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Recent mechanistic insights into eukaryotic ribosomes
Marina V Rodnina1,2 and Wolfgang Wintermeyer3
Ribosomes are supramolecular ribonucleoprotein particles that

synthesize proteins in all cells. Protein synthesis proceeds

through four major phases: initiation, elongation, termination,

and ribosome recycling. In each phase, a number of phase-

specific translation factors cooperate with the ribosome.

Whereas elongation in prokaryotes and eukaryotes involve

similar factors and proceed by similar mechanisms,

mechanisms of initiation, termination, and ribosome recycling,

as well as the factors involved, appear quite different. Here, we

summarize recent progress in deciphering molecular

mechanisms of eukaryotic translation. Comparisons with

prokaryotic translation are included, emphasizing emerging

patterns of common design.
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Introduction
Ribosomes are supramolecular RNA–protein assemblies

that manufacture proteins in all cells. Bacterial 70S ribo-

somes consist of a small subunit (30S), where the decoding

of mRNA by aminoacyl-tRNA takes place, and a large

subunit (50S), which is responsible for the catalysis of

peptide bond formation. Their eukaryotic counterparts

are the small subunit (40S) and the large subunit (60S)

that form the 80S ribosome. Archaeal ribosomes and their

subunits are similar in size to bacterial ribosomes, although

functionally they are closer to eukaryotic ones. A number of

crystal structures of bacterial and archaeal ribosomes, their

subunits, and their complexes with tRNAs, tRNA analogs,

and translation factors have been obtained; a crystal struc-

ture of a eukaryotic ribosome is still not available. Cryo-

electron microscopy (cryo-EM) provided first insights into

the architecture of 80S ribosomes; structural models were
www.sciencedirect.com
obtained by docking atomic structures of bacterial and

archaeal ribosomes into the cryo-EM density of eukaryotic

ribosomes [1]. The current resolution of cryo-EM struc-

tures of yeast 80S ribosomes reaches 7.3 Å [2]. Ribosomes

from bacteria, eukarya, and archaea have a high degree of

sequence and structure conservation, indicating a common

evolutionary origin, and share a ‘common core’, which is

responsible for mRNA decoding, peptidyl transfer, and the

translocation of tRNA and mRNA by one codon at a time.

The eukaryotic ribosome contains additional ribosomal

proteins and extra segments of rRNA, referred to as rRNA

expansion segments, which are found predominantly

around the periphery of the subunits. Translation of an

mRNA into protein proceeds through four major phases:

initiation, elongation, termination, and ribosome recycling

(Table 1). Rather than providing a detailed view of each

phase, the goal of this review is to summarize information

published recently in the field and to focus on the differ-

ences as well as unexpected similarities in the mechanisms

in prokaryotic and eukaryotic translation.

Initiation
During initiation, initiator tRNA and the start codon are

positioned in the P site of the ribosome, thereby estab-

lishing the correct starting point on the mRNA. Initiation

entails two major steps. In the first step, initiator tRNA

and mRNA bind to the small ribosomal subunit and the

start codon is placed into the P site of the small subunit. In

the second step, the large ribosomal subunit joins the

complex to form the initiation complex that is ready to

enter elongation. Although initiation differs in mechan-

istic detail in prokaryotes and eukaryotes (for reviews, see

[3,4]), patterns of common design start to emerge

(Figure 1).

Two groups of initiation factors, those involved in mRNA

recruitment (eIF4, eIF3, PABP, and mRNA helicases)

and those delivering Met-tRNAi to the 40S subunit (eIF2

and eIF5) in eukaryotes, are absent in bacteria. The lack

of mRNA binding factors can be rationalized by differ-

ences in the structures of the translation initiation regions

of mRNAs in prokaryotes and eukaryotes. The recruit-

ment of the mRNA to the bacterial 30S subunit is

independent of initiation factors, and the rate of mRNA

binding depends mostly on the nature of the secondary

structure in the translation initiation region [5,6]. The

lack of prokaryotic homologs of eIF2 and eIF5 may be

related to particular requirements of mRNA scanning in

eukaryotic initiation or to differences in translational

control. eIF2 in particular is a key target for translational

control by phosphorylation, which does not take place in

bacteria. In contrast to eukaryotic Met-tRNAi, bacterial
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Figure 1
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Table 1

Translation factors in the three kingdoms of life.

