJαα(ξ, η, y) , (2.68c)

where we have defined

Oαα ≡
i

2

[
(ηαηα − ∂ηα∂ηα)−

(
ξαξα − ∂ξα∂ξα

)
+ 2iyα∂

y
α

]
. (2.69)

Similarly the cocycles Ṽ(Ω, ω̂, Ĉ) in (2.53b) need to be conserved with respect to the

twisted-adjoint covariant derivative D̃. Let us therefore also consider p-forms which are

linear in Ĉ and ω̂:

Jq =

∫
dξ dη

{
Lq(ξ, η, y) Ĉ(ξ, φ|x) ω̂(η,−φ|x) + L̄q(ξ, η, y) ω̂(ξ, φ|x) Ĉ(η, φ|x)

}
, (2.70)

where Lq and L̄q are given by

L1 = L(ξ, η, y) , L2 = hααLαα(ξ, η, y) , L3 = HααSαα(ξ, η, y) , (2.71a)

L̄1 = L̄(ξ, η, y) , L̄2 = hααL̄αα(ξ, η, y) , L̄3 = HααS̄αα(ξ, η, y) , (2.71b)

Using the equations of motion for ω̂ and Ĉ we again obtain a Fourier representation for D̃:

D̃L(ξ, η, y) = hααIααL(ξ, η, y) , (2.72)

D̃hααLαα(ξ, η, y) =
1

4
HααIανLα

ν (ξ, η, y) , (2.73)

where we have defined

Iαα ≡
i

2

[
(yαyα − ∂yα∂yα)−

(
ξαξα − ∂ξα∂ξα

)
+ 2iηα∂

η
α

]
. (2.74)

Analogous expressions hold for the barred kernels (2.73) upon replacing Iαα with Īαα
defined as

Īαα ≡
i

2

[
(yαyα − ∂yα∂yα)− (ηαηα − ∂ηα∂ηα) + 2iξα∂

ξ
α

]
. (2.75)

As will be discussed in section 3 we checked conservation for all cocycles studied in

this paper.
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3 Presentation of results: second-order backreactions

In this section we will discuss our main results obtained by studying the equations of

motion (2.53). We will postpone a detailed explanation of how we extracted the various

cocycles from Prokushkin-Vasiliev Theory to section 5. As explained in section 2, the

Prokushkin-Vasiliev Theory at hand contains two (real) physical scalars, encoded in the

field Ĉ, as well as one physical (although non-propagating) higher-spin gauge field for every

spin, encoded in the connection ω̂. In addition, the theory also contains a twisted sector,

represented by a twisted zero-form C̃, and a twisted gauge connection ω̃. Let us first focus

on the twisted sector in subsection 3.1 before discussing the second order analysis of the

physical sector in subsection 3.2.

3.1 Twisted sector results

In the following we will discuss whether we can find solutions of our theory for which all

twisted fields vanish. We are interested in such consistent truncations because the role of

the twisted fields within the AdS/CFT-duality and their field-theoretical interpretation is

unclear — as was discussed in section 2.3. Therefore a trivial solution for these fields seems

to be the most natural choice.

We will first discuss the twisted sector at linear order. We will see that we need to

perform a field redefinition in order to set the first-order twisted fields to zero consistently.

This field redefinition is not unique and will lead to the appearance of free parameters in

the second-order equations of motion, which can in turn be fixed by going to a field frame

for which backreactions to the second-order twisted zero-form C̃(2) and to the twisted gauge

connection ω̃(2) can be removed by a pseudo-local field redefinition.

This process will involve pseudo-local field redefinitions and therefore it is by no means

guaranteed that the theory after the redefinitions is equivalent to the theory before because

of the non-localities involved in this step.

As we will show in the following there is only one choice for the free parameters which

allows for trivial solutions of the twisted sector. This suggests a relation to the integration

flow procedure [15] — as we will discuss at the end of section 3.1.2.

3.1.1 Linear order

We mentioned in section 2.4 that the cocycle V(Ω,Ω,C) in the linear equations of mo-

tion (2.47a) for the connection ω vanishes only up to a field redefinition. We will explain

this field redefinition in more detail now.

As will be discussed in section 5 analyzing Prokushkin-Vasiliev Theory leads to the

following equations of motion for the twisted sector [51]:

(D̃ω̃)ψ = V(Ω,Ω, Ĉ) =
1

8
Hαα(yα + i∂wα )(yα + i∂wα )Ĉ(w, φ|x)ψ|w=0 , (3.1a)

DC̃ = 0 , (3.1b)

where Hαα was defined in (2.65). Notice that there is a source term to ω̃ linear in the

scalar field Ĉ and therefore we are interested in performing a field redefinition of ω̃ which
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removes this source term. After having performed such a field redefinition we can set the

linear-order twisted fields to zero consistently. As discussed above this is the truncation of

the theory we are interested in. The most general solution of the inhomogeneous differential

equation (3.1a) is given by a particular solution thereof together with the general solution

of the complementary homogeneous equation.

As was first shown in [51], a particular solution of ω̃ in (3.1a) is M1 with

M1 =
1

4
φhαα

∫ 1

0
dt (t2 − 1)(yα + it−1∂yα)(yα + it−1∂yα)Ĉ(yt, φ) . (3.2)

Now, let us find the solution R of the complementary homogeneous equation, i.e. D̃R = 0.

We are interested in this solution only up to gauge transformations thereof. Therefore

we want to identify two solutions R and R′ which differ only by a gauge transformation,

i.e. R − R′ = D̃ε. The most general solution of the homogenous equation — up to gauge

transformations — is therefore an element of the cohomology with respect to the nilpotent

operator D̃ and linear functionals in Ĉ of form-degree 1, i.e. R ∈ H1(D̃, Ĉ).

This cohomology is non-empty as can be seen by comparing with table 1. Indeed we

show in appendix E that it forms a two-dimensional space with a representative given by15

R ≡ 1

4
φhαα

∫ 1

0
dt (t2 − 1)

{
g0

(
yαyα − t−2∂yα∂

y
α

)
Ĉb(ty) + 2d0t

−1yα∂
y
αĈf(ty)

}
. (3.3)

Here Ĉb and Ĉf are the even and odd parts of Ĉ with respect to yα whereas g0 and d0

are parameters accounting for the two-dimensional nature of this cohomology. The above

representative has been chosen to look almost exactly like the particular solution M1 with

the crucial difference that we had to split Ĉ into bosonic and fermionic components Ĉb and

Ĉf. As we discussed in section 2.3 we consider the bosonic Prokushkin-Vasiliev Theory,

for which the odd components of Ĉ vanish identically, i.e. Ĉf ≡ 0, and therefore the

cohomology is only one-dimensional. But in the next section we will also briefly discuss

the behavior of Prokushkin-Vasiliev Theory without imposing the bosonic truncation and

we therefore kept Ĉf in (3.3) for future reference.

In the case of the bosonic theory the general form of the field redefinition removing

the source term of (3.1) is therefore given by

M ′1 ≡M1 +R =
1

4
φhαα

∫ 1

0
dt (t2 − 1)

(
g̃0 yαyα + 2iyαt

−1∂yα − g̃0 t
−2∂yα∂

y
α

)
Ĉb(ty) , (3.4)

where we defined g̃0 = 1+g0. After performing this field redefinition ω̃(y, φ|x)→ ω̃(y, φ|x)+

M ′1 we can consistently choose trivial solutions for the twisted fields

ω̃ = 0 , C̃ = 0 , (3.5a)

The parameter g̃0 will play a key role in the following subsection, where we discuss the

second-order equations of motion of the twisted fields. Anticipating the results to be

discussed therein, the situation is that the second-order twisted fields can be consistently

set to zero only at a particular point in the parameter space of M ′1, namely g̃0 = 0.

15We have a map from Ĉ which is a direct sum of two non-isomorphic irreducible modules, i.e. ĈB and

ĈF , to the direct sum of the same modules in which ω̃ takes values. Therefore the space is two-dimensional,

which is a simple instance of Schur’s lemma.
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3.1.2 Second order

In this section we will discuss the equation of motion (2.53) for the twisted scalar field to

second order before analyzing the corresponding equations for the twisted one-form. In the

scalar sector the equation of motion is given by

DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) . (3.6)

We can analyze each yα-component of (3.6) separately as the adjoint covariant derivative

D commutes with the yα-number operator yν∂yν . We will try to follow a similar approach

as for the linear order and check if we can find a field redefinition which removes the source

term on the right-hand side of (3.6). This question is of particular interest as by (2.42) the

yα-independent part of the Killing tensor C̃ at zeroth order specifies the λ-parameter of the

hs(λ) higher-spin theory.16 If the yα-independent component of the source term Ṽ(Ω, Ĉ, Ĉ)

cannot be removed by a field redefinition then the identity component of C̃ is necessarily

deformed at second-order in perturbation theory. Note that (3.6) arises from (2.51b), which

we repeat here for convenience:

DΩC(2) = [ω,C]? + V(Ω,C,C) . (3.7)

By ψ-counting this reduces in the twisted sector to

DC̃(2) = [ω̃ψ, Ĉψ]? + Ṽ ′(Ω, Ĉ, Ĉ) , (3.8)

where we chose the linear solution C̃ ≡ 0. Using (3.4) we can perform the field redefinition

ω̃ → ω̃ + M ′1 and afterward consistently set ω̃ ≡ 0, as discussed in the last subsection.

Having done so (3.8) will reduce to (3.6) but the field redefinition M ′1 will lead to an

additional contribution to the cocycle Ṽ(Ω, Ĉ, Ĉ) which is then given by

Ṽ(Ω, Ĉ, Ĉ) = [M ′1ψ, Ĉψ]? + Ṽ ′(Ω, Ĉ, Ĉ) , (3.9)

and will therefore depend on g̃0 in the bosonic theory. From Prokushkin-Vasiliev Theory

one extracts the following explicit form of the source term in (3.6):

Ṽ(Ω, Ĉ, Ĉ) = φhαα
∫

d2ξd2η Kαα(ξ, η, y) Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (3.10)

where the kernel Kαα is given by

Kαα(ξ, η, y) =

∫ 1

0
dt

{
1

2
ei(y(1−t)−tη)ξ ξα

(
(1− t2)(ξα − ηα) + (1− t)2yα

)
−1

2
ei(y(1−t)−tξ)η ηα

(
(1− t2)(ηα + ξα)− (1− t)2yα

)
+

1

4
(t2 − 1)ei(y−η)(y+tξ)(g̃0 (y − η)α(y − η)α − 2(y − η)αξα + g̃0 ξαξα)

+
1

4
(t2 − 1)ei(y+ξ)(tη−y)(g̃0 (y + ξ)α(y + ξ)α − 2(y − ξ)αηα + g̃0 ηαηα)

}
.

16The interpretation of the yα-independent component of C̃ at second and higher orders is less clear.
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In order to check whether there is some field frame in which we can set the yα-independent

component of C̃ to zero, we have to check whether Ṽ(Ω, Ĉ, Ĉ)|y=0 is a non-trivial element in

the cohomology H1(D, ĈĈ). Performing the integration over t in Kαα(ξ, η, y = 0) we obtain

Kαα(ξ, η, y = 0) = f(ηξ) ( (1 + g̃0) ηαηα − (1− g̃0) ξαξα) , (3.11)

where we have defined f(x) = 4(x cos(x)− x−3 sin(x)).

The Fourier representation of D in (2.68a) reads hααOαα. The operator Oαα does not

mix different powers of yα-oscillators. Therefore we can deduce that for Ṽ(Ω, Ĉ, Ĉ)|y=0 to

be exact its kernel has to be of the form

Kαα(ξ, η, y = 0)
!

= OααF (ηξ) =
i

2
(ηαηα − ξαξα)

(
F (ηξ) + F ′′(ηξ)

)
, (3.12)

where F (x) is an arbitrary function. By (3.11) this is only the case if

g̃0 = 0 (3.13)

and one can easily check that there exists a solution for F (ηξ) at this point in param-

eter space which is given in appendix B.2.1. Therefore we can consistently set the yα-

independent component of C̃ to zero only for this choice of g̃0.

At this stage one might wonder what will happen if we also consider fermionic exci-

tations. In this case the cohomology H1(D̃, Ĉ) is two-dimensional and the field redefini-

tion17 M̃1

M̃1 ≡M1 +R =
1

4
φhαα

∫ 1

0
dt (t2 − 1)

{
(g̃0 yαyα + 2iyαt

−1∂yα − g̃0 t
−2∂yα∂

y
α)Ĉb(ty)

+ (yαyα + 2i d̃0 yαt
−1∂yα − t−2∂yα∂

y
α)Ĉf(ty)

}
,

(3.14)

therefore contains an additional free parameter d̃0 = 1+d0. As shown in appendix B.2.1 by

performing an analogous analysis as for the bosonic theory the yα-independent component

of C̃ can consistently be set to zero only for the choice

g̃0 = d̃0 = 0 . (3.15)

In fact we also show in appendix B.2.1 that at this point in parameter space all yα-

components of the cocycle Ṽ(Ω, Ĉ, Ĉ) are exact and can thus be removed by a pseudo-local

field redefinition. Therefore the two parameter ambiguity introduced at the linear level by

removing the source term in (3.6) with a field redefinition M̃1 is uniquely fixed by choosing

a field frame in which we can consistently set C̃(2) ≡ 0.

Having fixed this ambiguity by (3.15) we will now analyze the twisted gauge sector.

We will also consider fermionic excitations. The equations of motion for the twisted gauge

fields to second order were given in (2.53b) and read

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) . (3.16)

17It can be shown that including fermionic fields does not change the form of M1.
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However as we stressed around (2.53b) this equation only holds after a redefinition of

ω̃(2). We will discuss this field redefinition in more detail now. The equation (3.16) can

be derived by considering the ψ-dependent part of (2.51a) and using the fact that we set

C̃ ≡ 0, which leads to

(D̃ω̃(2))ψ = Ṽ ′(Ω, ω̂, Ĉ) + Ṽ(Ω,Ω, Ĉ(2)) . (3.17)

From Prokushkin-Vasiliev Theory one obtains the following expression for the second

source term:

Ṽ(Ω,Ω, Ĉ(2)) = 1
8H

αα(yα + i∂wα )(yα + i∂wα )Ĉ(2)(w, φ|x)ψ|w=0 (3.18)

It is therefore of the same form as the corresponding source term (3.1a) at linear order.

Performing a field redefinition, ω̃(2) → ω̃(2) + M̃
(2)
1 with

M̃
(2)
1 =

1

4
φhαα

∫ 1

0
dt (t2 − 1)

{
(g̃1 yαyα + 2iyαt

−1∂yα − g̃1 t
−2∂yα∂

y
α)Ĉ

(2)
b (ty)

+ (yαyα + 2i d̃1 yαt
−1∂yα − t−2∂yα∂

y
α)Ĉ

(2)
f (ty)

}
,

(3.19)

removes the source term Ṽ(Ω,Ω, Ĉ(2)) in (3.17). This can be shown as for the linear case but

now this field redefinition, apart from removing the source term Ṽ(Ω,Ω, Ĉ(2)), also leads

to an additional contribution to Ṽ ′(Ω, ω̂, Ĉ) due to the fact that the equation of motion

for Ĉ(2) is given by (D̃Ĉ(2))ψ = [ω̂, Ĉψ]? as opposed to the linear case D̃Ĉ = 0. Therefore

after performing this field redefinition we obtain (3.16) with its source term Ṽ(Ω, ω̂, Ĉ)

now depending on the parameters d̃1 and g̃1. We will show in appendix B.2.2 that only for

the choice

g̃0 = d̃0 = g̃1 = d̃1 , (3.20)

the source term Ṽ(Ω, ω̂, Ĉ) in (3.16) is exact and can therefore be removed by a pseudo-local

field redefinition.

Summarizing, we have shown that only for the parameter choice

g̃0 = d̃0 = g̃1 = d̃1 = 0 , (3.21)

there exists a field frame in which we can consistently set all second-order twisted fields

to zero:

C̃(2) = 0 , ω̃(2) = 0 . (3.22)

However it is important to stress that it is not at all obvious whether the theory in this field

frame is equivalent to the theory before the field redefinitions because of the non-localities

involved in this step. Furthermore, it is shown in appendix E that the cohomologies

H0(D, ĈĈ) and H1(D̃, ω̂Ĉ) are infinite-dimensional and therefore one would generically

expect an infinite number of free parameters to enter the third-order equations of motion

due to the redefinitions of C̃(2) and ω̂(2) at second order. However these ambiguities do

not enter the second-order equations of motion.18

18The cohomologies are infinite dimensional with respect to the AdS3-isometry algebra. However the

fact that the tensor product of various Ĉ fields are irreducible higher-spin algebra modules (up to permuta-

tions) [52] makes the cohomology one-dimensional with respect to the higher-spin algebra. In other words

higher-spin symmetry relates various irreducible AdS3-isometry algebra components.
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Interestingly this can be compared to the integration flow formalism pioneered in [15].

The integration flow by construction maps all physical and twisted fields in a field frame in

which they obey the free equations of motion. This is achieved by a pseudo-local Bäcklund-

Nicolai-type mapping [53]. In this formalism one can therefore consistently choose a so-

lution with vanishing twisted fields. The fact that there is only one point in parameter

space which allows for a trivial twisted sector suggests that this point should correspond to

the integration flow solution of the twisted sector. However integration flow also leads to

free equations of motion of the physical fields and therefore corresponds to a different field

frame for the physical sector. We will discuss possible interpretations of this observation

in the conclusion to this paper.

3.2 Backreaction on the Fronsdal sector

In this subsection we will analyze the implications of the cocycle J = V(Ω,Ω, Ĉ, Ĉ)

of (2.53a) and its relation to corrections of the Fronsdal equation (2.2) due to the presence

of scalar fields. From the metric-like formulation of the theory one expects these correc-

tions to be of the form (1.4), which upon combining all spins into a generating functional

expressed in terms of Ĉ leads to19

∑
s

1

(2s)!
jα(2s) y

α(2s) = Ĉ(y, φ) Ĉ(y,−φ) , (3.23)

corresponding to the two-form

Jcan = Hαα∂yα∂
y
α Ĉ(y, φ) Ĉ(y,−φ) . (3.24)

The cocycle J = V(Ω,Ω, Ĉ, Ĉ) should be related to the canonical current Jcan, (3.24), by

a pseudo-local field redefinition. But as we discussed in section 2.5 the cocycle J is exact

and therefore can be completely removed by a pseudo-local field redefinition. However the

physically allowed class of field redefinitions should allow us to relate the current J to the

canonical current Jcan, but should not allow for a field redefinition which also removes the

canonical current Jcan. This suggests that the class of pseudo-local field redefinitions is

too broad.

In the following we will calculate the cocycle J in the field frame in which we can

consistently set the twisted fields to zero. But let us stress that there is no rigorous

argument that this choice corresponds to a physically allowed field frame.

Due to the fact that we do not have control of the physically allowed field redefinitions

the following analysis is only meant to illustrate the tools one would have to apply in

order to extract the second-order corrections to Fronsdal equations if this class of field

redefinitions was known.

At the second order the Fronsdal equations (2.2) acquire a source jm(s),

Fm(s) = �ϕm(s) + . . . = jm(s) . (3.25)

19This correspondence only holds up to improvement terms to make the metric-like current (1.4) traceless

on-shell as (3.23) is on-shell traceless.
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We will refer to the source jm(s) as the Fronsdal current. The double trace of the Fronsdal

operator vanishes. In spinorial language the Fronsdal operator therefore decomposes into

two components, Fα(2s) and Fα(2s−4), which respectively correspond to its traceless and

trace part.

The second order equation of motion (2.53a) is given by

Dω̂(2) = J + ω̂ ∧ ? ω̂ . (3.26)

In this subsection we will not consider the contribution of ω̂ ∧ ? ω̂, which is independently

conserved by (2.50) and would lead to self-interactions of the Fronsdal field governed by

the higher-spin-algebra. We will therefore only focus on the first term corresponding to a

backreaction of the scalars in the Fronsdal equation (3.25).

Extracting J from Prokushkin-Vasiliev Theory is a technically involved task. We post-

pone the discussion of how we calculated J in Fourier space to section 5 and only present the

result here. In Fourier space the current J is of the general form (2.64) and therefore reads

J = Hαα

∫
dξdη Kαα Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (3.27)

where the kernel Kαα is given by

Kαα = yαyα f1(ξη, yξ, yη) + yαξα f2(ξη, yξ, yη) + yαηα f3(ξη, yξ, yη)

+ ξαξα f4(ξη, yξ, yη) + ηαηα f5(ξη, yξ, yη) + ξαηα f6(ξη, yξ, yη) , (3.28)

and f1...6 are functions determined by our calculation in section 5. The precise form of the

current J as extracted from Prokushkin-Vasiliev Theory is given in appendix B.1.2. Let

us illustrate the interpretation of the various terms in (3.28) by considering a term in the

kernel of the form

Kαα = . . .+ ξα(N)ηα(M)yα(2−N−M) (yξ)n(yη)m(ηξ)l + . . . . (3.29)

By expanding the corresponding two-form J in its spin-components, i.e. J =∑∞
k=0

1
k!Jα(k)y

α(k), one obtains the following tensor structure from this term

Jα(2+n+m−N−M) ∼ . . .+ fn,m,lN,M Hβ(N+M)
α(2−N−M) Ĉβ(N)α(n)ν(l)(φ) Ĉν(l)

β(M)α(m)(−φ)

+ . . . . (3.30)

The constant fn,m,lN,M is worked out in appendix C.1.1. The spin-components of Jα(k) can

uniquely be decomposed in three pieces

Jα(k) = HββAα(k)ββ +Hα
β Bα(k−1)β +HααCα(k−2) , (3.31)

where A,B,C are zero-forms which are completely symmetric in all their spinorial indices.
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3.2.1 Independently conserved subsectors

The adjoint covariant derivative D commutes with the yα-number operator yν∂yν and there-

fore each spin-component of the current J is conserved independently. However, as we will

explain in the following, each spin-component splits even further into various independently

conserved subsectors. To see this let us define

ζ±α = (ξ ± η)α . (3.32)

In (3.28) the kernel Kαα was parametrized by six functions f1...6(ξη, yξ, yη). Using these

ζ±α we can define the following contractions

Z1 =
1

2
yζ+ , Z2 =

1

2
yζ− , Z3 = ξη , (3.33)

and we can then decompose the kernel Kαα as follows

Kαα =
∑
n,m

1

(n− 1)!(m− 1)!
K(n,m)
αα Zn−1

1 Zm−1
2 (3.34)

where we defined

K(n,m)
αα = yαyα k

(n,m)
1 (Z3) + yαζ

+
α Z2 k

(n,m)
2 (Z3) + yαζ

−
α Z1 k

(n,m)
3 (Z3)

+ ζ+
α ζ

+
α Z

2
2 k

(n,m)
4 (Z3) + ζ−α ζ

−
α Z

2
1 k

(n,m)
5 (Z3) + ζ+

α ζ
−
α Z1Z2 k

(n,m)
6 (Z3) , (3.35)

In the expression above any negative power of Zi is understood to be set to zero. This de-

composition has the following nice property: each kernel K
(n,m)
αα is independently conserved

with respect to the adjoint covariant derivative D as was first shown in [54] and therefore

corresponds to an independent coupling. Among those only one is proportional to the

canonical current (3.24), while the others are proportional to improvements which do not

contribute to the Witten diagram computation. Note that the spin of the kernel K
(n,m)
αα

is given by 2s = m + n + 2 and therefore this decomposition splits each spin-component

further into independently conserved pieces. This splitting crucially relies on the fact that

we are expanding around an AdS3-vacuum and does generically not hold on a more general

background on which the covariant derivative would mix various spin components.

For bosonic fields the kernel Kαα is invariant under η → −η. This symmetry exchanges

Z1 with Z2 and therefore the sectors (n,m) and (m,n) are no longer independent for the

bosonic truncation of the theory.

3.2.2 Solving the torsion constraint

We can decompose the covariant derivative as D = ∇ + φQ with Q = −hααyα∂yα. The

cocycle J can be split into J = J0 + φJ1 and the second-order gauge connection ω̂(2) in its

generalized Riemann and torsion components as in (2.33). We can then rewrite (3.26) as

T ′(2) ≡ ∇e(2) +Qω(2) = J1 , R′(2) ≡ ∇ω(2) +Qe(2) = J0 , (3.36)

where we have dropped the second term on the right-hand side of (3.26) as discussed in

the previous subsection. The explicit form of J1, which can be found in appendix B.1.2,
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shows that the higher-spin theory has non-vanishing torsion. In particular the current J is

of the form (3.27) and therefore only depends on φ through the zero-forms Ĉ. Therefore

J0 is obtained by considering the symmetric part of Kαα in (3.27) with respect to ξ and η

while J1 is obtained from the anti-symmetric component.

We therefore need to solve the torsion constraint in order to find the source to the

Fronsdal equations (3.25). This can be done by defining

ω(2) = ω(2)(e) +Q−1J1 , (3.37)

where Q−1J1 is the contorsion two-form and ω(2)(e) is the solution for ω(2) in terms of

vielbein e at vanishing torsion. Plugging this expression into (3.36) gives

T (2) = ∇e(2) +Qω(2)(e) = 0 , (3.38a)

R(2) = ∇ω(2)(e) +Qe(2) = j , (3.38b)

where j is given by

j = J0 −∇Q−1J1 . (3.39)

It is important to note that the operator Q−1 is well-defined and in the basis (3.31) reads20

(Q−1J)α(k) =
2

k
hββAα(k)ββ − hαβ Bα(k−1)β −

2

k + 2
hααCα(k−2) . (3.40)

In the following subsection we will study j more closely and discuss how it is related to the

Fronsdal current (3.25).

3.2.3 Obtaining the Fronsdal current

In this subsection we will first derive that j, in a decomposition analogous to (3.31), has a

vanishing B component. This observation will allow us to relate this object to the Fronsdal

current jm(s) appearing in (3.25).

Let us first note that the nilpotence of D and the conservation of J imply the following

relations:

D2 = 0 → {∇, Q} = 0 , ∇2 +Q2 = 0 , (3.41)

DJ = 0 → ∇J0 +QJ1 = 0 , QJ0 +∇J1 = 0 . (3.42)

Using these relations one derives

∇j = ∇R(2) = 0 , Qj = QR(2) = 0 . (3.43)

These relations correspond to the differential and algebraic Bianchi identities respectively.

The first condition implies that the Fronsdal current j is conserved with respect to the

Lorentz-covariant derivative ∇. The second condition implies that

hα
ν ∧ jνα(k−1) = hα

ν ∧R(2)
να(k−1) ≡ 0 . (3.44)

20k > 0 is implied in the relation above as there is no torsion constraint to be solved for the case of spin 1.
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By using (2.66b) one can show that this is only guaranteed to hold if and only if B ≡ 0 in

the decomposition (3.31) and therefore

jα(k) = Hββ jα(k)ββ +Hααj
′
α(k−2) . (3.45)

The vanishing of B therefore provides a consistency check of our calculations and we checked

explicitly that our results pass this test. The decomposition (3.45) allows us to relate j to

the Fronsdal current: the two above components of rank k + 2 and k − 2 correspond to

the trace and traceless parts of the Fronsdal current jm(s) with 2s = k + 2, in accordance

with the mapping between spacetime and twistor indices explained in section 2.1. These

components can be conveniently expressed by

jα(2s+2) =
∑
l

∑
n+m=2s

an,m,l Ĉα(n+1)ν(l)(φ) Ĉν(l)
α(m+1) (−φ) , (3.46a)

j′α(2s−2) =
∑
l

∑
n+m=2s

cn,m,l Ĉα(n−1)ν(l)(φ) Ĉν(l)
α(m−1) (−φ) . (3.46b)

We summarize some of our explicit results for the coefficients an,m,l and cn,m,l of j in the

following subsection.

3.2.4 Explicit results

The explicit expressions for the full j are rather involved. In the following we will therefore

only illustrate its form by considering the following two interesting components:

Spin 1: we find a source for the two-form dω̂(2) (with ω̂(2) = ω̂(2)(y = 0) ), which is

pseudo-local and reads

dω̂(2) = j = Hββ

(∑
l∈2N

al

(
Ĉββν(l)(φ) Ĉν(l)(−φ) + Ĉν(l)(φ) Ĉν(l)

ββ (−φ)
)

−
∑

l∈2N+1

alĈβν(l)(φ) Ĉν(l)
β (−φ)

)
,

where the coefficients are given by

al =
i(−i)l

l!