Translation step Bacteria Archaea Eukarya

Initiation IF1 aIF1A eIF1A

IF2 aIF5B eIF5B

IF3 aIF1 eIF1

aIF2a eIF2a

aIF2b eIF2b

aIF2g eIF2g

aIF2Ba eIF2Ba

eIF2Bb

eIF2Bg

aIF2Bd eIF2Bd

eIF2Be
eIF3 (13 subunits)

aIF4A eIF4A

eIF4B

eIF4E

eIF4G

eIF4H

aIF5 eIF5

aIF6 eIF6

PABP

Elongation EF-Tu aEF1a eEF1A

EF-Ts aEF1B eEF1B (2 or 3

subunits)

SelB SelB eEFSec

SBP2

EF-G aEF2 eEF2

Termination RF1 aRF1 eRF1

RF2

RF3 eRF3

Recycling RRF

EFG

eIF3

eIF3j

eIF1A

eIF1

Orthologous or functionally homologous factors are aligned.
initiator tRNA, fMet-tRNAfMet, is not delivered to the

30S subunit in a ternary complex with an initiation factor

[7], although there is a weak (Kd = 1–2 mM) interaction

between the CCA-end of fMet-tRNAfMet and the C-

terminal domain of IF2 (prokaryotic homolog of eIF5B)
( Figure 1 Legend ) Initiation pathway in eukarya and bacteria. In eukarya, i

ternary complex with eIF2 and GTP, assisted by eIF1, eIF1A, and eIF3, to for

near the 50-7-methylguanosine (m7G) cap is promoted by the cap-binding pr

(PABP) to form the 48S complex. Subsequently, the complex scans along the

newly discovered DHX29 [70�]. During scanning, eIF2 stimulated by eIF5 ma

the start codon AUG is recognized [15]. Recognition of the start codon trigg

include release of Pi from eIF2 [71], displacement of eIF1, eIF2, and eIF5, an

and – after ribosome-induced GTP hydrolysis by eIF5B – the initiation facto

initiation complex (80S IC). In the bacterial system, IF3, IF1, and IF2�GTP bind

guided by the interaction of the Shine–Dalgarno (SD) sequence upstream of

rRNA. Binding of the initiator tRNA (fMet-tRNAfMet), which recognizes the AU

30S initiation complex; concomitantly, parts of IF3 may be displaced from th

conformation of the 70S initiation complex and promotes the release of the in

IF2 and fMet-tRNAfMet [19�,20,21] and the dissociation of IF3 [10��]. The releas

[10��], Pi release from IF2 [20,21], further conformational changes of IF2, poss

tRNAfMet in the 50S P site [19�,72] of the 70S initiation complex (70S IC). The

as well [73,74]. Orthologous factors are depicted in the same shape and co

www.sciencedirect.com
in solution. Rather, IF2 accelerates the binding of fMet-

tRNAfMet to the 30S subunit containing the full set of

initiation factors and (usually) the mRNA.

On the other hand, the functions of eIF1A and eIF1 and

their bacterial analogs, IF1 and IF3, respectively, may be

quite similar. eIF1A consists of a central domain, which is

homologous to IF1, and random-coil N-terminal and

C-terminal extensions, which are absent in IF1 [4].

Although there is little sequence conservation between

IF3 and eIF1 (<15% identity), the factors have similar

functions in initiation codon selection, bind to analogous

regions on the small subunit, and can even function in

heterologous initiation assays [8]. Similar to eIF1, IF3 is

recruited to the ribosome already at the ribosome recycling

step, when the post-termination ribosome is disassembled

into subunits (see below). During initiation, eIF1A (IF1)

and eIF1 (IF3) alter the structure of the small ribosomal

subunit, which is important for the selection of the trans-

lation initiation region and the correct start codon

[9,10��,11]. eIF1 (IF3) accelerates the dissociation of incor-

rect tRNA–mRNA complexes from the small ribosomal

subunit and enhances sequence context discrimination in

the translation initiation regions [10��,12,13]. eIF1A (IF1)

plays a key role in determining the balance between

different conformations of the 40S (30S) subunit

[10��,14]. Recognition of the start codon lowers the affinity

of eIF1 (IF3) for the ribosome and accelerates its release

[10��,15]. eIF1 moves away from its binding site on the

small subunit, most probably toward eIF3 [3,4]. Similarly,

parts of bacterial IF3 may be displaced after codon recog-

nition [16��], although the complete dissociation of the

factor takes place only after joining of the large ribosomal

subunit [10��]. Thus, the basic roles of eIF1 (IF3) and

eIF1A (IF1) in start site selection may be conserved in

prokaryotes and eukaryotes.

Also the roles of eIF5B and its bacterial homolog IF2

seem to be more similar than is usually realized. Both

eIF5B and IF2 accelerate the rate of ribosomal subunit

joining [17,18], which may be influenced by the confor-

mation of the factor as mediated by the nucleotide
nitiator tRNA (Met-tRNAi) is delivered to the 40S ribosomal subunit in a

m a 43S pre-initiation complex. Binding of the 43S complex to the mRNA

otein eIF4E, the scaffolding factor eIF4G, and the poly(A)-binding protein

mRNA with the help of mRNA helicases, such as eIF4A and possibly the

y reversibly hydrolyze GTP; inorganic phosphate (Pi) is not released until

ers events that commit the complex to initiate translation. These events

d binding of eIF5B GTP [4]. The resulting complex binds the 60S subunit,

rs dissociate and Met-tRNAi accommodates in the P site of the 80S

to the 30S subunit that subsequently binds to the mRNA, in many cases

the start codon and the anti-SD sequence near the 30-terminus of 16S

G start codon, accurately positions the AUG codon into the P site of the

e 30S subunit. Following subunit joining, GTP hydrolysis by IF2 alters the

itiation factors. GTP hydrolysis is followed by conformational changes of

e of IF3 initiates a cascade of further reactions, including IF1 dissociation

ibly IF2 dissociation from the ribosome, and the accommodation of fMet-

conformation of the ribosome and the position of the mRNA may change

lor.
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[19�,20]. The cryo-EM reconstruction of the 30S

initiation complex suggested that IF2 positions the accep-

tor end of fMet-tRNAfMet for insertion into the 50S

subunit [19�]. The largest part of IF2 in the complex is

complementary in shape to the 50S surface, which

explains how IF2 and fMet-tRNAfMet favor subunit

association. Docking of the 50S subunit would place

the GTP binding pocket of IF2 in contact with the

sarcin–ricin loop, which may trigger immediate GTP

hydrolysis [19�,20,21]. 50S subunit joining and the tran-

sition from the 30S to the 70S initiation complex provide

an important kinetic control checkpoint for the accuracy

of mRNA selection [10��]. Whether such a step exists in

eukaryotic initiation has not been tested yet.

Elongation
Elongation entails three steps, decoding of an mRNA

codon by the cognate aminoacyl-tRNA, peptide bond

formation, and translocation of the tRNA–mRNA com-

plex, which moves peptidyl-tRNA from the A site to the P

site and presents a new codon in the A site. The decoding

and translocation steps are accelerated by elongation fac-

tors that are similar in prokaryotes and eukaryotes

(Table 1). The eukaryotic elongation factor 1 (eEF1)

comprises eEF1A and eEF1B [22]. eEF1A is homologous

to prokaryotic EF-Tu and delivers aminoacyl-tRNAs to

the A site of the ribosome. As EF-Tu, eEF1A is a member

of the GTPase superfamily and binds and hydrolyzes GTP.