1

(l + 2)2(l + 4)
. (3.47)

One can decompose this result with respect to φ to obtain equations of motion for two

spin-1 fields. We checked that the coefficients obey the conservation identity (C.22),

which holds if the coefficients of the first two terms are equal while the coefficient of

the third term can be arbitrary and does not affect conservation. At the linear level

one can choose the connection ω to take values in hs(1/2)⊕ hs(1/2) and therefore it

will not contain any spin-1 field. To the second-order however a source term for the

spin-1 field is produced by the scalar fields. This source term can be removed by a

pseudo-local field redefinition and might therefore just be a result of our particular

choice of field-frame, but unless one has full control of the physically allowed field

redefinitions it is difficult to draw any definite conclusions from this result. We will

further discuss this point in the conclusions to this paper.
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Spin 2: from our discussion in subsection 3.2.1 it follows that we have five independently

conserved subsectors (3,−1), (2, 0), (1, 1), (0, 2), (−1, 3) for (n,m) in the case of

spin-2. However we are considering bosonic fields and therefore the sectors (n,m)

and (m,n) are not independent as also discussed in subsection 3.2.1. Thus the back-

reaction of the scalar fields splits into three separately conserved components for

spin-2:

R(2)
αα = jαα = J (3,−1)

αα + J (1,1)
αα + J (2,0)

αα , where R(2)
αα ≡ ∇ω(2)

αα + hα
ν ∧ e(2)

να . (3.48)

We find the following expressions for these components

J (3,−1)
αα = Hββ j

(3,−1)
ααββ , (3.49)

J (1,1)
αα = Hββ j

(1,1)
ααββ +Hααj

′(1,1) , (3.50)

J (2,0)
αα ≡ 0 . (3.51)

For the expressions above we define

j
(3,−1)
α(4) =

∑
l∈2N

al

(
Ĉα(4)ν(l)(φ) Ĉν(l)(−φ) + 3 Ĉα(2)ν(l)(φ) Ĉν(l)

α(2)(−φ)
)
, (3.52)

j
(1,1)
α(4) =

∑
l∈2N

bl

(
Ĉα(4)ν(l)(φ)Ĉν(l)(−φ)− Ĉα(2)ν(l)(φ) Ĉν(l)

α(2)(−φ)
)
, (3.53)

j
′(1,1) =

∑
l∈2N

b′l Ĉν(l)(φ) Ĉν(l)(−φ) , (3.54)

where projection on the φ-independent part is implied. The coefficients are then

given by

al =
il−1

4l!

(
1

1 + l
− 6

2 + l
+

9

(3 + l)2
+

19

4(3 + l)
− 6

4 + l
+

7

5 + l
− 3

4(7 + l)

)
,

bl = − i
l−1

4l!

(
1

2 + l
− 1

(3 + l)2
− 13

4 (3 + l)
+

4

4 + l
− 1

5 + l
− 1

6 + l
+

1

4(7 + l)

)
,

b′l =
il−1

l!

(
1

3(1 + l)2
+

7

12(1 + l)
− 3

2 + l
+

1

3 + l
+

1

3(4 + l)
− 1

4(5 + l)
− 1

6
δl,0

)
.

As a consistency check we confirmed that the backreaction is conserved by us-

ing (C.22). Let us note that these expressions can be straightforwardly expressed

in metric-like language by using (2.38). The canonical current (3.24) is part of only

one sector, namely J
(3,−1)
αα . Therefore the class of physically allowed field redefini-

tions should allow us to completely remove the other non-vanishing and independently

conserved current J
(1,1)
αα . Furthermore both currents are generically of pseudo-local

form (2.56). If we truncate them to some finite value of l in (2.56) we observe that

J
(1,1)
αα can be removed by local field redefinitions whereas J

(3,−1)
αα can only be removed

by a pseudo-local redefinition.

Our calculation shows that the current j is pseudo-local, as illustrated by the two

examples above. One might think that this is an immediate consequence of the fact that
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our calculation also results in a pseudo-local cocycle J. However extracting j from J by

solving the torsion constraint as in (3.39) might potentially project out all the pseudo-local

terms in J. In fact one needs to consider a pseudo-local ansatz if one wants to recover

the canonical current (3.24) upon solving the torsion constraint while keeping φ → −φ
symmetry, which is the case for Prokushkin-Vasiliev Theory. We discuss this point in more

detail in appendix C.1.6 and C.2.6.

4 Fixing the cubic action

In this section we explain how to determine completely the cubic action for the physical

sector of Prokushkin-Vasiliev Theory. In the previous section we presented our results

concerning the second-order physical equations of motion for the various fields presented in

the theory and in particular we obtained the backreaction to the physical gauge connection

at order 2 in perturbation theory. As explained in section 3.2, upon solving the torsion

constraint this backreaction is the source for the Fronsdal tensor. From the standpoint

of an action principle, these currents correspond to 0–0–s-like couplings. In the frame

formalism that we have been dealing with so far such couplings would read

2
∑
s

gs

∫
ea(s−1) ∧ ja(s−1) , (4.1)

where ja(s−1) is a conserved two-form, bilinear in the physical scalar field Ĉ(y = 0). In

the metric-like picture we deal with currents jm(s) with ja(s−1) = −1
2 jma(s−1) εmnr dxn ∧

dxr being the two-form dual thereof. The corresponding cubic couplings are known and

classified: they read

Scurrents = 2
∑
s

gs
s

∫
ϕm(s)jm(s) , (4.2)

with the corresponding currents given by derivatives of the scalar fields, that is,21

jm(s)(Φ) ≡ (−i)sΦ∗( ~∇m − ~∇m)sΦ + Λ(. . .) , (4.3)

for which we refer to [55]. These currents are hermitian and all prefactors are introduced

for convenience (although the i is needed in order to make odd-spin currents hermitian

too). The second term in the above right-hand side denotes terms proportional to the

cosmological constant Λ which are needed to make the current conserved on AdS3. We

have chosen to express the above currents in terms of one complex scalar field Φ and its

complex conjugate Φ∗, which are to be identified with the Π±-projected components of

Ĉ(y = 0), that is, Φ = Π+Ĉ(y = 0) and Φ∗ = Π−Ĉ(y = 0). As one can check, odd-spin

conserved currents can be written down only if at least two real scalars are involved. As

in this section we are interested in dealing with even and odd spins altogether, the above

thus constitutes the minimalistic option involving one complex scalar, which corresponds

21Whereas in the rest of this paper we have set Λ = 1 in this section we restore it for the purpose of

keeping track of the terms which vanish in the flat space-limit.
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to the truncation of Prokushkin-Vasiliev Theory we consider. As one can verify, the above

expressions for the currents indeed yield cubic couplings in (4.2) which are unique up to

field redefinitions and boundary terms.22

The form of the spin-s coupling is thus known for all spins. However, to the best of our

knowledge the relative coefficients gs of (4.2) have never been determined before. Indeed

these are left arbitrary at the cubic level, where the cubic cross couplings are invariant

independently. These gs coefficients in fact constitute the last piece of information needed

to determine completely the cubic action for the physical sector of Prokushkin-Vasiliev

Theory at λ = 1
2 . Indeed, the kinetic pieces are known and the higher-spin self-couplings

are also known: they can be extracted from the Chern-Simons action which describes the

pure gauge sector [20, 21] (see below).

Presumably, the relative coefficients gs could be read off by comparing (4.2) with the

Prokushkin-Vasiliev backreaction. Such is, however, a non-trivial task, because the Frons-

dal currents that are so produced still contain infinite pseudo-local tails of derivatives and

it is not clear which class of field redefinitions one should use in order to map these tails to

canonical form (4.3) (see previous section). Another possibility is to start from the consis-

tent cubic action and proceed with the quartic Noether analysis. If a quartic completion

exists thereof, quartic terms will be found which make the action gauge invariant to quartic

order, and the relative coefficients gs are expected to be fixed in this manner.23 However

there is a simpler way of determining the value of the relative coefficients gs, which we now

detail. The idea is to look at the deformation of the gauge transformations for the scalar

Φ, so that we can write down the complete cubic action including the relative coefficients

without having to go through the full quartic Noether analysis but only employing the

known solutions to the so-called admissibility condition [57, 58] (see [59] for an example

in which admissibility condition was used to this effect in a simpler context). Note that

we are not going to repeat the analysis of the admissibility condition from scratch. The

most general solution for the theory at hand has already been discussed in the literature.

We only match the metric-like result with the known solution to the effect of fixing the

metric-like action.

The coupling (4.2) is on-shell gauge invariant to the lowest order, that is, under δ(0)Φ =

0 and δ(0)ϕm(s) = ∇mξm(s−1) we have

δ(0)Scurrents ≈ 0 , (4.4)

where ≈ denotes an on-shell equality and we have neglected boundary terms as we will do

through the rest of this section. This interaction term is abelian but deforms the gauge

transformation rules for the scalar field. Differently put, in order to make the term off-

shell gauge invariant we need to assign transformation rules to the scalar field, so that the

22As we are about to explain these currents deform the gauge transformations of the scalars. Evidently

the currents are unique only as equivalence classes in the space of such couplings, for improvements which

do not deform the gauge transformations can always be constructed.
23Also one could think of using more modern methods such as the BRST-Antifield ones, which are

particularly suited for addressing quartic-order issues. They are reviewed e.g. in [56] and in Chapter 4

of [10].
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terms in the above right-hand side are canceled by the gauge variation of the scalar kinetic

piece. Here we are simply expanding the full invariance condition δS = 0 to order 1 in

perturbation theory, that is,

δ(0)S(1) + δ(1)S(0) = 0 . (4.5)

In the above, S(0) is the kinetic piece:

S(0) ≡
∫

det|h|
(
∇mΦ∗∇mΦ +m2Φ∗Φ

)
+ S

(0)
cs ≡ S

(0)
scalars + S

(0)
cs , (4.6)

where S
(0)
cs is the quadratic piece of the full Chern-Simons action for a higher-spin gauge

connection valued in hs( 1
2). Recall that

Scs ≡
k

4π

∫
tr

(
ω̂ ∧ dω̂ − 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
, (4.7)

where k is the Chern-Simons level, ω̂ = ω̂(y, φ) is the higher-spin connection and we do not

take twisted fields into account, thereby dropping ψ. The trace24 is trf(y) = f(0). The

quadratic and cubic pieces are extracted from the above action by perturbing around the

AdS3 vacuum Ω of (2.21), that is, performing ω̂ → Ω + ω̂:

S
(0)
cs + S

(1)
cs =

k

4π

∫
tr

(
ω̂ ∧ dω̂ − 2Ω ∧ ω̂ ∧ ω̂ − 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
, (4.8)

where S
(1)
cs is part of S(1) in (4.5), which thus contains two terms: S(1) = S

(1)
cs + Scurrents.

The way one determines the deformation of the gauge transformations for the scalar

is identifying terms proportional to the equations of motion for the scalar in (4.5). This

goes as follows: the Chern-Simons cubic self-coupling in (4.8) is off-shell invariant on its

own under the zeroth-order gauge transformations for the higher-spin connection. Thus

δ(0)S(1) roughly reads

δ(0)S(1) = δ(0)S
(1)
currents ≡

∫
ξ × C(E ,Φ) , (4.9)

where C(E ,Φ) is the expression obtained by taking the divergence of the currents (4.3)

when integrating by parts, so that as indicated it is linear in both the scalar field Φ and

the equations of motion E = E(Φ) thereof. By definition E ≈ 0 and hence C ≈ 0. On

the other hand, the gauge transformations for the higher-spin gauge connection do not

get deformed by the above cubic cross-coupling. This is evident by noticing that only the

equations of motion for the scalar appear in the above right-hand side. Therefore δ(1)S(0)

yields the following expression:

δ(1)S(0) = δ(1)S
(0)
scalars =

∫
E(Φ)δ(1)Φ . (4.10)

The variations δ(1)Φ are linear in ξ and in Φ itself. Now integrating by parts in (4.9) in

order to write its integrand as E(Φ)× (. . . ) and comparing with the above right-hand side

24To be precise, f(0) is a super-trace [4], but since we consider bosonic higher-spin fields f(y) = f(−y),

it reduces to a trace.

– 30 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
4

one can read off the searched-for variations δ(1)Φ. They depend on the relative couplings

gs, since they depend on the current. The ‘trick’ we will now use is, instead of solving some

consistency condition for the quartic Lagrangian, to solve some consistency condition for

the first-order gauge transformations of the scalar field. This workaround will prove to be

much quicker in determining completely the relative coefficients gs.

Let us consider the following consistency condition, which is part of the Noether

procedure:

[δξ, δε]Φ ≈ δ[ξ,ε]Φ . (4.11)

Expanding this equation in perturbation theory and retaining the piece of order 2 we obtain

[δ
(1)
ξ , δ(1)

ε ]Φ ≈ δ(0)

[ξ,ε](1)
Φ + δ

(1)

[ξ,ε](0)
Φ− ([δ

(0)
ξ , δ(2)

ε ]− ξ ↔ ε)Φ . (4.12)

Solving the above consistency condition for δ(1)Φ should fix the relative coefficients gs which

it depends on. In general, doing so is as hard as solving the corresponding consistency

condition for the cubic interaction term involving the currents, for one needs to find a

quartic completion δ(2)Φ such that the above condition is fulfilled. The trick is to restrict

one’s attention to Killing tensors, that is, to gauge parameters ξ and ε such that δ(0)ϕm(s) =

∇mξm(s−1) = 0 and similarly for ε. In such a case the last term in the above right-hand

side is zero, because δ(2)Φ is proportional to the higher-spin field and hence δ
(0)
ξ δ

(2)
ε Φ is

zero on Killing tensors by simply using the chain rule. Further noticing that δ
(0)

[ξ,ε](1)
Φ = 0

we find

[δ
(1)
ξ , δ(1)

ε ]Φ ≈ δ(1)

[ξ,ε](0)
Φ on Killing tensors ξ and ε. (4.13)

This condition is necessary but non-sufficient in order for the variations δ(1)Φ to be con-

sistent at order 2 in the Noether analysis. The advantage of this procedure is now clear:

we are solving (part of) a second-order consistency condition in which no second-order

quantity enters. Note that the above requirement also goes under the name of admissibil-

ity condition for the scalar couplings [57, 58]. In words, it says that the first-order gauge

transformations should close to an algebra on the scalar field when restricting to rigid pa-

rameters, i.e. the scalar field needs to sit in a representation of the higher-spin algebra of

rigid symmetries.

Remarkably, there is a well-known solution to the above condition on δ(1)Φ: the gauge

transformations for the scalar derived from the Prokushkin-Vasiliev theory are known to

pass the above admissibility condition.25 These gauge transformation are given here below,

and we observe that there are no free coefficients therein. According to section 2.4 we have26

δ(1)C = [ξ,C]? , (4.14)

where ξ = ξ(y, φ) is the first-order piece of ξ appearing in section 2.4.27 The above

transformation rules can indeed be checked to satisfy the admissibility condition (4.13).

25In some sense such laws of transformation are the unique ones solving the admissibility condition [60].
26For ease of notation the δC(2) of section 2.4 is here denoted just by δ(1)C.
27We set to zero consistently the ψ-dependent part of ξ since we choose ω̃ = 0.
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Recalling that Ĉ is embedded into C as C = Ĉψ + C̃ and splitting the gauge parameter

as ξ = ξω + φξe, the interplay between φ and ψ is seen to lead to

δ(1)Ĉ = [ξω, Ĉ]? + φ{ξe, Ĉ}? . (4.15)

From Prokushkin-Vasiliev Theory the transformations of the scalar field Φ = Π+Ĉ(y = 0)

thus read

δΦ = tr{ξe, Ĉ+}? = 2
∑
s

(−1)s−1

(2s− 2)!
ξα(2s−2)
e Ĉ+α(2s−2) =

∑
s

(2i)s

(2s− 2)!
ξm(s−1)
e ∇m(s−1)Φ ,

(4.16)

where we have used (2.38) in order to express Ĉα(2s−2) as derivatives of Ĉ(y = 0) and have

defined ξe = i
∑

s
1

(2s−2)!ξ
α(2s−2)
e yα(2s−2).

28 Comparing the last expression above with the

one obtained from cubic action cross-couplings (see beginning of this section),

δ(1)Φ =
∑
s

(2i)sgsξm(s−1)∇m(s−1)Φ , (4.17)

we read off the relative gs coefficients. They are the following:

gs =
1

(2s− 2)!
. (4.18)

Let us note that the restriction to Killing tensors also implies that (4.16) is, in fact, the

only Lorentz-invariant combination one could write which is linear in the scalar and the

gauge parameter — up to the relative factors. This is the solution to the admissibility

condition (4.13) at the Lagrangian level. The complete cubic action for the physical sector

of Prokushkin-Vasiliev Theory thus reads

Scubic = S
(0)
cs + S

(1)
cs + S

(0)
scalars + Scurrents

=
k

4π

∫
tr

(
ω̂ ∧ dω̂ − 2Ω ∧ ω̂ ∧ ω̂ − 2

3
ω̂ ∧ ω̂ ∧ ω̂

)
+

∫
det|h|

(
∇mΦ∗∇mΦ +m2Φ∗Φ

)
+ 2

∑
s

gs

∫
ea(s−1) ∧ ja(s−1) ,

(4.19)

where the above cross-couplings can be rewritten in the metric-like language of (4.2) since

at cubic order the identification (2.7) holds [61, 62]. Note also that the Lagrangian which

solves the admissibility condition will depend on the chosen HS algebra. For different

values of λ in hs(λ) the coupling constant are hence expected to be different (see [31] for

the corresponding analysis). Below we give explicit expressions for some low-spin currents.

Some comments are in order. Firstly we note that the above scalar transformation

rules generically hold for Killing tensors only. For generic gauge parameters ξ the right-

hand side of (4.17) would include terms with derivatives of the gauge parameter, produced

28The reality conditions, ω̂† = −ω̂, require the gauge parameter ξ to be imaginary [15].
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by integrating by parts in (4.10) to isolate E(Φ). Such terms can always be removed by

redefining the scalar field, which will supplement the currents (4.3) with improvements.

A unique combination of improvements is required to uplift (4.17) beyond killing tensors.

The above procedure thus fixed the deformed gauge variations of the scalar up to field

redefinitions. Requiring the gauge transformations to contain no derivatives of the gauge

parameter determines the field frame to be the Prokushkin-Vasiliev one. The choice of

redefinitions that recovers the higher-spin algebra structure constants is perhaps more

natural, as it is (among other things) the one associated with the usual stress tensor in the

spin-2 sector, as we detail below.

Secondly let us stress that in so fixing the gs coefficients, although we have determined

completely the cubic action, it is not implied that a quartic completion thereof exists.

Indeed, the condition we have solved is necessary but non-sufficient. A priori, there might

be no consistent quartic completion, a unique one, or many. It could be argued that

the very existence of Prokushkin-Vasiliev Theory indicates that such a quartic completion

does exist. However, our cubic action is free of twisted fields, whereas we have only proven

that the latter can be consistently set to zero in Prokushkin-Vasiliev Theory to order 2 in

perturbation theory. We thus consider it an open issue whether or not one can achieve full

consistency starting from our cubic action.

The above result and its simplicity are to be contrasted with the pseudo-local nature of

the Prokushkin-Vasiliev backreaction, in which the above simple coefficients are well hidden

and hard to extract. It is important to stress, however, that the gauge transformations are

blind to the addition of off-shell conserved currents on top of the above ones. In principle

those can be pseudo-local. For instance, one can obtain conserved currents of spin s as29

jm(s) = (gmm2−∇m∇m)kjm(s−2k) + Λ(. . .) . (4.20)

It is however conceivable that the higher-derivative tail which is seen to arise from

Prokushkin-Vasiliev’s equations boils down to a pseudo-local contribution to the canonical

currents, precisely in the same fashion as the canonical stress tensor differs from the spin-2

current given below by terms of the form (4.20).

Another important comment is that one can write down the cubic cross-couplings

corresponding to the above ones before the torsion constraint has been solved for. Such an

action term would read ∫
tr (ω̂(y, φ) ? ∧Jfr(y, φ)) , (4.21)

where ω̂(y, φ) takes values in the higher-spin algebra and contains both vielbeins and

spin-connections, and Jfr is the backreaction that has the property that the Fronsdal

current it yields upon solving the torsion constraint is the canonical s-derivative one (see

appendix C.1.6 and C.2.6).30 This way of writing the coupling is more natural from the

Prokushkin-Vasiliev vantage point. The coefficients gs are the same.

29The subleading terms in Λ can be conveniently extracted from the corresponding ambient space form

but we do not specify them in the following.
30The Fronsdal current that it corresponds to is however traceless and differs from (4.3) by improvement

terms.
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It is instructive to give explicit forms for the spin-2 and spin-3 currents for which the

deformation of the scalar gauge transformation does not involve derivatives of the gauge

parameter. For the sake of generality we restore the cosmological constant Λ and do not fix

the mass term of the scalar field m2 = µΛ entering the mass-shell equation (2−m2)Φ = 0,

where µ = λ2 − 1 and in our case λ = 1
2

Spin-2 current. In the case of spin-2 we can construct a current that differs from the

canonical stress tensor by a trivial improvement term of the type (4.20). Such a spin-2

current reads

− jmm = Φ∇m∇mΦ∗ − 2∇mΦ∗∇mΦ + Φ∗∇m∇mΦ

+ 2Λ(1− µ)gmmΦ∗Φ− gmmΦ2Φ∗ − gmmΦ∗2Φ , (4.22)

and the induced gauge transformations are as anticipated; without derivatives of the gauge

parameter:

δΦ = −2ξm∇mΦ . (4.23)

Spin-3 current. In the spin-3 case one builds a current differing from the canonical form

by improvement terms and the result is given by

−ijm(3) = Φ∇m∇m∇mΦ∗ − Φ∗∇m∇m∇mΦ + 3∇mΦ∗∇m∇mΦ− 3∇m∇mΦ∗∇mΦ

+ 2Λ(4− 3µ)gmm Φ∇mΦ∗ − 2Λ(4− 3µ)gmm Φ∗∇mΦ (4.24)

− 9

2
gmm2Φ∇mΦ∗ +

9

2
gmm2Φ∗∇mΦ− 3

2
gmm Φ∇m2Φ∗ +

3

2
gmm Φ∗∇m2Φ .

The corresponding induced gauge transformation on the scalar again do not display any

derivative acting on the gauge parameter due to the above field-redefinition terms, so that

we have:

δΦ = − i
3
ξmm∇m∇mΦ , (4.25)

which is given for g3 = 1
24 .

Summarizing, we have used admissibility condition to fix the last piece of arbitrari-

ness in the cubic action for the physical sector of Prokushkin-Vasiliev Theory. The solu-

tion to this consistency condition is the transformation rules for the Prokushkin-Vasiliev

scalar, precisely. The terms (4.19) form the unique cubic action for the physical sector of

Prokushkin-Vasiliev Theory.31

Frame-like action. There is yet another way in which one may think of constructing

the cubic cross-couplings discussed hereabove. One can write down a quadratic action for

scalar fields in the following way:

Srr =
∑
k

a2k

∫
hννR

α(2k−1)νRνα(2k−1) , (4.26)

31Note that we do not need to repeat from scratch the analysis of admissible HS algebra which is already

present in the literature. The original result here is to match the metric-like result against to the structure

constant of the known admissible HS algebras to the effect of fixing the Lagrangian of the theory to

this order.
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where the free curvatures are defined as R = (D̃Ĉ)ψ. For generic values of the a2k coef-

ficients the above term involves all components Ĉα(k) of the physical scalar. However, as

explained in [63] one can tune the coefficients so that all components Ĉα(k) with k > 2 drop

out, i.e. only the first two (bosonic) components, Ĉ(y = 0) ≡ Φ and Ĉαα are involved. The

corresponding coefficients are an = 1
(n+2)n! . Up to boundary terms the above expression

is the first-order action for scalar fields, and yields the standard kinetic term upon solving

for Ĉαα as in (2.38). It is important to stress that such an action can be written in RR-

like form in AdS-space or for massive fields only, and not for massless fields in flat space,

since it relies on the presence of the yy-piece in the hαα(yαyα − ∂α∂α)-part of D̃. Indeed

reintroducing the cosmological constant Λ we see that it multiplies this term as Λhααyαyα
so that it degenerates in the flat limit.

One can now turn on interactions by simply replacing the background derivative D̃

with Dω = D̃ − [ω̂, •]? = d − [Ω + ω̂, •]?, which is similar to the Yang-Mills interactions

considered in [63]. The action is then found to be consistent up to the cubic level following

the standard arguments of the Fradkin-Vasiliev approach [64, 65]. Indeed the variation is

proportional to the free equations of motion:

δS = 2
∑
k

a2k

∫
hγγ [ξ,R]

α(2k−1)γ
? Rα(2k−1)

γ , (4.27)

and therefore vanishes on the free mass-shell R = 0. We note, however, that the interacting

action also contains quartic terms, which we neglect at cubic order. This action must be

the cubic action we have constructed in this section, as it is gauge invariant under the same

deformed gauge transformations δĈψ = [ξ, Ĉψ]. The RR-like action is however pseudo-

local, since it involves all components of Ĉ(y) even if we restrict to a particular spin in ω̂,

and differs from the local cubic action constructed above by a boundary term and further

by a bulk term proportional to F = dω̂ − ω̂ ? ∧ω̂. It would be interesting to see which

of the two actions it is easier to extract correlation functions from, as they are computed

in [29, 66]. It is also interesting to point out that in the cubic action constructed via the

Noether procedure the coefficients which we determine parametrize the interactions, and

it is a requirement about consistency of the interactions which fixes them.

As a final comment let us note that the RR-like action is formally consistent to the

cubic order over any background that is described by a flat connection Ω of the higher-spin

algebra, e.g. a higher-spin black-hole. If Ω has non-vanishing components beyond the spin-

2 sector the action in the free approximation will depend on higher components Ĉα(2k)

with k > 1, which brings in higher derivatives32 in the equations of motion as in [45].

While for the simplest background, which is AdS, the s–0–0 vertices are gauge invariant

for any s separately, it is not so on more general backgrounds. On those gauge invariance

requires a relative normalization of different vertices to be fixed in terms of the trace of

the higher-spin algebra. It should be stressed that the mass of the scalar field that can be

32This indicates a difference between the Cauchy problem where data is given at t = 0 and the Taylor-like

problem that arises within the unfolded approach (the components Ĉα(k) parametrize on-shell derivatives

of the scalar field at a point). While the solution to the unfolded problem is always given by some Ĉ(y|x0),

the Cauchy problem can change.
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consistently coupled is also fixed by the representation theory of the higher-spin algebra in

order to compensate the variation of the scalar-current coupling. Let us also recall that a

scalar cannot be coupled to a Chern-Simons theory for an sl(N) algebra with N > 2, and

having a consistent coupling requires the hs(λ) algebra.

5 Extraction of the physical equations

In this section we explain how the equations of motion (2.50) and (2.53a) for the physical

fields presented and discussed in section 3 are extracted from the master equations of the

Prokushkin-Vasiliev theory. In a nutshell, the procedure for doing so goes as follows: one

considers master equations for master fields. The master fields depend on a doubled set

of oscillators, that is, on the yα’s of section 3 but also on some zα’s which obey analogous

commutation relations (see below). The components of the master fields along the new zα
oscillators are purely auxiliary, and the role of some of the master equations is to allow

one to solve for them in terms of the physical fields (those that multiply yα oscillators

only). The other master equations become the higher-spin equations of motion once we

plug the master fields with their zα-dependent part solved for (zα-on-shell forms). As one

can prove, the obtained equations no longer depend on zα. In the rest of this section we

detail this procedure and obtain the first- and second-order equations of motion for the

physical higher-spin gauge connections and scalar fields.

5.1 Master fields and master equations

The Prokushkin-Vasiliev master equations are expressed in terms of three master fields

W =Wm(y, z, φ, ψ|x) dxm , B = B(y, z, φ, ψ|x) , Sα = Sα(y, z, φ, ψ|x) . (5.1)

The master field W is a spacetime one-form which includes the higher-spin gauge connec-

tions and dreibeins as well as auxiliary components. The zero-form master field B includes

the (complex) scalar field and also auxiliary components. The master field Sα is completely

auxiliary in the sense that it can be completely expressed in terms of the zero-form B, as

will be explained below. All master fields are functions of the spacetime coordinates xm,

the Clifford factors φ and ψ introduced in (2.16), and two sets of (mutually) commuting

oscillators yα and zα, i.e. they obey

yαyβ = yβyα , zαzβ = zβzα , yαzβ = zβyα . (5.2)

The yα oscillators are those of section 2.2 which are involved in the star-product (2.19),

whereas the zα oscillators are new ones, satisfying the following commutation relations:

[yα, yβ ]? = 2iεαβ , [zα, zβ ]? = −2iεαβ . (5.3)

The corresponding star-product, generalizing (2.19), reads

f(y, z) ? g(y, z) =
1

(2π)2

∫
d2u d2v f(y + u, z + u) g(y + v, z − v) exp (ivαuα) , (5.4)
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where vα = εαβvβ and the antisymmetric epsilon tensor obeys εαγεβγ = δαβ . All our

conventions are summarized in appendix A. In the rest of this section all star-products will

refer to this ‘enlarged’ star-product. Evidently, upon considering functions of yα only in

the above formula one recovers the yα-star-product of (2.19).

The physical fields of section 2 and 3 — the (higher-spin) gauge connections and

dreibeins ω̂ as well as the scalar Ĉ — are embedded into the above master fields via their

zα-independent components. That is,

B = C + B(2) + B(3) + · · · = B(y) +O(z)

C = C(y) = Ĉψ + C̃

Ĉ = Π+Ĉ + Π−Ĉ ≡ Ĉ+ + Ĉ− ,

(5.5)

so that, as explained in subsection 2.3, the identity component of Ĉ is the physical scalar.