The dissociation of GDP from eEF1A is accelerated by a

guanine nucleotide exchange factor (GEF), eEF1B, which

is composed of two subunits, eEF1Ba and eEF1Bg, in

yeast, or three subunits, eEF1Ba, eEF1Bg, and eEF1Bb,

in mammals. eEF1Ba contains the catalytic domain

necessary for nucleotide exchange and is thus the func-

tional equivalent to the bacterial GEF of EF-Tu, EF-Ts,

which acts as a single polypeptide. Although both eEF1Ba

and EF-Ts function as GEFs, the two proteins do not

exhibit any significant sequence homology and bind to

their respective GTPase in different ways. eEF1Ba inter-

acts with domains 1 and 2 of eEF1A, disrupting the switch 2

region of eEF1A, which forms part of the binding pocket

for Mg2+ and the g-phosphate of GTP, and inserting the

highly conserved Lys205 into the Mg2+ and GDP/GTP

binding sites of eEF1A. This prevents the binding of the b-

phosphate and g-phosphate to the P loop [23]. The struc-

tures of the sugar and base binding pockets of eEF1A are

mostly unperturbed by eEF1Ba, in contrast to the EF-

Tu�EF-Ts complex. Lys205 of eEF1Ba appears to be

important for the mechanism of nucleotide exchange, as

the Lys205Ala mutation is lethal owing to impaired GEF

function [24]. However, in vitro the mutation reduced the

rate of GDP release from eEF1A only about tenfold (at

1 mM Mg2+) [24,25�], and removal of Mg2+ increased the

rate of eEF1Ba-induced GDP dissociation no more than

sixfold [24]. This suggests that – as for EF-Tu�EF-Ts

[26,27] – each of the contacts in the eEF1A�eEF1Ba

complex contributes moderately to the destabilization of
Current Opinion in Cell Biology 2009, 21:435–443
nucleotide binding, but together they act synergistically to

bring about the overall acceleration of nucleotide exchange

[25�].

Like prokaryotic EF-Tu, yeast eEF1A binds aminoacyl-

tRNA in a GTP-dependent manner and promotes its

binding to the mRNA-programed 80S ribosome. As EF-

Tu, yeast eEF1A�GTP binds aminoacyl-tRNA with nano-

molar affinity [25�]. After the ternary complex is formed,

aminoacyl-tRNA delivery to the A site of the eukaryotic

ribosome presumably follows the same pathway as

described in detail for bacterial ribosomes [28–31], albeit

decoding appears to take place somewhat more slowly and

more accurately, particularly in higher eukaryotes.

As soon as aminoacyl-tRNA is accommodated in the A

site, it forms a peptide bond with the P-site peptidyl-

tRNA. The peptidyl transferase center on the large

ribosomal subunit is built up of highly conserved rRNA

elements; most probably, the reaction mechanism is the

same in prokaryotes and eukaryotes (for review see [32]).

As revealed by the X-ray structures, the A-site and P-site

substrates are precisely aligned in the active site by

interactions of their conserved CCA sequences and of

the nucleophilic a-amino group with residues of 23S

rRNA in the active site. The reaction is driven by a

favorable entropy change, while the enthalpy is small

and unfavorable [33]. Catalysis seems to involve a six-

membered transition state in which proton shuttling

occurs via the 20-OH of A76 of the P-site tRNA [34–
36]. The reaction does not involve chemical catalysis by

ribosomal groups, but may be modulated by confor-

mational changes at the active site [37,38]. The ribosome

appears to work by providing an electrostatic environ-

ment that reduces the free energy of forming the highly

polar transition state, shielding the reaction against bulk

water, helping the proton shuttle forming the leaving

group, or a combination of these effects.