For the connection we have

W = ω +W(2) +W(3) + · · · = W (y) +O(z)

ω = ω(y) = ω̂ + ω̃ψ

ω̂ = ω + φe .

(5.6)

We have also displayed the ‘twisted’ fields, which are discussed in section 2.3. As is ex-

plained in section 3, one of the main points of this paper is to study the possibility of

consistently setting them to zero, at order 2 in perturbation theory. The actual gauge

connections and dreibeins ω(x)α1...α2s
m and e(x)α1...α2s

m are extracted as explained in (2.32).

Also note that Ĉ± are the projected components of Ĉ with respect to the projectors Π±,

that we have used in (2.34).

The main prescription of Vasiliev-like theories (including Prokushkin-Vasiliev Theory)

is to use part of the master equations to solve for the zα-dependent part of the master fields

in terms of the physical sector. One then plugs these zα-on-shell forms into the dynamical

master equations thereby extracting the physical equations of motion for the physical fields.

As will be seen, the dynamical master equations are linear covariant constancy conditions

in the full yα and zα space, and plugging the master fields with their zα-part solved for

therein is really what produces interactions. The Prokushkin-Vasiliev master equations

read as follows:33

dW =W ∧ ?W , (5.7a)

dB ? κ = [W,B ? κ]? , (5.7b)

dSα = [W,Sα]? , (5.7c)

0 = {B ? κ,Sα}? , (5.7d)

[Sα,Sβ ]? = −2iεαβ(1 + B ? κ) , (5.7e)

33For the original Prokushkin-Vasiliev theory the master equations formally read the same as Equa-

tions (5.7), although for master fields W, B and Sα which depend on two extra Clifford-like elements ρ

and k, and the Kleinian κ in (5.7) is replaced by kκ. However we may project out these two extra el-

ements by declaring W = W(y, z, φ, ψ), B = B(y, z, φ, ψ) and Sα = ρSα(y, z, φ, ψ), yielding the Vasiliev

theory [34]. Then sitting at λ = 1
2

(ν = 0) corresponds to the theory we study, and which we keep naming

Prokushkin-Vasiliev Theory although it is really a truncation thereof [15, 51].
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where the last three equations above are those that allow one to solve for the zα-dependent

part of the master fields and the first two will then generate the physical equations for ω,

e and Ĉ (and for the twisted sector as well). Here above the Kleinian κ ≡ exp (iyαzα) was

introduced, which has the properties κ ? κ = 1 and

κ ? f(y, z) = f(−y,−z) ? κ . (5.8)

The above Prokushkin-Vasiliev equations are invariant under the following gauge transfor-

mations parametrized by the master gauge parameter ξ = ξ(y, z, ψ, φ|x):

δW = dξ − [W, ξ]? , (5.9a)

δB ? κ = [ξ,B ? κ]? , (5.9b)

δSα = [ξ,Sα]? . (5.9c)

Let us note that the meaning of the last two master equations above is perhaps more easily

understood when they are rewritten in the following manner [67]:

dW =W ∧ ?W , (5.10a)

dTαβ = [W,Tαβ ]? , (5.10b)

dSα = [W,Sα]? , (5.10c)
i
4{Sα,Sβ}? = Tαβ , (5.10d)

[Tαβ ,Sγ ]? = Sαεβγ + Sβεαγ . (5.10e)

Here (5.10d) defines the zero-from Tαβ that together with Sα constitutes the five generators

of osp(1|2), two odd plus three even ones, as can be seen by inspecting (5.10d) and (5.10e)

which are the defining relations of the osp(1|2) algebra. One then recovers the system (5.7)

by setting B ? κ = − i
2(Sα ? Sα + 1).

Before moving to perturbation theory of the above master equations we should point

out that the original Prokushkin-Vasiliev system of equations is more general [15], and the

theory that we are interested in and which is introduced hereabove is really a (consistent)

truncation thereof. As explained in section 2.2, the original Prokushkin-Vasiliev theory

is really a one-parameter family of theories, each of them based on the algebra hs(λ).

The parameter λ is then related to the vacuum value of C̃, which is denoted by ν. The

truncation of interest to us is that which corresponds to setting ν = 0. In some sense

this theory is technically simpler, since we can make use of the explicit realization of the

star product (5.4), which we cannot do for generic values of λ (or ν). Also, with respect

to the original theory proposed in [15] we address the so-called reduced version thereof

(see footnote 33), although we expect it to have features similar to those of the more

general theory.

5.2 Vacuum values and zα-dependence

The above Prokushkin-Vasiliev master equations are background independent. However,

we will be interested in perturbative field excitations propagating on the (pure) AdS3
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vacuum solution. The vacuum of section 2 is given by

Ω =
1

2
$ααLy

αα +
1

2
φhααLy

αα with Ly
αα = − i

4
{yα, yα}? . (5.11)

In order to start the perturbative analysis we further need to define the background val-

ues for the two other master fields. As we are interested in pure AdS3 we choose the

following [15]:

W = Ω , B = 0 , Sα = zα , (5.12)

and it can be easily checked that (5.7) are satisfied using [zα, •]? = −2i∂zα•. We further

stress that W is taken to be equal to the above Ω at zeroth-order, so that there are no

higher spins turned on, and the scalar field is set to zero, so that we work on a vacuum

with no matter. Lastly, the auxiliary master field Sα takes the simplest non-zero form.

In particular this form is consistent with the fact that the components multiplying zα
oscillators are auxiliary as Sα is to be purely auxiliary. Note also that, as explained in

section 2.2 we work at ν = 0 which is why the twisted scalar field has a zero vacuum value.

For practical purposes we will rewrite the master equations in terms of new master

fields, shifted by their background values as

Sα → zα + 2iAα , W → Ω +W , B → 2iB , (5.13)

where the extra factors of 2i are included for convenience. We shall be working in the

bosonic theory, which is implemented by declaring W and B to be of even degree in the

total number of yα and zα oscillators, while Sα is taken to be of odd degree. This is

consistent with the aforementioned background values. In terms of the Kleinian operator

κ of (5.8), the bosonic projection can be rephrased as follows:

κ ? B ? κ = B , κ ?W ? κ =W , κ ?Aα ? κ = −Aα . (5.14)

The new, background-shifted and bosonic master equations now take the form

DΩW =W ∧ ?W , (5.15a)

DΩB = [W,B]? , (5.15b)

∂zαW = DΩAα − [W,Aα]? , (5.15c)

∂zαB = [Aα,B]? , (5.15d)

∂zαAα = Aα ?Aα + B ? κ , (5.15e)

where we are using the AdS3 covariant derivative of (2.23).

The prescription for extracting the physical equations of motion from the above master

equations is now as follows: one solves the last three master equations for the zα-dependent

part of the three master fields in terms of their physical, zα-independent parts (for Sα, which

will be seen to be proportional to zα, we solve in terms of the physical components of the
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other master fields). More precisely, we obtain such zα-on-shell forms by making use of the

following integration formulas:

∂zαfα(z, y) = g(z, y) → fα(z, y) = ∂zαε(z, y) + zαΓ1 〈g(z, y)〉 , (5.16a)

∂zαf(z, y) = gα(z, y) → f(z, y) = ε(y) + zαΓ0 〈gα(z, y)〉 , (5.16b)

where the homotopy integrals are defined as34

Γn 〈f(z)〉 =

∫ 1

0
dt tn f(zt) . (5.17)

One thereby obtains

B = B(y, φ, ψ) + zαΓ0 〈[Aα,B]?〉 , (5.18a)

Aα = ∂zαε(y, z, φ, ψ) + zαΓ1 〈Aν ?Aν + B ? κ〉 , (5.18b)

W = W (y, φ, ψ) + zαΓ0 〈DΩAα − [W,Aα]?〉 . (5.18c)

The ‘initial data’ B(y, φ, ψ) and W (y, φ, ψ) are the physical, zα-independent fields, en-

coding the higher-spin gauge connections and dreibeins as well as the scalar fields to all

orders, as described more precisely in the previous subsection. The arbitrary function ε

is commented on below. Now, upon plugging the above zα-on-shell forms into the first

two master equations (5.15a), (5.15b) one can, without loss of generality, evaluate them at

z = 0, yielding

DΩW|z=0 = W ∧ ?W|z=0 , (5.19)

DΩB|z=0 = [W,B]?|z=0 , (5.20)

and in the rest of this work we will always assume the equations to be evaluated at z = 0,

even when not explicitly stated. The reason one can take the above equations at zα = 0

is simply that, as one can prove, once we have plugged the solutions (5.18) therein these

equations no longer depend on zα. This fact is non-trivial, and for its proof we refer

to [4, 9, 68]. Once we know the equations are zα-independent, putting zα to zero is not

a loss of generality, but makes the following computations easier as we can neglect terms

that otherwise would have canceled each other in non-trivial ways.

In section 5.4 we expand these two equations order by order in perturbation theory,

thereby extracting physically meaningful equations of motion for the first-order Ĉ(y, φ)

and ω̂(y, φ) and then taking the procedure to order 2, describing Ĉ(2) and ω̂(2). Let us note

that such a procedure will also yield equations of motion for the twisted sector, formed

by C̃ and ω̃ as well as for their second-order versions C̃(2) and ω̃(2). However, before

proceeding with perturbation theory there is one more step to perform, which is related to

Lorentz invariance and to the arbitrary initial data ∂zαε(y, z, φ, ψ) found in (5.18b). This

is discussed in the following subsection.

34For n 6= m the nested homotopy integrals can be resolved as Γn ◦ Γm = −(Γn − Γm)/(n − m). For

n = m one needs
∫

dt tn log t, etc.
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5.3 Lorentz invariance in the Schwinger-Fock gauge

In the previous subsection we have explained how the physical equations of motion are

obtained by solving for the zα-dependence of the master fields as in (5.18) and then plugging

the obtained expressions into the first two master equations (5.19) (and further evaluating

at zα = 0). However, in solving for the master field Sα we find (the derivative of) an

arbitrary function ∂zαε(y, z, φ, ψ) in the solution, as is displayed in (5.18b). This master

field, however, should be kept completely auxiliary, that is, completely determined in terms

of the other fields of the theory. The usual way of removing the arbitrariness in ε(y, z, φ, ψ)

is to impose the Schwinger-Fock gauge:

zαSα = 0 . (5.21)

As is easy to check, this gauge choice implies ε(y, z, φ, ψ) = ε(y, φ, ψ), and hence the first

term in the right-hand side of (5.18b) vanishes identically.35 Evidently, going to such a

gauge leaves one with only a subset of the original gauge transformations. As we will see

below, at order 1 in perturbation theory the residual gauge parameters are simply the ξ’s

of (5.9c) which are independent of zα. At higher orders the zα-dependent part of ξ will

be non-zero but expressed in terms of the zα-independent components thereof. Differently

put, there is a gauge freedom in the solution for Sα and one chooses to fix the gauge —

leaving unaffected the part of the gauge freedom endowing the physical fields, that is the

zα-independent part of ξ. As we will be working in the above Schwinger-Fock gauge for

the master field Sα, expression (5.18b) becomes

Aα = zαΓ1 〈Aν ?Aν + B ? κ〉 . (5.22)

The issue with Lorentz invariance is now that the generators Ly
αα of the original ?-

product or also their naive extension to the yα, zα Weyl algebra Lyz
αα = − i

2(yαyα−zαzα) do

not preserve the above condition, i.e. zαδΛSα 6= 0, where δΛSα is the gauge variation of Sα
from (5.9c) with Λ = 1

2ΛααLyz
αα (explicit computations can be found in appendix D). One

then concludes that, in this gauge, neither Ly
αα nor Lyz

αα provide us with a proper realization

of the Lorentz generators on all the master fields present in Prokushkin-Vasiliev’s equations.

One might be tempted to instead conclude that there is a tension between the Schwinger-

Fock gauge and Lorentz invariance. However, as we will see below one can identify other,

field-dependent generators that realize the Lorentz symmetry.

Any proper set of Lorentz generators should satisfy the following requirements: (i)

they ought to transform all fields covariantly and the corresponding gauge variations of the

fields should close to the Lorentz algebra,36 (ii) they have to preserve the Schwinger-Fock

gauge. Fortunately, one can find generators which satisfy both of them, and they read [60]:

Ls
αβ ≡ Lyz

αβ −
i

4
{Sα,Sβ}? = Lyz

αβ −Tαβ . (5.23)

35Indeed, given that the second term in the right-hand side of (5.18b) is proportional to zα, the gauge

zαSα = 0 implies zα∂zαε(y, z, φ, ψ) = 0, and noticing that zα∂zα is the number-of-oscillators operator in

zα-space, we conclude that ε cannot depend on zα — unless it is non-analytic in zα.
36We will, however, allow for generators which realize the algebra only with respect to the fields’ variations,

i.e. we allow for algebroids.
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Using (5.7d) and (5.7e) one proves straightforwardly that zαδΛSα = 0 for Λ = 1
2ΛαβLs

αβ ≡
Λs. As for the closure of the algebra, there is a subtlety: the above generators do not

close to the Lorentz algebra per se. The Lorentz algebra is only recovered when computing

commutators of the fields’ gauge variations, while the above commutators obey

[Ls
αα, L

s
ββ ]? = εαβL

s
αβ +

δLs
αα

δB
[Ly
ββ ,B]? −

δLs
ββ

δB
[Ly
αα,B]? . (5.24)

The above issues are presented in further detail in appendix D.

It might be helpful to point out that, at zeroth order in perturbation theory Sα = zα
and hence Ls = Ly. This fits nicely with the fact that for Sα = zα the condition zαSα = 0

is trivially satisfied and preserved under the ‘naive’ Lorentz generators Ly. Note that this

also implies that at zeroth order W indeed is the chosen background Ω as in (5.12). At

first and higher orders the expression (5.23) acquires a dependence on the auxiliary field

Sα, and the correct Lorentz generators are no longer the naive ones.

Finding the correct Lorentz generators (5.23) is not the end of the story: we need to

define the spin-connection accordingly ! Indeed, the spin-connection is naturally defined to

be the coefficient of the Lorentz generators in W, and the spin-connection thus enters via

the following equation:

W ≡ 1

2
ωαβLsαβ + W , (5.25)

where W is assumed to be independent of ωαβ . In terms of this (correct) spin-connection

the perturbation theory looks a little different from that obtained by (wrongly) declaring

the coefficient of Ly to be the spin-connection. This relabeling amounts to a (pseudo-local)

field redefinition from the point of view of the physical theory in terms of Ĉ and ω̂. The

above is the correct object to be called a spin-connection when in the Schwinger-Fock gauge.

Our last point before considering the perturbative analysis in the next subsections

is to comment on the Lorentz-transformation rules of the fields, now with respect to the

corrected generators. By spin-connection we mean the one defined by (5.25). Under a

local Lorentz transformation, in the Schwinger-Fock gauge the master fields are rotated

as follows:

δ

(
W +

1

2
ωααLs

αα(B)

)
=

1

2
(dΛαα − ωαν Λνα)Ls

αα − [W,
1

2
ΛααLyz

αα]? , (5.26a)

δB ? κ =
1

2
Λββ [Ls

ββ ,B ? κ]? =
1

2
Λββ

δB ? κ
δB

[Ly
ββ ,B]? , (5.26b)

δSα =
1

2
Λββ [Ls

ββ ,Sα]? =
1

2
Λββ

δSα
δB

[Ly
ββ ,B]? , (5.26c)

where we assumed that B and Sα are expressed in terms of B according to (5.18a)

and (5.22), and the left-hand side of the first line is understood as

δ

(
W +

1

2
ωααLs

αα(B)

)
= δW +

1

2
δωααLs

αα(B) +
1

2
ωααδLs

αα(B) . (5.27)

As anticipated, the tensors are rotated covariantly by the Schwinger-Fock Lorentz gen-

erators, even though the generators themselves do not close to the Lorentz algebra —

see (5.24). Hence, requirement (i) announced at the beginning of this subsection is fulfilled.
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Let us point out, finally, that in order to derive the above transformation rules one crucially

uses two facts: for the last two lines one uses the (anti-)commutation relations of Sα with

itself and with B — see (5.15) — , while for the first line it was sine qua non to correctly

identify the spin-connection as in (5.25) and to use the Lorentz algebra. Note, also, that

the above transformation rules for W and B are the same we would obtain from (5.9) upon

using ξ = 1
2ΛααLyz

αα, except for the fact that the spin-connection (respectively its varia-

tion) is contracted with Ls
αα on the left-hand side (respectively right-hand side) of (5.26a),

not with Lyz
αα. Again, some more details about the issue of Lorentz invariance in the

Schwinger-Fock gauge can be found in appendix D.

5.4 Manifest Lorentz-covariant perturbation theory

Having identified the correct Lorentz generators (5.23) to be used in the Schwinger-Fock

gauge (5.21), in this subsection we develop a manifestly Lorentz-covariant perturbative

expansion of (5.7). We want to perform a redefinition of W for the practical purpose of

making manifest Lorentz covariance with respect to the background. We do so in a two-

step fashion. First we perform the following redefinition of the master gauge connection

which makes manifest the covariance with respect to the spin-2 sector, as well as removing

the vielbein e from W:

W → W +
1

2
ωααLs

αα +
1

2
φ eααLY

αα ≡ W + ω + e . (5.28)

For notational convenience in the above right-hand side, the new, redefined W will still be

denoted as W. In terms of that new W, and with all other fields shifted as in (5.13), the

master equations (5.7) read as follows:

DyzW =W ∧ ?W − 1

2
RααLs

αα −
1

2
φTααLy

αα −
i

8
eαν ∧ eνα{Sα,Sα}? , (5.29a)

DyzB = [W,B]? , (5.29b)

∂zαW = −[e+W,Aα]? +
δAα
δB

[e+W,B]? , (5.29c)

∂zαB = [Aα,B]? , (5.29d)

∂zαAα = Aα ?Aα + B ? κ , (5.29e)

where we have introduced the curvature tensor R and Torsion T ,

Rαα ≡ dωαα − ωαν ∧ ωνα − eαν ∧ eνα , Tαα ≡ deαα − 2ωαν ∧ eνα , (5.30)

and the new covariant derivative is given by

Dyz = d • −1

2
ωαα[Lyz

αα, •]? −
1

2
eαα[φLy

αα, •]? , (5.31)

in which the difference with (2.23) is in that the spin-connection is now contracted with Lyz
αα

instead of Ly
αα. It is important to note that in the first master equation here above we have
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dropped a term proportional to zα, which we know will not contribute to the corresponding

zα-independent equation, for by definition the latter is obtained by evaluating the master

equation at zα = 0.37

It is now evident that in the above master equations there are no spin-connections

appearing outside of covariant derivatives. Hence the master equations are manifestly

Lorentz covariant when we correctly identify the spin-connection as in (5.25), and the

‘price to pay’ for making that property manifest is to have some extra terms in the equa-

tions (5.29a), (5.29c).

We are close to being able to formulate the perturbative master equations. Our last

step is the following: the redefinition (5.28) makes manifest Lorentz covariance with respect

to the whole spin-2 sector. However, as we are interested in perturbation theory we choose

to make it manifest with respect to the background only, that is, we set ω and e in (5.28) to

$ = 1
2$

ααLs
αα and h = 1

2 φh
ααLY

αα, the AdS3 background spin-connection and dreibein.

Because the curvature R and torsion T of (5.30) vanish for this background the resulting

equations read

D̄yzW =W ∧ ?W − i

8
hαν ∧ hνα{Sα,Sα}? , (5.32a)

D̄yzB = [W,B]? , (5.32b)

and all other equations in (5.29) remain unchanged. Note that we have introduced the

background version of the covariant derivative Dyz, that is

D̄yz = d • −1

2
$αα[Lyz

αα, •]? −
1

2
hαα[φLy

αα, •]? . (5.33)

Now using (5.16) we can again determine the zα-dependence of the master fields by inte-

grating (5.29c)–(5.29e), which leads to a slightly different result than (5.18):

B = B(y, φ, ψ) + zαΓ0 〈[Aα,B]?〉 , (5.34a)

Aα = zαΓ1 〈Aν ?Aν + B ? κ〉 , (5.34b)

W = W (y, φ, ψ)− zνΓ0 〈[h,Aν ]? + [W,Aν ]?〉 , (5.34c)

where this result already takes into account the Schwinger-Fock gauge (5.21), which is

why the last term in (5.29c) has been dropped, on the account that zνΓ0

〈
δAν
δB . . .

〉
= 0.

Note that in the zα-dependent part of the last equation hereabove the background spin-

connection is not present. Indeed such a term would break manifest Lorentz covariance and

would arise if we had not identified the Lorentz generators correctly in the Schwinger-Fock

gauge, as can be seen by comparing with (5.18).

37Evidently, terms proportional to zα appear in other master equations in (5.29), e.g. in the third

one (5.29c). However one should remember that such is not one of the master equations that will yield

a physical equation of motion. Rather, as we already noted the last three master equations allow one to

solve for the zα-dependence of the three master fields, and only the first two master equations are to be

evaluated at zα = 0 — after plugging therein the master fields with their zα-dependence solved for.
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5.5 Order-1 perturbations

As discussed earlier, one of the goals of the present work is to explore the backreactions

on the different fields of the Prokushkin-Vasiliev theory at order 2 in perturbation theory.

However, in order to do so we found it was needed to carefuly analyze the first-order

perturbation theory first. This will also provide a warm-up exercise in view of the next

subsection. As we have explained already, the procedure is to plug the solutions (5.34)

into the master equations (5.32) and evaluate the result at zα = 0. Also, let us stress

once again that the order of the operations plays a crucial role here: if one evaluates the

expressions (5.34) at zα = 0 first and then plugs the result in (5.32), the dynamics is lost.

The interactions come from the zα-dependence precisely !

At order 1 it should be evident that the right-hand sides of (5.32) are just zero, which

simply stems from the fact that the fields start at order 1 now, as they have been shifted

by their background values (and those right-hand sides are quadratic in the master fields).

We thus have D̄yzW(1) = 0, D̄yzB(1) = 0, so that the physical first-order equations of

motion read

D̄yzW(1)
∣∣∣
z=0

= 0 , D̄yzB(1)
∣∣∣
z=0

= 0 , (5.35)

where it is implicit that the master fields now stand for the corresponding zα-on-shell forms

of (5.34). The first-order versions of (5.34) then are

B(1) = Ĉ(y, φ)ψ + C̃(y, φ) , (5.36a)

A(1)
α = zα

∫ 1

0
dt t Ĉ(−zt, φ)eityz ψ + zα

∫ 1

0
dt t C̃(−zt, φ)eityz , (5.36b)

W(1) = ω̂(y, φ) + ω̃(y, φ)ψ +

∫ 1

0
dt (1− t)t φ hααzαzαC̃(−zt, φ)eityz +M2ψ , (5.36c)

where M2 is given by

M2 = −1

2

∫ 1

0
dt (1− t)φhααzαeityz

(
yα(1− t)− i(1 + t)t−1∂zα

)
Ĉ(−zt, φ) . (5.37)

Note that we have split C(y, φ, ψ) and ω(y, φ, ψ) in their twisted and physical component

(see section 2 as well as 5.1). After some algebra, substituting (5.36) into (5.35) yields the

following result:

Dω̂ = 0 , (5.38a)

D̃ω̃ =
1

8
Hαα(yα + i∂wα )(yα + i∂wα )Ĉ(w, φ)|w=0 , (5.38b)

DC̃ = 0 , (5.38c)

D̃Ĉ = 0 , (5.38d)

where Hαα ≡ hαν ∧ hνα and the physical-space covariant derivatives D and D̃ are defined

in (2.26).
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The equations for ω̂, Ĉ and C̃ are exactly as in (2.30) and (2.31). The equation of

motion (5.38b) for the twisted one-form ω̃ is the one displayed in (3.1). It differs from (2.30)

by a source term involving the physical scalar fields. As explained in section 3.1.1 we wish

to consider solutions of (5.38) for which the twisted fields ω̃ and C̃ are zero. As is further

detailed in section 3.1.1, the above source term can be removed by performing the field

redefinition ω̃(y, φ|x)→ ω̃(y, φ|x)+M1. In other words we are finding a particular solution

to the inhomogeneous first-order equation for ω̃. Hence the equations of motion in the

twisted sector are exactly given by (2.30) after performing this field redefinition, i.e.

D̃ω̃ = 0 . (5.39)

Therefore we can consistently consider the trivial solution for the redefined fields (5.39)

and (5.38b), that is, ω̃ = 0, C̃ = 0, which we assume in the following.

After having performed the field redefinition of ω̃ by (3.2) the one-form W at linear

order is modified: instead of (5.36c) it is now given by

W(1) = ω̂(y, φ) +M1ψ +M2ψ ≡ ω̂(y, φ) +Mψ , (5.40)

where the solutions (3.5) have been used to eliminate the terms involving twisted fields in

the right-hand side of (5.36c). However the above field redefinition is not unique: as exposed

in section 2.5, the generic zero-mode for the homogeneous equation (5.39) is parametrized

by an arbitrary parameter g0 (in bosonic theory). This means that the generic form of

W(1) after performing the field redefinition that removes the source term of (5.38b) is the

following:

W(1) = ω̂(y, φ) +Mψ +Rψ . (5.41)

This fact will play a crucial role in the following subsection, where we address the second-

order backreactions on the twisted fields. Recalling the results presented in section 3.2, the

situation is that the twisted fields can be consistently set to zero at second-order only at a

particular point in the parameter space describing the zero-mode (3.3).

5.6 Order-2 perturbations

In spirit, the second-order analysis much resembles the first-order one: we solve for the

zα-dependence of the second-order master fields, plug the result in the first two master

equations and evaluate the latter at zα = 0, thereby obtaining the physical-space second-

order equations of motion for the fields. As can be expected, however, the details are

much more intricate, and as we will see here below at order 2 the Prokushkin-Vasiliev

theory truly becomes non-trivial, namely the fields start to interact. However, as the

computational procedure has been made clear in the previous subsection and we wish to

keep the presentation concise we shall skip some specifics of the calculations and shall not

display the obtained expressions explicitly. The latter are to be found in appendix B.1.
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The zα-dependence of the second-order excitations is again easily computed from (5.34)

and is found to be

B(2) = Ĉ(2)(y, φ)ψ + C̃(2)(y, φ) + zαΓ0

〈
[A(1)

α ,B(1)]?

〉
, (5.42a)

A(2)
α = zαΓ1

〈
A(1)
ν ?A(1)ν

〉
+ zαΓ1

〈
B(2) ? κ

〉
, (5.42b)

W(2) = ω̂(2)(y, φ) + ω̃(2)(y, φ)ψ − zνΓ0

〈
[h,A(2)

ν ]? + [W(1),A(1)
ν ]?

〉
, (5.42c)

where we split again the zα-independent parts of the master fields into their physical

and twisted components. To obtain the physical equations of motion one now has to

insert (5.42) as well as (5.40), (5.36a) and (5.36b) into the first two master equations at

second-order,

D̄yzW(2)|z=0 = (W(1) ∧ ?W(1) − iHααA(1)
α ?A(1)

α )|z=0 , (5.43a)

D̄yzB(2)|z=0 = [W(1),B(1)]?|z=0 . (5.43b)

In the following the evaluation at zα = 0, which is always meant after all star-products

have been performed, will no longer be indicated explicitly. It is important to note that we

will only consider the case where we have chosen vanishing solutions for the linear twisted

fields as in (3.5).

After some algebra the above equations are turned into

D̄yz
(
Ĉ(2)ψ + C̃(2)

)
= − DyzzαΓ0

〈
[A(1)

α , Ĉψ]?

〉
+ [ω̂ +Mψ, Ĉψ]? , (5.44)

D̄yz
(
ω̂(2) + ω̃(2)ψ

)
= DyzzνΓ0

〈
[h,A(2)

ν ]?

〉
+ DyzzνΓ0

〈
[ω̂ +Mψ,A(1)

ν ]?

〉
+ (ω̂ +Mψ) ∧ ?(ω̂ +Mψ)− iHααA(1)

α ?A(1)
α . (5.45)

Splitting again these equations in their physical and twisted components we arrive at the

following equations of motion:

(D̃Ĉ(2))ψ = V(ω̂, Ĉ) , (5.46a)

DC̃(2) = Ṽ(Ω, Ĉ, Ĉ) , (5.46b)

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) , (5.46c)

Dω̂(2) = V(ω̂, ω̂) + V(Ω,Ω, Ĉ, Ĉ) , (5.46d)

with the physical cocycles found to be

V(Ω,Ω, Ĉ, Ĉ) = (Mψ) ∧ ?(Mψ)− iHααA(1)
α ?A(1)

α + D̄yzzνΓ0

〈
[Mψ,A(1)

ν ]?

〉
(5.47a)

+D̄yzzαΓ0

〈
[h, zαΓ1

〈
A(1)
ν ?A(1)ν

〉
]?

〉
+D̄yzzαΓ0

〈
[h, zαΓ1

〈
B(2) ? κ

〉
]?

〉
,

V(ω̂, ω̂) = ω̂ ∧ ?ω̂ , (5.47b)

V(ω̂, Ĉ) = [ω̂, Ĉψ]? , (5.47c)
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and those pertaining to the twisted sector reading

Ṽ(Ω, Ĉ, Ĉ) = −D̄yzzνΓ0

〈
[A(1)

ν , Ĉψ]?

〉
+ [Mψ, Ĉψ]? , (5.48a)

Ṽ(Ω, ω̂, Ĉ) = {ω̂,Mψ}? + D̄yzzνΓ0

〈
[ω̂,A(1)

ν ]?

〉
. (5.48b)

Obtaining an explicitly zα-independent expression thereof is a task of considerable technical

difficulty and we will outline the main techniques we used for performing this calculation in

the next subsection. The final form of the various cocycles, with no zα’s involved anymore,

is given in section 3.1.2 where we present the corresponding results and comment on them,

whereas the explicit expressions for some of them are collected in appendix B.

5.7 Explicit evaluation of cocycles

As commented on at the end of the previous subsection, evaluating the cocycles displayed

there is not an easy task. In order to do so we have developed some methods for computing,

which we now illustrate on the following example:

(M2ψ) ∧ ?(M1ψ)|z=0 , (5.49)

which is found in (5.47a). Each of the Mi’s hereabove contains a scalar field Ĉ, and it turns

out to be computationally advantageous to consider the Fourier transformations thereof,

given by (2.63). We will furthermore adopt the convention that the wave vector of the first

Ĉ field is denoted by ξ and that of the second field (for the above piece the one in M1) by

η. This is important as for each term in the cocycle (5.47a) we will obtain an expression

of the form∫
dξdη f(y, ξ, η) Ĉ(ξ, φ|x)ψ Ĉ(η, φ|x)ψ =

∫
dξdη f(y, ξ, η) Ĉ(ξ, φ|x) Ĉ(η,−φ|x) , (5.50)

so that this convention amounts to associating a wave vector η with the master field that

comes with a flipped sign for φ.

Now using the bosonic version of (3.2) and (5.37) for M1 and M2 we can rewrite (5.49)

hereabove using the integral representation of the star product (5.4) as

− 1

32π2
hαα ∧ hββ

{∫
dt dq dξ dη d2u d2v (1− t)(q2 − 1)eiq(y+v)η−ity(ξ−u)+ivu (5.51)

× uα[(y + u)α(1− t)− (1 + t)ξα](y + v − η)β(y + v − η)β

}
Ĉ(ξ, φ|x) Ĉ(η,−φ|x) .

After shifting uα → uα − qηα and vα → vα − t(y + ξ)α the above expression becomes

− 1

32π2
hαα ∧ hββ

{∫
dt dq dξ dη d2u d2v (1− t)(q2 − 1)R2eivu (5.52)

× (u− qη)α[(yα + uα − qηα)(1− t)− (1 + t)ξα]

× (yβ + v − t(y + ξ)β − ηβ)(yβ + vβ − t(y + ξ)β − ηβ)

}
Ĉ(ξ, φ|x) Ĉ(η,−φ|x) ,
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where we have defined R2 ≡ exp i (q(y − t(ξ + y))η). We can now evaluate the integrals

over u and v by using the following identities:

1

(2π)2

∫
d2u d2v eivu = 1 , (5.53a)

1

(2π)2

∫
d2u d2v eivu uαvβ = iεαβ , (5.53b)

whereas this type of integral vanishes if the number uα’s is different from the number of

vα’s. Using these identities we arrive at our final result for (5.49), that is∫
dt dq d2ξ d2η (q2 − 1)R2

{
−i
4
Hαα

(
T 2
αS

2
α + q(1− t)2ηαS

2
α

)
(5.54)

+
1

8
hαα ∧ hββ

(
q ηαT

2
αS

2
βS

2
β

)}
Ĉ(ξ, φ|x) Ĉ(η,−φ|x) ,

where we have denoted certain combinations of yα, ηα and ξα by S2 and T 2, whose defi-

nitions are found in (B.6). One could simplify this expression further by using the basic

identity (A.10) for two-forms, but evaluating the resulting expression is rather cumbersome

and can be done most easily using a computer algebra program. The piece which we have

explicitly evaluated in this subsection is part of the cocycle (5.47a), which is by far the

hardest one to compute. In appendix B.1 we display, however, the simplest form we obtain

for the whole of it.

Consistent truncation to the physical sector: the above computation is an example

of how to explicitly evaluate a piece on the right-hand side of equations of motion for the

physical gauge connection. However, hereabove we do so in the field-frame corresponding to

the redefinition ofW by (3.2). We now explain how to obtain the expression for the cocycle

studied above in the field frame corresponding to using the redefinition M̃1 at g̃0 = d̃0 = 0,

that is, the frame for which the second-order twisted fields can be trivialized consistently.

At g̃0 = d̃0 = 0 the redefinition M̃1 is given by

M̃1 =
i

4
φhαα

∫ 1

0
dt (t2 − 1) (y − ξ)α(y − ξ)α sin (tyξ) Ĉ(ξ, φ|x) =

1

2

(
M1 − M1|t→−t

)
.

(5.55)

This form suggests that the expressions for the redefinition M̃1 can be obtained by anti-

symmetrizing over t, over q or over both t and q for terms that are of the form (M1ψ) ?X,

X ? (M1ψ) or (M1ψ) ∧ ?(M1ψ) respectively. For the example (5.49) we would therefore

need to anti-symmetrize with respect to q. The resulting expression is a bit more intricate

as it involves additional types of exponentials. It is therefore advantageous to calculate the

various cocycles with respect to M1 and then impose appropriate antisymmetrization.

6 Discussion and outlook

Briefly put, our results are the following:

Twisted fields: the second-order Prokushkin-Vasiliev theory at λ = 1
2 , with first-order

twisted fields set to zero, possesses free real parameters. Only at one point in this pa-

rameter space can one consistently set all second-order twisted fields to zero without

redefining the physical fields.

– 49 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
4

Physical sector: the backreactions on the second-order physical fields in this theory

have been computed explicitly in the Schwinger-Fock gauge in a manifestly Lorentz-

covariant manner, in particular at the point in parameter space mentioned hereabove.

Cubic action: we have determined completely the cubic action describing the physical

sector of the theory. The relative coupling constants gs parametrizing each spin-s

canonical current were fixed by solving the admissibility condition, which is part of

the Noether procedure.

Along the way, we have also shed light on how to formulate perturbation theory in a

manifestly local Lorentz-covariant way in the Schwinger-Fock gauge and have also system-

atically computed all cohomologies relevant for our second-order analysis. Hereafter we

comment and expand on the above results.

Let us first comment on twisted fields. When truncating the theory to linear order in

perturbation theory, it was known since the work of Vasiliev [34] that one can indeed set

these fields to zero after a field redefinition of the twisted gauge connection ω̃. In section 3.1

we establish that there is a two-parameter ambiguity in this field redefinition. The twisted

gauge connection ω̃ will enter the equations of motion when we expand the theory to

second order in perturbation theory, as in (3.8). Changing the two parameters d̃0 and g̃0

in the redefinition (3.14) thus modifies the twisted scalar’s equation of motion accordingly.

As for the second-order twisted gauge connection ω̃(2) one first removes the backreaction

depending on Ĉ(2) along the same lines as for the corresponding first-order equation. The

remaining backreaction depends on two other parameters d̃1 and g̃1. The most general

second-order theory is thus parametrized by four parameters (two in the bosonic case).

As we explain in section 3.1, there is a unique point in parameter space where the second-

order backreaction on the twisted scalar and twisted gauge connection can be removed by a

pseudo-local field redefinition. That point corresponds to the values d̃0,1 = g̃0,1 = 0, for the

parameters defined in (3.4) and (3.19). Only for this single point in parameter space there

exists a truncation of Prokushkin-Vasiliev Theory to its physical sector to second order

in perturbation theory. For any other set of values for the parameters the backreaction

on either C̃(2) or ω̃(2) is non-trivial in cohomology, and hence cannot be removed by any

pseudo-local field redefinition.

Let us stress once again that we analyzed Prokushkin-Vasiliev Theory only up to

order 2 in perturbation theory, and we have nothing definite to say about higher-order

perturbation theory. The field redefinitions which allow us to consistently set the second

order twisted fields to zero are not unique as our cohomological analysis of appendix E

shows. In fact they form an infinite-dimensional parameter space of possible field redefini-

tions, whereas at order 1 the redefinitions of ω̃ form a two-dimensional parameter space.

However this infinite set of parameters presumably boils down to only one independent

parameter by higher-spin covariance. Beyond this we can only say that two scenarios are

possible: it could be that at order 3 the truncation to the physical sector leaves us with

free parameters or not.

One should also note that there exists a so-called non-local integration flow for the

Prokushkin-Vasiliev Theory [15, 50]. In brief, this is a pseudo-local, non-perturbative field
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redefinition that maps the original theory to a free one. In particular it achieves the

decoupling of the twisted fields at all orders. In comparison with our findings, this means

that the first-order part of the integrating flow’s field redefinition on ω̃ corresponds to

the redefinition (3.14) of ω̃ at d̃0 = g̃0 = 0. However the integration flow also leads to

free equations in the physical sector. This is compatible with the fact that, as we prove

in appendix E, the relevant cohomology is trivial and therefore any backreaction to the

physical equations of motion of the second-order gauge field can be removed.

All of our discussion highlights the urgent need for a better understanding of field

redefinitions in Prokushkin-Vasiliev Theory and their locality properties. Allowing for any

kind of field redefinition, including pseudo-local ones, should not be physically allowed as

one can then remove any backreaction of the matter fields to the gauge fields at order 2.

It is easy to implement the requirement that field redefinitions should be local and not

pseudo-local. However, this is not the correct criterion, as can be seen e.g. by noticing that

pseudo-local tails in our physical backreaction cannot be removed by local field redefini-

tions. Another possible criterion might be the asymptotic behavior of the pseudo-local field

redefinitions. But as we checked in appendix F, field redefinitions that should be physically

not allowed seem to have the same asymptotic behavior as physically allowed ones — at

least to leading order. It is also important to note that the field redefinition performed

in (5.28) which enforces manifest Lorentz covariance (with respect to the background) is

of the pseudo-local type. Similarly, the field redefinition of C̃(2) which removes the back-

reaction thereof at g̃0 = d̃0 = 0 is also pseudo-local. It is unclear what the functional

class corresponding to acceptable pseudo-local field redefinitions is. Ultimately, ‘accept-

able’ means that the said class of field redefinitions does not change the observables as

for example correlation functions. Those should correspond to redefinitions allowing us to

remove everything from the backreaction but the canonical currents of section 4 (once the

torsion constraint is solved for). Such a requirement is conceptually clear, but is neverthe-

less difficult to translate explicitly in terms of restrictions on the functional class of field

redefinitions one should allow for.38

The interpretation one should have of the twisted fields is unclear to us. These include

Killing-like tensor fields, sitting in finite-dimensional representations of the AdS3 isometry

algebra. From the perspective of Minimal Model Holography [7], there does not seem to be

any natural boundary dual for them. Thus, having in mind this duality one could conjecture

the existence of a non-perturbative formulation of a higher-spin theory in dimension 3

involving no twisted fields and defined at any value of the λ parameter. In particular it

would be interesting to find out whether one can reformulate Prokushkin-Vasiliev Theory

without twisted fields at the non-perturbative level.

In fact there exists another three-dimensional, matter-coupled higher-spin theory which

involves no twisted fields: the Vasiliev D-dimensional theory [5, 19, 67] is defined with-

out the twisted sector and can be consistently considered at D = 3, as we discuss in

appendix G. One can choose to couple a twisted sector to this D-dimensional Vasiliev The-

ory at D = 3 and in fact also for any D, even though it is not required by consistency and

38See e.g. [69] for a discussion of flat-space non-localities in the context of amplitudes computation.
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its original formulation does not include it. As we discuss in appendix G, in comparison to

Prokushkin-Vasiliev Theory the D-dimensional theory has different features, and a mani-

festation thereof is the equations of motion for the spin-1 sector and the behavior of the

twisted sector. Furthermore the D-dimensional theory at D = 3 corresponds to λ = 1 and

at present it is not known how to embed this point into one parameter family of theories.

Lastly, let us comment on our findings regarding the cubic action for the physical sector

of the Prokushkin-Vasiliev theory, which are presented in section 4. Let us stress again

that we have fixed completely the cubic action, and we have done so by solving a necessary

but non-sufficient quartic-order condition (4.13), the so-called admissibility condition. This

means that our cubic action is not guaranteed to be consistent at quartic order. Differently

put, it is not necessarily true that we can find quartic terms to add on top of our cubic

action such that it is consistent at that order. In general, it may be that the spectrum

needs to be enlarged in order to achieve full consistency starting from our cubic action. In

particular, it would be most interesting to find out whether twisted fields are required in

order to achieve consistency to all orders for generic values of λ.

Let us further comment on the possibility of removing the entire physical backreaction

by means of a pseudo-local field redefinition. Although it signals a lack of control at the

level of the equations of motion, it could make sense at the level of the corresponding

action. The boundary terms produced by an exact current J = DU should be kept at

the action level while they are neglected for the equations of motion. In a rather daring

fashion, one might then think of this feature as realization of the AdS/CFT lore, since by

performing a (pseudo-local) field redefinition we are producing a left-over boundary term.

Let us close by highlighting some open questions and possible continuations of the

present investigations.

• An obvious generalization of our results would be that of considering the Prokushkin-

Vasiliev theory at generic values of λ, which is especially interesting from the

AdS/CFT perspective.

• Understanding the role of the twisted sector, if any, in the context of Minimal Model

Holography seems a prime issue. In light of the Gaberdiel-Gopakumar duality one

would like to either construct a theory involving no twisted fields or try to make sense

of twisted fields from the boundary perspective.

• A related issue is that of completing the cubic action (4.19) to quartic order, if possible

at all. More particularly, one would wish to see whether a completion thereof exists.

• Another possible direction of investigation, although potentially intricate technically,

is to explore the equations of motion at order 3 in perturbation theory, paying special

attention to the possibility of setting the twisted fields to zero consistently and making

sure the whole parameter space of the theory is taken into account.

• Last but not the least, we mention the most pressing issue of correctly characteriz-

ing the functional class of field redefinitions one should allow for in the context of

Prokushkin-Vasiliev Theory and in other higher-spin theories more generally. These
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should leave the correlation functions invariant and we expect them to yield the

canonical currents (1.4) starting from the backreaction computed in this work.
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A Notation and conventions

Our symmetrization convention and index notation go as follows: indices denoted by the

same letter without further subindices are assumed to be symmetrized without extra factors.

For example, XαYα is understood as Xα1Yα2 +Xα2Yα1 , without further normalization. If

symmetric indices sit on the same object we further contract the notation as follows: a

symmetric rank-n tensor will be denoted as Tα(n), which means the tensor components

Tα1...αn are completely symmetric in the exchange of any two indices. Note that this can

lead e.g. to expressions of the form XαYα(n−1), which should be understood as Xα1Yα2...αn+

(n− 1) terms.

The master fields entering the master equations (5.7) are W = Wm(y, z, φ, ψ|x)dxm,

B = B(y, z, φ, ψ|x) and Sα = Sα(y, z, φ, ψ|x). We work at λ = 1
2 so that B has zero vacuum

value. W is shifted by the AdS3 background connection Ω ≡ 1
2$

ααLαα + 1
2φh

ααLαα as

W → Ω +W. The auxiliary field Sα is shifted according to Sα → zα + 2iAα. The shifted

master fields obey the master equations (5.15). The breakdown of master fields into field

components is as follows: for the scalar one has

B = C + B(2) + B(3) + · · · = B(y) +O(z)

C = C(y) = Ĉψ + C̃

Ĉ = Π+Ĉ + Π−Ĉ ≡ Ĉ+ + Ĉ− .

(A.1)

For the connection it reads

W = ω +W(2) +W(3) + · · · = W (y) +O(z)

ω = ω(y) = ω̂ + ω̃ψ

ω̂ = ω + φe .

(A.2)

For all these fields the full yα, zα-space star-product is

f(y, z) ? g(y, z) =
1

(2π)2

∫
d2u d2v f(y + u, z + u) g(y + v, z − v) exp (ivαuα) . (A.3)

In particular we have [yα, yβ ]? = 2iεαβ , [zα, zβ ]? = −2iεαβ .
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We use various covariant derivatives through the text. The AdS3 covariant derivative

is given by

DΩF = dF− Ω ∧ ?F + (−1)|F |F ∧ ?Ω , (A.4)

where |F| denotes the form degree of F. The covariant derivative acts as DΩ(X + X̃ψ) =

DX + (D̃X)ψ, where

D = ∇− 1

2
φhαα[Lαα, •]? = ∇− φhααyα∂yα , (A.5a)

D̃ = ∇− 1

2
φhαα{Lαα, •}? = ∇+

i

2
φhαα(yαyα − ∂yα∂yα) , (A.5b)

∇ = d • −1

2
$αα[Lαα, •]? = d−$ααyα∂

y
α . (A.5c)

In the process of extracting physical equations from master equations in section 5 we also

use the following covariant derivative:

Dyz = d • −1

2
ωαα[Lyz

αα, •]? −
1

2
eαα[φLy

αα, •]? , (A.6)

as well as its background version

D̄yz = d • −1

2
$αα[Lyz

αα, •]? −
1

2
hαα[φLy

αα, •]? . (A.7)

Our conventions for index contraction and raising / lowering are as follows:

yα = yβεβα , yα = εαβyβ , εαβεαγ = δβγ , (A.8)

so that AαB
α = −AαBα ≡ −AB = BA and ε12 = ε12 ≡ 1. Our derivatives have indices

which are raised and lowered in the usual way, so that ∂α = ∂βεβα, ∂α = εαβ∂β and we have

∂αyβ = εαβ , ∂αyβ = εαβ , ∂αy
β = δβα , ∂αyβ = −δαβ , (A.9)

and analogously for the zα-oscillators. Last but not least we recall the following identities

for the background vielbein:

hααµ hναα = −1

2
δνµ hααµ hµββ = −1

4
δαβ δ

α
β . (A.10)

B Backreactions

In this appendix we will summarize our results concerning the various backreactions in

Prokushkin-Vasiliev Theory. We will first focus on the backreaction to the Fronsdal fields

in section B.1 and then discuss the twisted scalar and gauge sector in section B.2.

B.1 Fronsdal sector

In the following section B.1.1 we will collect the raw expressions for all the contributions to

V(Ω,Ω, Ĉ, Ĉ) in Fourier space and then in section B.1.2 summarize our strategy to simply

relate these expressions by partial integration and Fierz identities.
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B.1.1 Raw expressions for the backreaction on the Fronsdal sector

In the following we will first summarize the result for the backreaction V(Ω,Ω, Ĉ, Ĉ) when

using the field redefinition M1, as discussed in section 3.1.1, and then explain how the

results for the redefinition M ′1 can be obtained from it.

It is convenient to introduce the following exponents that appear in various structures

below

Q = exp i (tq(η + y)(y + ξ)) , P = exp i (t(η + y)(y + ξ)) , (B.1a)

K = exp i(y − qη)(y + tξ) , R1 = exp i (t(y − q(η + y))ξ) , (B.1b)

R2 = exp i (q(y − t(ξ + y))η) . (B.1c)

The Fourier images of the functions involved in the computation when setting to zero the

linearized twisted sector are:

Aα = zα

∫ 1

0
dt teit(y+ξ)zĈ(ξ, φ|x)ψ , (B.2)

M1 =
1

4
φhαα

∫ 1

0
dt (t2 − 1)(y − ξ)α(y − ξ)αeityξĈ(ξ, φ|x) , (B.3)

M2 =
1

2
φhαα

∫ 1

0
dt (−zαyα(1− t)2 + (1− t2)zαξα)eit(y+ξ)zĈ(ξ, φ|x) . (B.4)

A lengthy but straightforward computation of all the terms of the backreaction, in complete

analogy with the example discussed in section 5.7, yields the following result. The terms

therein are to be added up as they are and integrated over the homotopy parameters t, q

and the wave-twistors ξ, η after multiplying with Ĉ(ξ, φ)Ĉ(η,−φ):

D̄yzzαΓ0 〈[h, zαΓ1 〈Aν ?Aν〉]?〉 =
−i
2
Hαα t3 P (η − ξ)α(η − ξ)α , (B.5a)

D̄yzzαΓ0

〈
[h, zαΓ1

〈
B(2) ? κ

〉
]?

〉
=
i

2
Hαα t2 P (η − ξ)α(η − ξ)α , (B.5b)

D̄yzzνΓ0 〈[M1ψ,Aν ]?〉 =
i

2
Hαα q(1− q)t

{
S1
αξα R

1 + ξ ↔ η
}
, (B.5c)

D̄yzzνΓ0 〈M2ψ ?Aν〉 =
i

2
Hαα

(
−q2t C1

α(ξ − η)α − q3t(1− t)2 (η + y)α(ξ − η)α (B.5d)

− tq2C1
α(ξ + y)α + tq2(1− t)2(1− q)(η + y)α(ξ + y)α

)
Q

+
1

2
hαα ∧ hββ

(
q3t2 (ξ + y)α(ξ − η)α(η + y)βC

1
β

)
Q , (B.5e)

D̄yzzνΓ0 〈Aν ? M2ψ〉 =
i

2
Hαα

(
qt2(ξ − η)αC

2
α + qt3(1− q)2(ξ + y)α(ξ − η)α (B.5f)

− t2qC2
α(η + y)α + t2(1− t)q(1− q)2(ξ + y)α(η + y)α

)
Q

+
1

2
hαα ∧ hββ q2t3

(
(η + y)α(ξ − y)α(ξ + y)βC

2
β

)
Q , (B.5g)

−iHααAα ?Aα = i Hαα t2q2Q (y + ξ)α(y + η)α , (B.5h)
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M2ψ ? ∧M2ψ =
i

4
Hαα

{
C1
αC

2
α+(1−q)2t(ξ+y)αC

1
α+(1−t)2q(η+y)αC

2
α (B.5i)

+ qt(1− t)2(1− q)2(η + y)α(ξ + y)α
}
Q

+
1

4
hαα ∧ hββ

(
tq (η + y)αC

1
α(ξ + y)βC

2
β

)
Q , (B.5j)

M2ψ ? ∧M1ψ =
−i
4

(q2 − 1)Hαα
(
T 2
αS

2
α + q(1− t)2ηαS

2
α

)
R2 (B.5k)

+
1

8
hαα ∧ hββ

(
(q2 − 1)q ηαT

2
αS

2
βS

2
β

)
R2 , (B.5l)

M1ψ ? ∧M2ψ =
−i
4
Hαα (t2 − 1)

(
−T 1

αS
1
α + t(1− q)2S1

αξα
)
R1 (B.5m)

+
1

8
hαα ∧ hββ

(
(t2 − 1)t S1

αS
1
αξβT

1
β

)
R1 , (B.5n)

M1ψ ? ∧M1ψ =
−1

16
Hαα (t2 − 1)(q2 − 1) K

(
U1
αU

2
α(U1U2) + 4iU1

αU
2
α

)
, (B.5o)

where we denoted

C1
α = (1− t2)ξα − (1− t)2 ((1− q)yα − qηα) , U1

α = (y + tξ − η)α , (B.6a)

C2
α = (1− q2)ηα − (1− q)2 ((1− t)yα − tξα) , U2

α = (y − qη − ξ)α , (B.6b)

T 1
α = (1− q2)ηα − (1− q)2(y + tξ)α , S1

α = (1− q)yα − qη − ξ , (B.6c)

T 2
α = (1− t2)ξα − (1− t)2(y − qη)α , S2

α = (1− t)yα − tξ − η . (B.6d)

In evaluating various cocycles the following formulas were useful:insertions being carefully

tracked we find

D̄yzzνΓ0 〈fν(y, z)〉
∣∣
z=0

= iφhαα∂yαfα(y, 0) , (B.7a)

D̄yzzνΓ0 〈[h, zνf(y, z)]〉
∣∣
z=0

= −Hαα∂yα∂
y
αf(y, 0) , (B.7b)

D̄yzzνΓ0 〈[h, zνΓ1 〈f(y, z) ? κ〉]〉
∣∣
z=0

= −1

2
Hαα∂yα∂

y
αf(0,−y) . (B.7c)

It is the sum of the above expressions, i.e. (B.5a)–(B.5o), that we checked against the conser-

vation identity (2.68c) and found to consist of several independently conserved quantities.

Result for the redefinition M ′
1: if we perform a pseudo-local redefinition (3.4) that

allows for the removal of the backreactions to the twisted-sector at second order then we

need to modify the formulas above. The bosonic projection implies that M ′1 is given by

M ′1 =
i

4
φhαα

∫ 1

0
dt (t2 − 1)(y − ξ)α(y − ξ)α sin (tyξ)Ĉ(ξ, φ|x) =

1

2

(
M1 − M1|t→−t

)
.

(B.8)

This form implies that the corrected backreaction can be obtained by anti-symmetrizing

over t, over q or over both t and q the terms of (B.5a)–(B.5o) that are of the form (M1ψ)?X,

X ? (M1ψ) or (M1ψ) ∧ ?(M1ψ) respectively.
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B.1.2 Simplified backreaction on the Fronsdal sector

Due to Fierz identities that can be combined with integration by parts over t or q there

is no unique way of presenting the final result. One of the simplest forms is summarized

below. Our general strategy was to get rid of four-fermion terms by trying to represent

them as derivatives of the exponents with respect to t and q, times a prefactor that is only

bilinear in spinors.

The four-fermion structures in front of R1 and R2 can be reabsorbed by total deriva-

tives. For the contributions containing the Q exponential there are certain four-fermion

terms left, which is much less than the 15 coefficients of the most general ansatz. As for

the K-terms, the four-fermion terms can be removed up to a single term.

Finally, the full expression for the backreaction splits into the following two indepen-

dently conserved components

Jpv = Jredef + Jphys , (B.9)

where we have defined

Jphys = Hαα

∫
dt dq dξ dη (JQαα + JPαα) Ĉ(ξ, φ)Ĉ(η,−φ) , (B.10)

Jredef = Hαα

∫
dt dq dξ dη (JKαα + JR1

αα + JR2
αα) Ĉ(ξ, φ)Ĉ(η,−φ) , (B.11)

and the various kernels are given by

JQαα = {d1yαyα + d2ξαξα + d3ηαηα + d4ξαηα + d5ξαyα + d6ηαyα

− d7(yαηα(yη)− ξαyα(yξ)− ξαηα(ξη))}Q ,

JKαα = − 1

8
i(1− q)(1 + t)((q + t)(ηαηα − ξαξα)− (q + 1)(t+ 1)yαηα

− (q − 1)(t− 1)yαξα + (1 + qt)yαyα − (q − 1)(t+ 1)(2qt− q + t)ξαηα)K

− 1

16
(q − 1)3(q + 1)(t− 1)(t+ 1)3(ηξ)ξαηαK ,

JPαα = {p1ξαξα + p2ηαηα + p3( t ξαηα + ξαyα + ηαyα)}P ,

JR
1

αα = {ρ1ξαξα + ρ2ηαηα + ρ3yαξα + ρ4yαηα + ρ5ξαηα}R1

+
1

16
i
(
t2 − 1

)
{ξαηα(t+ 2)− yαηα}Kt ,

JR
2

= − JR
1

(t→−q
q→t
ξ↔η

, R1→R2

Kt→Kq

)
,

where the functions Kt and Kq are given by

Kq = exp iq(yη) = K|t=0 , (B.12)

Kt = exp it(yξ) = K|q=0 , (B.13)

and the coefficients are functions of t, q and are given by

d1 =
i

8
(−q+4q2−3q3+4qt−9q2t+4q3t+8q2t2+q3t2) , ρ1 =

i

4
t(−1 + q)(1 + q + t) ,
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d2 = − i
8

(−3q + 3q3 + 4qt+ q2t− 8q3t+ 3q3t2) , ρ2 = − i
4

(−1 + q)q ,

d3 = − i
4

(−q + 2qt+ q2t) , ρ3 =
i

4
t(−1 + q)2(1 + q + t) ,

d4 =
i

4
(3q−2q2−2qt−3q2t−2q3t+10q2t2+2q3t2) , ρ4 = − i

4
(−1 + q)2 ,

d5 = − i
4

(−2q2+3q3−2qt+2q2t−6q3t+2q2t2+q3t2) , ρ5 =
i

4
(−1+q)(−1+q2t+qt(1+t)) ,

d6 =
i

4
(q − 2q2 + 2qt+ 3q2t− 2q3t− 2q2t2 + 2q3t2) ,

d7 =
1

4
(−qt+ 2q2t− 2q2t2 − 2q3t2 + 3q3t3) ,

p1 = − i
4
t(1− t)2 , p2 = − i

4
(−t+ t3) , p3 =

i

2
(−t+ t2) .

Result for redefinition M ′1: as explained around (B.8), it is easy to navigate to the

point where the backreaction for the twisted zero-forms vanishes. The terms JQ and JP

are left untouched. For the R1 and R2 structures we apply

JR
1 → 1

2

(
JR

1 − JR
1
∣∣∣
t→−t

)
, JR

2 → 1

2

(
JR

2 − JR
2
∣∣∣
q→−q

)
. (B.14)

For the JK we apply both t and q anti-symmetrization. The only subtlety is about the Kt

and Kq terms of JR
1

and JR
1
, since they are a combination of the boundary terms produced

by K, R1 and R2 but it turns out that the rules (B.14) can be applied to them as well.