Following peptide bond formation, the pre-translocation

ribosome can spontaneously assume a conformation in

which the subunits have undergone a ratchet-like relative

rotation and, concomitantly, the 30 ends of tRNAs in the P

and A sites have moved to the E and P sites, respectively,

to assume hybrid states. There seems to be a dynamic

equilibrium between the non-ratcheted conformation

with the tRNAs in non-hybrid, classic states and the

ratcheted conformation with the tRNAs in hybrid states

[39�,40,41,42,43�,44,45��,46]. Subunit ratcheting and the

ability of the P-site tRNA to interact with the E site on

the 50S subunit are essential for EF-G promoted trans-

location [47�,48], suggesting that the combined hybrid-

ratcheted state is an authentic early intermediate of

translocation. However, the formation of this state as

such is not sufficient to move the acceptor end of pepti-

dyl-tRNA into the post-translocation position proper,

as indicated by low reactivity with puromycin [49,50].
www.sciencedirect.com



Recent mechanistic insights into eukaryotic ribosomes Rodnina and Wintermeyer 439

Figure 2

Translocation pathway. Following peptide bond formation, the pre-translocation complex (PRE) can have the tRNAs in the classic A/A (peptidyl-tRNA,

green) and P/P (deacylated tRNA, red) states or in the respective hybrid A/P and P/E states. Hybrid state formation is correlated with the ratcheting

movement of the subunits relative to one another. The hybrid-ratcheted state is stabilized by EF-G�GTP binding. Rapid GTP hydrolysis by EF-G drives

a rearrangement of the ribosome (‘unlocking’) that precedes, and limits the rate of, tRNA–mRNA movement on the small ribosomal subunit from the

hybrid pre-translocation (INT, hybrid/ratchet) to the non-hybrid post-translocation (INT, classic) intermediate complex [75]. Unlocking may allow for a

movement of the head of the 30S subunit, which may be involved in the movement of the codon–anticodon complex from the A to the P site, as

revealed by X-ray crystallography [76,77]. Pi release from EF-G, which takes place in parallel, induces another conformational change that is required

for the ribosome to return to the locked state and promotes the dissociation of EF-G and the E-site tRNA from the ribosome to form the post-

translocation complex (POST) with peptidyl-tRNA in the P site [78]. Further partial translocation steps were reported [79–81], but not assigned to

particular structures.
The sequence of events leading to tRNA–mRNA move-

ment through the ribosome to the post-translocation state,

as deduced from kinetics, single molecule experiments,

X-ray, and cryo-EM structures, is most probably very

similar in eukaryotes and prokaryotes (Figure 2).

In the absence of EF-G, the tRNAs may move spon-

taneously in forward or backward direction through the

ribosome [51��,52��]. This suggests that the formation of

the unlocked state, as induced by EF-G and GTP

hydrolysis, accelerates intrinsically spontaneous oscil-

lations of the tRNAs between the A, P, and E sites.

During translocation, eEF2 (EF-G) undergoes several

large-scale conformational changes [42,53] that are prob-

ably required to provide the directionality of tRNA move-

ment and prevent the backward sliding of tRNAs. Thus,

EF-G may have several functions in translocation: stabi-

lizing the hybrid/ratchet state, inducing the unlocked

conformation of the ribosome, and acting as a Brownian

ratchet that prevents backward movement of the tRNAs.

Termination
Elongation stops when the ribosome reaches the end of

the coding region and a termination codon enters the

decoding site. During termination in bacteria, release

factors 1 or 2 (RF1 or RF2) bind to the ribosome in

response to the termination codon displayed in the A
www.sciencedirect.com
site, recognizing UAG/UAA and UAA/UGA, respectively,

and promote the hydrolysis of P-site peptidyl-tRNA.