B.2 Backreactions on the twisted sector

In the following we will summarize various aspects of the backreactions arising in the

twisted sector of Prokushkin-Vasiliev Theory. We will first focus on the backreaction to

the twisted scalar field in appendix B.2.1 and then analyze the gauge sector in section B.2.2.

B.2.1 Scalar sector

Without the bosonic projection a computation similar to the one discussed in section 3.1.2

but with the κ insertions being carefully tracked yields

Ṽ(Ω, Ĉ, Ĉ) = −D̄yzzνΓ0

〈
Aν ? Ĉψ + Ĉψ ? π(Aν)]

〉
+ (Mψ) ? Ĉψ − Ĉψ ? π(Mψ) , (B.15)

where M = M1 +M2 and π(f(y, z)) = κ ? f ? κ = f(−y,−z). This results in

Ṽ(Ω, Ĉ, Ĉ) = φhαα
∫

d2ξd2η Kαα(ξ, η, y) Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (B.16)

with the kernel Kαα given by

Kαα =

∫ 1

0
dt

{
1

2
ei(y(1−t)+tη)ξ ξα

(
(1− t2)(ξα + ηα) + (1− t)2yα

)
− 1

2
ei(y(1−t)−tξ)η ηα

(
(1− t2)(ηα + ξα)− (1− t)2yα

)
(B.17)
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+
1

4
(t2 − 1)ei(y−η)(y+tξ)(y − ξ − η)α(y − ξ − η)α

+
1

4
(t2 − 1)ei(y+tη)(y+ξ)(y + ξ + η)α(y + ξ + η)α

}
.

The contribution to the Killing constant is

DC̃(2)|y=0 = dC̃(2)(y = 0) =

∫
d2ξd2η HααKαα(y = 0) Ĉ(ξ, φ)Ĉ(η,−φ) , (B.18)

where we have used (2.26) and the kernel Kαα(y = 0) is given as

Kαα(y = 0) =φ {f(ηξ)(ηαηα + ξαξα + 2ξαηα) + (ηαηα − ξαξα)(f(ηξ) + g(ηξ)/2)} ,
(B.19)

with the coefficient functions given as

f(x) =

(
cosx− sinx

x

)
1

x2
, g(x) = −

i
(
2 + x2 − 2 cosx− 2x sinx

)
x3

.

Taking the most general zero-form that can contribute to the Killing constant∫
d2ξd2η F (ηξ)Ĉ(ξ, φ)Ĉ(η,−φ) , (B.20)

the derivative (2.68a) generates a single tensor structure

(ηαηα − ξαξα)(F (ηξ) + F ′′(ηξ)) . (B.21)

Therefore the first term in (B.19) cannot be represented as an exact form. However this

term is precisely canceled if we take the ambiguity in M1, discussed in section 3.1.1, into

account. As we explained in section 3.1.1 the ambiguity is given by (3.3), which in Fourier

space reads

R =
1

4

∫
d2ξd2η

∫ 1

0
dt (t2 − 1)φhαα

{
g0(yαyα + ξαξα)Ĉb(ξ, φ|x)

− 2d0yαξαĈf(ξ, φ|x)
}

cos (tyξ) .

This ambiguity will lead to an additional contribution to (B.15) which is given by Rψ ?

Ĉψ − Ĉψ ? π(Rψ). Its yα-independent component will modify (B.19) by

g0φh
αα(ξαξα + ηαηα)f(ηξ)− d0φh

αα(ξαηα)f(ηξ) . (B.22)

Combining it with (B.19) and comparing with (B.21) we see that it can be made exact at

g0 = −1, d0 = −1 with

F (x) =
i
(
−1 + eix

)
2x

+A cosx+B sinx , (B.23)

where A and B are integration constants corresponding to fermionic and bosonic com-

ponents of the super-trace belonging to H0(D, ĈĈ). The choices g0 = −1 and d0 = −1
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obviously correspond to g̃0 = 1 + g0 = 0 and d̃0 = 1 + d0 = 0 in (3.14). Therefore, the

ambiguity in making a redefinition given by elements R ∈ H1(D̃, Ĉ) is fixed by requiring

exactness of (B.15), the corresponding kernel (B.17) having the form

Kαα =
1

2
ei(y(1−t)+tη)ξ ξα

(
(1− t2)(ξα + ηα) + (1− t)2yα

)
− 1

2
ei(y(1−t)−tξ)η ηα

(
(1− t2)(ηα + ξα)− (1− t)2yα

)
(B.24)

+
i

4
(t2 − 1)(y − ξ − η)α(y − ξ − η)αe

iyη sin t(y − η)ξ

+
i

4
(t2 − 1)(y + ξ + η)α(y + ξ + η)αe

iyξ sin tη(y + ξ) .

Exactness of Kαα beyond yα = 0: in order to check whether all the yα-components

of the above backreaction, and not only the Killing constant, are exact it is quite useful

to find the corresponding generating function that represents the above backreaction in

the basis of appendix C.2. One can easily extract generating functions for the coefficients

of the corresponding tensor structures in this basis. This is done using the following

representation of the identity under the contour integral sign of appendix C.2:

f(x, y, z) ∼
∮

ω

1− ω
β

1− β
γ

1− γ
f(ω−1x, β−1y, γ−1z) , (B.25)

where ω = τ−1, β = X−1 and γ = Y −1. The equivalence relation ‘∼’ is defined in (C.59).

We then arrive to the following contribution for the scalar sector where integration in t

is implicit:

~J (1) =



ω(g0+1)(t2−1)
2−2ω2t2

ω(t2−1)(4d0−2(g0+2))(ωt2−1)
4−4ω2t2

ω(t2−1)(4d0+2g0)(ωt2+1)
4−4ω2t2

−ω(t2−1)(2d0−2(g0+2))((2ω−1)t2−1)
8ω2t2−8

ω(t2−1)(4d0+2g0)((2ω+1)t2+1)
8−8ω2t2

0


. (B.26)

We will now fix g0 = −1 and d0 = −1 and show that for this choice this backreaction is

exact. Furthermore, the above choice cancels any odd power of γ in the corresponding

generating functions but leaves all even powers. In the following we will study the even

powers in γ and analyze whether or not they are trivial in cohomology.

With this choice for the redefinition and expanding in β and γ up to order βn and γm

one gets the following result:

~J (1)
n,m =

1

8



ω
t2ω2−1

[A
(1)
n,m(t) +B

(1)
n,m(t)tω]

2ω
t2ω2−1

[A
(2)
n,m(t) +B

(2)
n,m(t)tω]

2ω
ωt+1 [((1− t)m + (t− 1)m) (1− t)n+1]

ω
t2ω2−1

[A
(4)
n,m(t) +B

(4)
n,m(t)tω]

0
2ω
ωt+1 [(t+ 1) ((1− t)m + (t− 1)m) (1− t)n+1]


. (B.27)
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In the expression above we define

A(1)
n,m = − ((−u)m + um) vn + ((−v)m + vm)un

B(1)
n,m = −tun (vm + (−v)m)− t (um + (−u)m) vn

A(2)
n,m = un (t (vm + (−u)m + (−v)m) + vm − (−u)m + (−v)m)

− um+1vn + (−u)m+1vn − um+n+1

B(2)
n,m = −t

(
un (t (vm + (−u)m + (−v)m) + vm − (−u)m + (−v)m)

+ um+1vn + u(−u)mvn − um+n+1
)

A(4)
n,m = vun

(
vm+1 + t (2um + 2(−u)m + (−v)m)− 2um − 2(−u)m + (−v)m

)
− u2 (um + (−u)m) vn

B(4)
n,m = (−t)v un

(
vm+1 + t (2um + 2(−u)m + (−v)m)− 2um − 2(−u)m + (−v)m

)
− tu2 (um + (−u)m) vn

where again the integration over t is implicit and we defined u = 1− t and v = 1 + t.

To show its exactness it is first important to use the Fierz identity freedom to bring

the above expressions to a canonical form. We then distinguish various cases:

For n > 0 and m > 0: labeling by DJ
(0)
m,n the exact term associated with the term

βnγm we get

J (0)
m,n =

ω2

8 (1− ω2)

∫ 1

0
dt

[
2ωn

(
(1− t)m+2(1 + t)n

(m+ 1)(ωt− 1)
+

(t+ 1)m+2(1− t)n

(m+ 1)(ωt+ 1)

)
−

4ω
(
1− t2

)
(m+ n+ 1)(1− t)m+n

(m+ 1)(ωt+ 1)

+
t(2mn+m+ 3n+ 2)(1− t)m(1 + t)n

(m+ 1)(n+ 1)

+
t(2mn+m+ 3n+ 2)(1 + t)m(1− t)n

(m+ 1)(n+ 1)

+
(1− t)m(1 + t)n(2(m+ 1)(n+ 1)− ω(m+ n+ 2))

ω(m+ 1)(n+ 1)

+
(1 + t)m(1− t)n(ω(m+ n+ 2)− 2(m+ 1)(n+ 1))

ω(m+ 1)(n+ 1)
+

2(m− n)(1− t)m+n+1

(m+ 1)(n+ 1)

]
,

(B.28)

where m ∈ 2N is even, otherwise there is no need for an improvement.

For n > 0 and m = 0: the exact term is given by

J (0)
m,n =

∫ 1

0
dt
−(1+ 1

ω )
n

(−1+ω)(−2+n(−1+ω)+2tω)

−1+tω +
(−1+ω

ω )
n
(6+3n+2(n+2t)ω−(2+n)ω2)

1+tω

4 (−1 + t2)ω
, (B.29)

where again m ∈ 2N is even as otherwise there is no need for an improvement.
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For m > 0 and n = 0: again we can construct an exact term which is given by

J (0)
m,n =

∫ 1

0
dt

(−1+ω
ω

)1+m

2(1 + t)
(
t+ 1

ω

) , (B.30)

where again m ∈ 2N.

Note that we have used slightly different conventions for the sign of n and m here as

compared to appendix E in which they were defined as γ−m and β−n.

B.2.2 Gauge sector

Let us recall that the equations of motion for the twisted gauge fields to second order read

(D̃ω̃(2))ψ = Ṽ(Ω, ω̂, Ĉ) . (B.31)

As explained in subsection 3.1.2 the source term will in general depend on g0, d0, g1 and

d1. An explicit calculation shows that the source term is given by

Ṽ(Ω, ω̂, Ĉ) = φhαα
∫

dξ dη
{
Kαα Ĉ(ξ, φ|x) ω̂(η,−φ|x)ψ + K̄αα ω̂(ξ, φ|x) Ĉ(η, φ|x)ψ

}
.

(B.32)

The kernels are given by

Kαα =

∫ 1

0
dt

{
1

4
(t2 − 1) (yα − ηα − ξα)(yα − ηα − ξα) ei(y−η)(tξ+η)

+
1

4
(t2 − 1) g0 (yαyα + ηαηα + ξαξα − 2yαηα) cos(t(y − η)ξ)eiyη

−1

2
(t2 − 1) d0 (yαξα + ξαηα) cos(t(y − η)ξ)eiyη

+
1

2
ηα(yα − ξα + (2t− 1)ηα) ei[(1−t)y−tξ]η (B.33)

−1

4
(t2 − 1)(yα − ξα + ηα)(yα − ξα + ηα)ei(ty+η)(ty+ξ)

−1

4
(t2 − 1) g1 (yαyα + ξαξα + ηαηα − 2ξη) cos(ty(ξ − η))eiηξ

−1

2
(t2 − 1) d1 (yαηα − yαξα) cos(ty(ξ − η))eiηξ

}
,

and also by

K̄αα =

∫ 1

0
dt

{
−1

4
(t2 − 1)(yα + ξα − ηα)(yα + ξα − ηα) ei(y+ξ)(tη−y)

−1

4
(t2 − 1) g0 (yαyα + ξαξα + 2yαξα + ηαηα) cos(t(y + ξ)η)eiyξ

−1

2
(t2 − 1) d0 (yαηα + ξαηα) cos(t(y + ξ)η)eiyξ

+
1

2
ξα(−yα + ηα + (2t− 1)ξα) ei[(1−t)y−tη]ξ (B.34)

+
1

4
(t2 − 1)(yα − ξα − ηα)(yα − ξα − ηα)ei(ty−η)(ty+ξ)
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+
1

4
(t2 − 1) g1 (yαyα + ξαξα + ηαηα + 2ξαηα) cos(ty(ξ + η))eiξη

−1

2
(t2 − 1) d1 (yαηα + yαξα) cos(ty(ξ + η))eiξη

}
.

We will show that this term is exact only for the choice g0 = d0 = g1 = d1 in the following.

We will discuss this for the kernel K̄αα here, but we also checked that the kernel Kαα can

be removed. For this purpose it is advantageous to decompose the kernel Kαα as follows

K̄αα =

∮ (
J1 ξαξα + J2

(ηα + yα)ξα
(s+ τ)

+ J3
(ηα − yα)ξα

s− τ
+ J4

(ηα + yα)(ηα + yα)

(s+ τ)(s+ τ)

+J5
(ηα − yα)(ηα − yα)

(s− τ)(s− τ)
+ J6

(ηα + yα)(ηα − yα)

(s+ τ)(s− τ)

)
exp(iτξη + isyξ + iryη) .

(B.35)

The contour integration is with respect to the variables s+τ , s−τ and r. As in appendix C.2

the Ji are formal series in these three variables

Ji =
∑
n,m

Jm,ni (τ, r, s) =
∑
n,m

(s− τ)m(s+ τ)nki(r) , (B.36)

where we defined Jm,ni (τ, r, s) = (s− τ)m(s+ τ)nki(r).

This decomposition is similar to the one of appendix C.2 but we had to slightly modify

it as we are now considering the twisted-adjoint covariant derivative D̃ acting on functionals

linear in both Ĉ and ω̂ as opposed to the adjoint covariant derivative D acting on functionals

quadratic in Ĉ in appendix C.2.

As discussed in appendix C.2 the twisted-adjoint covariant derivative only mixes those

Jm,ni which have the same values for m and n. By adding an exact term, which we

parametrize by k(0), and using the freedom of Fierz identities expressed by three arbitrary

functions χi(r) the coefficients ki change as follows:

δ~k =



k(0) + χ′1,

k(0)(−1 + s)− nχ1 − χ2,

k(0)(1 + s)−mχ1 + χ′3,

(−1 + n)χ2,

(1−m)χ3,

k(0)(−1 + s2) +mχ2 − nχ3


, (B.37)

where we denoted χ′i = ∂rχi. We distinguish various cases for n and m.

For m = 1 or n = 1: by (B.37) for the choice of n = 1 or m = 1 the components

k4 and k5 respectively can not be changed by Fierz identities and adding an exact form.

These components therefore have to vanish up to polynomials. Upon defining α = r−1 this

leads to

(n,m) = (1,−1) → (d1 + g0 − g1 − d0)~v1 ∼ 0 ,
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(n,m) = (1,−2) → (g0 + g1 − d0 − d1)(1− t2α)~v1 ∼ 0 ,

(n,m) = (−1, 1) → (g0 − g1 − d1 + d0)~v2 ∼ 0 ,

(n,m) = (−2, 1) → (d1 − d0 + g1 − g0)(1 + t2α)~v2 ∼ 0 ,

where ~v1 = (0, 0, 0, v, 0, 0)T and ~v2 = (0, 0, 0, 0, v, 0)T with v = (−1 + t2) α
8t2α2−8

and

integration over t from 0 to 1 is implicit. These equations then imply that

g0 = g1 = d0 = d1 (B.38)

and it can be easily checked that all other sectors (1,m) and (n, 1) for m,n ≤ 0 also vanish

up to polynomials for the choice (B.38).

For n < 0 and m = 0: in this case we can remove the corresponding components of

the kernel K̄αα by adding an exact form with

k(0) =

∫ 1

0
dt(−1 + t)(1 + t)−n(r + t)(−n+ 2r − (2− n)t) + (r − t)(2(r + t) + (1− t)−n(1 + t)(−n+ 2r + (2− n)t)

2i(1− r2)(r − t)(r + t)
,

where we have restricted ourselves to the choice g0 = g1 = d0 = d1 = −1 for the sake of

obtaining an expression of reasonable size. However we also made sure that this holds for

the general case (B.38).

For m < 0 and n = 0: in this case the source term identically vanishes for the choice

g0 = g1 = d0 = d1 = −1. We also checked that it is exact for values different from −1.

For n < 0 and m < 0: an exact form similar as in the case n < 0, m = 0 can be

constructed. We will not give its explicit form here as it is quite involved.

By a completely analogous procedure we also checked that the kernel Kαα is exact with

respect to the twisted-adjoint covariant derivative D̃. Therefore we have shown that for the

choice (B.38) we can fully remove the source term Ṽ(Ω, ω̂, Ĉ) in (3.16) by a pseudo-local

field redefinition.

C Basis

In this appendix we will summarize a few aspects of two different basis for the various

backreactions studied in this paper. We will first focus on the index form in subsection C.1

and then study the integral form in subsection C.2.

C.1 Index basis

This appendix is devoted to describing the various details of the index form for the backreac-

tions discussed in section B. This form can be obtained by Taylor expanding a backreaction,

J(y) =
∑
k

1

k!
Jα(k)y

α . . . yα . (C.1)

In the following we will discuss in appendix C.1.1 how one can efficiently obtain the in-

dex form Jα(k) from the Fourier-space expression of section C.1.1. Then we will discuss

– 64 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
4

in section C.1.2 how one can derive a conservation identity in this formalism, which we

generalize in section C.1.3 to other form-degrees. As we will see the index representation

is only fixed up to Fierz identities which we will discuss in section C.1.4. In section C.1.5

we will then focus on how to solve the torsion constraint, as discussed in section 3.2.

C.1.1 Obtaining the index basis from Fourier space

The most general two-form structure for the physical backreaction reads

Jα(2s=m+n) = αn,m,l1 HααCα(n−1)ν(l)C
ν(l)

α(m−1) + αn,m,l2 Hα
β Cα(n−1)βν(l)C

ν(l)
α(m)

+ αn,m,l3 Hα
β Cα(n)ν(l)C

ν(l)
α(m−1)β + αn,m,l4 HββCα(n)ββν(l)C

ν(l)
α(m) (C.2)

+ αn,m,l5 HββCα(n)ν(l)C
ν(l)

α(m)ββ + αn,m,l6 HββCα(n)βν(l)C
ν(l)

α(m)β ,

where α2, α3 and α4, α5 are not really independent unless the fields have additional Yang-

Mills indices. There is an additional ambiguity due to Fierz identities, which we will

discuss below.

We can extract these coefficients from expressions in Fourier space which have the

following most general form (omitting all integrals):

Hγγξγ(A′′)ηγ(B′′)yγ(2−A′′−B′′)(yξ)
A′(yη)B

′
(ηξ)C

′

× exp i(ayξ + byη + cηξ)P (t, q) Ĉ(ξ, φ)Ĉ(η,−φ) , (C.3)

where a, b, c are possibly functions of t, q, constants or zero. Then the coefficient of

Hβ(A′′+B′′)
α(2−A′′−B′′) Ĉβ(A′′)α(n)ν(l)Ĉ

ν(l)
β(B′′)α(m) , (C.4)

is found to be

fn,m,l(A′, B′, C ′|A′′, B′′) =
(−)A

′′+B′′(−i)A′′+B′′+A′+B′+l+C′(m+ n−A′′ −B′′ + 2)!

(n−A′)!(m−B′)!(l − C ′)!

×
∫

dt dq an−A
′
bm−B

′
cl−C

′
P (t, q) , (C.5)

which is related in a simple way to αi by

αn,m,l1 = fn−1,m−1,l(A′, B′, C ′|0, 0) , αn,m,l2 = fn−1,m,l(A′, B′, C ′|1, 0) ,

αn,m,l3 = fn,m−1,l(A′, B′, C ′|0, 1) , αn,m,l4 = fn,m,l(A′, B′, C ′|2, 0) ,

αn,m,l5 = fn,m,l(A′, B′, C ′|0, 2) , αn,m,l6 = fn,m,l(A′, B′, C ′|1, 1) .

Note that for vanishing parameter a in (C.5) the corresponding term has to be replaced by

δn,A′ and analogously for b and c. Therefore the coefficients fn,m,lN,M,L of (3.30) are given by

fn,m,lN,M = (−1)N+M (−i)N+M+n+m+2l(m+ n−N −M + 2)! . (C.6)
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C.1.2 Conservation in index form

Since there is only one three-form structure

HĈα(n)ν(l)Ĉ
ν(l)

α(m) , (C.7)

imposing the conservation leads to a single identity among six αn,m,li :

αn,m,l4
−σ(n+l+2)(n+l+3)

3 − αn−1,m+1,l−1
4

(m+1)
3 + αn−2,m+2,l

4
σ(m+1)(m+2)

3 + αn,m,l−2
4

−σ
3

+αn,m,l5
σ(m+l+2)(m+l+3)

3 − αn+1,m−1,l−1
5

−(n+1)
3 + αn+2,m−2,l

5
−σ(n+1)(n+2)

3 + αn,m,l−2
5

σ
3

+αn+1,m−1,l
6

−σ(n+1)(n+l+3)
3 + αn−1,m+1,l

6
σ(m+1)(m+l+3)

3 − αn,m,l−1
6

(m−n)
6 (C.8)

+αn+1,m−1,l+2
1

−σ(l+2)(l+1)
3 + αn−1,m+1,l+2

1
σ(l+2)(l+1)

3 + αn−1,m+1,l
1

σ
3 + αn+1,m−1,l

1
−σ
3

+αn+1,m−1,l+1
2

−σ(l+1)(n+l+3)
3 − αn,m,l2

(m+n+2)
6 + αn+1,m−1,l−1

2
−σ
3 + αn−1,m+1,l+1

2
−σ(l+1)(m+1)

3

+αn−1,m+1,l+1
3

−σ(l+1)(m+l+3)
3 − αn,m,l3

(m+n+2)
6 + αn−1,m+1,l−1

3
−σ
3 + αn+1,m−1,l+1

3
−σ(l+1)(n+1)

3 = 0 ,

where σ = i/2 is the coefficient in the equations of motion

∇Ĉα(k) = −2σφhααĈα(k−2) + σφhββĈ
α(k)ββ . (C.9)

C.1.3 Index form of differential at degree 0 and 1

The most general one-form structure reads

Kα(2s=m+n) = βn,m,l1 hααCα(n−1)ν(l)C
ν(l)

α(m−1) + βn,m,l2 hα
β Cα(n−1)βν(l)C

ν(l)
α(m)

+ βn,m,l3 hα
β Cα(n)ν(l)C

ν(l)
α(m−1)β + βn,m,l4 hββCα(n)ββν(l)C

ν(l)
α(m) (C.10)

+ βn,m,l5 hββCα(n)ν(l)C
ν(l)

α(m)ββ + βn,m,l6 hββCα(n)βν(l)C
ν(l)

α(m)β ,

which leads to the following transformations of αi that parametrize DK (φ is omitted):

δαn,m,l2 = βn−1,m+1,l−1
4

(m+1)

2
+ βn,m,l4

−2σ(n+l+3)n

2
+ βn−2,m+2,l

4

2σ(m+2)(m+1)

2
,

δαn,m,l4 = βn−1,m+1,l+1
4

2σ(m+ 1)(l + 1)

2
+ βn,m,l4

−n
2
,

δαn,m,l6 = βn−1,m+1,l
4

−(m+ 1)

2
+ βn,m,l+1

4

2σ(n+ l + 4)(l + 1)

2
+ σβn,m,l−1

4 ,

δαn,m,l3 = βn+2,m−2,l
5

−2σ(n+1)(n+2)

2
+ βn,m,l5

2σm(m+l+3)

2
+ βn+1,m−1,l−1

5

−(n+1)

2
,

δαn,m,l5 = βn+1,m−1,l+1
5

2σ(n+ 1)(l + 1)

2
+ βn,m,l5

−m
2

,

δαn,m,l6 = σβn,m,l−1
5 + βn,m,l+1

5

2σ(m+ l + 4)(l + 1)

2
+ βn+1,m−1,l

5

−(n+ 1)

2
,

δαn,m,l1 = βn+1,m−1,l+1
1

−2σn(l + 1)

2
+ βn−1,m+1,l+1

1

−2σm(l + 1)

2
+ βn,m,l1

(n+m+ 2)

2
,

δαn,m,l2 = −βn−1,m+1,l+2
1

2σ(l + 1)(l + 2)

2
− βn−1,m+1,l

1 σ ,

δαn,m,l3 = βn+1,m−1,l+2
1

2σ(l + 1)(l + 2)

2
+ βn+1,m−1,l

1 σ ,
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δαn,m,l1 = βn+1,m−1,l
2

−σn(n+ l + 3)

2
+ βn−1,m+1,l

2

σm(m+ 1)

2
+ βn,m,l−1

2

m

4
,

δαn,m,l2 = βn+1,m−1,l+1
2

−σn(l + 1)

2
+ βn,m,l2 (1 +

m

4
) ,

δαn,m,l3 = βn+1,m−1,l+1
2

σ(n+ l + 4)(l + 1)

2
+ βn+1,m−1,l−1

2

σ

2
+ βn,m,l2

−m
4

,

δαn,m,l4 = βn,m,l2

−σ
2

+ βn,m,l+1
2

−σ(l + 2)(l + 1)

2
(C.11)

δαn,m,l6 = βn+1,m−1,l+2
2

σ(l + 2)(l + 1)

2
+ βn+1,m−1,l

2

σ

2
,

δαn,m,l1 = βn−1,m+1,l
3

σm(m+ l + 3)

2
+ βn−1,m+1,l

3

−σn(n+ 1)

2
+ βn,m,l−1

3

−n
4
,

δαn,m,l2 = βn−1,m+1,l+1
3

σ(m+ l + 4)(l + 1)

2
+ βn−1,m+1,l−1

3

σ

2
+ βn,m,l3

−n
4
,

δαn,m,l3 = βn−1,m+1,l+1
3

−σm(l + 1)

2
+ βn,m,l3 (1 +

n

4
) ,

δαn,m,l5 = βn,m,l3

σ

2
+ βn,m,l+1

3

σ(l + 2)(l + 1)

2
,

δαn,m,l6 = βn−1,m+1,l+2
3

−σ(l + 2)(l + 1)

2
− βn−1,m+1,l

3

σ

2
,

δαn,m,l2 = βn−1,m+1,l
6

σ(m+ 1)(m+ l + 4)

2
+ βn+1,m−1,l

6

−σn(n+ 1)

2
+ βn,m,l−1

6

−n
4
,

δαn,m,l3 = βn+1,m−1,l
6

−σ(n+ 1)(n+ l + 4)

2
+ βn−1,m+1,l

6

σm(m+ 1)

2
+ βn,m,l−1

6

m

4
,

δαn,m,l4 = βn,m,l+1
6

σ(l + 1)(m+ l + 4)

2
+ βn,m,l−1

6

σ

2
+ βn+1,m−1,l

6

−(n+ 1)

4
,

δαn,m,l5 = βn,m,l+1
6

σ(l + 1)(n+ l + 4)

2
+ βn,m,l−1

6

σ

2
+ βn−1,m+1,l

6

−(m+ 1)

4
,

δαn,m,l6 = βn+1,m−1,l+1
6

σ(n+1)(l+1)

2
+ βn−1,m+1,l+1

6

σ(m+1)(l+1)

2
+ βn,m,l6

−(n+m)

4
.

As a consequence of DD ≡ 0 such α’s obey the conservation identity (C.8). Applying D

to the most general zero-form

γn,m,lĈα(n)ν(l)Ĉ
ν(l)

α(m) , (C.12)

gives a variation of βn,m,li that does not affect αn,m,li :

δβn,m,l1 = γn+1,m−1,l(−σn(n+ 1)) + γn−1,m+,l(2σm(m+ 1)) ,

δβn,m,l2 = γn,m,l(−n) + γn−1,m+1,l+1(2σ(l + 1)(m+ 1)) ,

δβn,m,l3 = γn,m,l(−m) + γn−1,m+1,l+1(2σ(l + 1)(n+ 1)) , (C.13)

δβn,m,l4 = γn,m,l+2(+σ(l + 2)(l + 1)) + γn,m,lσ ,

δβn,m,l5 = γn,m,l+2(−σ(l + 2)(l + 1))− γn,m,lσ ,

δβn,m,l6 = 0 .
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C.1.4 Fierz identities

Not all of the six α’s are independent due to the Fierz identities, which also play an

important role in simplifying four-fermion terms in the backreaction of appendix B.1.2.

There are three independent Fierz identities that can be obtained from

HxµĈα(n−1)ν(l+1)Ĉ
ν(l+1)

α(m) +Hx
γ Ĉµα(n−1)ν(l)Ĉ

ν(l)
α(m)γ

−Hx
γ Ĉγα(n−1)ν(l)Ĉ

ν(l)
α(m)µ ≡ 0 , (C.14)

by contracting or symmetrizing x with some of the Ĉ’s and symmetrizing µ with α’s:

HααĈα(n−1)ν(l+1)Ĉ
ν(l+1)

α(m) +Hα
γ Ĉα(n)ν(l)Ĉ

ν(l)
α(m)γ

−Hα
γ Ĉγα(n−1)ν(l)Ĉ

ν(l)
α(m+1) ≡ 0 , (C.15a)

Hγ
α Ĉγα(n−1)ν(l+1)Ĉ

ν(l+1)
α(m) +HγγĈγα(n)ν(l)Ĉ

ν(l)
α(m)γ

−HγγĈγγα(n−1)ν(l)Ĉ
ν(l)

α(m+1) ≡ 0 , (C.15b)

Hγ
α Ĉα(n−1)ν(l+1)Ĉ

ν(l+1)
α(m)γ +HγγĈα(n)ν(l)Ĉ

ν(l)
α(m)γγ

−HγγĈγα(n−1)ν(l)Ĉ
ν(l)

α(m+1)γ ≡ 0 . (C.15c)

This leads to the following transformations of the coefficients that do no affect the expres-

sion but only its presentation in terms of α’s:

δαn,m,l2 = εn−1,m,l−1
1 , δαn,m,l4 = −εn,m−1,l

1 , δαn,m,l6 = εn−1,m,l
1 ,

δαn,m,l3 = εn,m−1,l−1
2 , δαn,m,l5 = εn−1,m,l

2 , δαn,m,l6 = −εn,m−1,l
2 , (C.16)

δαn,m,l1 = εn−1,m−1,l−1
3 , δαn,m,l2 = −εn−1,m−1,l

3 , δαn,m,l3 = εn−1,m−1,l
3 .

Here all ε’s are understood to be vanishing for the case of at least one negative index. The

conservation identity is invariant under Fierz transformations. Analogous formulas can

be derived for Fourier-space representation of two-forms, but it is somewhat difficult to

effectively use Fierz identities due to the appearance of fake poles like yα = ηα(yξ)−ξα(yη)
(ηξ) .

There is a natural way of fixing all Fierz transformations. Any one- or two-form J(y)

can be decomposed into three zero-forms as

J(y) = Hββ∂β∂βA(y) +Hα
β yα∂βB(y) +Hααy

αyαC(y) , (C.17)

which in components corresponds to (3.31). One can solve for the Fierz transformations

that map six α’s into just three sets of coefficients as

A(y) =
∑
n,m,l

an,m,l
1

(n+m+ 2)!
Ĉα(n+1)ν(l)Ĉ

ν(l)
α(m+1) y

α(n+m+2) , (C.18)

B(y) =
∑
n,m,l

bn,m,l
1

(n+m)!
Ĉα(n)ν(l)Ĉ

ν(l)
α(m) y

α(n+m) , (C.19)

C(y) =
∑
n,m,l

cn,m,l
1

(n+m− 2)!
Ĉα(n−1)ν(l)Ĉ

ν(l)
α(m−1) y

α(n+m−2) , (C.20)
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which requires us to impose the following relations among α2,3,4,5,6 by applying

Fierz identities:

αn−1,m+1,l
4

n(n+ 1)
=
αn+1,m−1,l

5

m(m+ 1)
=

αn,m,l6

2(m+ 1)(n+ 1)
,

αn,m,l2

n
=
αn,m,l3

m
, (C.21)

that can be solved unambiguously for εn,m,l1,2,3 . In fact, there are three invariants I4, I5, I6 of

the Fierz transformations and the a, b, c coefficients are linear combinations thereof,

an,m,l = In,m,l6 ,

bn,m,l(m+ n) = In,m,l5 + In,m,l4 +
m− n

m+ n+ 2
In,m,l−1

6 ,

cn,m,l =
−m
m+ n

(
n

m+ n+ 1
In,m,l−2

6 +
n

m
In,m,l−1

5 − In,m,l−1
4

)
,

where we have defined

I6 = αn,m,l6 + αn+1,m−1,l
5 + αn−1,m+1,l

4 ,

I5 = αn,m,l3 − αn+1,m−1,l−1
5 − αn,m,l+1

1 ,

I4 = αn,m,l2 + αn−1,m+1,l−1
4 + αn,m,l+1

1 .

In terms of the a, b, c coefficients the conservation identity is given by

σ
3(1+m+n)(2+m+n)((1 +m)(2 +m)a−1+n,1+m,−2+l − (1 + n)(2 + n)a1+n,−1+m,−2+l) (C.22)

+ (2+l+m+n)(3+l+m+n)σ
3(1+m+n)(2+m+n) ((1 +m)(2 +m)a−1+n,1+m,l − (1 + n)(2 + n)a1+n,−1+m,l)

−1
3(1 + n)σb1+n,−1+m,−1+l − 1

3(1 + l)(2+l+m+n)σ((1 +m)b−1+n,1+m,1+l + (1 + n)b1+n,−1+m,1+l)

−1
6(m+ n)(2 +m+ n)bn,m,l + 1

3(1 + l)(2 + l)σ(c−1+n,1+m,2+l − c1+n,−1+m,2+l)

+σc−1+n,1+m,l

3 − σc1+n,−1+m,l

3 − 1
3(1 +m)σb−1+n,1+m,−1+l = 0 .

By only considering the terms proportional to σ in the above expression the action of ∇
on (C.17) can be obtained.

C.1.5 Fronsdal currents

In solving for the Fronsdal current from the backreaction one needs to evaluate j = (I −
∇Q−1)J as we discussed in section 3.2. Assuming that the backreaction is given in the

form (C.17), the middle component of j vanishes as discussed in section 3.2 and hence

j(y) = Hββ∂β∂β j(y) +Hααy
αyαj′(y) , (C.23)

where

j(y) =
∑
n,m,l

an,m,lF

1

(n+m+ 2)!
Ĉα(n+1)ν(l)Ĉ

ν(l)
α(m+1) y

α(n+m+2) , (C.24)

j′(y) =
∑
n,m,l

cn,m,lF

1

(n+m− 2)!
Ĉα(n−1)ν(l)Ĉ

ν(l)
α(m−1) y

α(n+m−2) . (C.25)
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The coefficients an,m,lF and cn,m,lF for the Fronsdal current j can be expressed in terms of

those for J given in the basis (C.17):

an,m,lF = an,m,l +
2σ

(n+m+ 2)(m+ n)

× (−(2+m)(a−1+n,1+m,−1+l + (1+l)(4+l+m+n)a−1+n,1+m,1+l)

+ (2 + n)(−a1+n,−1+m,−1+l − (1 + l)(4 + l +m+ n)a1+n,−1+m,1+l))

− σ

2
(m+ n)(b−1+n,1+m,l − b1+n,−1+m,l)

+
σ

2
(1 + l)(2 + l)(m+ n)(b−1+n,1+m,2+l − b1+n,−1+m,2+l) ,

cn,m,lF = cn,m,l +
2σ

(m+ n)(2 +m+ n)
(−mc−1+n,1+m,−1+l − nc1+n,−1+m,−1+l (C.26)

− (1 + l)(l +m+ n)(c−1+n,1+m,1+l − nc1+n,−1+m,1+l))

+
σ(2 +m+ n)

2(m+ n)(1 +m+ n)
(m(1 +m)b−1+n,1+m,−2+l − n(1 + n)b1+n,−1+m,−2+l)

+
σ(2 +m+ n)(l +m+ n)(1 + l +m+ n)

2(m+ n)(1 +m+ n)

× (m(1 +m)b−1+n,1+m,l − n(1 + n)(2 +m+ n)b1+n,−1+m,l) .

C.1.6 Local conserved tensors

The canonical spin-s conserved tensor has s-derivatives and is fixed up to an overall factor.

The simplest way to get a generating function for all such tensors is to take

T (y|x) = Ĉ(y, φ|x)Ĉ(y,−φ|x) , (C.27)

which can be checked to obey ∇αα∂yα∂yαT = 0. The freedom in the relative factors can be

taken into account by

T can(y|x) =

∫
dt f(t)Ĉ(yt, φ|x)Ĉ(yt,−φ|x) , (C.28)

where t counts the rank of the conserved tensors. The dual closed two-forms are

Jcan(y|x) = Hαα∂α∂α

∫
dt f(t)Ĉ(yt, φ|x)Ĉ(yt,−φ|x) , (C.29)

and an equivalent form in Fourier space (to be compared with the formulas of ap-

pendix B.1.2) is

Jcan(y|x) = Hαα

∫
dt (−t2f(t))(ξ − η)α(ξ − η)αe

ity(ξ−η)Ĉ(ξ, φ|x)Ĉ(η,−φ|x) . (C.30)

The moments fn of f(t) make relative factors in front of conserved tensors. The index form

of the above expression is

αn,m,l4 =
(−)m(m+ n)!

m!n!
δl,0fn+m , αn,m,l4 = αn,m,l5 = −1

2
αn,m,l6 . (C.31)
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All other αi ≡ 0. The coefficients, of course, obey identity (C.8) that ensures the conser-

vation (it splits into three independent equations). There is no hook part, bn,m,l = 0, as

discussed around (3.45) and the tensor is traceless cn,m,l = 0

an,m,l = −
(−1)mfn+m(m+ n+ 2)!δl,0

(n+ 1)!(m+ 1)!
. (C.32)

One can use Jcan in two ways: it is a doublet (with respect to φ) of traceless conserved

tensors or one can put Jcan as a source for ω(y, φ). In the latter case one finds a nonzero

torsion and solving for the Fronsdal current as explained in appendix C.1.5 we have that

cn,m,lF = 0, i.e. the Fronsdal current is still traceless, and

an,m,0F = −(−)mfm+n(m+ n+ 2)!

(m+ 1)!(n+ 1)!
, an,m,1F = − i(−1)mfm+n(m+ n+ 2)!

(m+ 2)(m+ 1)!(n+ 1)!
, (C.33)

i.e. it involves ĈĈ-terms with no more than one index contracted and hence the expression

is local but contains higher derivatives. One can show that the canonical current is exact,

i.e. J = DK, with cn,m,l = bn,m,l = 0 and

an,m,l = −2(−1)mil(4 + 2l +m+ n)fm+n(m+ n+ 1)!(m+ n+ 2)!

(m+ 1)!(n+ 1)!(3 + l +m+ n)!
. (C.34)

We thus see that representing it as an exact form requires a pseudo-local expression. How-

ever, it contains l! in the denominator, which gives a seemingly good asymptotic behavior.

Therefore, the redefinition, which is clearly unphysical appears to be a well-defined expres-

sion. It is also possible to represent it as a ∇-exact form with

an,m,l = −
(−)m

(
i
2

)l√
πfm+n(m+ n+ 2)!Γ

[
1
2(4 +m+ n)

]
Γ
[
1 + l

2

]
(m+ 1)!(n+ 1)!Γ

[
1
2(5 + l +m+ n)

] . (C.35)

C.1.7 Pseudo-local conserved tensors

Example 1. A simple example of a pseudo-local conserved tensor shows up in the second-

order computations:

J(y|x) = Hαα

∫
dt f(t)(ξ − η)α(ξ − η)αe

it(y+η)(y+ξ)Ĉ(ξ, φ|x)Ĉ(η,−φ|x) , (C.36)

which is conserved for any f(t), the corresponding coefficients being

αn,m,l4 =
(−)m(−i)l+2(m+ n+ l)!

m!n!l!
fn+m+l , αn,m,l4 = αn,m,l5 = −1

2
αn,m,l6 . (C.37)

It comes from (B.5a) and (B.5b) terms in the second-order perturbation theory. This gives

an,m,l =
(−)m(−i)lfm+n+l(m+ n+ 2)!

(m+ 1)!(n+ 1)!l!
. (C.38)

Solving for the Fronsdal current as explained in appendix C.1.5 we find that cn,m,lF = 0, i.e.

the current is traceless and

an,m,lF =
(−1)mi−l((m+n)fl+m+n − lf−1+l+m+n + (4+l+m+n)f1+l+m+n)(m+ n+ 2)!

(m+ n)l!(m+ 1)!(n+ 1)!
,

(C.39)

which leads to a pseudo-local expression.
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Example 2. There is another choice of the coefficients corresponding to a conserved

backreaction

αn,m,l4 = fn+m , αn,m,l4 = αn,m,l5 = −1

2
αn,m,l6 . (C.40)

These coefficients correspond to a pseudo-local expression and have a considerably worse

asymptotic behavior since there are no damping factorials. In the symmetrized form

we have

cn,m,l = fn+m . (C.41)

The Fronsdal current is found to be a total trace, i.e. an,m,lF = 0, and

cn,m,lF = − i((1 + 2i) + (1 + i)(m+ n) + l(1 + l +m+ n))fm+n

2 +m+ n
. (C.42)

Example 3: canonical backreaction. As it was mentioned, if one takes the local

conserved tensor jcan(y, φ) and uses it as a source for Dω̂(y, φ) one has to solve for the

contorsion tensor. As a result the Fronsdal current has terms with one pair of contracted

indices. One can solve the inverse problem: what is JFr(y, φ) such that it yields the

canonical conserved tensor as a Fronsdal current, i.e. the terms Ĉα(n)ν(l)Ĉ
ν(l)

α(m) with

l > 0 are absent in j, the canonical backreaction. Such JFr(y, φ) must be pseudo-local

since one pair of contracted indices produced by the contorsion tensor needs to be canceled

by l = 1 term from JFr(y, φ), which thereby produces l = 2 terms and so on. The solution is

an,m,l = −(−1)l+mil(m+ n)(4 + 2l +m+ n)fn+m(m+ n+ 1)!(2 +m+ n)!

(m+ 1)!(n+ 1)!(l +m+ n+ 3)!
, (C.43)

and the Fronsdal current is exactly (C.32).

This solution is remarkable in the sense that a pseudo-local expression is necessary

in order to get the canonical s-derivative conserved tensor on the right-hand side of the

Fronsdal equations provided that the symmetry φ→ −φ of the equations is not broken, i.e.

the same expression JFr(y, φ) appears on the right hand side of (HS) torsion and Riemann

two-forms. In particular this is true for the s = 2 case of the Einstein equations.

The Fronsdal backreaction is exact, i.e. can be represented as JFr = DUFr for some

UFr. The expression is quite cumbersome and we give its leading behavior only

an,m,lU = −
il(−1)l+m(m+ n+ 1)!(m+ n+ 2)!Gm+n,l

(m+ 1)!(n+ 1)!(l +m+ n+ 3)!
, (C.44)

Gk,l = −2kfk

(
l log l + . . .+

kl

l!

)
.

Therefore it has again a factorially damped asymptotic behavior.

C.2 Integral basis

In the following we discuss a basis that we use extensively in our analysis of the coho-

mologies and cocycles in Prokushkin-Vasiliev Theory, which are discussed in appendix E

and appendix B.2. We consider q-forms that are either linear or quadratic in physical

zero-forms Ĉ and consist of vielbeins. We will focus on the linear case first.
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C.2.1 Basis linear in Ĉ

For the various form-degrees the most general ansatz for objects containing Ĉ linearly is

given by

J0 =

∮
dτ J (0)(τ)Ĉ(yτ) , (C.45a)

J1 = iφ

∮
dτ hαα

(
J

(1)
1 (τ)yαyα + J

(1)
2 (τ)τ−1yα∂

y
α + J

(1)
3 (τ)τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.45b)

J2 =

∮
dτ Hαα

(
J

(2)
1 (τ)yαyα + J

(2)
2 (τ)τ−1yα∂

y
α + J

(2)
3 (τ)τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.45c)

J3 = iφ

∮
dτ HJ (3)(τ)Ĉ(yτ) , (C.45d)

where we have encoded the arbitrary relative coefficients of the different tensor structures

by a formal series in τ−1 given by

J
(k)
i (τ) =

∞∑
l=1

j
(k)
i,l τ

−l−1 . (C.46)

We normalize the integration measure such that the following equation holds∮
dτ τ−k = δ1,k . (C.47)

For illustration purposes let us briefly outline how using (C.46) the zero-form ansatz (C.45a)

can be rewritten as

∞∑
l=0

∮
dτ j

(0)
l τ−l

( ∞∑
k=0

1

k!
Ĉα(k)τ

kyα(k)

)
=

∞∑
l,k=0

1

k!
j

(0)
l

(∮
dτ τ−l+k

)
Ĉα(k)y

α(k)

=

∞∑
k=0

1

k!
j

(0)
k Ĉα(k)y

α(k) .

Similarly one obtains the following tensor structure for form-degree q in (C.45):

q = 0 : j
(0)
k Ĉα(k) , (C.48)

q = 1 : 2j
(1)
1,kh

ααĈα(k−2) + j
(1)
2,khββĈ

ββα(k) + j
(1)
3,kh

α
γ Ĉ

α(k−1)γ , (C.49)

q = 2 : 2j
(2)
1,kH

ααĈα(k−2) + j
(2)
1,kHββĈ

ββα(k) + j
(2)
1,kH

α
γ Ĉ

α(k−1)γ , (C.50)

q = 3 : j
(3)
k HĈα(k) . (C.51)

Where we have have only listed the coefficients of the various powers of yα-oscillators

dropping an overall factorial 1
k! .

C.2.2 Basis quadratic in Ĉ

For the discussion of cohomologies with respect to pseudo-local field redefinitions (2.56) that

we present in appendix E it is useful to consider expressions in Fourier space using (2.63).
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We will again use the convention that the first and the second zero-form Ĉ is associated

with wave-twistor ξα and ηα respectively as discussed in appendix B.1 and therefore∫
d2ξd2η J (p)(ξ, η, y) Ĉ(ξ, φ|x) Ĉ(η,−φ|x) . (C.52)

It is convenient to define

ζ±α = (ξ ± η)α . (C.53)

One can then express the most general ansatz for p-forms consisting of vielbeins and

quadratic in the zero-form Ĉ in terms of J (p) by

J (0) =

∮
J (0)(s+ r)−1(s− r)−1K̃ , (C.54a)

J (1) = φ

∮
hαα

(
J

(1)
1 yαyα + J

(1)
2 (s− r)−1yαζ

+
α +J

(1)
3 (s+r)−1yαζ

−
α + J

(1)
4 (s−r)−2ζ+

α ζ
+
α

+J
(1)
5 (s+ r)−2ζ−α ζ

−
α + J

(1)
6 (s+ r)−1(s− r)−1ζ+

α ζ
−
α

)
K̃ , (C.54b)

J (2) =
1

4

∮
Hαα

(
J

(2)
1 yαyα + J

(2)
2 (s−r)−1yαζ

+
α + J

(2)
3 (s+r)−1yαζ

−
α + J

(2)
4 (s−r)−2ζ+

α ζ
+
α

+J
(2)
5 (s+ r)−2ζ−α ζ

−
α + J

(2)
6 (s+ r)−1(s− r)−1ζ+

α ζ
−
α

)
K̃ , (C.54c)

J (3) =
φ

6

∮
HJ (3)(s+ r)−1(s− r)−1K̃ , (C.54d)

where the contour integrals are with respect to τ , X = s+ r and Y = s− r. Furthermore

we defined

K̃ = exp

[
− iτ

2
ζ+ζ− +

i(s− r)
2

yζ− +
i(s+ r)

2
yζ+

]
. (C.55)

Again the coefficient functions J
(k)
i are formal series in τ−1, X−1 = (s − r)−1 and Y −1 =

(s+ r)−1 given by

J
(k)
i =

∑
j

(k)
i (l, n,m)τ−l(s− r)−m(s+ r)−n . (C.56)

Note that inverse powers of τ lead to contractions between the Ĉ fields. The choice of

considering a basis with respect to ζ± is a very practical one as it turns out to diagonalize

the covariant derivative D. This will be explained in more detail in the following.

C.2.3 Derivatives for linear basis

In the following we consider the action of the twisted-adjoint covariant derivative D̃ with

respect to functionals linear in Ĉ. This will be of great importance in appendix E in which

we will analyze the cohomology of this differential. Using the equations of motion for Ĉ

given by [
∇+

i

2
φhαα(yαyα − ∂yα∂yα)

]
Ĉ(y, φ) = 0 , (C.57)
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one obtains the following action of D̃ on the expressions in (C.45):

D̃J0 =
iφ

2

∮
dτ (1− τ2)J (0)(τ)hαα

(
yαyα + τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.58a)

D̃J1 =
1

2

∮
dτ Hαα

(
J̃

(2)
1 (τ)yαyα + J̃

(2)
2 (τ)τ−1yα∂

y
α + J̃

(2)
3 (τ)τ−2∂yα∂

y
α

)
Ĉ(yτ) , (C.58b)

D̃J2 = − iφ
2

∮
dτ HJ̃ (3)(τ)Ĉ(yτ) , (C.58c)

with the coefficient functions given by

J̃
(2)
1 (τ) = +

1

2

[
2τ − (τ2 − 1)∂τ

]
J

(1)
2 (τ) ,

J̃
(2)
2 (τ) =

[
2τ − (τ2 − 1)∂τ

]
(J

(1)
3 (τ)− J (1)

1 (τ)) ,

J̃
(2)
3 (τ) = −1

2

[
2τ − (τ2 − 1)∂τ

]
J

(1)
2 (τ) ,

J̃ (3)(τ) =
1

3

[
(τ2 − 1)∂2

τ − 2τ∂τ + 2
]

(J
(2)
3 (τ) + J

(2)
1 (τ)) .

It is convenient to introduce an equivalence relation for formal series in τ−1 denoted by g

and f ,

f(τ) ∼ g(τ) iff f(τ)− g(τ) = P (τ) , (C.59)

with P (τ) being an arbitrary polynomial. The latter equivalence relation is useful since

then one has ∮
dτ f(τ) =

∮
dτ g(τ) ⇐⇒ f(τ) ∼ g(τ) . (C.60)

We will use this equivalence relation extensively in appendix E.

C.2.4 Derivatives for quadratic basis

In this subsection we will analyze the action of the adjoint covariant derivative D in the

integral basis and we will keep the freedom in Fierz-transformations as this will be useful

for our analysis. To this end we will consider the following choice of the coefficient functions

in (C.54):

J
(q)
i = J (q)

m,n(τ, r, s) = (s− r)m(s+ r)nk
(q)
i (τ) . (C.61)

These coefficient functions therefore contain a fixed number of (s − r) and (s + r) factors

but an arbitrary power of τ . One can determine the action of D on the various p-forms

of (C.54). After some manipulations and integrations by parts one arrives at the follow-

ing representation:

Dk(0) =
i

2



−k(0)

−(1− τ)k(0)

−(1 + τ)k(0)

0

0

−(1− τ2)k(0)


, (C.62a)
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D



k
(1)
1

k
(1)
2

k
(1)
3

k
(1)
4

k
(1)
5

k
(1)
6


=

1

2



(mτ +m− nτ + n− 2)k
(1)
1 − (1 + τ)∂τk

(1)
2 − nk

(1)
2 + (1− τ)∂τk

(1)
3 −mk

(1)
3

m(1− τ2)k
(1)
1 − 2(1 + τ)k

(1)
2 + 2(n− 1)k

(1)
4 + (m− 2)k

(1)
6

n(1− τ2)k
(1)
1 − 2(1− τ)k

(1)
3 + 2(m− 1)k

(1)
5 + (n− 2)k

(1)
6

(m−1)(1−τ2)k
(1)
2 +[m−n2+(m+n−2)τ ]k

(1)
4 −(1−τ2)∂τk

(1)
4 −(m−1)(1−τ)k

(1)
6

(n−1)(1−τ2)k
(1)
3 +[m−n+2+(m+n−2)τ ]k

(1)
5 +(1−τ2)∂τk

(1)
5 −(n−1)(1+τ)k

(1)
6

−2n(1 + τ)k
(1)
4 − 2m(1− τ)k

(1)
5


,

(C.62b)

D



k
(2)
1

k
(2)
2

k
(2)
3

k
(2)
4

k
(2)
5

k
(2)
6


=

i

2

(
− 4mn(1− τ2)k

(2)
1

+n[(m+n−2+(m−n)τ+(1−τ2)∂τ ]k
(2)
2 +m[(m+n−2+(m−n)τ−(1−τ2)∂τ ]k

(2)
3

−2n[(n− 1) + (1 + τ)∂τ ]k
(1)
4 − 2m[(m− 1)− (1− τ)∂τ ]k

(1)
5

−[2(n− 1)(m− 1) + (m− n+ (m+ n− 2)τ)∂τ − (1− τ2)∂2
τ ]k

(2)
6

)
.

(C.62c)

It is important to stress here that in the basis (C.54) the covariant derivative D does not

mix tensor structures corresponding to different m and n values. Put differently, in this

basis D is diagonal with respect to m and n and not only with respect to spin, which is given

by 2s = −(m + n). This property is most useful in identifying independently-conserved

sectors of the backreaction.

It can be shown that the above representation of D squares to zero and is compatible

with the following representation of the Fierz identities:

δ



k
(i)
1

k
(i)
2

k
(i)
3

k
(i)
4

k
(i)
5

k
(i)
6


=



∂τχ
(i)
1

mχ
(i)
1 − ∂τχ

(i)
3

−nχ(i)
1 + ∂τχ

(i)
2

−(m− 1)χ
(i)
3

−(n− 1)χ
(i)
2

mχ
(i)
2 + nχ

(i)
3


, (C.63)

where the χi(k) are arbitrary functions of τ . Using these relations we will study the various

cohomologies quadratic in Ĉ in appendix E.

C.2.5 Solving the torsion constraint

Below we give the formulas allowing to map the backreaction to Fronsdal currents, as

discussed in section 3.2, using the D-diagonal basis introduced above. The action of Q−1
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in this basis is diagonal with respect to different contractions of the vielbein but it mixes

various components within each diagonal subsector. It is given by

~k′
(1)

= Q−1~k(2) (C.64)

=
1

m+n−2



2k1(τ)

−(n− 2)k2(τ)−mk3(τ)

−nk2(τ)− (m− 2)k3(τ)

1
(m+n) [2m(m− 1)k5(τ)− 2m(n− 1)k4(τ) + (m− 1)(n−m− 2)k6(τ)]

1
(m+n) [2n(n− 1)k4(τ)− 2n(m− 1)nk5(τ) + (n− 1)(m− n− 2)k6(τ)]

1
(m+n) [2n(n−m−2)k4(τ)+2m(m−n−2)k5(τ)+(m−n−2)(n−m−2)k6(τ)]


.

To evaluate (I −∇Q−1) we also need the representation for ∇ in this basis:

~k′
(2)

= ∇~k(1) (C.65)

=



−i (τk1(τ)(m− n)− t (k′2(τ) + k′3(τ))− nk2(τ)−mk3(τ))

i
(
m
(
τ2 − 1

)
k1(τ) + 2tk2(τ) + 2(n− 1)k4(τ) + (m− 2)k6(τ)

)
i
(
n
(
τ2 − 1

)
k1(τ)− 2tk3(τ) + 2(m− 1)k5(τ) + (n− 2)k6(τ)

)
i
(
(m− 1)

(
τ2 − 1

)
k2(τ)− (τ2 − 1)k′4(τ)− tk4(τ)(m+ n− 2)− (m− 1)tk6(τ))

)
i
(
(n− 1)

(
τ2 − 1

)
k3(τ) +

(
τ2 − 1

)
k′5(τ) + tk5(τ)(m+ n− 2) + (n− 1)tk6(τ)

)
2it(nk4(τ)−mk5(τ))


.

In the following we give some examples for Fronsdal currents and study their relation with

the Prokushkin-Vasiliev currents.

C.2.6 Canonical currents

In the following we will give more details on canonical currents.

Canonical Vasiliev’s currents: in the following we study in more detail the canonical

current sector of Vasiliev’s backreaction that sources the Dω̂(2) = · · · equation. In our

basis this is associated with:

~k(2) =



0

0

0

k
(2)
4 (τ)

0

0


, (C.66)

for (m,n) = (1, 1− 2s) and with:

~k(2) =



0

0

0

0

k
(2)
5 (τ)

0


, (C.67)
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for (m,n) = (1−2s, 1). These two components can be combined into bosonic and fermionic

canonical currents possibly including higher-derivative encoded by higher powers in τ−1

which are all individually conserved. The analysis of the local cohomology39 suggests that

the other components of the backreaction should be interpreted as improvements, being in

one to one correspondence with improvements in the metric-like language. This observation

is of key importance to study the very complicated Vasiliev backreaction. Indeed, upon

solving the torsion constraint one can show that only this sector gives rise to canonical

currents together with a possible higher-derivative 2 tail.

In the following we are first going to study more in details the improvement that

removes the canonical current. It is first convenient to make the choice40 (m,n) = (1, 1−2s)

with the vector k
(2)
i given by 

k
(2)
1

k
(2)
2

k
(2)
3

k
(2)
4

k
(2)
5

k
(2)
6


=



0

0

0

Cτ−1

0

0


, (C.68)

setting to zero any higher-derivative tail for the moment.

Conservation is trivial due to the choice m = 1 and, as well, no Fierz identity can be

used to change the constant C because m = 1.