Recent crystal structures [54��,55��,56��] show that the

binding of RF1 and RF2 induces conformational changes

in the decoding center, allowing the factors to recognize

their cognate termination codons with high specificity

[57,58] and to place the universally conserved GGQ motif

into the peptidyl transferase center where hydrolysis

takes place. The GGQ motif is essential for peptide

release, probably because it is involved in positioning

the hydrolytic water or in the stabilization of the transition

state [54��,55��] in a way similar to that observed during

peptide bond formation [59�]. Another release factor,

RF3, a GTPase, accelerates the dissociation of RF1

and RF2 from the ribosome, but is not required for

peptide release and is not essential for bacteria. The

current model for translation termination in bacteria

implies that (i) peptide release precedes and regulates

GTP hydrolysis by RF3 [60,61]; (ii) GTP hydrolysis is

required for the dissociation of RF3 from the ribosome

[60]; and (iii) the ribosomal post-termination complex

containing RF1 or RF2 acts as a guanine nucleotide

exchange factor for RF3 [62].

The mechanism of translation termination in eukaryotes

is quite different. The termination machinery is limited

to only two release factors, eRF1, which recognizes all
Current Opinion in Cell Biology 2009, 21:435–443
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three termination codons, and eRF3, the GTPase. In

contrast to the prokaryotic termination factors, eRF1

and eRF3 bind to one another with very high affinity

and probably enter the ribosome as a complex [63�]. 80S

ribosomes do not influence guanine nucleotide binding/

exchange on the eRF1�eRF3 complex; rather, eRF1 acts

as a GTP dissociation inhibitor for eRF3, promoting

efficient ribosomal recruitment of its GTP-bound form

[63�]. Thus, the mechanism of GDP–GTP exchange on

eRF3, which depends on stimulation by eRF1, is unusual

and entirely different from that on prokaryotic RF3. GTP

hydrolysis by eRF3 is a prerequisite for peptide release

[64,65��]; it couples stop codon recognition with peptidyl-

tRNA hydrolysis mediated by eRF1 [64,65��,66]. eRF3

strongly enhances peptide release by eRF1 in the pre-

sence of GTP, but not GDP, and abrogates peptide

release in the presence of non-hydrolyzable GTP analogs

even when eRF1 is present in excess, that is, eRF1

turnover is not required [65��]. Thus, whereas bacterial

RF3 increases the rate of RF1/RF2 release from the

ribosome, eukaryotic eRF3 seems to ensure the rapid

and efficient hydrolysis of peptidyl-tRNA by eRF1.

Apparently, the binding of eRF1 and eRF3�GTP to

pre-termination ribosomes leads to a complex that

initially is not active in peptide release, and a rearrange-

ment that is induced by GTP hydrolysis is required for

activation [64,66]. Before GTP hydrolysis, the GGQ

region of eRF1 may not be properly positioned in the

peptidyl transferase center, and GTP hydrolysis could

induce the correct accommodation and trigger peptidyl-

tRNA hydrolysis. Thus, prokaryotic and the eukaryotic

termination differ, in that in prokaryotes peptide release

precedes, and is required for, GTP hydrolysis by RF3,

whereas in eukaryotes GTP hydrolysis by eRF3 is necess-

ary for peptide release.

Ribosome recycling
Ribosome recycling, the last step of translation, is entirely

different in prokaryotes and eukaryotes. In bacteria,

ribosome recycling requires a specialized ribosome recy-

cling factor (RRF) that acts together with EF-G to split

the ribosome into subunits. Binding of IF3 to the 30S

complex, which still contains mRNA and tRNA, pro-

motes tRNA dissociation and destabilization of mRNA

binding; subsequent mRNA dissociation or exchange

with another mRNA is a spontaneous process [67,68].

Eukaryotic cells lack an ortholog of RRF, suggesting that

ribosome disassembly involves other factors. Recently, it

has been demonstrated that splitting of 80S ribosomes

into 40S and 60S subunits is catalyzed principally by eIF3,

the action of which is enhanced by eIF3j, eIF1, and

eIF1A [69��]. eIF1 mediates the release of the tRNA

from the 40S subunit, while eIF3j ensures subsequent

mRNA dissociation. The exact role of each factor and the

timing of events are not known. The reason for the

divergence in ribosome recycling between prokaryotes

and eukaryotes is not clear. Further mechanistic and
Current Opinion in Cell Biology 2009, 21:435–443
structural analyses are required to delineate the detailed

mechanism of the reactions.
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