In order to show that this term is exact one is then left with a single differential equation

to be solved taking into account equivalence up to polynomials in τ . The differential

equation then reads: [
(1− τ2)∂τ − 2s(1− τ) + 2

]
k

(1)
4 (τ) ∼ Cτ−1 . (C.69)

The above equation can therefore be conveniently rewritten as:

(1 + τ)2s(1− τ)2 ∂

∂τ

[
(1 + τ)−2s+1(1− τ)−1k4(τ)

]
= Cτ−1 + p(τ) , (C.70)

or changing variables in terms of ω = τ−1, as:

− ω−2s(1 + ω)2s(1− ω)2 ∂

∂ω

[
ω2s(1 + ω)−2s+1(1− ω)−1k4(ω)

]
= Cω + p(ω−1) . (C.71)

In this form one can integrate the above as:

k4(ω) = −(1− ω)(1 + ω)2s−1

ω2s

∫ ω x2s

(1 + x)2s(1− x)2

[
Cx+ p(x−1)

]
. (C.72)

Due to the particular form of the solution one can reduce the polynomial function ambiguity

that would produce non-polynomial effects on the solution to only three free parameters:

39By local cohomology we mean that we restrict the space of functionals to be polynomial in the deriva-

tives.
40The choice (m,n) = (1− 2s, 1) is equivalent.
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p(τ) = α(1 + τ) + β(1− τ) + γτ2s+1 associated to the possibility of generating single poles

in the integrand, all other polynomial being related to these up to a polynomial shift in

k4(τ). At this point we can drop γ since it would give a solution that is not meromorphic

in ω ∼ 0.

Requiring for instance41 α = −C
2 and β = −3C

2 one can recast the solution in terms

of the following series:

k
(1)
4 (ω) ∼ C(1− ω)(1 + ω)2s−1

2F1(2s, 2s, 2s+ 1,−ω)

= C(1− ω)(1 + ω)2s−1
∞∑
l=0

(−1)l
(2s+ l − 1)!

l!(2s+ 1)!(2s+ l)
ωl . (C.73)

Fronsdal currents from Vasiliev currents: in the canonical current sector one ob-

serves also nice simplifications when solving the torsion constraint. It is indeed easy to see,

restricting the attention for simplicity to the case (m,n) = (1, 1−2s), that the correspond-

ing Fronsdal current, i.e. the source to the Fronsdal tensor after having solved the torsion

constraint, can be obtained from the Vasiliev current that sources Dω̂(2) as:

jFr. = − 1

2(s− 1)

(1− ω)2s(1 + ω)2

ω2s

∂

∂ω

[
ω2s(1− ω)−2s+1(1 + ω)−1k

(2)
4 (ω)

]
. (C.74)

The problem of finding which Vasiliev current would give rise to the standard canonical

current as source to the Fronsdal tensor upon solving the torsion constraint, becomes then

similar to the problem of solving for improvements and we actually already have the solution

displaying a one parameter ambiguity. We can indeed integrate the above equation as:

k
(2)
4 (ω) = −2(s− 1)

(1 + ω)(1− ω)2s−1

ω2s

∫ ω x2s

(1− x)2s(1 + x)2

(
Cx+ α

)
, (C.75)

with α arbitrary. The above covers for a given choice of α the case studied in index

form in (C.43). Notice however that changing α we observe two very different asymptotic

behavior of the corresponding coefficients as l→∞. The generic asymptotics is 1
l2l!

but for

a given choice of α we get the asymptotic behavior 1
l2sl!

. Anyway the above is pseudo-local

and it should be what we should match from Vasiliev’s backreaction if it would give rise

to canonical Fronsdal currents without higher-derivative tail.

The canonical current sector of Vasiliev’s backreaction general structure: the

general structure of the canonical current sector extracted from the Vasiliev backreaction

is remarkably simple for any spin. Its structure involves 3 types of terms that combined

together sum up to the function k
(2)
4 :

k
(2)
4 ∼ 1

ω2s+1

[
p2s+1

1 (ω) log(1+ω)+p2s+1
2 (ω) log(1−ω)+p2s+1

3 (ω)Li2(ω)+p2s+1
4 (ω)Li2(−ω)

]
,

(C.76)

41We can also avoid to fix either α or β. In this case the difference of the corresponding solutions for two

different values of the parameters encode non-trivial cohomologies at form degree-1 and hence parametrize

ambiguities in defining the corresponding redefinition.
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where p
(2s+1)
i (ω) are polynomials of degree at most 2s+ 1 and encode the spin-dependence

of the result. The structure of the Vasiliev backreaction is remarkably simple and similar

to the structure of the Vasiliev current that gives the canonical Fronsdal current. The

difference is given by the dilog contribution and the degree of the polynomial coefficients

that is one power higher, as opposite to the simple polynomial coefficient (1+ω)(1−ω)2s−1

that we found in the previous paragraph. The above is true both before and after the

twisted-sector decoupling. Notice however that after the redefinition that decouples the

twisted sector the polynomial multiplying the Dilog function becomes of lower degree.

D More on Lorentz invariance in the Schwinger-Fock gauge

In this appendix we provide some details related to section 5.3, where the issue of preserv-

ing Lorentz invariance for Prokushkin-Vasiliev Theory in the Schwinger-Fock gauge (5.21)

is discussed.

D.1 Preserving the Schwinger-Fock gauge

For the naive Lorentz generators Lyz one finds

δΛSα = [Lyz,Sα]? = 2SβΛβα +
δSα
δB

[Ly,B]? , (D.1)

where the variation δ on the above right-hand side is a simple functional variation (with

respect to B in this case). The structure of the right-hand side is as follows: in the

commutator with Sα, Lyz can either act on the oscillator zα that Sα is proportional to, or

it can act on the rest of the expression (5.22) for Sα. Now, the rest thereof is a Lorentz-

invariant quantity (no free oscillator indices), and is fully determined in terms of B, which

is why we can write the second term in the above right-hand side in such a way.

Evidently, the above transformations do not preserve the Schwinger-Fock gauge zαSα =

0. The corrected Lorentz generators Ls of (5.23) do preserve the gauge, and one easily

checks it to be true by using, on top of the definition (5.23), the relations (5.7e). The

result of taking the variation of Sα with respect to the correct generators is

δΛSα =
δSα
δB

[Ly,B]? , (D.2)

which is proportional to zα and hence preserves the Schwinger-Fock gauge zαSα = 0. The

above equation is also compatible with the fact that Sα is an auxiliary field.

D.2 Recovering the Lorentz algebra and covariant rotation of fields

First, let us explain how the commutation relations (5.24) for the Lorentz generators in

the Schwinger-Fock gauge are obtained. This is straightforward: looking at the defini-

tion (5.23) and recalling (5.7d), (5.7e) one finds (5.24), where it should be made clear that

the dependence of Ls
αα on B is via Sα.

Let us now explicitate how a true Lorentz algebra is recovered when looking at the

commutator of local Lorentz transformations on the various master fields. For this we will

– 80 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
4

assume the covariant laws of rotation explicitated in (5.26). Let us first look at the scalar

master field B. Using (5.7d) one finds

δΛ1B =
δB
δB

[Ly
1 ,B]? , (D.3)

where Ly
1 ≡ 1

2Λαα1 Ly
αα. From this, applying a second transformation δΛ2• to B + δΛ1B and

antisymmetrizing with respect to the exchange of Λ1 and Λ2 one concludes that

(δΛ1 ◦ δΛ2 − δΛ2 ◦ δΛ1)B ≡ [δΛ1 , δΛ2 ]?B =
δB
δB

[[Ly
1 , L

y
2 ],B]? , (D.4)

where one has to use the Jacobi identity. The Lorentz algebra is thus restored on B since

the generators Lyz truly close to the Lorentz algebra, without extra terms as in (5.24).

Let us then look at the auxiliary master field Sα. We know from section 5.3 that the

variation δΛSα with respect to Ls ≡ 1
2ΛααLs

αα reads

δΛSα =
δSα
δB

[Ly,B]? , (D.5)

since this is precisely what allows one to claim that the corrected Lorentz generators Ls

preserve the Schwinger-Fock gauge (see previous subsection). Then proceeding as in the

above case of the scalar master field B one finds

(δΛ1 ◦ δΛ2 − δΛ2 ◦ δΛ1)Sα ≡ [δΛ1 , δΛ2 ]?Sα =
δSα
δB

[[Ly
1 , L

y
2 ],B]? , (D.6)

and the Lorentz algebra thus closes on Sα too.

For the one-form master field W we recall first the splitting (5.25) of W into its spin-

connection and the rest of it:

W ≡ 1

2
ωαβLsαβ + W , (D.7)

where W does not depend on ωαβ . Then we note again its law of transformation under a

local Lorentz transformation, which is given in (5.26a). It reads

δ

(
W +

1

2
ωααLs

αα(B)

)
=

1

2
(dΛαα − ωαν Λνα)Ls

αα −
[
W ,

1

2
ΛααLyz

αα

]
?
. (D.8)

The proof then follows that of the other master fields.

As we observe, once the covariance rotation of the fields is proven, the closure of the

Lorentz algebra on the fields follows automatically by simply making use of the Jacobi

identity. The most non-trivial piece of work is thus that of obtaining the transformation

laws, and in particular the above form (D.8).

D.3 Identifying the proper spin-connection

It is convenient to first investigate the zeroth-order implications of the above identifica-

tion (D.7) of the correct spin-connection in the Schwinger-Fock gauge. At zeroth order, as

we already pointed out, Ls = Ly and hence

W̄ =
1

2
$αβLy

αβ + W̄ =
1

2
($αβ + hαβ)Ly

αβ , (D.9)
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so that the redefinition boils down to renaming the part of the background connection

containing the dreibein as W. This is again in harmony with the fact that, at order zero,

Ls = Ly means that the background gauge connection W̄ is already in the form (5.25). At

first order we have the following relation:

W(1) =
1

2
ω(1)αβLy

αβ +
1

2
$αβL

s,(1)
αβ + W(1) , (D.10)

and things become more complicated. As one can see, from the standpoint of the naive

identification of the spin-connection the equation (D.7) amounts to a redefinition thereof,

which is nevertheless the identical field redefinition at order zero in perturbation theory.

Things are also simpler at order 1 since L
s,(1)
αβ (z = 0) = 0.

D.4 Possible sources of Lorentz non-manifest covariance

A possible source of Lorentz non-covariance is when D̄yz on the left hand side

of (5.32a), (5.32b) acts on terms proportional to zα. But as the spin-connection in (5.33)

is now contracted with Lyz
αα terms of this form will lead to a contribution of the type(

d+
1

2
$αα[Lyz

αα, •]
)
zνfν(y, z)

∣∣∣∣
z=0

=
1

2
$αα(yα∂

y
α + zα∂

z
α)zνfν(y, z)

∣∣∣∣
z=0

= 0 . (D.11)

The zα-dependent terms (5.34) will contribute through the vielbein part of (5.33) as[
h,

(
f(y, z)

g(y, z)ψ

)]
=

(
φhαα(yα − i∂zα)∂yαf(y, z)

− i
2φh

αα ((yα − i∂zα)(yα − i∂zα)− ∂yα∂yα) g(y, z)ψ

)
, (D.12)

so that on the z = 0 surface we find for an arbitrary function zνfν(y, z) + zνgν(y, z)ψ a

non-vanishing contribution given by[
h,

(
zνfν(y, z)

zνgν(y, z)ψ

)]
z=0

=

(
−iφhαα∂yαfα(y, 0)

−φhαα(yα − i∂yα)g(y, 0)ψ

)
. (D.13)

Therefore, we have shown that all possible sources of Lorentz non-covariance disappear and

one can therefore use the perturbation scheme outlined in section 5.4 to recover manifestly

Lorentz covariant results at any order in perturbation theory.

E Cohomologies

In the following we will discuss cohomologies of the twisted-adjoint covariant derivative D̃

and the adjoint covariant derivative D. We will analyze cohomologies with respect to func-

tional classes of both linear or quadratic functionals of the scalar field Ĉ and furthermore

for functional classes linear in the physical gauge connection ω̂ and scalar field Ĉ. For this

purpose we will use the integral basis introduced in appendix C.2.

E.1 Cohomology linear in Ĉ

In the following we consider in detail the cohomology of D̃ with respect to functionals

linear in Ĉ. In particular the cohomology at form-degree 1 parameterizes ambiguities in

the redefinitions of ω̃. The analysis of the cohomology at form-degree 2 shows that it is

always possible to remove the linear source to ω̃. The form-degree 0 cohomology is reviewed

for completeness.
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E.1.1 Form-degree 0

At form-degree 0 the cohomology is entirely fixed by demanding closure. By (C.58a) a

zero-form (C.45a) is closed if the following equivalence relation holds:

(1− τ2)J (0)(τ) ∼ 0 . (E.1)

The most general solution to the above relation is given by

J (0)(τ) ∼ α+ βτ

1− τ2
, (E.2)

since any higher power of τ in the numerator would only contribute polynomially. We there-

fore conclude that there are two elements in cohomology. Plugging this result into (C.45a)

and rewriting the coefficient function as a geometric series we obtain∮
dτ

α+ βτ

1− τ−2
τ−2

( ∞∑
k=0

1

k!
Ĉα(k)τ

kyα(k)

)

=
∞∑

m,k=0

∮
dτ

(
α

τ1+2m+1−k +
β

τ1+2m−k

)
1

k!
Ĉα(k)y

α(k) (E.3)

= αĈf(y) + βĈb(y) ,

where we have dropped an overall sign. We thus see that the two elements in cohomology

correspond to the bosonic and fermionic components of Ĉ(y).

E.1.2 Form-degree 1

By (C.58b) a closure of a one-form translates to the following relation[
2τ + (1− τ2)∂τ

]
f(τ) ∼ 0 , (E.4)

where f stands for J
(1)
2 and J

(1)
1 − J (1)

3 in (C.45b). The above operator sends polynomials

of degree n into polynomials of degree (n+ 1):

τn → −(n− 2)τn+1 + nτn−1 . (E.5)

For n 6= 2 we can therefore remove an arbitrary monomial kτn+1 by shifting f(τ)→ f(τ)+
1

2−nkτ
n. Note that shifting f(τ) in this way is allowed since the countour integral of (C.45b)

is blind to such polynomials contributions. This allows us to restrict our attention to the

following differential equation:[
2τ + (1− τ2)∂τ

]
f(τ) = (1 + τ)2(1− τ)2∂τ

[
(1 + τ)−1(1− τ)−1f(τ)

]
= α+ βτ3 . (E.6)

It is convenient to perform the change of variables ω = τ−1 which results in the following

differential equation: [
2

ω
+ (1− ω2)∂ω

]
f(ω) = α+

β

ω3
, (E.7)
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whose solutions can be expressed as

f(ω) =
(1 + ω)(1− ω)

ω2

∫ ω

dω′
ω′2

(
α+ β

ω′3

)
(1− ω′)2(1 + ω′)2

, (E.8)

and upon integration are given by

fα(τ) ≡ f(τ)|β=0 ∼ −
α(1− ω2)

2ω2
tanh−1(ω) +

α

2ω
=

∞∑
k=1

α

(2k + 1)(2k − 1)
ω2k−1 , (E.9)

fβ(τ) ≡ f(τ)|α=0 ∼
β

2ω2
+
β

2

(
1− 1

ω2

)
log

(
1

ω2
− 1

)
. (E.10)

We drop the second solution fβ since it is not analytic42 around ω = 0 and therefore is not

a formal series in τ−1. By (C.58a) an exact one-form is given by

J1 = iφ

∮
q(τ)hαα

(
yαyα + τ−2∂yα∂

y
α

)
Ĉ(yτ) , (E.11)

where q(τ) is an arbitrary function, and therefore corresponds to the choices

J
(1)
2 ∼ 0 , J

(1)
1 ∼ J (1)

3 ∼ q(τ) . (E.12)

Therefore for closed one-forms we can set J
(1)
2 and J

(1)
3 − J (1)

1 independently to be equal

to fα. Exact one-forms satisfy J
(1)
2 ∼ 0 and J

(1)
3 − J (1)

1 ∼ 0. As a result any choice α 6= 0

corresponds to an element in the cohomology. Therefore the cohomology is two-dimensional

and we can obtain a particularly useful representative by choosing

J
(1)
2 ∼ fd0 , J

(1)
1 − J (1)

3 ∼ fg0 , J
(1)
1 + J

(1)
3 ∼ 0 . (E.13)

A calculation similar to (E.3) shows that this results in the following representative:

1

4
φhαα

∫ 1

0
dt g0(t2 − 1)

(
yαyα − t−2∂α∂α

)
Ĉb(ty) +

1

2
φhαα

∫ 1

0
dt d0(t2 − 1)t−1yα∂

y
αĈf(ty) ,

(E.14)

where we have used the identity

2

(2k + 1)(2k − 1)
=

∫ 1

0
dt (1− t2)t2k−2 . (E.15)

This is exactly the ambiguity R, given in (3.3), of the redefinition M1.

E.1.3 Form-degree 2

At form-degree 2 we can also solve the closure condition translated in terms of the following

linear ordinary differential equation:[
(1− τ2)∂2

τ + 2τ∂τ − 2
]
f(τ) ∼ 0 . (E.16)

42A β 6= 0 inevitably gives rise to non-analytic solutions at ω = 0 due to a pole of order 3.
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Taking into account the most general polynomial coefficients that can affect the solution

non-polynomially one arrives to the equation[
(1− τ2)∂2

τ + 2τ∂τ − 2
]
f(τ) = ατ + βτ2 . (E.17)

To study the behavior at infinity one can again perform the change of variable ω = 1
τ which

results in [
ω2(1− ω2)∂2

ω + ω(3− ω2)∂ω + 2
]
f(ω) = −α

ω
− β

ω2
. (E.18)

The exact elements are parametrized by f ∼ 0 while the cohomology is in correspondence

with the solutions of the above ordinary differential equation that are analytic at ω = 0

up to polynomials in ω−1. The solutions of the homogeneous equation are not analytic

at ω = 0. In particular the homogeneous solution is a power series in ω−1 and α and

β produce log(ω)-singularities at ω = 0. We therefore conclude that the cohomology at

form-degree 2 is trivial.

E.2 Cohomology quadratic in Ĉ

In this subsection we will analyze the cohomology of the adjoint covariant derivative D

with respect to pseudo-local field redefinitions, as defined in (2.56) (also see comments

there below). The analysis of form-degree 1 is needed for the study of source terms to the

twisted zero-form C̃(2) and form-degree 2 for the backreaction on the higher-spin gauge

fields ω̂(2). Form-degree 0 cohomology parameterizes parameterizes the redefinitions of

Ĉ(2).

E.2.1 Form-degree 0

Note that by (C.62a) the covariant derivative D does not produce any contributions to

J
(1)
4 and J

(1)
5 of (C.54b). Therefore we can impose m ≤ 0 and n ≤ 0 as greater values for

m and n in (C.61) would only lead to contributions that are projected out by the contour

integral in (C.54b).

The closure condition is required to hold only up to Fierz identities (C.63) and therefore

takes the form: 

−k(τ)− 2iχ′1(τ)

−(1− τ)k(τ)− 2i (mχ1(τ)− χ′3(τ))

−(1 + τ)k(τ) + 2i (nχ1(τ)− χ′2(τ))

2i(m− 1)χ3(τ)

2i(n− 1)χ2(τ)

−
(
1− τ2

)
k(τ)− 2i(mχ2(τ) + nχ3(τ))


∼ 0 , (E.19)

where we have used the notation χ′i = ∂τχi. We consider the following three cases sepa-

rately:

• m < 0 and n < 0,

• m = 0 and n < 0 (and m↔ n),

• m = 0 and n = 0.
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For m < 0 and n < 0: by summing and subtracting the second and third equations

after multiplying them by n and m respectively we can eliminate χ1 in the second equation:

−k(τ)− 2iχ′1(τ)

−k(τ)[τ(m− n) +m+ n]− 2i (mχ′2(τ)− nχ′3(τ))

k(τ)[τ(m+ n) +m− n]− 2i (2mnχ1(τ)−mχ′2(τ)− nχ′3(τ))

2i(m− 1)χ3(τ)

2i(n− 1)χ2(τ)

−
(
1− τ2

)
k(τ)− 2i(mχ2(τ) + nχ3(τ))


∼ 0 . (E.20)

From the fourth and fifth equation we can conclude that χ2 ∼ χ3 ∼ 0. The last equation

then implies

k(τ) ∼ α+ βτ

1− τ2
, (E.21)

as we have learned from the study of the cohomology of D̃ linear in Ĉ at form-degree 0.

The coefficient β must be set to zero since it cannot be removed by χ′1 in the first equation,

because χ′1 cannot contain a τ−1 pole. This choice of β is however incompatible with the

second equation, showing that there is no cohomology.

For m = 0 and n < 0: for m = 0 only J
(1)
2 , J

(1)
4 and J

(1)
6 in (C.54b) are not projected

out by the contour integrals over (s − r). Therefore we only have to consider the second,

fourth and sixth component of (E.20). The fourth equation implies χ3 ∼ 0 and the sixth

equation has again a solution for k(τ) of the type (E.21). The parameter β has to be tuned

to solve the second equation in (E.20):

nk(τ) (1− τ) ∼ 0 , (E.22)

which implies α = β:

k(τ) ∼ α

1− τ
= − αω

1− ω
, ω =

1

τ
. (E.23)

Analogous solutions are obtained for n = 0 and m < 0 if one replaces τ → −τ . We

therefore find a cohomology for each pair (n, 0) and (0,m). This is equivalent to having

one bosonic and one fermionic cohomology upon combining (n, 0) and (0,m) appropriately.

For m = 0 and n = 0: in this case only J
(1)
6 in (C.54b) is not projected out by the

contour integrals over (s − r) and (s + r). Therefore only the sixth component of (E.20)

has to be considered and the corresponding solution is given by

k(τ) ∼ α+ βτ

1− τ2
= −αω

2 + β ω

1− ω2
, ω =

1

τ
. (E.24)

This implies that we have again one bosonic (α = 0) and one fermionic (β = 0) cohomology.

The cohomology (0, 0) can be seen to correspond to Tr(Ĉ ? Ĉ).
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E.2.2 Form-degree 1

By using Fierz identities (E.19) and adding exact forms we remove various components of

~k(1) =



k
(1)
1

k
(2)
2

k
(3)
3

k
(4)
4

k
(5)
5

k
(6)
6


. (E.25)

One can distinguish the following cases for m and n in (C.61):

• n < 0 and m < 0. One can use an exact form (C.62a) to remove the last component

in (E.25) and the term proportional to τ−1 in the first component. Then one can

apply a Fierz identity (C.63) to remove the fourth and fifth entry and the remaining

terms in the first component. This leaves us with

~k(1) =



0

f(τ)

g(τ)

0

0

0


. (E.26)

As we will discuss in the following we find one bosonic and one fermionic cohomology

for each spin in this case.

• m = 0 and n < 0. In this case only k
(1)
2 , k

(1)
4 and k

(1)
6 will not be projected out by the

contour integral in (C.54). By choosing χ
(1)
3 appropriately in (C.63) we can eliminate

the fourth component. We can then remove the sixth by adding an exact form. This

results in

~k(1) =



0

f(τ)

0

0

0

0


, (E.27)

and the case n = 0, m < 0 can be obtained from this one by swapping the 2nd and

3rd components and performing τ → −τ . Combining both cases we find again one

bosonic and one fermionic cohomology for each spin.

• m = 1 and n < 0. In this case only k
(1)
4 is kept by the contour integral. This

component is unaffected by an arbitrary Fierz identity and by adding an exact form.
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Therefore the 1-form representative can be chosen as:

~k(1) =



0

0

0

f(τ)

0

0


, (E.28)

and again the case n = 1, m < 0 can be obtained from this one by swapping the

4th and 5th components and performing τ → −τ . Combining both cases we find one

bosonic and one fermionic cohomology for each spin, as in the previous case.

• m ≥ 0 and n ≥ 0. In this case only the sixth component is not projected out by the

contour integrals. Therefore all 1-forms are trivially exact.

Let us expand further on these cases:

n < 0 and m < 0: non-trivial cohomologies are in correspondence with the solution of

the following condition:

D~k(1) = −i



−(τ + 1)f ′(τ)− nf(τ)− (τ − 1)g′(τ)−mg(τ) + 2χ′1(τ)

−2 ((τ + 1)f(τ)−mχ1(τ) + χ′3(τ))

2 ((τ − 1)g(τ)− nχ1(τ) + χ′2(τ))

−(m− 1)
((
τ2 − 1

)
f(τ) + 2χ3(τ)

)
−(n− 1)

((
τ2 − 1

)
g(τ) + 2χ2(τ)

)
2(mχ2(τ) + nχ3(τ))


∼ 0 . (E.29)

One can easily solve the fourth and fifth equations as

f(τ) ∼ α+ βτ + 2χ3(τ)

1− τ2
, g(τ) ∼ γ + δτ + 2χ2(τ)

1− τ2
. (E.30)

Summing and substracting the second equation multiplied by n and the third equation

multiplied by m we obtain:

−n(τ + 1)f(τ) +m(τ − 1)g(τ) +mχ′2(τ)− nχ′3(τ) ∼ 0 , (E.31)

n(τ + 1)f(τ) +m(τ − 1)g(τ)− 2mnχ1(τ) +mχ′2(τ) + nχ′3(τ) ∼ 0 , (E.32)

where in the second equation we can drop mχ′2(τ) + nχ′3(τ) due to the last component

which requires it to be a polynomial. Substituting the solution for f(τ) and g(τ) one

arrives to:

2τY (τ)

τ2 − 1
−
(

n(α+ βτ)

(m− 1)(τ − 1)
− m(γ + δτ)

(n− 1)(τ + 1)

)
+

2X(τ)

τ2 − 1
+ Y ′(τ) ∼ 0 , (E.33)

n(α+ βτ)

(m− 1)(τ − 1)
+

m(γ + δτ)

(n− 1)(τ + 1)
− 2imnχ1(τ)− 2itX(τ)

τ2 − 1
+

2iY (τ)

τ2 − 1
∼ 0 , (E.34)
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where we have defined X(τ) = mχ2(τ) + nχ3(τ) and Y (τ) = mχ2(τ)− nχ3(τ). While the

last equation can be solved to fix χ1(t) completely up to polynomials, the first equation

can be rewritten as

in(α+ βτ)

(m− 1)(τ − 1)
− im(γ + δτ)

(n− 1)(τ + 1)
− 2τY (τ)

τ2 − 1
+ Y ′(τ) ∼ 0 . (E.35)

after noticing that without loss of generality one can set X(τ) = 0. Taking into account

the form of the homogeneous part of the equation, any polynomial of the type (1− τ2)p(τ)

on the right-hand side can be reabsorbed by a polynomial shift in Y . Hence, the most

general equation we need to solve is actually

Y ′(τ) +
2τ

1− τ2
Y (τ) = − in(α+ βτ)

(m− 1)(τ − 1)
+

im(γ + δτ)

(n− 1)(τ + 1)
+ C +Dτ . (E.36)

Its solution can be easily found and, after changing variables to ω = τ−1, reads:

Y (ω) =
1− ω2

4(m− 1)(n− 1)ω2

[
log(1− ω)

(
2C(m− 1)(n− 1) + 2D(m− 1)(n− 1) (E.37)

+ i(m(m− 1)(γ + δ) + n(n− 1)(α− β))
)

+ log(ω + 1)
(
− 2C(m− 1)(n− 1) + 2D(m− 1)(n− 1)

− i(m(m− 1)(γ + δ) + n(n− 1)(α− β))
)
− 4D(m− 1)(n− 1) log(ω)

− 2i (m(m− 1)(ω − 1)(γ − δ) + n(n− 1)(ω + 1)(α+ β))

ω2 − 1

]
.

From the above it is clear that any D needs to be set to zero while, without loss of generality,

it is convenient to make the following choice:

α =
m(m− 1)(γ − δ)− βn(n− 1)

n(n− 1)
, C = i

(
βn

m− 1
− δm

n− 1

)
, (E.38)

which without affecting the positive powers in ω up to an overall constant, cancels any pole

in ω−1. Plugging now everything back into the first equation one finally gets

(n− 1)
(
2γ(m− 1)2 + β(n− 1)n(τ − 1)

)
+ δ(m− 1)2(n(τ − 1) + 2)

n(m− 1)(n− 1) (τ2 − 1)
∼ 0 . (E.39)

Its solution is given by

β = −δ(m− 1)2

(n− 1)2
, γ = − δ

n− 1
. (E.40)

To summarize we find the following solutions:

f(ω) ∼ σ
[

ω

1 + ω
−m tanh−1(ω)

]
, g(ω) ∼ σ

[
−ω

1− ω
− n tanh−1(−ω)

]
, (E.41)

where σ is an arbitrary overall constant that might depends on m and n. This gives rise

to one bosonic and one fermionic cohomology for each choice of m and n. Recall that the

above functions should be interpreted as formal series around ω = τ−1 ∼ 0.
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The above shows how the cohomology in the space of pseudo-local functionals is non-

trivial. Considering also the local cohomology, the only possibility to have a local cohomol-

ogy is to find a local and exact one-form whose improvement is pseudo-local. This amount

to solving the condition that the following vector has polynomial components in τ−1:

~k(1) =



−f(τ)− 2iχ′1(τ)

−(1− τ)f(τ)− 2imχ1(τ)

−(1 + τ)f(τ) + 2inχ1(τ)

0

0

−
(
1− τ2

)
f(τ)


, (E.42)

when f(τ) is a non-polynomial function. Gauge fixing the third component using χ1(τ)

one can see that no such solution exists so that there is no local cohomology.

m = 0 and n < 0: in this case we can further use exact forms to fix f(τ) ∼ f2τ
−2 +

O(τ−3) so that the term of order τ−1 vanishes. Non-trivial cohomologies are then in

correspondence with the solution of the following equation:

D~k(1) = −i



0

2i ((τ + 1)f(τ) + χ′3(τ))

0

−i
((
τ2 − 1

)
f(τ) + 2χ3(τ)

)
0

−2inχ3(τ)


∼ 0 , (E.43)

where, due to the condition m = 0, we have set to zero trivially-vanishing pieces. One can

now set to zero χ3 up to polynomials and arrive to the solution:

f(τ) ∼ σ

1 + τ
=

σ ω

1 + ω
. (E.44)

Therefore, we have again one bosonic and one fermionic cohomology.

In the case of a local cohomology we have to find the non-polynomial functions f(τ)

for which the following is polynomial:

~k(1) =



0

(τ − 1)f(τ)

0

0

0(
τ2 − 1

)
f(τ)


. (E.45)

One can then find a solution of the form

f(τ) =
p(τ−1)

1− τ
, (E.46)
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for any polynomial p. The above infinite solutions are however trivial in local cohomol-

ogy since

p(τ−1) = τ−k − 1 = (τ−1 − 1) p̃(τ−1) = τ−1(1− t) p̃(τ−1) , (E.47)

gives a ~k(1) which is locally exact for any k > 0 and the constant gives rise to a trivial

1-form. We thus find no cohomology in the space of local functionals.

m = 1 and n < 0: as explained above only the fourth component (or the fifth if we

exchange m and n) contributes after performing the contour integrals. Non-trivial coho-

mologies are in correspondence with the solution of the following ODE:

(1− τ2)f ′(τ)− f(τ)((n− 1)τ − n− 1) ∼ 0 . (E.48)

Looking at the form of the differential operator and at its image on polynomials, it is easy

to see that up to polynomials we need to solve:

(1− τ2)f ′(τ)− f(τ)((n− 1)τ − n− 1) = α+ βτ + γτ−n+2 . (E.49)

Going to the point at infinity one can drop the γ term since it gives rise to poles in ω ∼ 0

while α and β are uniquely fixed up to an overall coefficient, by the requirement that the

expansion in ω is analytic at ω = 0 and starts from the linear term. One can indeed rewrite

the above equation as:

(1− τ)2(1 + τ)−n+1∂τ

[
(1− τ)−1(1 + τ)nf(τ)

]
= α+ βτ , (E.50)

whose solution in terms of ω can be easily integrated as

f(ω) = −(1− ω)(1 + ω)−n

ω−n+1

∫ ω

dx
x−n+1(α+ βx−1)

(1− x)2(1 + x)−n+1
. (E.51)

The analyticity condition in ω is automatically satisfied due to the absence of poles at

x = 0. Performing the integration one can see that modulo polynomials only one constant

among α and β remains arbitrary, while the solution takes the form

f(ω) ∼ σ (1− ω)(1 + ω)−n

ω−n+1
tanh−1(ω) , (E.52)

where σ is an arbitrary constant that can depend on n. Again we find no local cohomology.

E.2.3 Form-degree 2

At form-degree 2 we can distinguish three relevant cases:

• n < 0 and m < 0,

• n < 0 and m = 0,

• n < 0 and m = 1.

All other cases are either obtainable from the ones above or are trivial.
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n < 0 and m < 0: the preliminary step in order to study the cohomology is to

parametrize the most general term that cannot be made exact fixing the freedom in Fierz

transformations and exact forms. At this form-degree this freedom amounts to nine arbi-

trary functions. Three functions χ
(2)
i due to Fierz identities and six functions due to the

freedom of adding an exact form D~f (1). The resulting expression is given by

~k(2) =



i ((τ+1)f ′2(τ)+nf2(τ)+(τ−1)f ′3(τ)+mf3(τ)−ik1(τ)−2χ′1(τ))−if1(τ)(mτ+m−nτ+n−2)i(2mn
(
τ2−1

)
f1(τ)+2n(τ+1)f2(τ)−2mτf3(τ)+2mf3(τ)+2(n−1)nf4(τ)+2m2f5(τ)−2mf5(τ)+2mnf6(τ)

−2mf6(τ)−2nf6(τ)−ink2(τ)−imk3(τ)−2Y ′(τ)
) −i(−2n(τ+1)f2(τ)−2m(τ−1)f3(τ)+n(−2(n−1)f4(τ)+2f6(τ)+ik2(τ)+4mχ1(τ))

+m(2(m−1)f5(τ)−2f6(τ)−ik3(τ))−2X ′(τ)
) (

i
(
(m−1)

(
τ2−1

)
f2(τ)−(τ−1) ((τ+1)f ′4(τ)+(m−1)f6(τ))−f4(τ)(τ(m+n−2)+m−n−2)

)
+k4(τ)+ i(m−1)(X(τ)−Y (τ))

n

)
(
i
(
(n−1)

(
τ2−1

)
f3(τ)+

(
τ2−1

)
f ′5(τ)+f5(τ)(τ(m+n−2)+m−n+2)+(n−1)(τ+1)f6(τ)

)
+k5(τ)+ i(n−1)(X(τ)+Y (τ))

m

)
i(2n(τ+1)f4(τ)−2m(τ−1)f5(τ)−ik6(τ)−2X(τ))



.

(E.53)

Above we have changed variables defining X(τ) = mχ2(τ) +nχ3(τ) and Y (τ) = mχ2(τ)−
nχ3(τ) while summing and subtracting the first and the second components in D~f (1) after

multiplying them with n and m respectively. At this point it is not hard to see that:

• The last component can be removed by fixing X(τ);

• The third component can be removed by fixing χ1;

• The fourth and fifth component can be removed upon choosing f2 and f3 respectively;

• The first component and the second component can be removed by fixing either f6

or f1 if the conservation condition is enforced.

We then conclude that there is no pseudo-local cohomology at form-degree 2 if n < 0 and

m < 0. One can also show that the corresponding local cohomology is trivial as well.

n < 0 and m = 0: this case is similar to the previous one except that only the first,

third and fifth component of the vector are projected out by the contour integrals over

s+ r and s− r.

n < 0 and m = 1: in this case only the fourth component contributes and the condition

to be an exact form reads:

[(1− τ)n+ 1 + τ ]f(τ) +
(
1− τ2

)
f ′(τ) ∼ k(τ) . (E.54)

Notice that the choice m = 1 makes conservation trivial so that the only condition to solve

is whether there exist a solution of the above equation that admits a well-defined expansion

around ω = τ−1 ∼ 0.

We can then study the above question by considering k(τ) = τ−k and studying the

corresponding solutions:

[(1− τ)n+ 1 + τ ]f(τ) +
(
1− τ2

)
f ′(τ) = τ−k + α+ βτ . (E.55)
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Re-expressing the equation above in terms of ω and fixing the ambiguity up to elements

belonging to the 1-form cohomology, one recovers the equation:(
1− ω2

)
f ′(ω) + [1 + ω − n(1− ω)]

f(ω)

ω
= ωk , (E.56)

whose solution can be integrated as:

f(ω) = −(1− ω)(1 + ω)−n

ω−n+1

∫ ω

dx
xk−n+1

(1− x)2(1 + x)−n+1
(E.57)

The solution for k ≥ 1 has the following structure:

f(τ) ∼ (1− ω)(1 + ω)−n

ω−n
[An,k log(1− ω) +Bn,k log(1 + ω)] , (E.58)

where for any n and k:

Ak,n =
1

2πi

∮
x=1

dx
xk−n+1

(1− x)2(1 + x)−n+1
, (E.59)

Bk,n =
1

2πi

∮
x=−1

dx
xk−n+1

(1− x)2(1 + x)−n+1
. (E.60)

Hence this concludes the proof that the cohomology at form-degree 2 is trivial in the space

of pseudo-local functionals.

E.3 Cohomologies linear in Ĉ and ω̂

The cohomologies Hn(D̃, ω̂Ĉ) and Hn(D̃, Ĉω̂) can be trivially obtained from the coho-

mologies calculated in the previous subsections. This is due to the observation that upon

appropriate relabeling of ξ, η and y the Fourier representation of D̃ acting on functionals

linear in Ĉ and ω̂, which are given by (2.73) and (2.74), reduce to the Fourier representation

of the adjoint covariant derivative D acting on functionals quadratic in Ĉ given in (2.69).

Note however that the form-degree n is shifted by one as ω̂ is a one-form.

F Asymptotic behavior

Below we collect in detail the large-l asymptotic behavior of the various expressions that

appear in the main text:

(C.33) : an,m,l|l→∞ ∼ exactly zero , (F.1a)

(C.34) : an,m,l|l→∞ ∼
−4lilfm+n

(m+ n+ l + 3)!
, (F.1b)

(C.35) : an,m,l|l→∞ ∼
2l

l!l
m+n+4

2

, (F.1c)

(C.38), (C.39) : an,m,l|l→∞ ∼
(−i)lfm+n+l

l!
an,m,lF |l→∞ ∼

i−lfm+n+l

l!
, (F.1d)

(C.41), (C.42) : cn,m,l|l→∞ ∼fn+m cn,m,lF |l→∞ ∼ −l2fn+m , (F.1e)
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(C.43) : an,m,l|l→∞ ∼
(−i)lfn+m

(m+ n+ l + 3)!
, (F.1f)

(B.5h) : an,m,l|l→∞ ∼−
i(−i)l(−1)m(m+ n)!

l!m!n!(l +m+ n+ 3)2
, (F.1g)

(B.9) : an,m,l|l→∞ ∼−
i(−i)l(−1)m(m+ n)!

l!l2m!n!
, (F.1h)

(C.44) : an,m,l|l→∞ ∼
(−i)ll log lfn+m

(l +m+ n+ 3)!
, (F.1i)

(B.23) : a0,0,l|l→∞ ∼
(i)l

l!
, (F.1j)

(C.75) : an,m,l|l→∞ ∼
1

l2sl!
(F.1k)

(B.28) : an,m,l|l→∞ ∼
(i)l

l!lq
, q ≥ 0 . (F.1l)

The backreaction obtained from the Prokushkin-Vasiliev theory, (B.9), is quite complicated

but using its large-l asymptotic we see that its D-exact representation JPV = DUPV has

large-l asymptotics which are no worse than 1
l! . Apart from the artificial example of (F.1e),

all large-l asymptotics have the same damping factor 1/l!.

G D-dimensional theory at D = 3

This section is devoted to another three-dimensional higher-spin theory. Namely, we wish

to consider the generic D-dimensional Vasiliev theory [19], which is known not to require

the presence of any twisted sector. After some simplifications the D-dimensional Vasiliev

theory can be reduced to43

dW +W ?W = 0 , {Sα,B ? κ}? = 0 , (G.1)

d(B ? κ) + [W,B ? κ]? = 0 , [Sα,Sβ ]? = −2iεαβ (1 + B ? κ) , (G.2)

dSα + [W,Sα]? = 0 , (G.3)

supplemented with the so-called kinematical constraints

[F 0
αβ ,W]? = 0 , [F 0

αβ ,B]? = 0 , [F 0
αβ ,Sγ ]? = εαγSβ + εβγSα , [F 0

αβ ,κ]? = 0 , (G.4)

where κ = eiyz is the usual Klein operator and F 0
αβ = − i

4{y
a
α, yaβ} + i

4{zα, zβ} are the

sp(2) generators of the algebra Howe dual to the AdS algebra so(D, 2). The Lorentz and

translation generators of the background anti-de Sitter algebra so(D, 2) are

Lab =
i

4
{yaν , ybν} , P a =

i

4
{yaν , yν} , (G.5)

and by the Howe duality property they commute to the sp(2) generators.

43We do not give a detailed account of this theory, referring to the original paper [19] for definitions, to [5]

for a review and to [67] for a brief summary and explanations on how to slightly reduce the field content to

the form presented in this appendix.
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In generic D this system describes interactions of all s = 0, 1, 2, 3, . . . fields and there

is no need to involve a twisted sector, which we recall is a built-in feature of Prokushkin-

Vasiliev Theory studied in this paper. One could, however, choose to add twisted fields and

couple them to the D-dimensional Vasiliev theory. This is done by enlarging the higher-

spin algebra and yields an extended D-dimensional theory. The minimalistic option is to

add a Klein operator k for yaα, i.e.44

[yα, k] = [zα, k] = 0 , {yaα, k} = 0 , k2 = 1 . (G.6)

No modification of the above equations is needed. The vacuum is the canonical one, i.e.

B = 0, Sα = zα, with

Ω =
1

2
ωa,bL

ab + haP
a , (G.7)

where ωa,b and ha are the spin-connection and vielbein of AdS space. Now the linearized

equations for W = Ω +w, B = C and Sα = zα + sα reduce to

DΩw = 0 , ∂zαw =
i

2
DΩsα , DΩ(C ? κ) = 0 , (G.8)

∂zαC = 0 , ∂zαs
α = C ? κ . (G.9)

These equations can be solved as usual. First, C = C(ya, y, k) is zα-independent and

dC + Ω ?C−C ? π(Ω) = 0 , (G.10)

where π(Ω) = κ ? Ω ? κ is the automorphism that flips the sign of the translation gen-

erator P a = i
2y

a
νy

ν . The equation splits into two different equations for the components

C = Ĉ + C̃k:

DC̃ = dC̃ + Ω ? C̃ − C̃ ? Ω = 0 , (G.11)

D̃Ĉ = dĈ + Ω ? Ĉ − Ĉ ? Ω̃ = 0 . (G.12)

The interpretation is straightforward: Ĉ obeys the usual equation for higher-spin Weyl

tensors and descendants thereof, i.e. it describes the gauge invariant field-strengths of

higher-spin fields. Instead, C̃ describes an infinite set of totally-symmetric AdS Killing

tensors, including the Killing constant.

For completeness we also write the solution for w:

w = ω +
i

2
hb

∫
(1− t)dt

(
izν∂

bνĈ(ya,−zt) + zνy
bνC̃(ya,−zt)k

)
eityz , (G.13)

44Due to the form of generators (G.5) there is an ambiguity on how to couple k to the algebra as to

ensure kP ak = −P a. While the simplest option is in the main text, let us give an alternative realization

that is in the spirit of the Prokushkin-Vasiliev theory. The alternative relations read:

{yα, k} = {zα, k} = 0 , {ρ, k} = 0 , [yα, ρ] = [zα, ρ] = 0 , [yaα, k] = [yaα, ρ] = 0 , k2 = ρ2 = 1 .

As in the Prokushkin-Vasiliev theory a truncation needs to be imposed such thatW and B are ρ-independent

and Sα = ρsα(yaα, yα, k). The vacuum for Sα is ρzα and it functions the same way as zα in the original

theory thanks to [ρzα, k] = 0, [k,κ] = 0.
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where ω = ω(ya, y, k) = ω̂ + ω̃k also splits into a higher-spin algebra connection ω̂ and a

twisted ω̃, which has the same mysterious interpretation as its Prokushkin-Vasiliev cousin.

Let us point out that, contrary to Prokushkin-Vasiliev Theory, in D > 3 there are non-

trivial sources on the right-hand sides of the first-order equations of motion:

D̃ω̃ = dω̃ + Ω ? ω̃ − ω̃ ? Ω̃ = − i
4
ha ∧ hb yaνybνC̃(ym, 0) , (G.14)

Dω̂ = dω̂ + Ω ? ω̂ − ω̂ ? Ω = +
i

4
ha ∧ hb ∂aν∂bνĈ(ym, 0) , (G.15)

which for ω̂ amount to the nontriviality of higher-spin Weyl tensors in D > 3. The sources

disappear at D = 3 except for s = 1, which will be discussed below.

G.1 Confronting two three-dimensional higher-spin theories

From now on we will consider the case D = 3. We are thus left with a three-dimensional

higher-spin theory which also involves a twisted sector, and it is therefore natural to com-

pare it with the Prokushkin-Vasiliev theory studied in the main text. We anticipate the

fact that in Prokushkin-Vasiliev Theory the twisted fields are built in whereas here we add

them ‘by hand’ seems to indicate that the two theories should differ. We find it however

enlightening to compare them precisely, which we comment on in the following.

The above theory at D = 3 also involves Killing tensors, but there is only one Killing

constant therein while there are two in the Prokushkin-Vasiliev theory, the doubling being

due to the φ-dependence. The field Ĉ describes one scalar field and a spin-one field which

are present, while the Weyl tensors for s ≥ 2 vanish identically. In contrast, in Prokushkin-

Vasiliev Theory there is no dynamical spin-one field, which is also clear by noticing that the

interactions among higher-spin fields are Chern-Simons-like. We also see that the spectrum

of the higher-spin algebras do not match, the difference being that there are two Lorentz

scalars in the physical sector of Prokushkin-Vasiliev while there is only one such scalar in

the D-dimensional theory at D = 3 because the spin-one Weyl tensor is equivalent to a

three-dimensional vector.45

Again let us stress that the key difference with Prokushkin-Vasiliev Theory is that the

twisted sector of the extended D-dimensional theory is not built-in, which we have shown

to be not straightforward in Prokushkin-Vasiliev. The truncation is achieved by requiring

all fields not to depend on k.

When going to the second order in the extended D-dimensional theory we find that the

structure of the backreaction is different. For example, D̃Ĉ(2) ∼ ĈĈ + C̃C̃ and DC̃(2) ∼
ĈC̃, while in Prokushkin-Vasiliev we have instead DC̃(2) ∼ ĈĈ + C̃C̃ and D̃Ĉ(2) ∼ ĈC̃,

which illustrates the general statement that the twisted sector can be truncated away in

the extended D-dimensional theory but not in Prokushkin-Vasiliev Theory.

As mentioned above another difference lies in the field content. The D-dimensional

theory extrapolated to D = 3 has degrees of freedom associated with s = 0 and s = 1, the

corresponding energies, which can be read off from the general formulas E = D + s − 3,

which gives E = 0 for s = 0 and E = 1 for s = 1. The AdS masses are m2 = 0 and

45The difference is however not drastic since a vector field is dual to a scalar in dimension 3.
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m2 = −2. In dimension 3 a vector field is dual to a scalar with m2 = 0, so we have two

scalars of the same mass m2 = 0. This should be compared with the masses of the scalars

in the Prokushkin-Vasiliev theory, where m2 = −1 + λ2.

The precise truncation of Prokushkin-Vasiliev Theory we consider in the paper corre-

sponds to λ = 1
2 and should be dual to the W 1

2
-minimal model. The D-dimensional theory

fits λ = 1 and should be dual to a 2D free boson theory as it generically occurs in higher

dimensions.46 Both λ = 1 and λ = 1
2 seem to be generic from the bulk point of view, which

only makes it even more surprising to have such different behaviors of the twisted sectors

in both cases.

G.2 Twisted sector

Let us have a closer look at the twisted sector. This discussion applies both to D-

dimensional Vasiliev Theory and to Prokushkin-Vasiliev Theory. We first look at the

gauge twisted fields ω̃ and discuss the field content, gauge symmetries and possible gauge

invariant equations and then show how the twisted zero-forms C̃ source ω̃ via (G.14).

Twisted one-forms. When decomposed into Lorentz tensors (G.14) splits into an infi-

nite set of equations that involve

ω̃a(s+k),b(s) , k = 0, 1, 2, . . . , (G.16)

for every s = 0, 1, 2, . . . . There exists a standard technique, the σ−-cohomology, used to

analyze the content of any unfolded equation [5, 36]. The procedure consists of taking the

part of the differential that lowers the degree of a fiber tensor. In our case the relevant

operator is D̃, so that

(σ−ω̃)a(s+k),b(s) = hc ∧
(
ω̃a(s+k)c,b(s) +

1

k + 2
ω̃a(s+k)b,b(s−1)c

)
, (G.17)

which is dubbed σ− and can be checked to be nilpotent. The σ−-cohomology for all kinds

of AdS-modules was computed in [5, 72, 73]. Following standard techniques, the metric-like

content of ω̃ is given by H1(σ−). It is easy to see that for s > 1 the only tensor in the

kernel of σ− is given by

ω̃a(s),b(s) = hcΦ
a(s),b(s),c , (G.18)

where Φa(s),b(s),c is not traceless but has only one non-vanishing trace so that the indepen-

dent metric-like fields described by the twisted sector are Φs, s = 1, 2, . . . :

Φa(s),b(s),c , Φa(s),b(s−1)n,
n . (G.19)

46The oscillator realization, found in [19], gives the HS algebra as a subquotient with respect to certain

ideal. We note that both hs(λ) at λ = 1 and the realization of [19] for λ = 1 are equivalent and share the

property that the generators with s > 0 form an ideal, which can be seen from the bilinear form [70, 71].

Such decoupling is expected since the s = 0 component is of conformal weight-0 and has the logarithmic

mode. Therefore, the formation of the ideal at λ = 1 is in accordance with AdS/CFT. While one might face

certain difficulties in trying to factorize in the realization of [19] at the interacting level, our linear analysis

above is unaffected as well as general statements on the mixing of twisted and physical sectors.
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In addition to the above elements, the case s = 0 is degenerate due to the non-trivial kernel

of σ− given by ha Φ. Also for s = 1 there is an additional element given by47 h[bΦa], where

however Φa cannot be identified with the trace of Φa,b,c.

To summarize, the indpendent components of ω̃ are given by

ω̃a(s),b(s) = hcΦ
a(s),b(s),c , ω̃a,b = h[aΦb] , ω̃a = haΦ . (G.20)

The above fields, being one-forms, are gauge fields whose metric-like components trans-

form as

δΦa(s),b(s),c = ∇cξa(s),b(s) + permutations− trace , (G.21)

with a traceless gauge parameter whose physical components belong to H0(σ−), and hence

in the metric-like formalism has the same index structure as the higher-spin Weyl ten-

sors. Remarkably, the rigid symmetries associated with these gauge fields are the infinite-

dimensional Weyl modules themselves, in contrast with the physical higher-spin fields whose

rigid symmetries are given by Killing tensors and hence are finite-dimensional at a fixed

spin. For s = 0 one finds in particular

δΦ = (� + 2(d− 2))ξ , (G.22)

and rigid symmetries are given by (� + 2(d − 2))ξ = 0, i.e. correspond to an on-shell

scalar field.

The rest of the Lorentz components of ω̃ are either pure gauge or expressed as deriva-

tives of Φs. Possible gauge-invariant equations are given by H2(σ−). One finds three

independent first order operators:

Ea(s),b(s),c,d , Ea(s),b(s−1),c , Ea(s−1),b(s−1) , (G.23)

corresponding to the irreducible components of a two-form with the index structure of a

Weyl tensor:

Ea(s),b(s)
c,dh

c ∧ hd . (G.24)

Note that only the trace of Φs contributes to the last operator in (G.23),

∇mΦa(s−1)m,b(s−1)n,
n . For the degenerate case s = 0 there are no equations possible since

the cohomology is empty.

Twisted zero-forms. As it was already said, (G.11) describes Killing tensors encoded

in C̃. The Killing equation (G.11) also splits into an infinite set of equations for a finite

number of fields:

C̃a(s−1),b(k) , k = 0, . . . ., s− 1 . (G.25)

In particular the first equation of each chain,

∇mC̃a(s−1) + hbmC̃
a(s−1),b = 0 , (G.26)

implies, after symmetrizing the indices, the standard Killing equation ∇aC̃a(s−1) = 0.

There is also a degenerate case s = 1 for which we have a Killing constant C̃.

47These cocycles of σ− become trivial if the trace constraints on the fiber tensors are relaxed.
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Equations for twisted one-forms. Now we see that (G.14) sets to zero the first two op-

erators from (G.23), imposing equations thereon. The last operator matches the symmetry

of one of the Killing tensor components and yields one more equation:

∇mΦa(s−1)m,b(s−1)n,
n = C̃a(s−1),b(s−1) . (G.27)

In particular the Killing constant appears as a source for the s = 1 field ∇mΦm = C̃(y = 0).

Nothing dramatic happens for D = 4 and all the conclusions above are still true.

The Killing equations (G.11) or (G.26) can be easily solved using the ambient space

technique, see e.g. [74], the solution for a spin-s tensor being a polynomial in the boundary

coordinates with the powers of the Poincare coordinate z ranging from −(s− 1) to (s− 1).

As in Prokushkin-Vasiliev Theory, at second order one finds on the right-hand side

of Fronsdal equations some currents built out of the first order fields that include C̃C̃.

Therefore, even if the physical scalars and higher-spin fields are switched off at first order

there is a non-trivial source for higher-spin fields at second order due to the Killing tensors.

In appendix E we observe that the definition of the twisted one-forms ω̃ is ambiguous

due to an option to shift them by physical fields of the form h ∧ Ĉ. Differently put the

cohomology H1(D̃), with coefficients Ĉ in the twisted-adjoint module of the higher-spin

algebra, is not empty. Despite the difference between the way the twisted and physical

fields couple to each other in Vasiliev Theory and Prokushkin-Vasiliev, it is easy to see

that H1(D̃) is non-trivial also in the former.

G.3 Invariant definition of twisted sectors

Let us conclude this appendix with a small remark on the algebraic interpretation of the

twisted sector. It turns out that, at least algebraically, the definition and realization of the

twisted sector does not require any extra ingredients as compared to those already present

in any higher-spin theory.

Any known higher-spin algebra comes as an associative algebra on which we then define

the Lie bracket to be the commutator of the corresponding associative product. Moreover,

it comes equipped with an automorphism, π, that flips the sign of AdS-translations, which

in the conformal basis can be seen to exchange translations with boosts and flip the sign of

the dilatation generator. This automorphism allows one to construct the twisted-adjoint

representation, where the action of the higher-spin algebra on itself is twisted by π, i.e.

ãdax = a ? x − x ? π(a). The twisted-adjoint representation is the one used to describe

degrees of freedom, e.g. scalar fields in the Prokushkin-Vasiliev theory. Given an order-two

automorphism π one can build an extended associative algebra that is hs ⊕ hs as a linear

space equipped with the following product:

(a, x) ? (b, y) = (a ? b+ x ? π(y), x ? π(b) + a ? y) , a, b, x, y ∈ hs . (G.28)

This is the algebra upon which the higher-spin theory extended with twisted fields is built.

The adjoint representation of the extended algebra contains both the usual adjoint and the

twisted-adjoint representations of the higher-spin algebra it was built from:

[(a, x), (b, y)]? = ([a, b]? + x ? π(y)− y ? π(x), a ? y − y ? π(a) + x ? π(b)− b ? x) . (G.29)
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Given a Klein operator k that implements the automorphism via π(x) = k ? x ? k, k2 = 1,

the extended algebra is just the algebra of a+ x ? k.

The algebraic interpretation of the twisted sector is then related to the fact that the

Klein operator realizes the inversion operator I: kKik = Pi, kPik = Ki and kDk = −D,

which are the exact same identities that follow from Ki = IPiI, where Pi,Ki, D, Lij are

the generators of the AdS algebra in the conformal basis. For conformal fields we have

Iφ(x) = (x2)−∆φ( x
x2

). Therefore, the twisted sector can be interpreted as describing the

same field content as usual but viewed from the point at infinity. All that being said it is

still not clear what is the physical meaning of the twisted sector in the AdS dual theory.

What is clear is that the above inversion which sends lowest-weight representations to

highest-weight ones clashes with unitarity.

An interesting question to ask is which of the symmetries does a higher-spin theory

extended with a twisted sector realize. The AdS background is given by a flat connection

Ω of the anti-de Sitter algebra whose twisted part is identically zero. Decomposing the

global symmetry equation δΩ = 0 into physical and twisted parts we find

0 = dξ + [Ω, ξ] , 0 = dξ̃ + [Ω, ξ̃] . (G.30)

Therefore, the global symmetry algebra is the extended higher-spin algebra hs ⊕π hs. The

vacuum value of the physical B in AdS is zero, which leads to the following additional

constraints on the global symmetry algebra of the vacuum unless B̃ = 0:

0 = B̃ ? π(ξ̃)− ξ̃ ? π(B̃) , 0 = B̃ ? π(ξ)− ξ ? B̃ . (G.31)

Here lies one of the crucial differences with the Prokushkin-Vasiliev theory, in which we

have, rather,

0 = [B̃, ξ̃ψ] , 0 = [B̃, ξ] . (G.32)

In the latter case B̃ can be non-zero along the Killing constant without having to restrict

the global symmetry algebra.48 In the D-dimensional case the second equation of (G.31)

implies that the only B̃ that does not restrict ξ is B̃ = 0. This leaves us with only one

option — B̃ = 0 — to preserve the full higher-spin algebra in the vacuum even in the

situation in which the backreaction on the twisted sector can be trivialized (in which one

could in principle treat B̃ as a set of coupling constants).
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